1/**
2 * @file nmi_int.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Robert Richter <robert.richter@amd.com>
9 * @author Barry Kasindorf <barry.kasindorf@amd.com>
10 * @author Jason Yeh <jason.yeh@amd.com>
11 * @author Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
12 */
13
14#include <linux/init.h>
15#include <linux/notifier.h>
16#include <linux/smp.h>
17#include <linux/oprofile.h>
18#include <linux/syscore_ops.h>
19#include <linux/slab.h>
20#include <linux/moduleparam.h>
21#include <linux/kdebug.h>
22#include <linux/cpu.h>
23#include <asm/nmi.h>
24#include <asm/msr.h>
25#include <asm/apic.h>
26
27#include "op_counter.h"
28#include "op_x86_model.h"
29
30static struct op_x86_model_spec *model;
31static DEFINE_PER_CPU(struct op_msrs, cpu_msrs);
32static DEFINE_PER_CPU(unsigned long, saved_lvtpc);
33
34/* must be protected with get_online_cpus()/put_online_cpus(): */
35static int nmi_enabled;
36static int ctr_running;
37
38struct op_counter_config counter_config[OP_MAX_COUNTER];
39
40/* common functions */
41
42u64 op_x86_get_ctrl(struct op_x86_model_spec const *model,
43		    struct op_counter_config *counter_config)
44{
45	u64 val = 0;
46	u16 event = (u16)counter_config->event;
47
48	val |= ARCH_PERFMON_EVENTSEL_INT;
49	val |= counter_config->user ? ARCH_PERFMON_EVENTSEL_USR : 0;
50	val |= counter_config->kernel ? ARCH_PERFMON_EVENTSEL_OS : 0;
51	val |= (counter_config->unit_mask & 0xFF) << 8;
52	counter_config->extra &= (ARCH_PERFMON_EVENTSEL_INV |
53				  ARCH_PERFMON_EVENTSEL_EDGE |
54				  ARCH_PERFMON_EVENTSEL_CMASK);
55	val |= counter_config->extra;
56	event &= model->event_mask ? model->event_mask : 0xFF;
57	val |= event & 0xFF;
58	val |= (u64)(event & 0x0F00) << 24;
59
60	return val;
61}
62
63
64static int profile_exceptions_notify(unsigned int val, struct pt_regs *regs)
65{
66	if (ctr_running)
67		model->check_ctrs(regs, this_cpu_ptr(&cpu_msrs));
68	else if (!nmi_enabled)
69		return NMI_DONE;
70	else
71		model->stop(this_cpu_ptr(&cpu_msrs));
72	return NMI_HANDLED;
73}
74
75static void nmi_cpu_save_registers(struct op_msrs *msrs)
76{
77	struct op_msr *counters = msrs->counters;
78	struct op_msr *controls = msrs->controls;
79	unsigned int i;
80
81	for (i = 0; i < model->num_counters; ++i) {
82		if (counters[i].addr)
83			rdmsrl(counters[i].addr, counters[i].saved);
84	}
85
86	for (i = 0; i < model->num_controls; ++i) {
87		if (controls[i].addr)
88			rdmsrl(controls[i].addr, controls[i].saved);
89	}
90}
91
92static void nmi_cpu_start(void *dummy)
93{
94	struct op_msrs const *msrs = this_cpu_ptr(&cpu_msrs);
95	if (!msrs->controls)
96		WARN_ON_ONCE(1);
97	else
98		model->start(msrs);
99}
100
101static int nmi_start(void)
102{
103	get_online_cpus();
104	ctr_running = 1;
105	/* make ctr_running visible to the nmi handler: */
106	smp_mb();
107	on_each_cpu(nmi_cpu_start, NULL, 1);
108	put_online_cpus();
109	return 0;
110}
111
112static void nmi_cpu_stop(void *dummy)
113{
114	struct op_msrs const *msrs = this_cpu_ptr(&cpu_msrs);
115	if (!msrs->controls)
116		WARN_ON_ONCE(1);
117	else
118		model->stop(msrs);
119}
120
121static void nmi_stop(void)
122{
123	get_online_cpus();
124	on_each_cpu(nmi_cpu_stop, NULL, 1);
125	ctr_running = 0;
126	put_online_cpus();
127}
128
129#ifdef CONFIG_OPROFILE_EVENT_MULTIPLEX
130
131static DEFINE_PER_CPU(int, switch_index);
132
133static inline int has_mux(void)
134{
135	return !!model->switch_ctrl;
136}
137
138inline int op_x86_phys_to_virt(int phys)
139{
140	return __this_cpu_read(switch_index) + phys;
141}
142
143inline int op_x86_virt_to_phys(int virt)
144{
145	return virt % model->num_counters;
146}
147
148static void nmi_shutdown_mux(void)
149{
150	int i;
151
152	if (!has_mux())
153		return;
154
155	for_each_possible_cpu(i) {
156		kfree(per_cpu(cpu_msrs, i).multiplex);
157		per_cpu(cpu_msrs, i).multiplex = NULL;
158		per_cpu(switch_index, i) = 0;
159	}
160}
161
162static int nmi_setup_mux(void)
163{
164	size_t multiplex_size =
165		sizeof(struct op_msr) * model->num_virt_counters;
166	int i;
167
168	if (!has_mux())
169		return 1;
170
171	for_each_possible_cpu(i) {
172		per_cpu(cpu_msrs, i).multiplex =
173			kzalloc(multiplex_size, GFP_KERNEL);
174		if (!per_cpu(cpu_msrs, i).multiplex)
175			return 0;
176	}
177
178	return 1;
179}
180
181static void nmi_cpu_setup_mux(int cpu, struct op_msrs const * const msrs)
182{
183	int i;
184	struct op_msr *multiplex = msrs->multiplex;
185
186	if (!has_mux())
187		return;
188
189	for (i = 0; i < model->num_virt_counters; ++i) {
190		if (counter_config[i].enabled) {
191			multiplex[i].saved = -(u64)counter_config[i].count;
192		} else {
193			multiplex[i].saved = 0;
194		}
195	}
196
197	per_cpu(switch_index, cpu) = 0;
198}
199
200static void nmi_cpu_save_mpx_registers(struct op_msrs *msrs)
201{
202	struct op_msr *counters = msrs->counters;
203	struct op_msr *multiplex = msrs->multiplex;
204	int i;
205
206	for (i = 0; i < model->num_counters; ++i) {
207		int virt = op_x86_phys_to_virt(i);
208		if (counters[i].addr)
209			rdmsrl(counters[i].addr, multiplex[virt].saved);
210	}
211}
212
213static void nmi_cpu_restore_mpx_registers(struct op_msrs *msrs)
214{
215	struct op_msr *counters = msrs->counters;
216	struct op_msr *multiplex = msrs->multiplex;
217	int i;
218
219	for (i = 0; i < model->num_counters; ++i) {
220		int virt = op_x86_phys_to_virt(i);
221		if (counters[i].addr)
222			wrmsrl(counters[i].addr, multiplex[virt].saved);
223	}
224}
225
226static void nmi_cpu_switch(void *dummy)
227{
228	int cpu = smp_processor_id();
229	int si = per_cpu(switch_index, cpu);
230	struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
231
232	nmi_cpu_stop(NULL);
233	nmi_cpu_save_mpx_registers(msrs);
234
235	/* move to next set */
236	si += model->num_counters;
237	if ((si >= model->num_virt_counters) || (counter_config[si].count == 0))
238		per_cpu(switch_index, cpu) = 0;
239	else
240		per_cpu(switch_index, cpu) = si;
241
242	model->switch_ctrl(model, msrs);
243	nmi_cpu_restore_mpx_registers(msrs);
244
245	nmi_cpu_start(NULL);
246}
247
248
249/*
250 * Quick check to see if multiplexing is necessary.
251 * The check should be sufficient since counters are used
252 * in ordre.
253 */
254static int nmi_multiplex_on(void)
255{
256	return counter_config[model->num_counters].count ? 0 : -EINVAL;
257}
258
259static int nmi_switch_event(void)
260{
261	if (!has_mux())
262		return -ENOSYS;		/* not implemented */
263	if (nmi_multiplex_on() < 0)
264		return -EINVAL;		/* not necessary */
265
266	get_online_cpus();
267	if (ctr_running)
268		on_each_cpu(nmi_cpu_switch, NULL, 1);
269	put_online_cpus();
270
271	return 0;
272}
273
274static inline void mux_init(struct oprofile_operations *ops)
275{
276	if (has_mux())
277		ops->switch_events = nmi_switch_event;
278}
279
280static void mux_clone(int cpu)
281{
282	if (!has_mux())
283		return;
284
285	memcpy(per_cpu(cpu_msrs, cpu).multiplex,
286	       per_cpu(cpu_msrs, 0).multiplex,
287	       sizeof(struct op_msr) * model->num_virt_counters);
288}
289
290#else
291
292inline int op_x86_phys_to_virt(int phys) { return phys; }
293inline int op_x86_virt_to_phys(int virt) { return virt; }
294static inline void nmi_shutdown_mux(void) { }
295static inline int nmi_setup_mux(void) { return 1; }
296static inline void
297nmi_cpu_setup_mux(int cpu, struct op_msrs const * const msrs) { }
298static inline void mux_init(struct oprofile_operations *ops) { }
299static void mux_clone(int cpu) { }
300
301#endif
302
303static void free_msrs(void)
304{
305	int i;
306	for_each_possible_cpu(i) {
307		kfree(per_cpu(cpu_msrs, i).counters);
308		per_cpu(cpu_msrs, i).counters = NULL;
309		kfree(per_cpu(cpu_msrs, i).controls);
310		per_cpu(cpu_msrs, i).controls = NULL;
311	}
312	nmi_shutdown_mux();
313}
314
315static int allocate_msrs(void)
316{
317	size_t controls_size = sizeof(struct op_msr) * model->num_controls;
318	size_t counters_size = sizeof(struct op_msr) * model->num_counters;
319
320	int i;
321	for_each_possible_cpu(i) {
322		per_cpu(cpu_msrs, i).counters = kzalloc(counters_size,
323							GFP_KERNEL);
324		if (!per_cpu(cpu_msrs, i).counters)
325			goto fail;
326		per_cpu(cpu_msrs, i).controls = kzalloc(controls_size,
327							GFP_KERNEL);
328		if (!per_cpu(cpu_msrs, i).controls)
329			goto fail;
330	}
331
332	if (!nmi_setup_mux())
333		goto fail;
334
335	return 1;
336
337fail:
338	free_msrs();
339	return 0;
340}
341
342static void nmi_cpu_setup(void *dummy)
343{
344	int cpu = smp_processor_id();
345	struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
346	nmi_cpu_save_registers(msrs);
347	raw_spin_lock(&oprofilefs_lock);
348	model->setup_ctrs(model, msrs);
349	nmi_cpu_setup_mux(cpu, msrs);
350	raw_spin_unlock(&oprofilefs_lock);
351	per_cpu(saved_lvtpc, cpu) = apic_read(APIC_LVTPC);
352	apic_write(APIC_LVTPC, APIC_DM_NMI);
353}
354
355static void nmi_cpu_restore_registers(struct op_msrs *msrs)
356{
357	struct op_msr *counters = msrs->counters;
358	struct op_msr *controls = msrs->controls;
359	unsigned int i;
360
361	for (i = 0; i < model->num_controls; ++i) {
362		if (controls[i].addr)
363			wrmsrl(controls[i].addr, controls[i].saved);
364	}
365
366	for (i = 0; i < model->num_counters; ++i) {
367		if (counters[i].addr)
368			wrmsrl(counters[i].addr, counters[i].saved);
369	}
370}
371
372static void nmi_cpu_shutdown(void *dummy)
373{
374	unsigned int v;
375	int cpu = smp_processor_id();
376	struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
377
378	/* restoring APIC_LVTPC can trigger an apic error because the delivery
379	 * mode and vector nr combination can be illegal. That's by design: on
380	 * power on apic lvt contain a zero vector nr which are legal only for
381	 * NMI delivery mode. So inhibit apic err before restoring lvtpc
382	 */
383	v = apic_read(APIC_LVTERR);
384	apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
385	apic_write(APIC_LVTPC, per_cpu(saved_lvtpc, cpu));
386	apic_write(APIC_LVTERR, v);
387	nmi_cpu_restore_registers(msrs);
388}
389
390static void nmi_cpu_up(void *dummy)
391{
392	if (nmi_enabled)
393		nmi_cpu_setup(dummy);
394	if (ctr_running)
395		nmi_cpu_start(dummy);
396}
397
398static void nmi_cpu_down(void *dummy)
399{
400	if (ctr_running)
401		nmi_cpu_stop(dummy);
402	if (nmi_enabled)
403		nmi_cpu_shutdown(dummy);
404}
405
406static int nmi_create_files(struct dentry *root)
407{
408	unsigned int i;
409
410	for (i = 0; i < model->num_virt_counters; ++i) {
411		struct dentry *dir;
412		char buf[4];
413
414		/* quick little hack to _not_ expose a counter if it is not
415		 * available for use.  This should protect userspace app.
416		 * NOTE:  assumes 1:1 mapping here (that counters are organized
417		 *        sequentially in their struct assignment).
418		 */
419		if (!avail_to_resrv_perfctr_nmi_bit(op_x86_virt_to_phys(i)))
420			continue;
421
422		snprintf(buf,  sizeof(buf), "%d", i);
423		dir = oprofilefs_mkdir(root, buf);
424		oprofilefs_create_ulong(dir, "enabled", &counter_config[i].enabled);
425		oprofilefs_create_ulong(dir, "event", &counter_config[i].event);
426		oprofilefs_create_ulong(dir, "count", &counter_config[i].count);
427		oprofilefs_create_ulong(dir, "unit_mask", &counter_config[i].unit_mask);
428		oprofilefs_create_ulong(dir, "kernel", &counter_config[i].kernel);
429		oprofilefs_create_ulong(dir, "user", &counter_config[i].user);
430		oprofilefs_create_ulong(dir, "extra", &counter_config[i].extra);
431	}
432
433	return 0;
434}
435
436static int oprofile_cpu_notifier(struct notifier_block *b, unsigned long action,
437				 void *data)
438{
439	int cpu = (unsigned long)data;
440	switch (action) {
441	case CPU_DOWN_FAILED:
442	case CPU_ONLINE:
443		smp_call_function_single(cpu, nmi_cpu_up, NULL, 0);
444		break;
445	case CPU_DOWN_PREPARE:
446		smp_call_function_single(cpu, nmi_cpu_down, NULL, 1);
447		break;
448	}
449	return NOTIFY_DONE;
450}
451
452static struct notifier_block oprofile_cpu_nb = {
453	.notifier_call = oprofile_cpu_notifier
454};
455
456static int nmi_setup(void)
457{
458	int err = 0;
459	int cpu;
460
461	if (!allocate_msrs())
462		return -ENOMEM;
463
464	/* We need to serialize save and setup for HT because the subset
465	 * of msrs are distinct for save and setup operations
466	 */
467
468	/* Assume saved/restored counters are the same on all CPUs */
469	err = model->fill_in_addresses(&per_cpu(cpu_msrs, 0));
470	if (err)
471		goto fail;
472
473	for_each_possible_cpu(cpu) {
474		if (!cpu)
475			continue;
476
477		memcpy(per_cpu(cpu_msrs, cpu).counters,
478		       per_cpu(cpu_msrs, 0).counters,
479		       sizeof(struct op_msr) * model->num_counters);
480
481		memcpy(per_cpu(cpu_msrs, cpu).controls,
482		       per_cpu(cpu_msrs, 0).controls,
483		       sizeof(struct op_msr) * model->num_controls);
484
485		mux_clone(cpu);
486	}
487
488	nmi_enabled = 0;
489	ctr_running = 0;
490	/* make variables visible to the nmi handler: */
491	smp_mb();
492	err = register_nmi_handler(NMI_LOCAL, profile_exceptions_notify,
493					0, "oprofile");
494	if (err)
495		goto fail;
496
497	cpu_notifier_register_begin();
498
499	/* Use get/put_online_cpus() to protect 'nmi_enabled' */
500	get_online_cpus();
501	nmi_enabled = 1;
502	/* make nmi_enabled visible to the nmi handler: */
503	smp_mb();
504	on_each_cpu(nmi_cpu_setup, NULL, 1);
505	__register_cpu_notifier(&oprofile_cpu_nb);
506	put_online_cpus();
507
508	cpu_notifier_register_done();
509
510	return 0;
511fail:
512	free_msrs();
513	return err;
514}
515
516static void nmi_shutdown(void)
517{
518	struct op_msrs *msrs;
519
520	cpu_notifier_register_begin();
521
522	/* Use get/put_online_cpus() to protect 'nmi_enabled' & 'ctr_running' */
523	get_online_cpus();
524	on_each_cpu(nmi_cpu_shutdown, NULL, 1);
525	nmi_enabled = 0;
526	ctr_running = 0;
527	__unregister_cpu_notifier(&oprofile_cpu_nb);
528	put_online_cpus();
529
530	cpu_notifier_register_done();
531
532	/* make variables visible to the nmi handler: */
533	smp_mb();
534	unregister_nmi_handler(NMI_LOCAL, "oprofile");
535	msrs = &get_cpu_var(cpu_msrs);
536	model->shutdown(msrs);
537	free_msrs();
538	put_cpu_var(cpu_msrs);
539}
540
541#ifdef CONFIG_PM
542
543static int nmi_suspend(void)
544{
545	/* Only one CPU left, just stop that one */
546	if (nmi_enabled == 1)
547		nmi_cpu_stop(NULL);
548	return 0;
549}
550
551static void nmi_resume(void)
552{
553	if (nmi_enabled == 1)
554		nmi_cpu_start(NULL);
555}
556
557static struct syscore_ops oprofile_syscore_ops = {
558	.resume		= nmi_resume,
559	.suspend	= nmi_suspend,
560};
561
562static void __init init_suspend_resume(void)
563{
564	register_syscore_ops(&oprofile_syscore_ops);
565}
566
567static void exit_suspend_resume(void)
568{
569	unregister_syscore_ops(&oprofile_syscore_ops);
570}
571
572#else
573
574static inline void init_suspend_resume(void) { }
575static inline void exit_suspend_resume(void) { }
576
577#endif /* CONFIG_PM */
578
579static int __init p4_init(char **cpu_type)
580{
581	__u8 cpu_model = boot_cpu_data.x86_model;
582
583	if (cpu_model > 6 || cpu_model == 5)
584		return 0;
585
586#ifndef CONFIG_SMP
587	*cpu_type = "i386/p4";
588	model = &op_p4_spec;
589	return 1;
590#else
591	switch (smp_num_siblings) {
592	case 1:
593		*cpu_type = "i386/p4";
594		model = &op_p4_spec;
595		return 1;
596
597	case 2:
598		*cpu_type = "i386/p4-ht";
599		model = &op_p4_ht2_spec;
600		return 1;
601	}
602#endif
603
604	printk(KERN_INFO "oprofile: P4 HyperThreading detected with > 2 threads\n");
605	printk(KERN_INFO "oprofile: Reverting to timer mode.\n");
606	return 0;
607}
608
609enum __force_cpu_type {
610	reserved = 0,		/* do not force */
611	timer,
612	arch_perfmon,
613};
614
615static int force_cpu_type;
616
617static int set_cpu_type(const char *str, struct kernel_param *kp)
618{
619	if (!strcmp(str, "timer")) {
620		force_cpu_type = timer;
621		printk(KERN_INFO "oprofile: forcing NMI timer mode\n");
622	} else if (!strcmp(str, "arch_perfmon")) {
623		force_cpu_type = arch_perfmon;
624		printk(KERN_INFO "oprofile: forcing architectural perfmon\n");
625	} else {
626		force_cpu_type = 0;
627	}
628
629	return 0;
630}
631module_param_call(cpu_type, set_cpu_type, NULL, NULL, 0);
632
633static int __init ppro_init(char **cpu_type)
634{
635	__u8 cpu_model = boot_cpu_data.x86_model;
636	struct op_x86_model_spec *spec = &op_ppro_spec;	/* default */
637
638	if (force_cpu_type == arch_perfmon && cpu_has_arch_perfmon)
639		return 0;
640
641	/*
642	 * Documentation on identifying Intel processors by CPU family
643	 * and model can be found in the Intel Software Developer's
644	 * Manuals (SDM):
645	 *
646	 *  http://www.intel.com/products/processor/manuals/
647	 *
648	 * As of May 2010 the documentation for this was in the:
649	 * "Intel 64 and IA-32 Architectures Software Developer's
650	 * Manual Volume 3B: System Programming Guide", "Table B-1
651	 * CPUID Signature Values of DisplayFamily_DisplayModel".
652	 */
653	switch (cpu_model) {
654	case 0 ... 2:
655		*cpu_type = "i386/ppro";
656		break;
657	case 3 ... 5:
658		*cpu_type = "i386/pii";
659		break;
660	case 6 ... 8:
661	case 10 ... 11:
662		*cpu_type = "i386/piii";
663		break;
664	case 9:
665	case 13:
666		*cpu_type = "i386/p6_mobile";
667		break;
668	case 14:
669		*cpu_type = "i386/core";
670		break;
671	case 0x0f:
672	case 0x16:
673	case 0x17:
674	case 0x1d:
675		*cpu_type = "i386/core_2";
676		break;
677	case 0x1a:
678	case 0x1e:
679	case 0x2e:
680		spec = &op_arch_perfmon_spec;
681		*cpu_type = "i386/core_i7";
682		break;
683	case 0x1c:
684		*cpu_type = "i386/atom";
685		break;
686	default:
687		/* Unknown */
688		return 0;
689	}
690
691	model = spec;
692	return 1;
693}
694
695int __init op_nmi_init(struct oprofile_operations *ops)
696{
697	__u8 vendor = boot_cpu_data.x86_vendor;
698	__u8 family = boot_cpu_data.x86;
699	char *cpu_type = NULL;
700	int ret = 0;
701
702	if (!cpu_has_apic)
703		return -ENODEV;
704
705	if (force_cpu_type == timer)
706		return -ENODEV;
707
708	switch (vendor) {
709	case X86_VENDOR_AMD:
710		/* Needs to be at least an Athlon (or hammer in 32bit mode) */
711
712		switch (family) {
713		case 6:
714			cpu_type = "i386/athlon";
715			break;
716		case 0xf:
717			/*
718			 * Actually it could be i386/hammer too, but
719			 * give user space an consistent name.
720			 */
721			cpu_type = "x86-64/hammer";
722			break;
723		case 0x10:
724			cpu_type = "x86-64/family10";
725			break;
726		case 0x11:
727			cpu_type = "x86-64/family11h";
728			break;
729		case 0x12:
730			cpu_type = "x86-64/family12h";
731			break;
732		case 0x14:
733			cpu_type = "x86-64/family14h";
734			break;
735		case 0x15:
736			cpu_type = "x86-64/family15h";
737			break;
738		default:
739			return -ENODEV;
740		}
741		model = &op_amd_spec;
742		break;
743
744	case X86_VENDOR_INTEL:
745		switch (family) {
746			/* Pentium IV */
747		case 0xf:
748			p4_init(&cpu_type);
749			break;
750
751			/* A P6-class processor */
752		case 6:
753			ppro_init(&cpu_type);
754			break;
755
756		default:
757			break;
758		}
759
760		if (cpu_type)
761			break;
762
763		if (!cpu_has_arch_perfmon)
764			return -ENODEV;
765
766		/* use arch perfmon as fallback */
767		cpu_type = "i386/arch_perfmon";
768		model = &op_arch_perfmon_spec;
769		break;
770
771	default:
772		return -ENODEV;
773	}
774
775	/* default values, can be overwritten by model */
776	ops->create_files	= nmi_create_files;
777	ops->setup		= nmi_setup;
778	ops->shutdown		= nmi_shutdown;
779	ops->start		= nmi_start;
780	ops->stop		= nmi_stop;
781	ops->cpu_type		= cpu_type;
782
783	if (model->init)
784		ret = model->init(ops);
785	if (ret)
786		return ret;
787
788	if (!model->num_virt_counters)
789		model->num_virt_counters = model->num_counters;
790
791	mux_init(ops);
792
793	init_suspend_resume();
794
795	printk(KERN_INFO "oprofile: using NMI interrupt.\n");
796	return 0;
797}
798
799void op_nmi_exit(void)
800{
801	exit_suspend_resume();
802}
803