1/**
2 * imr.c
3 *
4 * Copyright(c) 2013 Intel Corporation.
5 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6 *
7 * IMR registers define an isolated region of memory that can
8 * be masked to prohibit certain system agents from accessing memory.
9 * When a device behind a masked port performs an access - snooped or
10 * not, an IMR may optionally prevent that transaction from changing
11 * the state of memory or from getting correct data in response to the
12 * operation.
13 *
14 * Write data will be dropped and reads will return 0xFFFFFFFF, the
15 * system will reset and system BIOS will print out an error message to
16 * inform the user that an IMR has been violated.
17 *
18 * This code is based on the Linux MTRR code and reference code from
19 * Intel's Quark BSP EFI, Linux and grub code.
20 *
21 * See quark-x1000-datasheet.pdf for register definitions.
22 * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <asm-generic/sections.h>
28#include <asm/cpu_device_id.h>
29#include <asm/imr.h>
30#include <asm/iosf_mbi.h>
31#include <linux/debugfs.h>
32#include <linux/init.h>
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/types.h>
36
37struct imr_device {
38	struct dentry	*file;
39	bool		init;
40	struct mutex	lock;
41	int		max_imr;
42	int		reg_base;
43};
44
45static struct imr_device imr_dev;
46
47/*
48 * IMR read/write mask control registers.
49 * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
50 * bit definitions.
51 *
52 * addr_hi
53 * 31		Lock bit
54 * 30:24	Reserved
55 * 23:2		1 KiB aligned lo address
56 * 1:0		Reserved
57 *
58 * addr_hi
59 * 31:24	Reserved
60 * 23:2		1 KiB aligned hi address
61 * 1:0		Reserved
62 */
63#define IMR_LOCK	BIT(31)
64
65struct imr_regs {
66	u32 addr_lo;
67	u32 addr_hi;
68	u32 rmask;
69	u32 wmask;
70};
71
72#define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
73#define IMR_SHIFT	8
74#define imr_to_phys(x)	((x) << IMR_SHIFT)
75#define phys_to_imr(x)	((x) >> IMR_SHIFT)
76
77/**
78 * imr_is_enabled - true if an IMR is enabled false otherwise.
79 *
80 * Determines if an IMR is enabled based on address range and read/write
81 * mask. An IMR set with an address range set to zero and a read/write
82 * access mask set to all is considered to be disabled. An IMR in any
83 * other state - for example set to zero but without read/write access
84 * all is considered to be enabled. This definition of disabled is how
85 * firmware switches off an IMR and is maintained in kernel for
86 * consistency.
87 *
88 * @imr:	pointer to IMR descriptor.
89 * @return:	true if IMR enabled false if disabled.
90 */
91static inline int imr_is_enabled(struct imr_regs *imr)
92{
93	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
94		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
95		 imr_to_phys(imr->addr_lo) == 0 &&
96		 imr_to_phys(imr->addr_hi) == 0);
97}
98
99/**
100 * imr_read - read an IMR at a given index.
101 *
102 * Requires caller to hold imr mutex.
103 *
104 * @idev:	pointer to imr_device structure.
105 * @imr_id:	IMR entry to read.
106 * @imr:	IMR structure representing address and access masks.
107 * @return:	0 on success or error code passed from mbi_iosf on failure.
108 */
109static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
110{
111	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
112	int ret;
113
114	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
115				reg++, &imr->addr_lo);
116	if (ret)
117		return ret;
118
119	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
120				reg++, &imr->addr_hi);
121	if (ret)
122		return ret;
123
124	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
125				reg++, &imr->rmask);
126	if (ret)
127		return ret;
128
129	return iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
130				reg++, &imr->wmask);
131}
132
133/**
134 * imr_write - write an IMR at a given index.
135 *
136 * Requires caller to hold imr mutex.
137 * Note lock bits need to be written independently of address bits.
138 *
139 * @idev:	pointer to imr_device structure.
140 * @imr_id:	IMR entry to write.
141 * @imr:	IMR structure representing address and access masks.
142 * @lock:	indicates if the IMR lock bit should be applied.
143 * @return:	0 on success or error code passed from mbi_iosf on failure.
144 */
145static int imr_write(struct imr_device *idev, u32 imr_id,
146		     struct imr_regs *imr, bool lock)
147{
148	unsigned long flags;
149	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
150	int ret;
151
152	local_irq_save(flags);
153
154	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, reg++,
155				imr->addr_lo);
156	if (ret)
157		goto failed;
158
159	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
160				reg++, imr->addr_hi);
161	if (ret)
162		goto failed;
163
164	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
165				reg++, imr->rmask);
166	if (ret)
167		goto failed;
168
169	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
170				reg++, imr->wmask);
171	if (ret)
172		goto failed;
173
174	/* Lock bit must be set separately to addr_lo address bits. */
175	if (lock) {
176		imr->addr_lo |= IMR_LOCK;
177		ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
178					reg - IMR_NUM_REGS, imr->addr_lo);
179		if (ret)
180			goto failed;
181	}
182
183	local_irq_restore(flags);
184	return 0;
185failed:
186	/*
187	 * If writing to the IOSF failed then we're in an unknown state,
188	 * likely a very bad state. An IMR in an invalid state will almost
189	 * certainly lead to a memory access violation.
190	 */
191	local_irq_restore(flags);
192	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
193	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
194
195	return ret;
196}
197
198/**
199 * imr_dbgfs_state_show - print state of IMR registers.
200 *
201 * @s:		pointer to seq_file for output.
202 * @unused:	unused parameter.
203 * @return:	0 on success or error code passed from mbi_iosf on failure.
204 */
205static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
206{
207	phys_addr_t base;
208	phys_addr_t end;
209	int i;
210	struct imr_device *idev = s->private;
211	struct imr_regs imr;
212	size_t size;
213	int ret = -ENODEV;
214
215	mutex_lock(&idev->lock);
216
217	for (i = 0; i < idev->max_imr; i++) {
218
219		ret = imr_read(idev, i, &imr);
220		if (ret)
221			break;
222
223		/*
224		 * Remember to add IMR_ALIGN bytes to size to indicate the
225		 * inherent IMR_ALIGN size bytes contained in the masked away
226		 * lower ten bits.
227		 */
228		if (imr_is_enabled(&imr)) {
229			base = imr_to_phys(imr.addr_lo);
230			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
231		} else {
232			base = 0;
233			end = 0;
234		}
235		size = end - base;
236		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
237			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
238			   &base, &end, size, imr.rmask, imr.wmask,
239			   imr_is_enabled(&imr) ? "enabled " : "disabled",
240			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
241	}
242
243	mutex_unlock(&idev->lock);
244	return ret;
245}
246
247/**
248 * imr_state_open - debugfs open callback.
249 *
250 * @inode:	pointer to struct inode.
251 * @file:	pointer to struct file.
252 * @return:	result of single open.
253 */
254static int imr_state_open(struct inode *inode, struct file *file)
255{
256	return single_open(file, imr_dbgfs_state_show, inode->i_private);
257}
258
259static const struct file_operations imr_state_ops = {
260	.open		= imr_state_open,
261	.read		= seq_read,
262	.llseek		= seq_lseek,
263	.release	= single_release,
264};
265
266/**
267 * imr_debugfs_register - register debugfs hooks.
268 *
269 * @idev:	pointer to imr_device structure.
270 * @return:	0 on success - errno on failure.
271 */
272static int imr_debugfs_register(struct imr_device *idev)
273{
274	idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
275					 idev, &imr_state_ops);
276	return PTR_ERR_OR_ZERO(idev->file);
277}
278
279/**
280 * imr_debugfs_unregister - unregister debugfs hooks.
281 *
282 * @idev:	pointer to imr_device structure.
283 * @return:
284 */
285static void imr_debugfs_unregister(struct imr_device *idev)
286{
287	debugfs_remove(idev->file);
288}
289
290/**
291 * imr_check_params - check passed address range IMR alignment and non-zero size
292 *
293 * @base:	base address of intended IMR.
294 * @size:	size of intended IMR.
295 * @return:	zero on valid range -EINVAL on unaligned base/size.
296 */
297static int imr_check_params(phys_addr_t base, size_t size)
298{
299	if ((base & IMR_MASK) || (size & IMR_MASK)) {
300		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
301			&base, size);
302		return -EINVAL;
303	}
304	if (size == 0)
305		return -EINVAL;
306
307	return 0;
308}
309
310/**
311 * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
312 *
313 * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
314 * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
315 * as a result.
316 *
317 * @size:	input size bytes.
318 * @return:	reduced size.
319 */
320static inline size_t imr_raw_size(size_t size)
321{
322	return size - IMR_ALIGN;
323}
324
325/**
326 * imr_address_overlap - detects an address overlap.
327 *
328 * @addr:	address to check against an existing IMR.
329 * @imr:	imr being checked.
330 * @return:	true for overlap false for no overlap.
331 */
332static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
333{
334	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
335}
336
337/**
338 * imr_add_range - add an Isolated Memory Region.
339 *
340 * @base:	physical base address of region aligned to 1KiB.
341 * @size:	physical size of region in bytes must be aligned to 1KiB.
342 * @read_mask:	read access mask.
343 * @write_mask:	write access mask.
344 * @lock:	indicates whether or not to permanently lock this region.
345 * @return:	zero on success or negative value indicating error.
346 */
347int imr_add_range(phys_addr_t base, size_t size,
348		  unsigned int rmask, unsigned int wmask, bool lock)
349{
350	phys_addr_t end;
351	unsigned int i;
352	struct imr_device *idev = &imr_dev;
353	struct imr_regs imr;
354	size_t raw_size;
355	int reg;
356	int ret;
357
358	if (WARN_ONCE(idev->init == false, "driver not initialized"))
359		return -ENODEV;
360
361	ret = imr_check_params(base, size);
362	if (ret)
363		return ret;
364
365	/* Tweak the size value. */
366	raw_size = imr_raw_size(size);
367	end = base + raw_size;
368
369	/*
370	 * Check for reserved IMR value common to firmware, kernel and grub
371	 * indicating a disabled IMR.
372	 */
373	imr.addr_lo = phys_to_imr(base);
374	imr.addr_hi = phys_to_imr(end);
375	imr.rmask = rmask;
376	imr.wmask = wmask;
377	if (!imr_is_enabled(&imr))
378		return -ENOTSUPP;
379
380	mutex_lock(&idev->lock);
381
382	/*
383	 * Find a free IMR while checking for an existing overlapping range.
384	 * Note there's no restriction in silicon to prevent IMR overlaps.
385	 * For the sake of simplicity and ease in defining/debugging an IMR
386	 * memory map we exclude IMR overlaps.
387	 */
388	reg = -1;
389	for (i = 0; i < idev->max_imr; i++) {
390		ret = imr_read(idev, i, &imr);
391		if (ret)
392			goto failed;
393
394		/* Find overlap @ base or end of requested range. */
395		ret = -EINVAL;
396		if (imr_is_enabled(&imr)) {
397			if (imr_address_overlap(base, &imr))
398				goto failed;
399			if (imr_address_overlap(end, &imr))
400				goto failed;
401		} else {
402			reg = i;
403		}
404	}
405
406	/* Error out if we have no free IMR entries. */
407	if (reg == -1) {
408		ret = -ENOMEM;
409		goto failed;
410	}
411
412	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
413		 reg, &base, &end, raw_size, rmask, wmask);
414
415	/* Enable IMR at specified range and access mask. */
416	imr.addr_lo = phys_to_imr(base);
417	imr.addr_hi = phys_to_imr(end);
418	imr.rmask = rmask;
419	imr.wmask = wmask;
420
421	ret = imr_write(idev, reg, &imr, lock);
422	if (ret < 0) {
423		/*
424		 * In the highly unlikely event iosf_mbi_write failed
425		 * attempt to rollback the IMR setup skipping the trapping
426		 * of further IOSF write failures.
427		 */
428		imr.addr_lo = 0;
429		imr.addr_hi = 0;
430		imr.rmask = IMR_READ_ACCESS_ALL;
431		imr.wmask = IMR_WRITE_ACCESS_ALL;
432		imr_write(idev, reg, &imr, false);
433	}
434failed:
435	mutex_unlock(&idev->lock);
436	return ret;
437}
438EXPORT_SYMBOL_GPL(imr_add_range);
439
440/**
441 * __imr_remove_range - delete an Isolated Memory Region.
442 *
443 * This function allows you to delete an IMR by its index specified by reg or
444 * by address range specified by base and size respectively. If you specify an
445 * index on its own the base and size parameters are ignored.
446 * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
447 * imr_remove_range(-1, base, size); delete IMR from base to base+size.
448 *
449 * @reg:	imr index to remove.
450 * @base:	physical base address of region aligned to 1 KiB.
451 * @size:	physical size of region in bytes aligned to 1 KiB.
452 * @return:	-EINVAL on invalid range or out or range id
453 *		-ENODEV if reg is valid but no IMR exists or is locked
454 *		0 on success.
455 */
456static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
457{
458	phys_addr_t end;
459	bool found = false;
460	unsigned int i;
461	struct imr_device *idev = &imr_dev;
462	struct imr_regs imr;
463	size_t raw_size;
464	int ret = 0;
465
466	if (WARN_ONCE(idev->init == false, "driver not initialized"))
467		return -ENODEV;
468
469	/*
470	 * Validate address range if deleting by address, else we are
471	 * deleting by index where base and size will be ignored.
472	 */
473	if (reg == -1) {
474		ret = imr_check_params(base, size);
475		if (ret)
476			return ret;
477	}
478
479	/* Tweak the size value. */
480	raw_size = imr_raw_size(size);
481	end = base + raw_size;
482
483	mutex_lock(&idev->lock);
484
485	if (reg >= 0) {
486		/* If a specific IMR is given try to use it. */
487		ret = imr_read(idev, reg, &imr);
488		if (ret)
489			goto failed;
490
491		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
492			ret = -ENODEV;
493			goto failed;
494		}
495		found = true;
496	} else {
497		/* Search for match based on address range. */
498		for (i = 0; i < idev->max_imr; i++) {
499			ret = imr_read(idev, i, &imr);
500			if (ret)
501				goto failed;
502
503			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
504				continue;
505
506			if ((imr_to_phys(imr.addr_lo) == base) &&
507			    (imr_to_phys(imr.addr_hi) == end)) {
508				found = true;
509				reg = i;
510				break;
511			}
512		}
513	}
514
515	if (!found) {
516		ret = -ENODEV;
517		goto failed;
518	}
519
520	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
521
522	/* Tear down the IMR. */
523	imr.addr_lo = 0;
524	imr.addr_hi = 0;
525	imr.rmask = IMR_READ_ACCESS_ALL;
526	imr.wmask = IMR_WRITE_ACCESS_ALL;
527
528	ret = imr_write(idev, reg, &imr, false);
529
530failed:
531	mutex_unlock(&idev->lock);
532	return ret;
533}
534
535/**
536 * imr_remove_range - delete an Isolated Memory Region by address
537 *
538 * This function allows you to delete an IMR by an address range specified
539 * by base and size respectively.
540 * imr_remove_range(base, size); delete IMR from base to base+size.
541 *
542 * @base:	physical base address of region aligned to 1 KiB.
543 * @size:	physical size of region in bytes aligned to 1 KiB.
544 * @return:	-EINVAL on invalid range or out or range id
545 *		-ENODEV if reg is valid but no IMR exists or is locked
546 *		0 on success.
547 */
548int imr_remove_range(phys_addr_t base, size_t size)
549{
550	return __imr_remove_range(-1, base, size);
551}
552EXPORT_SYMBOL_GPL(imr_remove_range);
553
554/**
555 * imr_clear - delete an Isolated Memory Region by index
556 *
557 * This function allows you to delete an IMR by an address range specified
558 * by the index of the IMR. Useful for initial sanitization of the IMR
559 * address map.
560 * imr_ge(base, size); delete IMR from base to base+size.
561 *
562 * @reg:	imr index to remove.
563 * @return:	-EINVAL on invalid range or out or range id
564 *		-ENODEV if reg is valid but no IMR exists or is locked
565 *		0 on success.
566 */
567static inline int imr_clear(int reg)
568{
569	return __imr_remove_range(reg, 0, 0);
570}
571
572/**
573 * imr_fixup_memmap - Tear down IMRs used during bootup.
574 *
575 * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
576 * that need to be removed before the kernel hands out one of the IMR
577 * encased addresses to a downstream DMA agent such as the SD or Ethernet.
578 * IMRs on Galileo are setup to immediately reset the system on violation.
579 * As a result if you're running a root filesystem from SD - you'll need
580 * the boot-time IMRs torn down or you'll find seemingly random resets when
581 * using your filesystem.
582 *
583 * @idev:	pointer to imr_device structure.
584 * @return:
585 */
586static void __init imr_fixup_memmap(struct imr_device *idev)
587{
588	phys_addr_t base = virt_to_phys(&_text);
589	size_t size = virt_to_phys(&__end_rodata) - base;
590	int i;
591	int ret;
592
593	/* Tear down all existing unlocked IMRs. */
594	for (i = 0; i < idev->max_imr; i++)
595		imr_clear(i);
596
597	/*
598	 * Setup a locked IMR around the physical extent of the kernel
599	 * from the beginning of the .text secton to the end of the
600	 * .rodata section as one physically contiguous block.
601	 */
602	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true);
603	if (ret < 0) {
604		pr_err("unable to setup IMR for kernel: (%p - %p)\n",
605			&_text, &__end_rodata);
606	} else {
607		pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n",
608			size / 1024, &_text, &__end_rodata);
609	}
610
611}
612
613static const struct x86_cpu_id imr_ids[] __initconst = {
614	{ X86_VENDOR_INTEL, 5, 9 },	/* Intel Quark SoC X1000. */
615	{}
616};
617MODULE_DEVICE_TABLE(x86cpu, imr_ids);
618
619/**
620 * imr_init - entry point for IMR driver.
621 *
622 * return: -ENODEV for no IMR support 0 if good to go.
623 */
624static int __init imr_init(void)
625{
626	struct imr_device *idev = &imr_dev;
627	int ret;
628
629	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
630		return -ENODEV;
631
632	idev->max_imr = QUARK_X1000_IMR_MAX;
633	idev->reg_base = QUARK_X1000_IMR_REGBASE;
634	idev->init = true;
635
636	mutex_init(&idev->lock);
637	ret = imr_debugfs_register(idev);
638	if (ret != 0)
639		pr_warn("debugfs register failed!\n");
640	imr_fixup_memmap(idev);
641	return 0;
642}
643
644/**
645 * imr_exit - exit point for IMR code.
646 *
647 * Deregisters debugfs, leave IMR state as-is.
648 *
649 * return:
650 */
651static void __exit imr_exit(void)
652{
653	imr_debugfs_unregister(&imr_dev);
654}
655
656module_init(imr_init);
657module_exit(imr_exit);
658
659MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
660MODULE_DESCRIPTION("Intel Isolated Memory Region driver");
661MODULE_LICENSE("Dual BSD/GPL");
662