1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is in this distribution in the file
19 * called COPYING.
20 *
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
24 *
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
26 * channel.
27 *
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
33 *
34 * The PL080 has a dual bus master, PL081 has a single master.
35 *
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
43 *
44 * Memory to peripheral transfer may be visualized as
45 *	Get data from memory to DMAC
46 *	Until no data left
47 *		On burst request from peripheral
48 *			Destination burst from DMAC to peripheral
49 *			Clear burst request
50 *	Raise terminal count interrupt
51 *
52 * For peripherals with a FIFO:
53 * Source      burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
55 *
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
58 *
59 * ASSUMES default (little) endianness for DMA transfers
60 *
61 * The PL08x has two flow control settings:
62 *  - DMAC flow control: the transfer size defines the number of transfers
63 *    which occur for the current LLI entry, and the DMAC raises TC at the
64 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
65 *    to both the BREQ and SREQ signals (contrary to documented),
66 *    transferring data if either is active.  The LBREQ and LSREQ signals
67 *    are ignored.
68 *
69 *  - Peripheral flow control: the transfer size is ignored (and should be
70 *    zero).  The data is transferred from the current LLI entry, until
71 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
72 *    will then move to the next LLI entry. Unsupported by PL080S.
73 */
74#include <linux/amba/bus.h>
75#include <linux/amba/pl08x.h>
76#include <linux/debugfs.h>
77#include <linux/delay.h>
78#include <linux/device.h>
79#include <linux/dmaengine.h>
80#include <linux/dmapool.h>
81#include <linux/dma-mapping.h>
82#include <linux/export.h>
83#include <linux/init.h>
84#include <linux/interrupt.h>
85#include <linux/module.h>
86#include <linux/of.h>
87#include <linux/of_dma.h>
88#include <linux/pm_runtime.h>
89#include <linux/seq_file.h>
90#include <linux/slab.h>
91#include <linux/amba/pl080.h>
92
93#include "dmaengine.h"
94#include "virt-dma.h"
95
96#define DRIVER_NAME	"pl08xdmac"
97
98#define PL80X_DMA_BUSWIDTHS \
99	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
100	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
101	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
102	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
103
104static struct amba_driver pl08x_amba_driver;
105struct pl08x_driver_data;
106
107/**
108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
109 * @channels: the number of channels available in this variant
110 * @dualmaster: whether this version supports dual AHB masters or not.
111 * @nomadik: whether the channels have Nomadik security extension bits
112 *	that need to be checked for permission before use and some registers are
113 *	missing
114 * @pl080s: whether this version is a PL080S, which has separate register and
115 *	LLI word for transfer size.
116 */
117struct vendor_data {
118	u8 config_offset;
119	u8 channels;
120	bool dualmaster;
121	bool nomadik;
122	bool pl080s;
123	u32 max_transfer_size;
124};
125
126/**
127 * struct pl08x_bus_data - information of source or destination
128 * busses for a transfer
129 * @addr: current address
130 * @maxwidth: the maximum width of a transfer on this bus
131 * @buswidth: the width of this bus in bytes: 1, 2 or 4
132 */
133struct pl08x_bus_data {
134	dma_addr_t addr;
135	u8 maxwidth;
136	u8 buswidth;
137};
138
139#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
140
141/**
142 * struct pl08x_phy_chan - holder for the physical channels
143 * @id: physical index to this channel
144 * @lock: a lock to use when altering an instance of this struct
145 * @serving: the virtual channel currently being served by this physical
146 * channel
147 * @locked: channel unavailable for the system, e.g. dedicated to secure
148 * world
149 */
150struct pl08x_phy_chan {
151	unsigned int id;
152	void __iomem *base;
153	void __iomem *reg_config;
154	spinlock_t lock;
155	struct pl08x_dma_chan *serving;
156	bool locked;
157};
158
159/**
160 * struct pl08x_sg - structure containing data per sg
161 * @src_addr: src address of sg
162 * @dst_addr: dst address of sg
163 * @len: transfer len in bytes
164 * @node: node for txd's dsg_list
165 */
166struct pl08x_sg {
167	dma_addr_t src_addr;
168	dma_addr_t dst_addr;
169	size_t len;
170	struct list_head node;
171};
172
173/**
174 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
175 * @vd: virtual DMA descriptor
176 * @dsg_list: list of children sg's
177 * @llis_bus: DMA memory address (physical) start for the LLIs
178 * @llis_va: virtual memory address start for the LLIs
179 * @cctl: control reg values for current txd
180 * @ccfg: config reg values for current txd
181 * @done: this marks completed descriptors, which should not have their
182 *   mux released.
183 * @cyclic: indicate cyclic transfers
184 */
185struct pl08x_txd {
186	struct virt_dma_desc vd;
187	struct list_head dsg_list;
188	dma_addr_t llis_bus;
189	u32 *llis_va;
190	/* Default cctl value for LLIs */
191	u32 cctl;
192	/*
193	 * Settings to be put into the physical channel when we
194	 * trigger this txd.  Other registers are in llis_va[0].
195	 */
196	u32 ccfg;
197	bool done;
198	bool cyclic;
199};
200
201/**
202 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
203 * states
204 * @PL08X_CHAN_IDLE: the channel is idle
205 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
206 * channel and is running a transfer on it
207 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
208 * channel, but the transfer is currently paused
209 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
210 * channel to become available (only pertains to memcpy channels)
211 */
212enum pl08x_dma_chan_state {
213	PL08X_CHAN_IDLE,
214	PL08X_CHAN_RUNNING,
215	PL08X_CHAN_PAUSED,
216	PL08X_CHAN_WAITING,
217};
218
219/**
220 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
221 * @vc: wrappped virtual channel
222 * @phychan: the physical channel utilized by this channel, if there is one
223 * @name: name of channel
224 * @cd: channel platform data
225 * @runtime_addr: address for RX/TX according to the runtime config
226 * @at: active transaction on this channel
227 * @lock: a lock for this channel data
228 * @host: a pointer to the host (internal use)
229 * @state: whether the channel is idle, paused, running etc
230 * @slave: whether this channel is a device (slave) or for memcpy
231 * @signal: the physical DMA request signal which this channel is using
232 * @mux_use: count of descriptors using this DMA request signal setting
233 */
234struct pl08x_dma_chan {
235	struct virt_dma_chan vc;
236	struct pl08x_phy_chan *phychan;
237	const char *name;
238	const struct pl08x_channel_data *cd;
239	struct dma_slave_config cfg;
240	struct pl08x_txd *at;
241	struct pl08x_driver_data *host;
242	enum pl08x_dma_chan_state state;
243	bool slave;
244	int signal;
245	unsigned mux_use;
246};
247
248/**
249 * struct pl08x_driver_data - the local state holder for the PL08x
250 * @slave: slave engine for this instance
251 * @memcpy: memcpy engine for this instance
252 * @base: virtual memory base (remapped) for the PL08x
253 * @adev: the corresponding AMBA (PrimeCell) bus entry
254 * @vd: vendor data for this PL08x variant
255 * @pd: platform data passed in from the platform/machine
256 * @phy_chans: array of data for the physical channels
257 * @pool: a pool for the LLI descriptors
258 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
259 * fetches
260 * @mem_buses: set to indicate memory transfers on AHB2.
261 * @lock: a spinlock for this struct
262 */
263struct pl08x_driver_data {
264	struct dma_device slave;
265	struct dma_device memcpy;
266	void __iomem *base;
267	struct amba_device *adev;
268	const struct vendor_data *vd;
269	struct pl08x_platform_data *pd;
270	struct pl08x_phy_chan *phy_chans;
271	struct dma_pool *pool;
272	u8 lli_buses;
273	u8 mem_buses;
274	u8 lli_words;
275};
276
277/*
278 * PL08X specific defines
279 */
280
281/* The order of words in an LLI. */
282#define PL080_LLI_SRC		0
283#define PL080_LLI_DST		1
284#define PL080_LLI_LLI		2
285#define PL080_LLI_CCTL		3
286#define PL080S_LLI_CCTL2	4
287
288/* Total words in an LLI. */
289#define PL080_LLI_WORDS		4
290#define PL080S_LLI_WORDS	8
291
292/*
293 * Number of LLIs in each LLI buffer allocated for one transfer
294 * (maximum times we call dma_pool_alloc on this pool without freeing)
295 */
296#define MAX_NUM_TSFR_LLIS	512
297#define PL08X_ALIGN		8
298
299static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
300{
301	return container_of(chan, struct pl08x_dma_chan, vc.chan);
302}
303
304static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
305{
306	return container_of(tx, struct pl08x_txd, vd.tx);
307}
308
309/*
310 * Mux handling.
311 *
312 * This gives us the DMA request input to the PL08x primecell which the
313 * peripheral described by the channel data will be routed to, possibly
314 * via a board/SoC specific external MUX.  One important point to note
315 * here is that this does not depend on the physical channel.
316 */
317static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
318{
319	const struct pl08x_platform_data *pd = plchan->host->pd;
320	int ret;
321
322	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
323		ret = pd->get_xfer_signal(plchan->cd);
324		if (ret < 0) {
325			plchan->mux_use = 0;
326			return ret;
327		}
328
329		plchan->signal = ret;
330	}
331	return 0;
332}
333
334static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
335{
336	const struct pl08x_platform_data *pd = plchan->host->pd;
337
338	if (plchan->signal >= 0) {
339		WARN_ON(plchan->mux_use == 0);
340
341		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
342			pd->put_xfer_signal(plchan->cd, plchan->signal);
343			plchan->signal = -1;
344		}
345	}
346}
347
348/*
349 * Physical channel handling
350 */
351
352/* Whether a certain channel is busy or not */
353static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
354{
355	unsigned int val;
356
357	val = readl(ch->reg_config);
358	return val & PL080_CONFIG_ACTIVE;
359}
360
361static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
362		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
363{
364	if (pl08x->vd->pl080s)
365		dev_vdbg(&pl08x->adev->dev,
366			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
367			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
368			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
369			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
370			lli[PL080S_LLI_CCTL2], ccfg);
371	else
372		dev_vdbg(&pl08x->adev->dev,
373			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
374			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
375			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
376			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
377
378	writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
379	writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
380	writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
381	writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
382
383	if (pl08x->vd->pl080s)
384		writel_relaxed(lli[PL080S_LLI_CCTL2],
385				phychan->base + PL080S_CH_CONTROL2);
386
387	writel(ccfg, phychan->reg_config);
388}
389
390/*
391 * Set the initial DMA register values i.e. those for the first LLI
392 * The next LLI pointer and the configuration interrupt bit have
393 * been set when the LLIs were constructed.  Poke them into the hardware
394 * and start the transfer.
395 */
396static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
397{
398	struct pl08x_driver_data *pl08x = plchan->host;
399	struct pl08x_phy_chan *phychan = plchan->phychan;
400	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
401	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
402	u32 val;
403
404	list_del(&txd->vd.node);
405
406	plchan->at = txd;
407
408	/* Wait for channel inactive */
409	while (pl08x_phy_channel_busy(phychan))
410		cpu_relax();
411
412	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
413
414	/* Enable the DMA channel */
415	/* Do not access config register until channel shows as disabled */
416	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
417		cpu_relax();
418
419	/* Do not access config register until channel shows as inactive */
420	val = readl(phychan->reg_config);
421	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
422		val = readl(phychan->reg_config);
423
424	writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
425}
426
427/*
428 * Pause the channel by setting the HALT bit.
429 *
430 * For M->P transfers, pause the DMAC first and then stop the peripheral -
431 * the FIFO can only drain if the peripheral is still requesting data.
432 * (note: this can still timeout if the DMAC FIFO never drains of data.)
433 *
434 * For P->M transfers, disable the peripheral first to stop it filling
435 * the DMAC FIFO, and then pause the DMAC.
436 */
437static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
438{
439	u32 val;
440	int timeout;
441
442	/* Set the HALT bit and wait for the FIFO to drain */
443	val = readl(ch->reg_config);
444	val |= PL080_CONFIG_HALT;
445	writel(val, ch->reg_config);
446
447	/* Wait for channel inactive */
448	for (timeout = 1000; timeout; timeout--) {
449		if (!pl08x_phy_channel_busy(ch))
450			break;
451		udelay(1);
452	}
453	if (pl08x_phy_channel_busy(ch))
454		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
455}
456
457static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
458{
459	u32 val;
460
461	/* Clear the HALT bit */
462	val = readl(ch->reg_config);
463	val &= ~PL080_CONFIG_HALT;
464	writel(val, ch->reg_config);
465}
466
467/*
468 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
469 * clears any pending interrupt status.  This should not be used for
470 * an on-going transfer, but as a method of shutting down a channel
471 * (eg, when it's no longer used) or terminating a transfer.
472 */
473static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
474	struct pl08x_phy_chan *ch)
475{
476	u32 val = readl(ch->reg_config);
477
478	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
479		 PL080_CONFIG_TC_IRQ_MASK);
480
481	writel(val, ch->reg_config);
482
483	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
484	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
485}
486
487static inline u32 get_bytes_in_cctl(u32 cctl)
488{
489	/* The source width defines the number of bytes */
490	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
491
492	cctl &= PL080_CONTROL_SWIDTH_MASK;
493
494	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
495	case PL080_WIDTH_8BIT:
496		break;
497	case PL080_WIDTH_16BIT:
498		bytes *= 2;
499		break;
500	case PL080_WIDTH_32BIT:
501		bytes *= 4;
502		break;
503	}
504	return bytes;
505}
506
507static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
508{
509	/* The source width defines the number of bytes */
510	u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
511
512	cctl &= PL080_CONTROL_SWIDTH_MASK;
513
514	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
515	case PL080_WIDTH_8BIT:
516		break;
517	case PL080_WIDTH_16BIT:
518		bytes *= 2;
519		break;
520	case PL080_WIDTH_32BIT:
521		bytes *= 4;
522		break;
523	}
524	return bytes;
525}
526
527/* The channel should be paused when calling this */
528static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
529{
530	struct pl08x_driver_data *pl08x = plchan->host;
531	const u32 *llis_va, *llis_va_limit;
532	struct pl08x_phy_chan *ch;
533	dma_addr_t llis_bus;
534	struct pl08x_txd *txd;
535	u32 llis_max_words;
536	size_t bytes;
537	u32 clli;
538
539	ch = plchan->phychan;
540	txd = plchan->at;
541
542	if (!ch || !txd)
543		return 0;
544
545	/*
546	 * Follow the LLIs to get the number of remaining
547	 * bytes in the currently active transaction.
548	 */
549	clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
550
551	/* First get the remaining bytes in the active transfer */
552	if (pl08x->vd->pl080s)
553		bytes = get_bytes_in_cctl_pl080s(
554				readl(ch->base + PL080_CH_CONTROL),
555				readl(ch->base + PL080S_CH_CONTROL2));
556	else
557		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
558
559	if (!clli)
560		return bytes;
561
562	llis_va = txd->llis_va;
563	llis_bus = txd->llis_bus;
564
565	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
566	BUG_ON(clli < llis_bus || clli >= llis_bus +
567						sizeof(u32) * llis_max_words);
568
569	/*
570	 * Locate the next LLI - as this is an array,
571	 * it's simple maths to find.
572	 */
573	llis_va += (clli - llis_bus) / sizeof(u32);
574
575	llis_va_limit = llis_va + llis_max_words;
576
577	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
578		if (pl08x->vd->pl080s)
579			bytes += get_bytes_in_cctl_pl080s(
580						llis_va[PL080_LLI_CCTL],
581						llis_va[PL080S_LLI_CCTL2]);
582		else
583			bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
584
585		/*
586		 * A LLI pointer going backward terminates the LLI list
587		 */
588		if (llis_va[PL080_LLI_LLI] <= clli)
589			break;
590	}
591
592	return bytes;
593}
594
595/*
596 * Allocate a physical channel for a virtual channel
597 *
598 * Try to locate a physical channel to be used for this transfer. If all
599 * are taken return NULL and the requester will have to cope by using
600 * some fallback PIO mode or retrying later.
601 */
602static struct pl08x_phy_chan *
603pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
604		      struct pl08x_dma_chan *virt_chan)
605{
606	struct pl08x_phy_chan *ch = NULL;
607	unsigned long flags;
608	int i;
609
610	for (i = 0; i < pl08x->vd->channels; i++) {
611		ch = &pl08x->phy_chans[i];
612
613		spin_lock_irqsave(&ch->lock, flags);
614
615		if (!ch->locked && !ch->serving) {
616			ch->serving = virt_chan;
617			spin_unlock_irqrestore(&ch->lock, flags);
618			break;
619		}
620
621		spin_unlock_irqrestore(&ch->lock, flags);
622	}
623
624	if (i == pl08x->vd->channels) {
625		/* No physical channel available, cope with it */
626		return NULL;
627	}
628
629	return ch;
630}
631
632/* Mark the physical channel as free.  Note, this write is atomic. */
633static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
634					 struct pl08x_phy_chan *ch)
635{
636	ch->serving = NULL;
637}
638
639/*
640 * Try to allocate a physical channel.  When successful, assign it to
641 * this virtual channel, and initiate the next descriptor.  The
642 * virtual channel lock must be held at this point.
643 */
644static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
645{
646	struct pl08x_driver_data *pl08x = plchan->host;
647	struct pl08x_phy_chan *ch;
648
649	ch = pl08x_get_phy_channel(pl08x, plchan);
650	if (!ch) {
651		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
652		plchan->state = PL08X_CHAN_WAITING;
653		return;
654	}
655
656	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
657		ch->id, plchan->name);
658
659	plchan->phychan = ch;
660	plchan->state = PL08X_CHAN_RUNNING;
661	pl08x_start_next_txd(plchan);
662}
663
664static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
665	struct pl08x_dma_chan *plchan)
666{
667	struct pl08x_driver_data *pl08x = plchan->host;
668
669	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
670		ch->id, plchan->name);
671
672	/*
673	 * We do this without taking the lock; we're really only concerned
674	 * about whether this pointer is NULL or not, and we're guaranteed
675	 * that this will only be called when it _already_ is non-NULL.
676	 */
677	ch->serving = plchan;
678	plchan->phychan = ch;
679	plchan->state = PL08X_CHAN_RUNNING;
680	pl08x_start_next_txd(plchan);
681}
682
683/*
684 * Free a physical DMA channel, potentially reallocating it to another
685 * virtual channel if we have any pending.
686 */
687static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
688{
689	struct pl08x_driver_data *pl08x = plchan->host;
690	struct pl08x_dma_chan *p, *next;
691
692 retry:
693	next = NULL;
694
695	/* Find a waiting virtual channel for the next transfer. */
696	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
697		if (p->state == PL08X_CHAN_WAITING) {
698			next = p;
699			break;
700		}
701
702	if (!next) {
703		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
704			if (p->state == PL08X_CHAN_WAITING) {
705				next = p;
706				break;
707			}
708	}
709
710	/* Ensure that the physical channel is stopped */
711	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
712
713	if (next) {
714		bool success;
715
716		/*
717		 * Eww.  We know this isn't going to deadlock
718		 * but lockdep probably doesn't.
719		 */
720		spin_lock(&next->vc.lock);
721		/* Re-check the state now that we have the lock */
722		success = next->state == PL08X_CHAN_WAITING;
723		if (success)
724			pl08x_phy_reassign_start(plchan->phychan, next);
725		spin_unlock(&next->vc.lock);
726
727		/* If the state changed, try to find another channel */
728		if (!success)
729			goto retry;
730	} else {
731		/* No more jobs, so free up the physical channel */
732		pl08x_put_phy_channel(pl08x, plchan->phychan);
733	}
734
735	plchan->phychan = NULL;
736	plchan->state = PL08X_CHAN_IDLE;
737}
738
739/*
740 * LLI handling
741 */
742
743static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
744{
745	switch (coded) {
746	case PL080_WIDTH_8BIT:
747		return 1;
748	case PL080_WIDTH_16BIT:
749		return 2;
750	case PL080_WIDTH_32BIT:
751		return 4;
752	default:
753		break;
754	}
755	BUG();
756	return 0;
757}
758
759static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
760				  size_t tsize)
761{
762	u32 retbits = cctl;
763
764	/* Remove all src, dst and transfer size bits */
765	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
766	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
767	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
768
769	/* Then set the bits according to the parameters */
770	switch (srcwidth) {
771	case 1:
772		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
773		break;
774	case 2:
775		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
776		break;
777	case 4:
778		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
779		break;
780	default:
781		BUG();
782		break;
783	}
784
785	switch (dstwidth) {
786	case 1:
787		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
788		break;
789	case 2:
790		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
791		break;
792	case 4:
793		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
794		break;
795	default:
796		BUG();
797		break;
798	}
799
800	tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
801	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
802	return retbits;
803}
804
805struct pl08x_lli_build_data {
806	struct pl08x_txd *txd;
807	struct pl08x_bus_data srcbus;
808	struct pl08x_bus_data dstbus;
809	size_t remainder;
810	u32 lli_bus;
811};
812
813/*
814 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
815 * victim in case src & dest are not similarly aligned. i.e. If after aligning
816 * masters address with width requirements of transfer (by sending few byte by
817 * byte data), slave is still not aligned, then its width will be reduced to
818 * BYTE.
819 * - prefers the destination bus if both available
820 * - prefers bus with fixed address (i.e. peripheral)
821 */
822static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
823	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
824{
825	if (!(cctl & PL080_CONTROL_DST_INCR)) {
826		*mbus = &bd->dstbus;
827		*sbus = &bd->srcbus;
828	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
829		*mbus = &bd->srcbus;
830		*sbus = &bd->dstbus;
831	} else {
832		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
833			*mbus = &bd->dstbus;
834			*sbus = &bd->srcbus;
835		} else {
836			*mbus = &bd->srcbus;
837			*sbus = &bd->dstbus;
838		}
839	}
840}
841
842/*
843 * Fills in one LLI for a certain transfer descriptor and advance the counter
844 */
845static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
846				    struct pl08x_lli_build_data *bd,
847				    int num_llis, int len, u32 cctl, u32 cctl2)
848{
849	u32 offset = num_llis * pl08x->lli_words;
850	u32 *llis_va = bd->txd->llis_va + offset;
851	dma_addr_t llis_bus = bd->txd->llis_bus;
852
853	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
854
855	/* Advance the offset to next LLI. */
856	offset += pl08x->lli_words;
857
858	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
859	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
860	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
861	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
862	llis_va[PL080_LLI_CCTL] = cctl;
863	if (pl08x->vd->pl080s)
864		llis_va[PL080S_LLI_CCTL2] = cctl2;
865
866	if (cctl & PL080_CONTROL_SRC_INCR)
867		bd->srcbus.addr += len;
868	if (cctl & PL080_CONTROL_DST_INCR)
869		bd->dstbus.addr += len;
870
871	BUG_ON(bd->remainder < len);
872
873	bd->remainder -= len;
874}
875
876static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
877			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
878			int num_llis, size_t *total_bytes)
879{
880	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
881	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
882	(*total_bytes) += len;
883}
884
885#ifdef VERBOSE_DEBUG
886static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
887			   const u32 *llis_va, int num_llis)
888{
889	int i;
890
891	if (pl08x->vd->pl080s) {
892		dev_vdbg(&pl08x->adev->dev,
893			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
894			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
895		for (i = 0; i < num_llis; i++) {
896			dev_vdbg(&pl08x->adev->dev,
897				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
898				i, llis_va, llis_va[PL080_LLI_SRC],
899				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
900				llis_va[PL080_LLI_CCTL],
901				llis_va[PL080S_LLI_CCTL2]);
902			llis_va += pl08x->lli_words;
903		}
904	} else {
905		dev_vdbg(&pl08x->adev->dev,
906			"%-3s %-9s  %-10s %-10s %-10s %s\n",
907			"lli", "", "csrc", "cdst", "clli", "cctl");
908		for (i = 0; i < num_llis; i++) {
909			dev_vdbg(&pl08x->adev->dev,
910				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
911				i, llis_va, llis_va[PL080_LLI_SRC],
912				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
913				llis_va[PL080_LLI_CCTL]);
914			llis_va += pl08x->lli_words;
915		}
916	}
917}
918#else
919static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
920				  const u32 *llis_va, int num_llis) {}
921#endif
922
923/*
924 * This fills in the table of LLIs for the transfer descriptor
925 * Note that we assume we never have to change the burst sizes
926 * Return 0 for error
927 */
928static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
929			      struct pl08x_txd *txd)
930{
931	struct pl08x_bus_data *mbus, *sbus;
932	struct pl08x_lli_build_data bd;
933	int num_llis = 0;
934	u32 cctl, early_bytes = 0;
935	size_t max_bytes_per_lli, total_bytes;
936	u32 *llis_va, *last_lli;
937	struct pl08x_sg *dsg;
938
939	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
940	if (!txd->llis_va) {
941		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
942		return 0;
943	}
944
945	bd.txd = txd;
946	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
947	cctl = txd->cctl;
948
949	/* Find maximum width of the source bus */
950	bd.srcbus.maxwidth =
951		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
952				       PL080_CONTROL_SWIDTH_SHIFT);
953
954	/* Find maximum width of the destination bus */
955	bd.dstbus.maxwidth =
956		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
957				       PL080_CONTROL_DWIDTH_SHIFT);
958
959	list_for_each_entry(dsg, &txd->dsg_list, node) {
960		total_bytes = 0;
961		cctl = txd->cctl;
962
963		bd.srcbus.addr = dsg->src_addr;
964		bd.dstbus.addr = dsg->dst_addr;
965		bd.remainder = dsg->len;
966		bd.srcbus.buswidth = bd.srcbus.maxwidth;
967		bd.dstbus.buswidth = bd.dstbus.maxwidth;
968
969		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
970
971		dev_vdbg(&pl08x->adev->dev,
972			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
973			(u64)bd.srcbus.addr,
974			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
975			bd.srcbus.buswidth,
976			(u64)bd.dstbus.addr,
977			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
978			bd.dstbus.buswidth,
979			bd.remainder);
980		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
981			mbus == &bd.srcbus ? "src" : "dst",
982			sbus == &bd.srcbus ? "src" : "dst");
983
984		/*
985		 * Zero length is only allowed if all these requirements are
986		 * met:
987		 * - flow controller is peripheral.
988		 * - src.addr is aligned to src.width
989		 * - dst.addr is aligned to dst.width
990		 *
991		 * sg_len == 1 should be true, as there can be two cases here:
992		 *
993		 * - Memory addresses are contiguous and are not scattered.
994		 *   Here, Only one sg will be passed by user driver, with
995		 *   memory address and zero length. We pass this to controller
996		 *   and after the transfer it will receive the last burst
997		 *   request from peripheral and so transfer finishes.
998		 *
999		 * - Memory addresses are scattered and are not contiguous.
1000		 *   Here, Obviously as DMA controller doesn't know when a lli's
1001		 *   transfer gets over, it can't load next lli. So in this
1002		 *   case, there has to be an assumption that only one lli is
1003		 *   supported. Thus, we can't have scattered addresses.
1004		 */
1005		if (!bd.remainder) {
1006			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1007				PL080_CONFIG_FLOW_CONTROL_SHIFT;
1008			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1009					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1010				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1011					__func__);
1012				return 0;
1013			}
1014
1015			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1016				!IS_BUS_ALIGNED(&bd.dstbus)) {
1017				dev_err(&pl08x->adev->dev,
1018					"%s src & dst address must be aligned to src"
1019					" & dst width if peripheral is flow controller",
1020					__func__);
1021				return 0;
1022			}
1023
1024			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1025					bd.dstbus.buswidth, 0);
1026			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1027					0, cctl, 0);
1028			break;
1029		}
1030
1031		/*
1032		 * Send byte by byte for following cases
1033		 * - Less than a bus width available
1034		 * - until master bus is aligned
1035		 */
1036		if (bd.remainder < mbus->buswidth)
1037			early_bytes = bd.remainder;
1038		else if (!IS_BUS_ALIGNED(mbus)) {
1039			early_bytes = mbus->buswidth -
1040				(mbus->addr & (mbus->buswidth - 1));
1041			if ((bd.remainder - early_bytes) < mbus->buswidth)
1042				early_bytes = bd.remainder;
1043		}
1044
1045		if (early_bytes) {
1046			dev_vdbg(&pl08x->adev->dev,
1047				"%s byte width LLIs (remain 0x%08zx)\n",
1048				__func__, bd.remainder);
1049			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1050				num_llis++, &total_bytes);
1051		}
1052
1053		if (bd.remainder) {
1054			/*
1055			 * Master now aligned
1056			 * - if slave is not then we must set its width down
1057			 */
1058			if (!IS_BUS_ALIGNED(sbus)) {
1059				dev_dbg(&pl08x->adev->dev,
1060					"%s set down bus width to one byte\n",
1061					__func__);
1062
1063				sbus->buswidth = 1;
1064			}
1065
1066			/*
1067			 * Bytes transferred = tsize * src width, not
1068			 * MIN(buswidths)
1069			 */
1070			max_bytes_per_lli = bd.srcbus.buswidth *
1071						pl08x->vd->max_transfer_size;
1072			dev_vdbg(&pl08x->adev->dev,
1073				"%s max bytes per lli = %zu\n",
1074				__func__, max_bytes_per_lli);
1075
1076			/*
1077			 * Make largest possible LLIs until less than one bus
1078			 * width left
1079			 */
1080			while (bd.remainder > (mbus->buswidth - 1)) {
1081				size_t lli_len, tsize, width;
1082
1083				/*
1084				 * If enough left try to send max possible,
1085				 * otherwise try to send the remainder
1086				 */
1087				lli_len = min(bd.remainder, max_bytes_per_lli);
1088
1089				/*
1090				 * Check against maximum bus alignment:
1091				 * Calculate actual transfer size in relation to
1092				 * bus width an get a maximum remainder of the
1093				 * highest bus width - 1
1094				 */
1095				width = max(mbus->buswidth, sbus->buswidth);
1096				lli_len = (lli_len / width) * width;
1097				tsize = lli_len / bd.srcbus.buswidth;
1098
1099				dev_vdbg(&pl08x->adev->dev,
1100					"%s fill lli with single lli chunk of "
1101					"size 0x%08zx (remainder 0x%08zx)\n",
1102					__func__, lli_len, bd.remainder);
1103
1104				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1105					bd.dstbus.buswidth, tsize);
1106				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1107						lli_len, cctl, tsize);
1108				total_bytes += lli_len;
1109			}
1110
1111			/*
1112			 * Send any odd bytes
1113			 */
1114			if (bd.remainder) {
1115				dev_vdbg(&pl08x->adev->dev,
1116					"%s align with boundary, send odd bytes (remain %zu)\n",
1117					__func__, bd.remainder);
1118				prep_byte_width_lli(pl08x, &bd, &cctl,
1119					bd.remainder, num_llis++, &total_bytes);
1120			}
1121		}
1122
1123		if (total_bytes != dsg->len) {
1124			dev_err(&pl08x->adev->dev,
1125				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1126				__func__, total_bytes, dsg->len);
1127			return 0;
1128		}
1129
1130		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1131			dev_err(&pl08x->adev->dev,
1132				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1133				__func__, MAX_NUM_TSFR_LLIS);
1134			return 0;
1135		}
1136	}
1137
1138	llis_va = txd->llis_va;
1139	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1140
1141	if (txd->cyclic) {
1142		/* Link back to the first LLI. */
1143		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1144	} else {
1145		/* The final LLI terminates the LLI. */
1146		last_lli[PL080_LLI_LLI] = 0;
1147		/* The final LLI element shall also fire an interrupt. */
1148		last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1149	}
1150
1151	pl08x_dump_lli(pl08x, llis_va, num_llis);
1152
1153	return num_llis;
1154}
1155
1156static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1157			   struct pl08x_txd *txd)
1158{
1159	struct pl08x_sg *dsg, *_dsg;
1160
1161	if (txd->llis_va)
1162		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1163
1164	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1165		list_del(&dsg->node);
1166		kfree(dsg);
1167	}
1168
1169	kfree(txd);
1170}
1171
1172static void pl08x_desc_free(struct virt_dma_desc *vd)
1173{
1174	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1175	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1176
1177	dma_descriptor_unmap(&vd->tx);
1178	if (!txd->done)
1179		pl08x_release_mux(plchan);
1180
1181	pl08x_free_txd(plchan->host, txd);
1182}
1183
1184static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1185				struct pl08x_dma_chan *plchan)
1186{
1187	LIST_HEAD(head);
1188
1189	vchan_get_all_descriptors(&plchan->vc, &head);
1190	vchan_dma_desc_free_list(&plchan->vc, &head);
1191}
1192
1193/*
1194 * The DMA ENGINE API
1195 */
1196static void pl08x_free_chan_resources(struct dma_chan *chan)
1197{
1198	/* Ensure all queued descriptors are freed */
1199	vchan_free_chan_resources(to_virt_chan(chan));
1200}
1201
1202static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1203		struct dma_chan *chan, unsigned long flags)
1204{
1205	struct dma_async_tx_descriptor *retval = NULL;
1206
1207	return retval;
1208}
1209
1210/*
1211 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1212 * If slaves are relying on interrupts to signal completion this function
1213 * must not be called with interrupts disabled.
1214 */
1215static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1216		dma_cookie_t cookie, struct dma_tx_state *txstate)
1217{
1218	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1219	struct virt_dma_desc *vd;
1220	unsigned long flags;
1221	enum dma_status ret;
1222	size_t bytes = 0;
1223
1224	ret = dma_cookie_status(chan, cookie, txstate);
1225	if (ret == DMA_COMPLETE)
1226		return ret;
1227
1228	/*
1229	 * There's no point calculating the residue if there's
1230	 * no txstate to store the value.
1231	 */
1232	if (!txstate) {
1233		if (plchan->state == PL08X_CHAN_PAUSED)
1234			ret = DMA_PAUSED;
1235		return ret;
1236	}
1237
1238	spin_lock_irqsave(&plchan->vc.lock, flags);
1239	ret = dma_cookie_status(chan, cookie, txstate);
1240	if (ret != DMA_COMPLETE) {
1241		vd = vchan_find_desc(&plchan->vc, cookie);
1242		if (vd) {
1243			/* On the issued list, so hasn't been processed yet */
1244			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1245			struct pl08x_sg *dsg;
1246
1247			list_for_each_entry(dsg, &txd->dsg_list, node)
1248				bytes += dsg->len;
1249		} else {
1250			bytes = pl08x_getbytes_chan(plchan);
1251		}
1252	}
1253	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1254
1255	/*
1256	 * This cookie not complete yet
1257	 * Get number of bytes left in the active transactions and queue
1258	 */
1259	dma_set_residue(txstate, bytes);
1260
1261	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1262		ret = DMA_PAUSED;
1263
1264	/* Whether waiting or running, we're in progress */
1265	return ret;
1266}
1267
1268/* PrimeCell DMA extension */
1269struct burst_table {
1270	u32 burstwords;
1271	u32 reg;
1272};
1273
1274static const struct burst_table burst_sizes[] = {
1275	{
1276		.burstwords = 256,
1277		.reg = PL080_BSIZE_256,
1278	},
1279	{
1280		.burstwords = 128,
1281		.reg = PL080_BSIZE_128,
1282	},
1283	{
1284		.burstwords = 64,
1285		.reg = PL080_BSIZE_64,
1286	},
1287	{
1288		.burstwords = 32,
1289		.reg = PL080_BSIZE_32,
1290	},
1291	{
1292		.burstwords = 16,
1293		.reg = PL080_BSIZE_16,
1294	},
1295	{
1296		.burstwords = 8,
1297		.reg = PL080_BSIZE_8,
1298	},
1299	{
1300		.burstwords = 4,
1301		.reg = PL080_BSIZE_4,
1302	},
1303	{
1304		.burstwords = 0,
1305		.reg = PL080_BSIZE_1,
1306	},
1307};
1308
1309/*
1310 * Given the source and destination available bus masks, select which
1311 * will be routed to each port.  We try to have source and destination
1312 * on separate ports, but always respect the allowable settings.
1313 */
1314static u32 pl08x_select_bus(u8 src, u8 dst)
1315{
1316	u32 cctl = 0;
1317
1318	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1319		cctl |= PL080_CONTROL_DST_AHB2;
1320	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1321		cctl |= PL080_CONTROL_SRC_AHB2;
1322
1323	return cctl;
1324}
1325
1326static u32 pl08x_cctl(u32 cctl)
1327{
1328	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1329		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1330		  PL080_CONTROL_PROT_MASK);
1331
1332	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1333	return cctl | PL080_CONTROL_PROT_SYS;
1334}
1335
1336static u32 pl08x_width(enum dma_slave_buswidth width)
1337{
1338	switch (width) {
1339	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1340		return PL080_WIDTH_8BIT;
1341	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1342		return PL080_WIDTH_16BIT;
1343	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1344		return PL080_WIDTH_32BIT;
1345	default:
1346		return ~0;
1347	}
1348}
1349
1350static u32 pl08x_burst(u32 maxburst)
1351{
1352	int i;
1353
1354	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1355		if (burst_sizes[i].burstwords <= maxburst)
1356			break;
1357
1358	return burst_sizes[i].reg;
1359}
1360
1361static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1362	enum dma_slave_buswidth addr_width, u32 maxburst)
1363{
1364	u32 width, burst, cctl = 0;
1365
1366	width = pl08x_width(addr_width);
1367	if (width == ~0)
1368		return ~0;
1369
1370	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1371	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1372
1373	/*
1374	 * If this channel will only request single transfers, set this
1375	 * down to ONE element.  Also select one element if no maxburst
1376	 * is specified.
1377	 */
1378	if (plchan->cd->single)
1379		maxburst = 1;
1380
1381	burst = pl08x_burst(maxburst);
1382	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1383	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1384
1385	return pl08x_cctl(cctl);
1386}
1387
1388/*
1389 * Slave transactions callback to the slave device to allow
1390 * synchronization of slave DMA signals with the DMAC enable
1391 */
1392static void pl08x_issue_pending(struct dma_chan *chan)
1393{
1394	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1395	unsigned long flags;
1396
1397	spin_lock_irqsave(&plchan->vc.lock, flags);
1398	if (vchan_issue_pending(&plchan->vc)) {
1399		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1400			pl08x_phy_alloc_and_start(plchan);
1401	}
1402	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1403}
1404
1405static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1406{
1407	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1408
1409	if (txd) {
1410		INIT_LIST_HEAD(&txd->dsg_list);
1411
1412		/* Always enable error and terminal interrupts */
1413		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1414			    PL080_CONFIG_TC_IRQ_MASK;
1415	}
1416	return txd;
1417}
1418
1419/*
1420 * Initialize a descriptor to be used by memcpy submit
1421 */
1422static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1423		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1424		size_t len, unsigned long flags)
1425{
1426	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1427	struct pl08x_driver_data *pl08x = plchan->host;
1428	struct pl08x_txd *txd;
1429	struct pl08x_sg *dsg;
1430	int ret;
1431
1432	txd = pl08x_get_txd(plchan);
1433	if (!txd) {
1434		dev_err(&pl08x->adev->dev,
1435			"%s no memory for descriptor\n", __func__);
1436		return NULL;
1437	}
1438
1439	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1440	if (!dsg) {
1441		pl08x_free_txd(pl08x, txd);
1442		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1443				__func__);
1444		return NULL;
1445	}
1446	list_add_tail(&dsg->node, &txd->dsg_list);
1447
1448	dsg->src_addr = src;
1449	dsg->dst_addr = dest;
1450	dsg->len = len;
1451
1452	/* Set platform data for m2m */
1453	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1454	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1455			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1456
1457	/* Both to be incremented or the code will break */
1458	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1459
1460	if (pl08x->vd->dualmaster)
1461		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1462					      pl08x->mem_buses);
1463
1464	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1465	if (!ret) {
1466		pl08x_free_txd(pl08x, txd);
1467		return NULL;
1468	}
1469
1470	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1471}
1472
1473static struct pl08x_txd *pl08x_init_txd(
1474		struct dma_chan *chan,
1475		enum dma_transfer_direction direction,
1476		dma_addr_t *slave_addr)
1477{
1478	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1479	struct pl08x_driver_data *pl08x = plchan->host;
1480	struct pl08x_txd *txd;
1481	enum dma_slave_buswidth addr_width;
1482	int ret, tmp;
1483	u8 src_buses, dst_buses;
1484	u32 maxburst, cctl;
1485
1486	txd = pl08x_get_txd(plchan);
1487	if (!txd) {
1488		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1489		return NULL;
1490	}
1491
1492	/*
1493	 * Set up addresses, the PrimeCell configured address
1494	 * will take precedence since this may configure the
1495	 * channel target address dynamically at runtime.
1496	 */
1497	if (direction == DMA_MEM_TO_DEV) {
1498		cctl = PL080_CONTROL_SRC_INCR;
1499		*slave_addr = plchan->cfg.dst_addr;
1500		addr_width = plchan->cfg.dst_addr_width;
1501		maxburst = plchan->cfg.dst_maxburst;
1502		src_buses = pl08x->mem_buses;
1503		dst_buses = plchan->cd->periph_buses;
1504	} else if (direction == DMA_DEV_TO_MEM) {
1505		cctl = PL080_CONTROL_DST_INCR;
1506		*slave_addr = plchan->cfg.src_addr;
1507		addr_width = plchan->cfg.src_addr_width;
1508		maxburst = plchan->cfg.src_maxburst;
1509		src_buses = plchan->cd->periph_buses;
1510		dst_buses = pl08x->mem_buses;
1511	} else {
1512		pl08x_free_txd(pl08x, txd);
1513		dev_err(&pl08x->adev->dev,
1514			"%s direction unsupported\n", __func__);
1515		return NULL;
1516	}
1517
1518	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1519	if (cctl == ~0) {
1520		pl08x_free_txd(pl08x, txd);
1521		dev_err(&pl08x->adev->dev,
1522			"DMA slave configuration botched?\n");
1523		return NULL;
1524	}
1525
1526	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1527
1528	if (plchan->cfg.device_fc)
1529		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1530			PL080_FLOW_PER2MEM_PER;
1531	else
1532		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1533			PL080_FLOW_PER2MEM;
1534
1535	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1536
1537	ret = pl08x_request_mux(plchan);
1538	if (ret < 0) {
1539		pl08x_free_txd(pl08x, txd);
1540		dev_dbg(&pl08x->adev->dev,
1541			"unable to mux for transfer on %s due to platform restrictions\n",
1542			plchan->name);
1543		return NULL;
1544	}
1545
1546	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1547		 plchan->signal, plchan->name);
1548
1549	/* Assign the flow control signal to this channel */
1550	if (direction == DMA_MEM_TO_DEV)
1551		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1552	else
1553		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1554
1555	return txd;
1556}
1557
1558static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1559			   enum dma_transfer_direction direction,
1560			   dma_addr_t slave_addr,
1561			   dma_addr_t buf_addr,
1562			   unsigned int len)
1563{
1564	struct pl08x_sg *dsg;
1565
1566	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1567	if (!dsg)
1568		return -ENOMEM;
1569
1570	list_add_tail(&dsg->node, &txd->dsg_list);
1571
1572	dsg->len = len;
1573	if (direction == DMA_MEM_TO_DEV) {
1574		dsg->src_addr = buf_addr;
1575		dsg->dst_addr = slave_addr;
1576	} else {
1577		dsg->src_addr = slave_addr;
1578		dsg->dst_addr = buf_addr;
1579	}
1580
1581	return 0;
1582}
1583
1584static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1585		struct dma_chan *chan, struct scatterlist *sgl,
1586		unsigned int sg_len, enum dma_transfer_direction direction,
1587		unsigned long flags, void *context)
1588{
1589	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1590	struct pl08x_driver_data *pl08x = plchan->host;
1591	struct pl08x_txd *txd;
1592	struct scatterlist *sg;
1593	int ret, tmp;
1594	dma_addr_t slave_addr;
1595
1596	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1597			__func__, sg_dma_len(sgl), plchan->name);
1598
1599	txd = pl08x_init_txd(chan, direction, &slave_addr);
1600	if (!txd)
1601		return NULL;
1602
1603	for_each_sg(sgl, sg, sg_len, tmp) {
1604		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1605				      sg_dma_address(sg),
1606				      sg_dma_len(sg));
1607		if (ret) {
1608			pl08x_release_mux(plchan);
1609			pl08x_free_txd(pl08x, txd);
1610			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1611					__func__);
1612			return NULL;
1613		}
1614	}
1615
1616	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1617	if (!ret) {
1618		pl08x_release_mux(plchan);
1619		pl08x_free_txd(pl08x, txd);
1620		return NULL;
1621	}
1622
1623	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1624}
1625
1626static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1627		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1628		size_t period_len, enum dma_transfer_direction direction,
1629		unsigned long flags)
1630{
1631	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1632	struct pl08x_driver_data *pl08x = plchan->host;
1633	struct pl08x_txd *txd;
1634	int ret, tmp;
1635	dma_addr_t slave_addr;
1636
1637	dev_dbg(&pl08x->adev->dev,
1638		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1639		__func__, period_len, buf_len,
1640		direction == DMA_MEM_TO_DEV ? "to" : "from",
1641		plchan->name);
1642
1643	txd = pl08x_init_txd(chan, direction, &slave_addr);
1644	if (!txd)
1645		return NULL;
1646
1647	txd->cyclic = true;
1648	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1649	for (tmp = 0; tmp < buf_len; tmp += period_len) {
1650		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1651				      buf_addr + tmp, period_len);
1652		if (ret) {
1653			pl08x_release_mux(plchan);
1654			pl08x_free_txd(pl08x, txd);
1655			return NULL;
1656		}
1657	}
1658
1659	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1660	if (!ret) {
1661		pl08x_release_mux(plchan);
1662		pl08x_free_txd(pl08x, txd);
1663		return NULL;
1664	}
1665
1666	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1667}
1668
1669static int pl08x_config(struct dma_chan *chan,
1670			struct dma_slave_config *config)
1671{
1672	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1673	struct pl08x_driver_data *pl08x = plchan->host;
1674
1675	if (!plchan->slave)
1676		return -EINVAL;
1677
1678	/* Reject definitely invalid configurations */
1679	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1680	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1681		return -EINVAL;
1682
1683	if (config->device_fc && pl08x->vd->pl080s) {
1684		dev_err(&pl08x->adev->dev,
1685			"%s: PL080S does not support peripheral flow control\n",
1686			__func__);
1687		return -EINVAL;
1688	}
1689
1690	plchan->cfg = *config;
1691
1692	return 0;
1693}
1694
1695static int pl08x_terminate_all(struct dma_chan *chan)
1696{
1697	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1698	struct pl08x_driver_data *pl08x = plchan->host;
1699	unsigned long flags;
1700
1701	spin_lock_irqsave(&plchan->vc.lock, flags);
1702	if (!plchan->phychan && !plchan->at) {
1703		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1704		return 0;
1705	}
1706
1707	plchan->state = PL08X_CHAN_IDLE;
1708
1709	if (plchan->phychan) {
1710		/*
1711		 * Mark physical channel as free and free any slave
1712		 * signal
1713		 */
1714		pl08x_phy_free(plchan);
1715	}
1716	/* Dequeue jobs and free LLIs */
1717	if (plchan->at) {
1718		pl08x_desc_free(&plchan->at->vd);
1719		plchan->at = NULL;
1720	}
1721	/* Dequeue jobs not yet fired as well */
1722	pl08x_free_txd_list(pl08x, plchan);
1723
1724	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1725
1726	return 0;
1727}
1728
1729static int pl08x_pause(struct dma_chan *chan)
1730{
1731	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1732	unsigned long flags;
1733
1734	/*
1735	 * Anything succeeds on channels with no physical allocation and
1736	 * no queued transfers.
1737	 */
1738	spin_lock_irqsave(&plchan->vc.lock, flags);
1739	if (!plchan->phychan && !plchan->at) {
1740		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1741		return 0;
1742	}
1743
1744	pl08x_pause_phy_chan(plchan->phychan);
1745	plchan->state = PL08X_CHAN_PAUSED;
1746
1747	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1748
1749	return 0;
1750}
1751
1752static int pl08x_resume(struct dma_chan *chan)
1753{
1754	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1755	unsigned long flags;
1756
1757	/*
1758	 * Anything succeeds on channels with no physical allocation and
1759	 * no queued transfers.
1760	 */
1761	spin_lock_irqsave(&plchan->vc.lock, flags);
1762	if (!plchan->phychan && !plchan->at) {
1763		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1764		return 0;
1765	}
1766
1767	pl08x_resume_phy_chan(plchan->phychan);
1768	plchan->state = PL08X_CHAN_RUNNING;
1769
1770	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1771
1772	return 0;
1773}
1774
1775bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1776{
1777	struct pl08x_dma_chan *plchan;
1778	char *name = chan_id;
1779
1780	/* Reject channels for devices not bound to this driver */
1781	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1782		return false;
1783
1784	plchan = to_pl08x_chan(chan);
1785
1786	/* Check that the channel is not taken! */
1787	if (!strcmp(plchan->name, name))
1788		return true;
1789
1790	return false;
1791}
1792EXPORT_SYMBOL_GPL(pl08x_filter_id);
1793
1794/*
1795 * Just check that the device is there and active
1796 * TODO: turn this bit on/off depending on the number of physical channels
1797 * actually used, if it is zero... well shut it off. That will save some
1798 * power. Cut the clock at the same time.
1799 */
1800static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1801{
1802	/* The Nomadik variant does not have the config register */
1803	if (pl08x->vd->nomadik)
1804		return;
1805	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1806}
1807
1808static irqreturn_t pl08x_irq(int irq, void *dev)
1809{
1810	struct pl08x_driver_data *pl08x = dev;
1811	u32 mask = 0, err, tc, i;
1812
1813	/* check & clear - ERR & TC interrupts */
1814	err = readl(pl08x->base + PL080_ERR_STATUS);
1815	if (err) {
1816		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1817			__func__, err);
1818		writel(err, pl08x->base + PL080_ERR_CLEAR);
1819	}
1820	tc = readl(pl08x->base + PL080_TC_STATUS);
1821	if (tc)
1822		writel(tc, pl08x->base + PL080_TC_CLEAR);
1823
1824	if (!err && !tc)
1825		return IRQ_NONE;
1826
1827	for (i = 0; i < pl08x->vd->channels; i++) {
1828		if (((1 << i) & err) || ((1 << i) & tc)) {
1829			/* Locate physical channel */
1830			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1831			struct pl08x_dma_chan *plchan = phychan->serving;
1832			struct pl08x_txd *tx;
1833
1834			if (!plchan) {
1835				dev_err(&pl08x->adev->dev,
1836					"%s Error TC interrupt on unused channel: 0x%08x\n",
1837					__func__, i);
1838				continue;
1839			}
1840
1841			spin_lock(&plchan->vc.lock);
1842			tx = plchan->at;
1843			if (tx && tx->cyclic) {
1844				vchan_cyclic_callback(&tx->vd);
1845			} else if (tx) {
1846				plchan->at = NULL;
1847				/*
1848				 * This descriptor is done, release its mux
1849				 * reservation.
1850				 */
1851				pl08x_release_mux(plchan);
1852				tx->done = true;
1853				vchan_cookie_complete(&tx->vd);
1854
1855				/*
1856				 * And start the next descriptor (if any),
1857				 * otherwise free this channel.
1858				 */
1859				if (vchan_next_desc(&plchan->vc))
1860					pl08x_start_next_txd(plchan);
1861				else
1862					pl08x_phy_free(plchan);
1863			}
1864			spin_unlock(&plchan->vc.lock);
1865
1866			mask |= (1 << i);
1867		}
1868	}
1869
1870	return mask ? IRQ_HANDLED : IRQ_NONE;
1871}
1872
1873static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1874{
1875	chan->slave = true;
1876	chan->name = chan->cd->bus_id;
1877	chan->cfg.src_addr = chan->cd->addr;
1878	chan->cfg.dst_addr = chan->cd->addr;
1879}
1880
1881/*
1882 * Initialise the DMAC memcpy/slave channels.
1883 * Make a local wrapper to hold required data
1884 */
1885static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1886		struct dma_device *dmadev, unsigned int channels, bool slave)
1887{
1888	struct pl08x_dma_chan *chan;
1889	int i;
1890
1891	INIT_LIST_HEAD(&dmadev->channels);
1892
1893	/*
1894	 * Register as many many memcpy as we have physical channels,
1895	 * we won't always be able to use all but the code will have
1896	 * to cope with that situation.
1897	 */
1898	for (i = 0; i < channels; i++) {
1899		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1900		if (!chan) {
1901			dev_err(&pl08x->adev->dev,
1902				"%s no memory for channel\n", __func__);
1903			return -ENOMEM;
1904		}
1905
1906		chan->host = pl08x;
1907		chan->state = PL08X_CHAN_IDLE;
1908		chan->signal = -1;
1909
1910		if (slave) {
1911			chan->cd = &pl08x->pd->slave_channels[i];
1912			pl08x_dma_slave_init(chan);
1913		} else {
1914			chan->cd = &pl08x->pd->memcpy_channel;
1915			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1916			if (!chan->name) {
1917				kfree(chan);
1918				return -ENOMEM;
1919			}
1920		}
1921		dev_dbg(&pl08x->adev->dev,
1922			 "initialize virtual channel \"%s\"\n",
1923			 chan->name);
1924
1925		chan->vc.desc_free = pl08x_desc_free;
1926		vchan_init(&chan->vc, dmadev);
1927	}
1928	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1929		 i, slave ? "slave" : "memcpy");
1930	return i;
1931}
1932
1933static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1934{
1935	struct pl08x_dma_chan *chan = NULL;
1936	struct pl08x_dma_chan *next;
1937
1938	list_for_each_entry_safe(chan,
1939				 next, &dmadev->channels, vc.chan.device_node) {
1940		list_del(&chan->vc.chan.device_node);
1941		kfree(chan);
1942	}
1943}
1944
1945#ifdef CONFIG_DEBUG_FS
1946static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1947{
1948	switch (state) {
1949	case PL08X_CHAN_IDLE:
1950		return "idle";
1951	case PL08X_CHAN_RUNNING:
1952		return "running";
1953	case PL08X_CHAN_PAUSED:
1954		return "paused";
1955	case PL08X_CHAN_WAITING:
1956		return "waiting";
1957	default:
1958		break;
1959	}
1960	return "UNKNOWN STATE";
1961}
1962
1963static int pl08x_debugfs_show(struct seq_file *s, void *data)
1964{
1965	struct pl08x_driver_data *pl08x = s->private;
1966	struct pl08x_dma_chan *chan;
1967	struct pl08x_phy_chan *ch;
1968	unsigned long flags;
1969	int i;
1970
1971	seq_printf(s, "PL08x physical channels:\n");
1972	seq_printf(s, "CHANNEL:\tUSER:\n");
1973	seq_printf(s, "--------\t-----\n");
1974	for (i = 0; i < pl08x->vd->channels; i++) {
1975		struct pl08x_dma_chan *virt_chan;
1976
1977		ch = &pl08x->phy_chans[i];
1978
1979		spin_lock_irqsave(&ch->lock, flags);
1980		virt_chan = ch->serving;
1981
1982		seq_printf(s, "%d\t\t%s%s\n",
1983			   ch->id,
1984			   virt_chan ? virt_chan->name : "(none)",
1985			   ch->locked ? " LOCKED" : "");
1986
1987		spin_unlock_irqrestore(&ch->lock, flags);
1988	}
1989
1990	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1991	seq_printf(s, "CHANNEL:\tSTATE:\n");
1992	seq_printf(s, "--------\t------\n");
1993	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1994		seq_printf(s, "%s\t\t%s\n", chan->name,
1995			   pl08x_state_str(chan->state));
1996	}
1997
1998	seq_printf(s, "\nPL08x virtual slave channels:\n");
1999	seq_printf(s, "CHANNEL:\tSTATE:\n");
2000	seq_printf(s, "--------\t------\n");
2001	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2002		seq_printf(s, "%s\t\t%s\n", chan->name,
2003			   pl08x_state_str(chan->state));
2004	}
2005
2006	return 0;
2007}
2008
2009static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2010{
2011	return single_open(file, pl08x_debugfs_show, inode->i_private);
2012}
2013
2014static const struct file_operations pl08x_debugfs_operations = {
2015	.open		= pl08x_debugfs_open,
2016	.read		= seq_read,
2017	.llseek		= seq_lseek,
2018	.release	= single_release,
2019};
2020
2021static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2022{
2023	/* Expose a simple debugfs interface to view all clocks */
2024	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2025			S_IFREG | S_IRUGO, NULL, pl08x,
2026			&pl08x_debugfs_operations);
2027}
2028
2029#else
2030static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2031{
2032}
2033#endif
2034
2035#ifdef CONFIG_OF
2036static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2037					 u32 id)
2038{
2039	struct pl08x_dma_chan *chan;
2040
2041	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2042		if (chan->signal == id)
2043			return &chan->vc.chan;
2044	}
2045
2046	return NULL;
2047}
2048
2049static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2050				       struct of_dma *ofdma)
2051{
2052	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2053	struct pl08x_channel_data *data;
2054	struct pl08x_dma_chan *chan;
2055	struct dma_chan *dma_chan;
2056
2057	if (!pl08x)
2058		return NULL;
2059
2060	if (dma_spec->args_count != 2)
2061		return NULL;
2062
2063	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2064	if (dma_chan)
2065		return dma_get_slave_channel(dma_chan);
2066
2067	chan = devm_kzalloc(pl08x->slave.dev, sizeof(*chan) + sizeof(*data),
2068			    GFP_KERNEL);
2069	if (!chan)
2070		return NULL;
2071
2072	data = (void *)&chan[1];
2073	data->bus_id = "(none)";
2074	data->periph_buses = dma_spec->args[1];
2075
2076	chan->cd = data;
2077	chan->host = pl08x;
2078	chan->slave = true;
2079	chan->name = data->bus_id;
2080	chan->state = PL08X_CHAN_IDLE;
2081	chan->signal = dma_spec->args[0];
2082	chan->vc.desc_free = pl08x_desc_free;
2083
2084	vchan_init(&chan->vc, &pl08x->slave);
2085
2086	return dma_get_slave_channel(&chan->vc.chan);
2087}
2088
2089static int pl08x_of_probe(struct amba_device *adev,
2090			  struct pl08x_driver_data *pl08x,
2091			  struct device_node *np)
2092{
2093	struct pl08x_platform_data *pd;
2094	u32 cctl_memcpy = 0;
2095	u32 val;
2096	int ret;
2097
2098	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2099	if (!pd)
2100		return -ENOMEM;
2101
2102	/* Eligible bus masters for fetching LLIs */
2103	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2104		pd->lli_buses |= PL08X_AHB1;
2105	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2106		pd->lli_buses |= PL08X_AHB2;
2107	if (!pd->lli_buses) {
2108		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2109		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2110	}
2111
2112	/* Eligible bus masters for memory access */
2113	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2114		pd->mem_buses |= PL08X_AHB1;
2115	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2116		pd->mem_buses |= PL08X_AHB2;
2117	if (!pd->mem_buses) {
2118		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2119		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2120	}
2121
2122	/* Parse the memcpy channel properties */
2123	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2124	if (ret) {
2125		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2126		val = 1;
2127	}
2128	switch (val) {
2129	default:
2130		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2131		/* Fall through */
2132	case 1:
2133		cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2134			       PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2135		break;
2136	case 4:
2137		cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2138			       PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2139		break;
2140	case 8:
2141		cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2142			       PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2143		break;
2144	case 16:
2145		cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2146			       PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2147		break;
2148	case 32:
2149		cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2150			       PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2151		break;
2152	case 64:
2153		cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2154			       PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2155		break;
2156	case 128:
2157		cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2158			       PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2159		break;
2160	case 256:
2161		cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2162			       PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2163		break;
2164	}
2165
2166	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2167	if (ret) {
2168		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2169		val = 8;
2170	}
2171	switch (val) {
2172	default:
2173		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2174		/* Fall through */
2175	case 8:
2176		cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2177			       PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2178		break;
2179	case 16:
2180		cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2181			       PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2182		break;
2183	case 32:
2184		cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2185			       PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2186		break;
2187	}
2188
2189	/* This is currently the only thing making sense */
2190	cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2191
2192	/* Set up memcpy channel */
2193	pd->memcpy_channel.bus_id = "memcpy";
2194	pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2195	/* Use the buses that can access memory, obviously */
2196	pd->memcpy_channel.periph_buses = pd->mem_buses;
2197
2198	pl08x->pd = pd;
2199
2200	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2201					  pl08x);
2202}
2203#else
2204static inline int pl08x_of_probe(struct amba_device *adev,
2205				 struct pl08x_driver_data *pl08x,
2206				 struct device_node *np)
2207{
2208	return -EINVAL;
2209}
2210#endif
2211
2212static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2213{
2214	struct pl08x_driver_data *pl08x;
2215	const struct vendor_data *vd = id->data;
2216	struct device_node *np = adev->dev.of_node;
2217	u32 tsfr_size;
2218	int ret = 0;
2219	int i;
2220
2221	ret = amba_request_regions(adev, NULL);
2222	if (ret)
2223		return ret;
2224
2225	/* Ensure that we can do DMA */
2226	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2227	if (ret)
2228		goto out_no_pl08x;
2229
2230	/* Create the driver state holder */
2231	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2232	if (!pl08x) {
2233		ret = -ENOMEM;
2234		goto out_no_pl08x;
2235	}
2236
2237	/* Initialize memcpy engine */
2238	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2239	pl08x->memcpy.dev = &adev->dev;
2240	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2241	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2242	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2243	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2244	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2245	pl08x->memcpy.device_config = pl08x_config;
2246	pl08x->memcpy.device_pause = pl08x_pause;
2247	pl08x->memcpy.device_resume = pl08x_resume;
2248	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2249	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2250	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2251	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2252	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2253
2254	/* Initialize slave engine */
2255	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2256	dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2257	pl08x->slave.dev = &adev->dev;
2258	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2259	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2260	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2261	pl08x->slave.device_issue_pending = pl08x_issue_pending;
2262	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2263	pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2264	pl08x->slave.device_config = pl08x_config;
2265	pl08x->slave.device_pause = pl08x_pause;
2266	pl08x->slave.device_resume = pl08x_resume;
2267	pl08x->slave.device_terminate_all = pl08x_terminate_all;
2268	pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2269	pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2270	pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2271	pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2272
2273	/* Get the platform data */
2274	pl08x->pd = dev_get_platdata(&adev->dev);
2275	if (!pl08x->pd) {
2276		if (np) {
2277			ret = pl08x_of_probe(adev, pl08x, np);
2278			if (ret)
2279				goto out_no_platdata;
2280		} else {
2281			dev_err(&adev->dev, "no platform data supplied\n");
2282			ret = -EINVAL;
2283			goto out_no_platdata;
2284		}
2285	}
2286
2287	/* Assign useful pointers to the driver state */
2288	pl08x->adev = adev;
2289	pl08x->vd = vd;
2290
2291	/* By default, AHB1 only.  If dualmaster, from platform */
2292	pl08x->lli_buses = PL08X_AHB1;
2293	pl08x->mem_buses = PL08X_AHB1;
2294	if (pl08x->vd->dualmaster) {
2295		pl08x->lli_buses = pl08x->pd->lli_buses;
2296		pl08x->mem_buses = pl08x->pd->mem_buses;
2297	}
2298
2299	if (vd->pl080s)
2300		pl08x->lli_words = PL080S_LLI_WORDS;
2301	else
2302		pl08x->lli_words = PL080_LLI_WORDS;
2303	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2304
2305	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2306	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2307						tsfr_size, PL08X_ALIGN, 0);
2308	if (!pl08x->pool) {
2309		ret = -ENOMEM;
2310		goto out_no_lli_pool;
2311	}
2312
2313	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2314	if (!pl08x->base) {
2315		ret = -ENOMEM;
2316		goto out_no_ioremap;
2317	}
2318
2319	/* Turn on the PL08x */
2320	pl08x_ensure_on(pl08x);
2321
2322	/* Attach the interrupt handler */
2323	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2324	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2325
2326	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2327	if (ret) {
2328		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2329			__func__, adev->irq[0]);
2330		goto out_no_irq;
2331	}
2332
2333	/* Initialize physical channels */
2334	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2335			GFP_KERNEL);
2336	if (!pl08x->phy_chans) {
2337		dev_err(&adev->dev, "%s failed to allocate "
2338			"physical channel holders\n",
2339			__func__);
2340		ret = -ENOMEM;
2341		goto out_no_phychans;
2342	}
2343
2344	for (i = 0; i < vd->channels; i++) {
2345		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2346
2347		ch->id = i;
2348		ch->base = pl08x->base + PL080_Cx_BASE(i);
2349		ch->reg_config = ch->base + vd->config_offset;
2350		spin_lock_init(&ch->lock);
2351
2352		/*
2353		 * Nomadik variants can have channels that are locked
2354		 * down for the secure world only. Lock up these channels
2355		 * by perpetually serving a dummy virtual channel.
2356		 */
2357		if (vd->nomadik) {
2358			u32 val;
2359
2360			val = readl(ch->reg_config);
2361			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2362				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2363				ch->locked = true;
2364			}
2365		}
2366
2367		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2368			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2369	}
2370
2371	/* Register as many memcpy channels as there are physical channels */
2372	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2373					      pl08x->vd->channels, false);
2374	if (ret <= 0) {
2375		dev_warn(&pl08x->adev->dev,
2376			 "%s failed to enumerate memcpy channels - %d\n",
2377			 __func__, ret);
2378		goto out_no_memcpy;
2379	}
2380
2381	/* Register slave channels */
2382	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2383			pl08x->pd->num_slave_channels, true);
2384	if (ret < 0) {
2385		dev_warn(&pl08x->adev->dev,
2386			"%s failed to enumerate slave channels - %d\n",
2387				__func__, ret);
2388		goto out_no_slave;
2389	}
2390
2391	ret = dma_async_device_register(&pl08x->memcpy);
2392	if (ret) {
2393		dev_warn(&pl08x->adev->dev,
2394			"%s failed to register memcpy as an async device - %d\n",
2395			__func__, ret);
2396		goto out_no_memcpy_reg;
2397	}
2398
2399	ret = dma_async_device_register(&pl08x->slave);
2400	if (ret) {
2401		dev_warn(&pl08x->adev->dev,
2402			"%s failed to register slave as an async device - %d\n",
2403			__func__, ret);
2404		goto out_no_slave_reg;
2405	}
2406
2407	amba_set_drvdata(adev, pl08x);
2408	init_pl08x_debugfs(pl08x);
2409	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2410		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2411		 (unsigned long long)adev->res.start, adev->irq[0]);
2412
2413	return 0;
2414
2415out_no_slave_reg:
2416	dma_async_device_unregister(&pl08x->memcpy);
2417out_no_memcpy_reg:
2418	pl08x_free_virtual_channels(&pl08x->slave);
2419out_no_slave:
2420	pl08x_free_virtual_channels(&pl08x->memcpy);
2421out_no_memcpy:
2422	kfree(pl08x->phy_chans);
2423out_no_phychans:
2424	free_irq(adev->irq[0], pl08x);
2425out_no_irq:
2426	iounmap(pl08x->base);
2427out_no_ioremap:
2428	dma_pool_destroy(pl08x->pool);
2429out_no_lli_pool:
2430out_no_platdata:
2431	kfree(pl08x);
2432out_no_pl08x:
2433	amba_release_regions(adev);
2434	return ret;
2435}
2436
2437/* PL080 has 8 channels and the PL080 have just 2 */
2438static struct vendor_data vendor_pl080 = {
2439	.config_offset = PL080_CH_CONFIG,
2440	.channels = 8,
2441	.dualmaster = true,
2442	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2443};
2444
2445static struct vendor_data vendor_nomadik = {
2446	.config_offset = PL080_CH_CONFIG,
2447	.channels = 8,
2448	.dualmaster = true,
2449	.nomadik = true,
2450	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2451};
2452
2453static struct vendor_data vendor_pl080s = {
2454	.config_offset = PL080S_CH_CONFIG,
2455	.channels = 8,
2456	.pl080s = true,
2457	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2458};
2459
2460static struct vendor_data vendor_pl081 = {
2461	.config_offset = PL080_CH_CONFIG,
2462	.channels = 2,
2463	.dualmaster = false,
2464	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2465};
2466
2467static struct amba_id pl08x_ids[] = {
2468	/* Samsung PL080S variant */
2469	{
2470		.id	= 0x0a141080,
2471		.mask	= 0xffffffff,
2472		.data	= &vendor_pl080s,
2473	},
2474	/* PL080 */
2475	{
2476		.id	= 0x00041080,
2477		.mask	= 0x000fffff,
2478		.data	= &vendor_pl080,
2479	},
2480	/* PL081 */
2481	{
2482		.id	= 0x00041081,
2483		.mask	= 0x000fffff,
2484		.data	= &vendor_pl081,
2485	},
2486	/* Nomadik 8815 PL080 variant */
2487	{
2488		.id	= 0x00280080,
2489		.mask	= 0x00ffffff,
2490		.data	= &vendor_nomadik,
2491	},
2492	{ 0, 0 },
2493};
2494
2495MODULE_DEVICE_TABLE(amba, pl08x_ids);
2496
2497static struct amba_driver pl08x_amba_driver = {
2498	.drv.name	= DRIVER_NAME,
2499	.id_table	= pl08x_ids,
2500	.probe		= pl08x_probe,
2501};
2502
2503static int __init pl08x_init(void)
2504{
2505	int retval;
2506	retval = amba_driver_register(&pl08x_amba_driver);
2507	if (retval)
2508		printk(KERN_WARNING DRIVER_NAME
2509		       "failed to register as an AMBA device (%d)\n",
2510		       retval);
2511	return retval;
2512}
2513subsys_initcall(pl08x_init);
2514