1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 unsigned long numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
42 };
43
44 /*
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
49 */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
update_page_count(int level,unsigned long pages)59 void update_page_count(int level, unsigned long pages)
60 {
61 /* Protect against CPA */
62 spin_lock(&pgd_lock);
63 direct_pages_count[level] += pages;
64 spin_unlock(&pgd_lock);
65 }
66
split_page_count(int level)67 static void split_page_count(int level)
68 {
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
arch_report_meminfo(struct seq_file * m)73 void arch_report_meminfo(struct seq_file *m)
74 {
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 if (direct_gbpages)
85 seq_printf(m, "DirectMap1G: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_1G] << 20);
87 }
88 #else
split_page_count(int level)89 static inline void split_page_count(int level) { }
90 #endif
91
92 #ifdef CONFIG_X86_64
93
highmap_start_pfn(void)94 static inline unsigned long highmap_start_pfn(void)
95 {
96 return __pa_symbol(_text) >> PAGE_SHIFT;
97 }
98
highmap_end_pfn(void)99 static inline unsigned long highmap_end_pfn(void)
100 {
101 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102 }
103
104 #endif
105
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
111
112 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)113 within(unsigned long addr, unsigned long start, unsigned long end)
114 {
115 return addr >= start && addr < end;
116 }
117
118 /*
119 * Flushing functions
120 */
121
122 /**
123 * clflush_cache_range - flush a cache range with clflush
124 * @vaddr: virtual start address
125 * @size: number of bytes to flush
126 *
127 * clflushopt is an unordered instruction which needs fencing with mfence or
128 * sfence to avoid ordering issues.
129 */
clflush_cache_range(void * vaddr,unsigned int size)130 void clflush_cache_range(void *vaddr, unsigned int size)
131 {
132 unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
133 void *vend = vaddr + size;
134 void *p;
135
136 mb();
137
138 for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
139 p < vend; p += boot_cpu_data.x86_clflush_size)
140 clflushopt(p);
141
142 mb();
143 }
144 EXPORT_SYMBOL_GPL(clflush_cache_range);
145
__cpa_flush_all(void * arg)146 static void __cpa_flush_all(void *arg)
147 {
148 unsigned long cache = (unsigned long)arg;
149
150 /*
151 * Flush all to work around Errata in early athlons regarding
152 * large page flushing.
153 */
154 __flush_tlb_all();
155
156 if (cache && boot_cpu_data.x86 >= 4)
157 wbinvd();
158 }
159
cpa_flush_all(unsigned long cache)160 static void cpa_flush_all(unsigned long cache)
161 {
162 BUG_ON(irqs_disabled());
163
164 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
165 }
166
__cpa_flush_range(void * arg)167 static void __cpa_flush_range(void *arg)
168 {
169 /*
170 * We could optimize that further and do individual per page
171 * tlb invalidates for a low number of pages. Caveat: we must
172 * flush the high aliases on 64bit as well.
173 */
174 __flush_tlb_all();
175 }
176
cpa_flush_range(unsigned long start,int numpages,int cache)177 static void cpa_flush_range(unsigned long start, int numpages, int cache)
178 {
179 unsigned int i, level;
180 unsigned long addr;
181
182 BUG_ON(irqs_disabled());
183 WARN_ON(PAGE_ALIGN(start) != start);
184
185 on_each_cpu(__cpa_flush_range, NULL, 1);
186
187 if (!cache)
188 return;
189
190 /*
191 * We only need to flush on one CPU,
192 * clflush is a MESI-coherent instruction that
193 * will cause all other CPUs to flush the same
194 * cachelines:
195 */
196 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
197 pte_t *pte = lookup_address(addr, &level);
198
199 /*
200 * Only flush present addresses:
201 */
202 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
203 clflush_cache_range((void *) addr, PAGE_SIZE);
204 }
205 }
206
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)207 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
208 int in_flags, struct page **pages)
209 {
210 unsigned int i, level;
211 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
212
213 BUG_ON(irqs_disabled());
214
215 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
216
217 if (!cache || do_wbinvd)
218 return;
219
220 /*
221 * We only need to flush on one CPU,
222 * clflush is a MESI-coherent instruction that
223 * will cause all other CPUs to flush the same
224 * cachelines:
225 */
226 for (i = 0; i < numpages; i++) {
227 unsigned long addr;
228 pte_t *pte;
229
230 if (in_flags & CPA_PAGES_ARRAY)
231 addr = (unsigned long)page_address(pages[i]);
232 else
233 addr = start[i];
234
235 pte = lookup_address(addr, &level);
236
237 /*
238 * Only flush present addresses:
239 */
240 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
241 clflush_cache_range((void *)addr, PAGE_SIZE);
242 }
243 }
244
245 /*
246 * Certain areas of memory on x86 require very specific protection flags,
247 * for example the BIOS area or kernel text. Callers don't always get this
248 * right (again, ioremap() on BIOS memory is not uncommon) so this function
249 * checks and fixes these known static required protection bits.
250 */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)251 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
252 unsigned long pfn)
253 {
254 pgprot_t forbidden = __pgprot(0);
255
256 /*
257 * The BIOS area between 640k and 1Mb needs to be executable for
258 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259 */
260 #ifdef CONFIG_PCI_BIOS
261 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
262 pgprot_val(forbidden) |= _PAGE_NX;
263 #endif
264
265 /*
266 * The kernel text needs to be executable for obvious reasons
267 * Does not cover __inittext since that is gone later on. On
268 * 64bit we do not enforce !NX on the low mapping
269 */
270 if (within(address, (unsigned long)_text, (unsigned long)_etext))
271 pgprot_val(forbidden) |= _PAGE_NX;
272
273 /*
274 * The .rodata section needs to be read-only. Using the pfn
275 * catches all aliases.
276 */
277 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
278 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
279 pgprot_val(forbidden) |= _PAGE_RW;
280
281 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
282 /*
283 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
284 * kernel text mappings for the large page aligned text, rodata sections
285 * will be always read-only. For the kernel identity mappings covering
286 * the holes caused by this alignment can be anything that user asks.
287 *
288 * This will preserve the large page mappings for kernel text/data
289 * at no extra cost.
290 */
291 if (kernel_set_to_readonly &&
292 within(address, (unsigned long)_text,
293 (unsigned long)__end_rodata_hpage_align)) {
294 unsigned int level;
295
296 /*
297 * Don't enforce the !RW mapping for the kernel text mapping,
298 * if the current mapping is already using small page mapping.
299 * No need to work hard to preserve large page mappings in this
300 * case.
301 *
302 * This also fixes the Linux Xen paravirt guest boot failure
303 * (because of unexpected read-only mappings for kernel identity
304 * mappings). In this paravirt guest case, the kernel text
305 * mapping and the kernel identity mapping share the same
306 * page-table pages. Thus we can't really use different
307 * protections for the kernel text and identity mappings. Also,
308 * these shared mappings are made of small page mappings.
309 * Thus this don't enforce !RW mapping for small page kernel
310 * text mapping logic will help Linux Xen parvirt guest boot
311 * as well.
312 */
313 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
314 pgprot_val(forbidden) |= _PAGE_RW;
315 }
316 #endif
317
318 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
319
320 return prot;
321 }
322
323 /*
324 * Lookup the page table entry for a virtual address in a specific pgd.
325 * Return a pointer to the entry and the level of the mapping.
326 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)327 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
328 unsigned int *level)
329 {
330 pud_t *pud;
331 pmd_t *pmd;
332
333 *level = PG_LEVEL_NONE;
334
335 if (pgd_none(*pgd))
336 return NULL;
337
338 pud = pud_offset(pgd, address);
339 if (pud_none(*pud))
340 return NULL;
341
342 *level = PG_LEVEL_1G;
343 if (pud_large(*pud) || !pud_present(*pud))
344 return (pte_t *)pud;
345
346 pmd = pmd_offset(pud, address);
347 if (pmd_none(*pmd))
348 return NULL;
349
350 *level = PG_LEVEL_2M;
351 if (pmd_large(*pmd) || !pmd_present(*pmd))
352 return (pte_t *)pmd;
353
354 *level = PG_LEVEL_4K;
355
356 return pte_offset_kernel(pmd, address);
357 }
358
359 /*
360 * Lookup the page table entry for a virtual address. Return a pointer
361 * to the entry and the level of the mapping.
362 *
363 * Note: We return pud and pmd either when the entry is marked large
364 * or when the present bit is not set. Otherwise we would return a
365 * pointer to a nonexisting mapping.
366 */
lookup_address(unsigned long address,unsigned int * level)367 pte_t *lookup_address(unsigned long address, unsigned int *level)
368 {
369 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
370 }
371 EXPORT_SYMBOL_GPL(lookup_address);
372
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)373 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
374 unsigned int *level)
375 {
376 if (cpa->pgd)
377 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
378 address, level);
379
380 return lookup_address(address, level);
381 }
382
383 /*
384 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
385 * or NULL if not present.
386 */
lookup_pmd_address(unsigned long address)387 pmd_t *lookup_pmd_address(unsigned long address)
388 {
389 pgd_t *pgd;
390 pud_t *pud;
391
392 pgd = pgd_offset_k(address);
393 if (pgd_none(*pgd))
394 return NULL;
395
396 pud = pud_offset(pgd, address);
397 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
398 return NULL;
399
400 return pmd_offset(pud, address);
401 }
402
403 /*
404 * This is necessary because __pa() does not work on some
405 * kinds of memory, like vmalloc() or the alloc_remap()
406 * areas on 32-bit NUMA systems. The percpu areas can
407 * end up in this kind of memory, for instance.
408 *
409 * This could be optimized, but it is only intended to be
410 * used at inititalization time, and keeping it
411 * unoptimized should increase the testing coverage for
412 * the more obscure platforms.
413 */
slow_virt_to_phys(void * __virt_addr)414 phys_addr_t slow_virt_to_phys(void *__virt_addr)
415 {
416 unsigned long virt_addr = (unsigned long)__virt_addr;
417 phys_addr_t phys_addr;
418 unsigned long offset;
419 enum pg_level level;
420 pte_t *pte;
421
422 pte = lookup_address(virt_addr, &level);
423 BUG_ON(!pte);
424
425 /*
426 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
427 * before being left-shifted PAGE_SHIFT bits -- this trick is to
428 * make 32-PAE kernel work correctly.
429 */
430 switch (level) {
431 case PG_LEVEL_1G:
432 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
433 offset = virt_addr & ~PUD_PAGE_MASK;
434 break;
435 case PG_LEVEL_2M:
436 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
437 offset = virt_addr & ~PMD_PAGE_MASK;
438 break;
439 default:
440 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
441 offset = virt_addr & ~PAGE_MASK;
442 }
443
444 return (phys_addr_t)(phys_addr | offset);
445 }
446 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
447
448 /*
449 * Set the new pmd in all the pgds we know about:
450 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)451 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
452 {
453 /* change init_mm */
454 set_pte_atomic(kpte, pte);
455 #ifdef CONFIG_X86_32
456 if (!SHARED_KERNEL_PMD) {
457 struct page *page;
458
459 list_for_each_entry(page, &pgd_list, lru) {
460 pgd_t *pgd;
461 pud_t *pud;
462 pmd_t *pmd;
463
464 pgd = (pgd_t *)page_address(page) + pgd_index(address);
465 pud = pud_offset(pgd, address);
466 pmd = pmd_offset(pud, address);
467 set_pte_atomic((pte_t *)pmd, pte);
468 }
469 }
470 #endif
471 }
472
473 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)474 try_preserve_large_page(pte_t *kpte, unsigned long address,
475 struct cpa_data *cpa)
476 {
477 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
478 pte_t new_pte, old_pte, *tmp;
479 pgprot_t old_prot, new_prot, req_prot;
480 int i, do_split = 1;
481 enum pg_level level;
482
483 if (cpa->force_split)
484 return 1;
485
486 spin_lock(&pgd_lock);
487 /*
488 * Check for races, another CPU might have split this page
489 * up already:
490 */
491 tmp = _lookup_address_cpa(cpa, address, &level);
492 if (tmp != kpte)
493 goto out_unlock;
494
495 switch (level) {
496 case PG_LEVEL_2M:
497 old_prot = pmd_pgprot(*(pmd_t *)kpte);
498 old_pfn = pmd_pfn(*(pmd_t *)kpte);
499 break;
500 case PG_LEVEL_1G:
501 old_prot = pud_pgprot(*(pud_t *)kpte);
502 old_pfn = pud_pfn(*(pud_t *)kpte);
503 break;
504 default:
505 do_split = -EINVAL;
506 goto out_unlock;
507 }
508
509 psize = page_level_size(level);
510 pmask = page_level_mask(level);
511
512 /*
513 * Calculate the number of pages, which fit into this large
514 * page starting at address:
515 */
516 nextpage_addr = (address + psize) & pmask;
517 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
518 if (numpages < cpa->numpages)
519 cpa->numpages = numpages;
520
521 /*
522 * We are safe now. Check whether the new pgprot is the same:
523 * Convert protection attributes to 4k-format, as cpa->mask* are set
524 * up accordingly.
525 */
526 old_pte = *kpte;
527 req_prot = pgprot_large_2_4k(old_prot);
528
529 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
530 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
531
532 /*
533 * req_prot is in format of 4k pages. It must be converted to large
534 * page format: the caching mode includes the PAT bit located at
535 * different bit positions in the two formats.
536 */
537 req_prot = pgprot_4k_2_large(req_prot);
538
539 /*
540 * Set the PSE and GLOBAL flags only if the PRESENT flag is
541 * set otherwise pmd_present/pmd_huge will return true even on
542 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
543 * for the ancient hardware that doesn't support it.
544 */
545 if (pgprot_val(req_prot) & _PAGE_PRESENT)
546 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
547 else
548 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
549
550 req_prot = canon_pgprot(req_prot);
551
552 /*
553 * old_pfn points to the large page base pfn. So we need
554 * to add the offset of the virtual address:
555 */
556 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
557 cpa->pfn = pfn;
558
559 new_prot = static_protections(req_prot, address, pfn);
560
561 /*
562 * We need to check the full range, whether
563 * static_protection() requires a different pgprot for one of
564 * the pages in the range we try to preserve:
565 */
566 addr = address & pmask;
567 pfn = old_pfn;
568 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
569 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
570
571 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
572 goto out_unlock;
573 }
574
575 /*
576 * If there are no changes, return. maxpages has been updated
577 * above:
578 */
579 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
580 do_split = 0;
581 goto out_unlock;
582 }
583
584 /*
585 * We need to change the attributes. Check, whether we can
586 * change the large page in one go. We request a split, when
587 * the address is not aligned and the number of pages is
588 * smaller than the number of pages in the large page. Note
589 * that we limited the number of possible pages already to
590 * the number of pages in the large page.
591 */
592 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
593 /*
594 * The address is aligned and the number of pages
595 * covers the full page.
596 */
597 new_pte = pfn_pte(old_pfn, new_prot);
598 __set_pmd_pte(kpte, address, new_pte);
599 cpa->flags |= CPA_FLUSHTLB;
600 do_split = 0;
601 }
602
603 out_unlock:
604 spin_unlock(&pgd_lock);
605
606 return do_split;
607 }
608
609 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)610 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
611 struct page *base)
612 {
613 pte_t *pbase = (pte_t *)page_address(base);
614 unsigned long ref_pfn, pfn, pfninc = 1;
615 unsigned int i, level;
616 pte_t *tmp;
617 pgprot_t ref_prot;
618
619 spin_lock(&pgd_lock);
620 /*
621 * Check for races, another CPU might have split this page
622 * up for us already:
623 */
624 tmp = _lookup_address_cpa(cpa, address, &level);
625 if (tmp != kpte) {
626 spin_unlock(&pgd_lock);
627 return 1;
628 }
629
630 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
631
632 switch (level) {
633 case PG_LEVEL_2M:
634 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
635 /* clear PSE and promote PAT bit to correct position */
636 ref_prot = pgprot_large_2_4k(ref_prot);
637 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
638 break;
639
640 case PG_LEVEL_1G:
641 ref_prot = pud_pgprot(*(pud_t *)kpte);
642 ref_pfn = pud_pfn(*(pud_t *)kpte);
643 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
644
645 /*
646 * Clear the PSE flags if the PRESENT flag is not set
647 * otherwise pmd_present/pmd_huge will return true
648 * even on a non present pmd.
649 */
650 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
651 pgprot_val(ref_prot) &= ~_PAGE_PSE;
652 break;
653
654 default:
655 spin_unlock(&pgd_lock);
656 return 1;
657 }
658
659 /*
660 * Set the GLOBAL flags only if the PRESENT flag is set
661 * otherwise pmd/pte_present will return true even on a non
662 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
663 * for the ancient hardware that doesn't support it.
664 */
665 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
666 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
667 else
668 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
669
670 /*
671 * Get the target pfn from the original entry:
672 */
673 pfn = ref_pfn;
674 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
675 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
676
677 if (virt_addr_valid(address)) {
678 unsigned long pfn = PFN_DOWN(__pa(address));
679
680 if (pfn_range_is_mapped(pfn, pfn + 1))
681 split_page_count(level);
682 }
683
684 /*
685 * Install the new, split up pagetable.
686 *
687 * We use the standard kernel pagetable protections for the new
688 * pagetable protections, the actual ptes set above control the
689 * primary protection behavior:
690 */
691 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
692
693 /*
694 * Intel Atom errata AAH41 workaround.
695 *
696 * The real fix should be in hw or in a microcode update, but
697 * we also probabilistically try to reduce the window of having
698 * a large TLB mixed with 4K TLBs while instruction fetches are
699 * going on.
700 */
701 __flush_tlb_all();
702 spin_unlock(&pgd_lock);
703
704 return 0;
705 }
706
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)707 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
708 unsigned long address)
709 {
710 struct page *base;
711
712 if (!debug_pagealloc)
713 spin_unlock(&cpa_lock);
714 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
715 if (!debug_pagealloc)
716 spin_lock(&cpa_lock);
717 if (!base)
718 return -ENOMEM;
719
720 if (__split_large_page(cpa, kpte, address, base))
721 __free_page(base);
722
723 return 0;
724 }
725
try_to_free_pte_page(pte_t * pte)726 static bool try_to_free_pte_page(pte_t *pte)
727 {
728 int i;
729
730 for (i = 0; i < PTRS_PER_PTE; i++)
731 if (!pte_none(pte[i]))
732 return false;
733
734 free_page((unsigned long)pte);
735 return true;
736 }
737
try_to_free_pmd_page(pmd_t * pmd)738 static bool try_to_free_pmd_page(pmd_t *pmd)
739 {
740 int i;
741
742 for (i = 0; i < PTRS_PER_PMD; i++)
743 if (!pmd_none(pmd[i]))
744 return false;
745
746 free_page((unsigned long)pmd);
747 return true;
748 }
749
try_to_free_pud_page(pud_t * pud)750 static bool try_to_free_pud_page(pud_t *pud)
751 {
752 int i;
753
754 for (i = 0; i < PTRS_PER_PUD; i++)
755 if (!pud_none(pud[i]))
756 return false;
757
758 free_page((unsigned long)pud);
759 return true;
760 }
761
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)762 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
763 {
764 pte_t *pte = pte_offset_kernel(pmd, start);
765
766 while (start < end) {
767 set_pte(pte, __pte(0));
768
769 start += PAGE_SIZE;
770 pte++;
771 }
772
773 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
774 pmd_clear(pmd);
775 return true;
776 }
777 return false;
778 }
779
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)780 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
781 unsigned long start, unsigned long end)
782 {
783 if (unmap_pte_range(pmd, start, end))
784 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
785 pud_clear(pud);
786 }
787
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)788 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
789 {
790 pmd_t *pmd = pmd_offset(pud, start);
791
792 /*
793 * Not on a 2MB page boundary?
794 */
795 if (start & (PMD_SIZE - 1)) {
796 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
797 unsigned long pre_end = min_t(unsigned long, end, next_page);
798
799 __unmap_pmd_range(pud, pmd, start, pre_end);
800
801 start = pre_end;
802 pmd++;
803 }
804
805 /*
806 * Try to unmap in 2M chunks.
807 */
808 while (end - start >= PMD_SIZE) {
809 if (pmd_large(*pmd))
810 pmd_clear(pmd);
811 else
812 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
813
814 start += PMD_SIZE;
815 pmd++;
816 }
817
818 /*
819 * 4K leftovers?
820 */
821 if (start < end)
822 return __unmap_pmd_range(pud, pmd, start, end);
823
824 /*
825 * Try again to free the PMD page if haven't succeeded above.
826 */
827 if (!pud_none(*pud))
828 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
829 pud_clear(pud);
830 }
831
unmap_pud_range(pgd_t * pgd,unsigned long start,unsigned long end)832 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
833 {
834 pud_t *pud = pud_offset(pgd, start);
835
836 /*
837 * Not on a GB page boundary?
838 */
839 if (start & (PUD_SIZE - 1)) {
840 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
841 unsigned long pre_end = min_t(unsigned long, end, next_page);
842
843 unmap_pmd_range(pud, start, pre_end);
844
845 start = pre_end;
846 pud++;
847 }
848
849 /*
850 * Try to unmap in 1G chunks?
851 */
852 while (end - start >= PUD_SIZE) {
853
854 if (pud_large(*pud))
855 pud_clear(pud);
856 else
857 unmap_pmd_range(pud, start, start + PUD_SIZE);
858
859 start += PUD_SIZE;
860 pud++;
861 }
862
863 /*
864 * 2M leftovers?
865 */
866 if (start < end)
867 unmap_pmd_range(pud, start, end);
868
869 /*
870 * No need to try to free the PUD page because we'll free it in
871 * populate_pgd's error path
872 */
873 }
874
unmap_pgd_range(pgd_t * root,unsigned long addr,unsigned long end)875 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
876 {
877 pgd_t *pgd_entry = root + pgd_index(addr);
878
879 unmap_pud_range(pgd_entry, addr, end);
880
881 if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
882 pgd_clear(pgd_entry);
883 }
884
alloc_pte_page(pmd_t * pmd)885 static int alloc_pte_page(pmd_t *pmd)
886 {
887 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
888 if (!pte)
889 return -1;
890
891 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
892 return 0;
893 }
894
alloc_pmd_page(pud_t * pud)895 static int alloc_pmd_page(pud_t *pud)
896 {
897 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
898 if (!pmd)
899 return -1;
900
901 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
902 return 0;
903 }
904
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)905 static void populate_pte(struct cpa_data *cpa,
906 unsigned long start, unsigned long end,
907 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
908 {
909 pte_t *pte;
910
911 pte = pte_offset_kernel(pmd, start);
912
913 while (num_pages-- && start < end) {
914
915 /* deal with the NX bit */
916 if (!(pgprot_val(pgprot) & _PAGE_NX))
917 cpa->pfn &= ~_PAGE_NX;
918
919 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
920
921 start += PAGE_SIZE;
922 cpa->pfn += PAGE_SIZE;
923 pte++;
924 }
925 }
926
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)927 static int populate_pmd(struct cpa_data *cpa,
928 unsigned long start, unsigned long end,
929 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
930 {
931 unsigned int cur_pages = 0;
932 pmd_t *pmd;
933 pgprot_t pmd_pgprot;
934
935 /*
936 * Not on a 2M boundary?
937 */
938 if (start & (PMD_SIZE - 1)) {
939 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
940 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
941
942 pre_end = min_t(unsigned long, pre_end, next_page);
943 cur_pages = (pre_end - start) >> PAGE_SHIFT;
944 cur_pages = min_t(unsigned int, num_pages, cur_pages);
945
946 /*
947 * Need a PTE page?
948 */
949 pmd = pmd_offset(pud, start);
950 if (pmd_none(*pmd))
951 if (alloc_pte_page(pmd))
952 return -1;
953
954 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
955
956 start = pre_end;
957 }
958
959 /*
960 * We mapped them all?
961 */
962 if (num_pages == cur_pages)
963 return cur_pages;
964
965 pmd_pgprot = pgprot_4k_2_large(pgprot);
966
967 while (end - start >= PMD_SIZE) {
968
969 /*
970 * We cannot use a 1G page so allocate a PMD page if needed.
971 */
972 if (pud_none(*pud))
973 if (alloc_pmd_page(pud))
974 return -1;
975
976 pmd = pmd_offset(pud, start);
977
978 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
979 massage_pgprot(pmd_pgprot)));
980
981 start += PMD_SIZE;
982 cpa->pfn += PMD_SIZE;
983 cur_pages += PMD_SIZE >> PAGE_SHIFT;
984 }
985
986 /*
987 * Map trailing 4K pages.
988 */
989 if (start < end) {
990 pmd = pmd_offset(pud, start);
991 if (pmd_none(*pmd))
992 if (alloc_pte_page(pmd))
993 return -1;
994
995 populate_pte(cpa, start, end, num_pages - cur_pages,
996 pmd, pgprot);
997 }
998 return num_pages;
999 }
1000
populate_pud(struct cpa_data * cpa,unsigned long start,pgd_t * pgd,pgprot_t pgprot)1001 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1002 pgprot_t pgprot)
1003 {
1004 pud_t *pud;
1005 unsigned long end;
1006 int cur_pages = 0;
1007 pgprot_t pud_pgprot;
1008
1009 end = start + (cpa->numpages << PAGE_SHIFT);
1010
1011 /*
1012 * Not on a Gb page boundary? => map everything up to it with
1013 * smaller pages.
1014 */
1015 if (start & (PUD_SIZE - 1)) {
1016 unsigned long pre_end;
1017 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1018
1019 pre_end = min_t(unsigned long, end, next_page);
1020 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1021 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1022
1023 pud = pud_offset(pgd, start);
1024
1025 /*
1026 * Need a PMD page?
1027 */
1028 if (pud_none(*pud))
1029 if (alloc_pmd_page(pud))
1030 return -1;
1031
1032 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1033 pud, pgprot);
1034 if (cur_pages < 0)
1035 return cur_pages;
1036
1037 start = pre_end;
1038 }
1039
1040 /* We mapped them all? */
1041 if (cpa->numpages == cur_pages)
1042 return cur_pages;
1043
1044 pud = pud_offset(pgd, start);
1045 pud_pgprot = pgprot_4k_2_large(pgprot);
1046
1047 /*
1048 * Map everything starting from the Gb boundary, possibly with 1G pages
1049 */
1050 while (end - start >= PUD_SIZE) {
1051 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1052 massage_pgprot(pud_pgprot)));
1053
1054 start += PUD_SIZE;
1055 cpa->pfn += PUD_SIZE;
1056 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1057 pud++;
1058 }
1059
1060 /* Map trailing leftover */
1061 if (start < end) {
1062 int tmp;
1063
1064 pud = pud_offset(pgd, start);
1065 if (pud_none(*pud))
1066 if (alloc_pmd_page(pud))
1067 return -1;
1068
1069 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1070 pud, pgprot);
1071 if (tmp < 0)
1072 return cur_pages;
1073
1074 cur_pages += tmp;
1075 }
1076 return cur_pages;
1077 }
1078
1079 /*
1080 * Restrictions for kernel page table do not necessarily apply when mapping in
1081 * an alternate PGD.
1082 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1083 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1084 {
1085 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1086 pud_t *pud = NULL; /* shut up gcc */
1087 pgd_t *pgd_entry;
1088 int ret;
1089
1090 pgd_entry = cpa->pgd + pgd_index(addr);
1091
1092 /*
1093 * Allocate a PUD page and hand it down for mapping.
1094 */
1095 if (pgd_none(*pgd_entry)) {
1096 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1097 if (!pud)
1098 return -1;
1099
1100 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1101 }
1102
1103 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1104 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1105
1106 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1107 if (ret < 0) {
1108 unmap_pgd_range(cpa->pgd, addr,
1109 addr + (cpa->numpages << PAGE_SHIFT));
1110 return ret;
1111 }
1112
1113 cpa->numpages = ret;
1114 return 0;
1115 }
1116
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1117 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1118 int primary)
1119 {
1120 if (cpa->pgd)
1121 return populate_pgd(cpa, vaddr);
1122
1123 /*
1124 * Ignore all non primary paths.
1125 */
1126 if (!primary)
1127 return 0;
1128
1129 /*
1130 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1131 * to have holes.
1132 * Also set numpages to '1' indicating that we processed cpa req for
1133 * one virtual address page and its pfn. TBD: numpages can be set based
1134 * on the initial value and the level returned by lookup_address().
1135 */
1136 if (within(vaddr, PAGE_OFFSET,
1137 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1138 cpa->numpages = 1;
1139 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1140 return 0;
1141 } else {
1142 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1143 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1144 *cpa->vaddr);
1145
1146 return -EFAULT;
1147 }
1148 }
1149
__change_page_attr(struct cpa_data * cpa,int primary)1150 static int __change_page_attr(struct cpa_data *cpa, int primary)
1151 {
1152 unsigned long address;
1153 int do_split, err;
1154 unsigned int level;
1155 pte_t *kpte, old_pte;
1156
1157 if (cpa->flags & CPA_PAGES_ARRAY) {
1158 struct page *page = cpa->pages[cpa->curpage];
1159 if (unlikely(PageHighMem(page)))
1160 return 0;
1161 address = (unsigned long)page_address(page);
1162 } else if (cpa->flags & CPA_ARRAY)
1163 address = cpa->vaddr[cpa->curpage];
1164 else
1165 address = *cpa->vaddr;
1166 repeat:
1167 kpte = _lookup_address_cpa(cpa, address, &level);
1168 if (!kpte)
1169 return __cpa_process_fault(cpa, address, primary);
1170
1171 old_pte = *kpte;
1172 if (!pte_val(old_pte))
1173 return __cpa_process_fault(cpa, address, primary);
1174
1175 if (level == PG_LEVEL_4K) {
1176 pte_t new_pte;
1177 pgprot_t new_prot = pte_pgprot(old_pte);
1178 unsigned long pfn = pte_pfn(old_pte);
1179
1180 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1181 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1182
1183 new_prot = static_protections(new_prot, address, pfn);
1184
1185 /*
1186 * Set the GLOBAL flags only if the PRESENT flag is
1187 * set otherwise pte_present will return true even on
1188 * a non present pte. The canon_pgprot will clear
1189 * _PAGE_GLOBAL for the ancient hardware that doesn't
1190 * support it.
1191 */
1192 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1193 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1194 else
1195 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1196
1197 /*
1198 * We need to keep the pfn from the existing PTE,
1199 * after all we're only going to change it's attributes
1200 * not the memory it points to
1201 */
1202 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1203 cpa->pfn = pfn;
1204 /*
1205 * Do we really change anything ?
1206 */
1207 if (pte_val(old_pte) != pte_val(new_pte)) {
1208 set_pte_atomic(kpte, new_pte);
1209 cpa->flags |= CPA_FLUSHTLB;
1210 }
1211 cpa->numpages = 1;
1212 return 0;
1213 }
1214
1215 /*
1216 * Check, whether we can keep the large page intact
1217 * and just change the pte:
1218 */
1219 do_split = try_preserve_large_page(kpte, address, cpa);
1220 /*
1221 * When the range fits into the existing large page,
1222 * return. cp->numpages and cpa->tlbflush have been updated in
1223 * try_large_page:
1224 */
1225 if (do_split <= 0)
1226 return do_split;
1227
1228 /*
1229 * We have to split the large page:
1230 */
1231 err = split_large_page(cpa, kpte, address);
1232 if (!err) {
1233 /*
1234 * Do a global flush tlb after splitting the large page
1235 * and before we do the actual change page attribute in the PTE.
1236 *
1237 * With out this, we violate the TLB application note, that says
1238 * "The TLBs may contain both ordinary and large-page
1239 * translations for a 4-KByte range of linear addresses. This
1240 * may occur if software modifies the paging structures so that
1241 * the page size used for the address range changes. If the two
1242 * translations differ with respect to page frame or attributes
1243 * (e.g., permissions), processor behavior is undefined and may
1244 * be implementation-specific."
1245 *
1246 * We do this global tlb flush inside the cpa_lock, so that we
1247 * don't allow any other cpu, with stale tlb entries change the
1248 * page attribute in parallel, that also falls into the
1249 * just split large page entry.
1250 */
1251 flush_tlb_all();
1252 goto repeat;
1253 }
1254
1255 return err;
1256 }
1257
1258 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1259
cpa_process_alias(struct cpa_data * cpa)1260 static int cpa_process_alias(struct cpa_data *cpa)
1261 {
1262 struct cpa_data alias_cpa;
1263 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1264 unsigned long vaddr;
1265 int ret;
1266
1267 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1268 return 0;
1269
1270 /*
1271 * No need to redo, when the primary call touched the direct
1272 * mapping already:
1273 */
1274 if (cpa->flags & CPA_PAGES_ARRAY) {
1275 struct page *page = cpa->pages[cpa->curpage];
1276 if (unlikely(PageHighMem(page)))
1277 return 0;
1278 vaddr = (unsigned long)page_address(page);
1279 } else if (cpa->flags & CPA_ARRAY)
1280 vaddr = cpa->vaddr[cpa->curpage];
1281 else
1282 vaddr = *cpa->vaddr;
1283
1284 if (!(within(vaddr, PAGE_OFFSET,
1285 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1286
1287 alias_cpa = *cpa;
1288 alias_cpa.vaddr = &laddr;
1289 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1290
1291 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1292 if (ret)
1293 return ret;
1294 }
1295
1296 #ifdef CONFIG_X86_64
1297 /*
1298 * If the primary call didn't touch the high mapping already
1299 * and the physical address is inside the kernel map, we need
1300 * to touch the high mapped kernel as well:
1301 */
1302 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1303 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1304 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1305 __START_KERNEL_map - phys_base;
1306 alias_cpa = *cpa;
1307 alias_cpa.vaddr = &temp_cpa_vaddr;
1308 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1309
1310 /*
1311 * The high mapping range is imprecise, so ignore the
1312 * return value.
1313 */
1314 __change_page_attr_set_clr(&alias_cpa, 0);
1315 }
1316 #endif
1317
1318 return 0;
1319 }
1320
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1321 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1322 {
1323 int ret, numpages = cpa->numpages;
1324
1325 while (numpages) {
1326 /*
1327 * Store the remaining nr of pages for the large page
1328 * preservation check.
1329 */
1330 cpa->numpages = numpages;
1331 /* for array changes, we can't use large page */
1332 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1333 cpa->numpages = 1;
1334
1335 if (!debug_pagealloc)
1336 spin_lock(&cpa_lock);
1337 ret = __change_page_attr(cpa, checkalias);
1338 if (!debug_pagealloc)
1339 spin_unlock(&cpa_lock);
1340 if (ret)
1341 return ret;
1342
1343 if (checkalias) {
1344 ret = cpa_process_alias(cpa);
1345 if (ret)
1346 return ret;
1347 }
1348
1349 /*
1350 * Adjust the number of pages with the result of the
1351 * CPA operation. Either a large page has been
1352 * preserved or a single page update happened.
1353 */
1354 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1355 numpages -= cpa->numpages;
1356 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1357 cpa->curpage++;
1358 else
1359 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1360
1361 }
1362 return 0;
1363 }
1364
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1365 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1366 pgprot_t mask_set, pgprot_t mask_clr,
1367 int force_split, int in_flag,
1368 struct page **pages)
1369 {
1370 struct cpa_data cpa;
1371 int ret, cache, checkalias;
1372 unsigned long baddr = 0;
1373
1374 memset(&cpa, 0, sizeof(cpa));
1375
1376 /*
1377 * Check, if we are requested to change a not supported
1378 * feature:
1379 */
1380 mask_set = canon_pgprot(mask_set);
1381 mask_clr = canon_pgprot(mask_clr);
1382 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1383 return 0;
1384
1385 /* Ensure we are PAGE_SIZE aligned */
1386 if (in_flag & CPA_ARRAY) {
1387 int i;
1388 for (i = 0; i < numpages; i++) {
1389 if (addr[i] & ~PAGE_MASK) {
1390 addr[i] &= PAGE_MASK;
1391 WARN_ON_ONCE(1);
1392 }
1393 }
1394 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1395 /*
1396 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1397 * No need to cehck in that case
1398 */
1399 if (*addr & ~PAGE_MASK) {
1400 *addr &= PAGE_MASK;
1401 /*
1402 * People should not be passing in unaligned addresses:
1403 */
1404 WARN_ON_ONCE(1);
1405 }
1406 /*
1407 * Save address for cache flush. *addr is modified in the call
1408 * to __change_page_attr_set_clr() below.
1409 */
1410 baddr = *addr;
1411 }
1412
1413 /* Must avoid aliasing mappings in the highmem code */
1414 kmap_flush_unused();
1415
1416 vm_unmap_aliases();
1417
1418 cpa.vaddr = addr;
1419 cpa.pages = pages;
1420 cpa.numpages = numpages;
1421 cpa.mask_set = mask_set;
1422 cpa.mask_clr = mask_clr;
1423 cpa.flags = 0;
1424 cpa.curpage = 0;
1425 cpa.force_split = force_split;
1426
1427 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1428 cpa.flags |= in_flag;
1429
1430 /* No alias checking for _NX bit modifications */
1431 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1432
1433 ret = __change_page_attr_set_clr(&cpa, checkalias);
1434
1435 /*
1436 * Check whether we really changed something:
1437 */
1438 if (!(cpa.flags & CPA_FLUSHTLB))
1439 goto out;
1440
1441 /*
1442 * No need to flush, when we did not set any of the caching
1443 * attributes:
1444 */
1445 cache = !!pgprot2cachemode(mask_set);
1446
1447 /*
1448 * On success we use CLFLUSH, when the CPU supports it to
1449 * avoid the WBINVD. If the CPU does not support it and in the
1450 * error case we fall back to cpa_flush_all (which uses
1451 * WBINVD):
1452 */
1453 if (!ret && cpu_has_clflush) {
1454 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1455 cpa_flush_array(addr, numpages, cache,
1456 cpa.flags, pages);
1457 } else
1458 cpa_flush_range(baddr, numpages, cache);
1459 } else
1460 cpa_flush_all(cache);
1461
1462 out:
1463 return ret;
1464 }
1465
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1466 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1467 pgprot_t mask, int array)
1468 {
1469 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1470 (array ? CPA_ARRAY : 0), NULL);
1471 }
1472
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1473 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1474 pgprot_t mask, int array)
1475 {
1476 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1477 (array ? CPA_ARRAY : 0), NULL);
1478 }
1479
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1480 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1481 pgprot_t mask)
1482 {
1483 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1484 CPA_PAGES_ARRAY, pages);
1485 }
1486
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1487 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1488 pgprot_t mask)
1489 {
1490 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1491 CPA_PAGES_ARRAY, pages);
1492 }
1493
_set_memory_uc(unsigned long addr,int numpages)1494 int _set_memory_uc(unsigned long addr, int numpages)
1495 {
1496 /*
1497 * for now UC MINUS. see comments in ioremap_nocache()
1498 * If you really need strong UC use ioremap_uc(), but note
1499 * that you cannot override IO areas with set_memory_*() as
1500 * these helpers cannot work with IO memory.
1501 */
1502 return change_page_attr_set(&addr, numpages,
1503 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1504 0);
1505 }
1506
set_memory_uc(unsigned long addr,int numpages)1507 int set_memory_uc(unsigned long addr, int numpages)
1508 {
1509 int ret;
1510
1511 /*
1512 * for now UC MINUS. see comments in ioremap_nocache()
1513 */
1514 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1515 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1516 if (ret)
1517 goto out_err;
1518
1519 ret = _set_memory_uc(addr, numpages);
1520 if (ret)
1521 goto out_free;
1522
1523 return 0;
1524
1525 out_free:
1526 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1527 out_err:
1528 return ret;
1529 }
1530 EXPORT_SYMBOL(set_memory_uc);
1531
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1532 static int _set_memory_array(unsigned long *addr, int addrinarray,
1533 enum page_cache_mode new_type)
1534 {
1535 enum page_cache_mode set_type;
1536 int i, j;
1537 int ret;
1538
1539 for (i = 0; i < addrinarray; i++) {
1540 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1541 new_type, NULL);
1542 if (ret)
1543 goto out_free;
1544 }
1545
1546 /* If WC, set to UC- first and then WC */
1547 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1548 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1549
1550 ret = change_page_attr_set(addr, addrinarray,
1551 cachemode2pgprot(set_type), 1);
1552
1553 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1554 ret = change_page_attr_set_clr(addr, addrinarray,
1555 cachemode2pgprot(
1556 _PAGE_CACHE_MODE_WC),
1557 __pgprot(_PAGE_CACHE_MASK),
1558 0, CPA_ARRAY, NULL);
1559 if (ret)
1560 goto out_free;
1561
1562 return 0;
1563
1564 out_free:
1565 for (j = 0; j < i; j++)
1566 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1567
1568 return ret;
1569 }
1570
set_memory_array_uc(unsigned long * addr,int addrinarray)1571 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1572 {
1573 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1574 }
1575 EXPORT_SYMBOL(set_memory_array_uc);
1576
set_memory_array_wc(unsigned long * addr,int addrinarray)1577 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1578 {
1579 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1580 }
1581 EXPORT_SYMBOL(set_memory_array_wc);
1582
set_memory_array_wt(unsigned long * addr,int addrinarray)1583 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1584 {
1585 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1586 }
1587 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1588
_set_memory_wc(unsigned long addr,int numpages)1589 int _set_memory_wc(unsigned long addr, int numpages)
1590 {
1591 int ret;
1592 unsigned long addr_copy = addr;
1593
1594 ret = change_page_attr_set(&addr, numpages,
1595 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1596 0);
1597 if (!ret) {
1598 ret = change_page_attr_set_clr(&addr_copy, numpages,
1599 cachemode2pgprot(
1600 _PAGE_CACHE_MODE_WC),
1601 __pgprot(_PAGE_CACHE_MASK),
1602 0, 0, NULL);
1603 }
1604 return ret;
1605 }
1606
set_memory_wc(unsigned long addr,int numpages)1607 int set_memory_wc(unsigned long addr, int numpages)
1608 {
1609 int ret;
1610
1611 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1612 _PAGE_CACHE_MODE_WC, NULL);
1613 if (ret)
1614 return ret;
1615
1616 ret = _set_memory_wc(addr, numpages);
1617 if (ret)
1618 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1619
1620 return ret;
1621 }
1622 EXPORT_SYMBOL(set_memory_wc);
1623
_set_memory_wt(unsigned long addr,int numpages)1624 int _set_memory_wt(unsigned long addr, int numpages)
1625 {
1626 return change_page_attr_set(&addr, numpages,
1627 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1628 }
1629
set_memory_wt(unsigned long addr,int numpages)1630 int set_memory_wt(unsigned long addr, int numpages)
1631 {
1632 int ret;
1633
1634 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1635 _PAGE_CACHE_MODE_WT, NULL);
1636 if (ret)
1637 return ret;
1638
1639 ret = _set_memory_wt(addr, numpages);
1640 if (ret)
1641 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1642
1643 return ret;
1644 }
1645 EXPORT_SYMBOL_GPL(set_memory_wt);
1646
_set_memory_wb(unsigned long addr,int numpages)1647 int _set_memory_wb(unsigned long addr, int numpages)
1648 {
1649 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1650 return change_page_attr_clear(&addr, numpages,
1651 __pgprot(_PAGE_CACHE_MASK), 0);
1652 }
1653
set_memory_wb(unsigned long addr,int numpages)1654 int set_memory_wb(unsigned long addr, int numpages)
1655 {
1656 int ret;
1657
1658 ret = _set_memory_wb(addr, numpages);
1659 if (ret)
1660 return ret;
1661
1662 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1663 return 0;
1664 }
1665 EXPORT_SYMBOL(set_memory_wb);
1666
set_memory_array_wb(unsigned long * addr,int addrinarray)1667 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1668 {
1669 int i;
1670 int ret;
1671
1672 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1673 ret = change_page_attr_clear(addr, addrinarray,
1674 __pgprot(_PAGE_CACHE_MASK), 1);
1675 if (ret)
1676 return ret;
1677
1678 for (i = 0; i < addrinarray; i++)
1679 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1680
1681 return 0;
1682 }
1683 EXPORT_SYMBOL(set_memory_array_wb);
1684
set_memory_x(unsigned long addr,int numpages)1685 int set_memory_x(unsigned long addr, int numpages)
1686 {
1687 if (!(__supported_pte_mask & _PAGE_NX))
1688 return 0;
1689
1690 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1691 }
1692 EXPORT_SYMBOL(set_memory_x);
1693
set_memory_nx(unsigned long addr,int numpages)1694 int set_memory_nx(unsigned long addr, int numpages)
1695 {
1696 if (!(__supported_pte_mask & _PAGE_NX))
1697 return 0;
1698
1699 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1700 }
1701 EXPORT_SYMBOL(set_memory_nx);
1702
set_memory_ro(unsigned long addr,int numpages)1703 int set_memory_ro(unsigned long addr, int numpages)
1704 {
1705 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1706 }
1707
set_memory_rw(unsigned long addr,int numpages)1708 int set_memory_rw(unsigned long addr, int numpages)
1709 {
1710 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1711 }
1712
set_memory_np(unsigned long addr,int numpages)1713 int set_memory_np(unsigned long addr, int numpages)
1714 {
1715 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1716 }
1717
set_memory_4k(unsigned long addr,int numpages)1718 int set_memory_4k(unsigned long addr, int numpages)
1719 {
1720 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1721 __pgprot(0), 1, 0, NULL);
1722 }
1723
set_pages_uc(struct page * page,int numpages)1724 int set_pages_uc(struct page *page, int numpages)
1725 {
1726 unsigned long addr = (unsigned long)page_address(page);
1727
1728 return set_memory_uc(addr, numpages);
1729 }
1730 EXPORT_SYMBOL(set_pages_uc);
1731
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1732 static int _set_pages_array(struct page **pages, int addrinarray,
1733 enum page_cache_mode new_type)
1734 {
1735 unsigned long start;
1736 unsigned long end;
1737 enum page_cache_mode set_type;
1738 int i;
1739 int free_idx;
1740 int ret;
1741
1742 for (i = 0; i < addrinarray; i++) {
1743 if (PageHighMem(pages[i]))
1744 continue;
1745 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1746 end = start + PAGE_SIZE;
1747 if (reserve_memtype(start, end, new_type, NULL))
1748 goto err_out;
1749 }
1750
1751 /* If WC, set to UC- first and then WC */
1752 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1753 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1754
1755 ret = cpa_set_pages_array(pages, addrinarray,
1756 cachemode2pgprot(set_type));
1757 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1758 ret = change_page_attr_set_clr(NULL, addrinarray,
1759 cachemode2pgprot(
1760 _PAGE_CACHE_MODE_WC),
1761 __pgprot(_PAGE_CACHE_MASK),
1762 0, CPA_PAGES_ARRAY, pages);
1763 if (ret)
1764 goto err_out;
1765 return 0; /* Success */
1766 err_out:
1767 free_idx = i;
1768 for (i = 0; i < free_idx; i++) {
1769 if (PageHighMem(pages[i]))
1770 continue;
1771 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1772 end = start + PAGE_SIZE;
1773 free_memtype(start, end);
1774 }
1775 return -EINVAL;
1776 }
1777
set_pages_array_uc(struct page ** pages,int addrinarray)1778 int set_pages_array_uc(struct page **pages, int addrinarray)
1779 {
1780 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1781 }
1782 EXPORT_SYMBOL(set_pages_array_uc);
1783
set_pages_array_wc(struct page ** pages,int addrinarray)1784 int set_pages_array_wc(struct page **pages, int addrinarray)
1785 {
1786 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1787 }
1788 EXPORT_SYMBOL(set_pages_array_wc);
1789
set_pages_array_wt(struct page ** pages,int addrinarray)1790 int set_pages_array_wt(struct page **pages, int addrinarray)
1791 {
1792 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1793 }
1794 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1795
set_pages_wb(struct page * page,int numpages)1796 int set_pages_wb(struct page *page, int numpages)
1797 {
1798 unsigned long addr = (unsigned long)page_address(page);
1799
1800 return set_memory_wb(addr, numpages);
1801 }
1802 EXPORT_SYMBOL(set_pages_wb);
1803
set_pages_array_wb(struct page ** pages,int addrinarray)1804 int set_pages_array_wb(struct page **pages, int addrinarray)
1805 {
1806 int retval;
1807 unsigned long start;
1808 unsigned long end;
1809 int i;
1810
1811 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1812 retval = cpa_clear_pages_array(pages, addrinarray,
1813 __pgprot(_PAGE_CACHE_MASK));
1814 if (retval)
1815 return retval;
1816
1817 for (i = 0; i < addrinarray; i++) {
1818 if (PageHighMem(pages[i]))
1819 continue;
1820 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1821 end = start + PAGE_SIZE;
1822 free_memtype(start, end);
1823 }
1824
1825 return 0;
1826 }
1827 EXPORT_SYMBOL(set_pages_array_wb);
1828
set_pages_x(struct page * page,int numpages)1829 int set_pages_x(struct page *page, int numpages)
1830 {
1831 unsigned long addr = (unsigned long)page_address(page);
1832
1833 return set_memory_x(addr, numpages);
1834 }
1835 EXPORT_SYMBOL(set_pages_x);
1836
set_pages_nx(struct page * page,int numpages)1837 int set_pages_nx(struct page *page, int numpages)
1838 {
1839 unsigned long addr = (unsigned long)page_address(page);
1840
1841 return set_memory_nx(addr, numpages);
1842 }
1843 EXPORT_SYMBOL(set_pages_nx);
1844
set_pages_ro(struct page * page,int numpages)1845 int set_pages_ro(struct page *page, int numpages)
1846 {
1847 unsigned long addr = (unsigned long)page_address(page);
1848
1849 return set_memory_ro(addr, numpages);
1850 }
1851
set_pages_rw(struct page * page,int numpages)1852 int set_pages_rw(struct page *page, int numpages)
1853 {
1854 unsigned long addr = (unsigned long)page_address(page);
1855
1856 return set_memory_rw(addr, numpages);
1857 }
1858
1859 #ifdef CONFIG_DEBUG_PAGEALLOC
1860
__set_pages_p(struct page * page,int numpages)1861 static int __set_pages_p(struct page *page, int numpages)
1862 {
1863 unsigned long tempaddr = (unsigned long) page_address(page);
1864 struct cpa_data cpa = { .vaddr = &tempaddr,
1865 .pgd = NULL,
1866 .numpages = numpages,
1867 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1868 .mask_clr = __pgprot(0),
1869 .flags = 0};
1870
1871 /*
1872 * No alias checking needed for setting present flag. otherwise,
1873 * we may need to break large pages for 64-bit kernel text
1874 * mappings (this adds to complexity if we want to do this from
1875 * atomic context especially). Let's keep it simple!
1876 */
1877 return __change_page_attr_set_clr(&cpa, 0);
1878 }
1879
__set_pages_np(struct page * page,int numpages)1880 static int __set_pages_np(struct page *page, int numpages)
1881 {
1882 unsigned long tempaddr = (unsigned long) page_address(page);
1883 struct cpa_data cpa = { .vaddr = &tempaddr,
1884 .pgd = NULL,
1885 .numpages = numpages,
1886 .mask_set = __pgprot(0),
1887 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1888 .flags = 0};
1889
1890 /*
1891 * No alias checking needed for setting not present flag. otherwise,
1892 * we may need to break large pages for 64-bit kernel text
1893 * mappings (this adds to complexity if we want to do this from
1894 * atomic context especially). Let's keep it simple!
1895 */
1896 return __change_page_attr_set_clr(&cpa, 0);
1897 }
1898
__kernel_map_pages(struct page * page,int numpages,int enable)1899 void __kernel_map_pages(struct page *page, int numpages, int enable)
1900 {
1901 if (PageHighMem(page))
1902 return;
1903 if (!enable) {
1904 debug_check_no_locks_freed(page_address(page),
1905 numpages * PAGE_SIZE);
1906 }
1907
1908 /*
1909 * The return value is ignored as the calls cannot fail.
1910 * Large pages for identity mappings are not used at boot time
1911 * and hence no memory allocations during large page split.
1912 */
1913 if (enable)
1914 __set_pages_p(page, numpages);
1915 else
1916 __set_pages_np(page, numpages);
1917
1918 /*
1919 * We should perform an IPI and flush all tlbs,
1920 * but that can deadlock->flush only current cpu:
1921 */
1922 __flush_tlb_all();
1923
1924 arch_flush_lazy_mmu_mode();
1925 }
1926
1927 #ifdef CONFIG_HIBERNATION
1928
kernel_page_present(struct page * page)1929 bool kernel_page_present(struct page *page)
1930 {
1931 unsigned int level;
1932 pte_t *pte;
1933
1934 if (PageHighMem(page))
1935 return false;
1936
1937 pte = lookup_address((unsigned long)page_address(page), &level);
1938 return (pte_val(*pte) & _PAGE_PRESENT);
1939 }
1940
1941 #endif /* CONFIG_HIBERNATION */
1942
1943 #endif /* CONFIG_DEBUG_PAGEALLOC */
1944
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)1945 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1946 unsigned numpages, unsigned long page_flags)
1947 {
1948 int retval = -EINVAL;
1949
1950 struct cpa_data cpa = {
1951 .vaddr = &address,
1952 .pfn = pfn,
1953 .pgd = pgd,
1954 .numpages = numpages,
1955 .mask_set = __pgprot(0),
1956 .mask_clr = __pgprot(0),
1957 .flags = 0,
1958 };
1959
1960 if (!(__supported_pte_mask & _PAGE_NX))
1961 goto out;
1962
1963 if (!(page_flags & _PAGE_NX))
1964 cpa.mask_clr = __pgprot(_PAGE_NX);
1965
1966 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1967
1968 retval = __change_page_attr_set_clr(&cpa, 0);
1969 __flush_tlb_all();
1970
1971 out:
1972 return retval;
1973 }
1974
kernel_unmap_pages_in_pgd(pgd_t * root,unsigned long address,unsigned numpages)1975 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1976 unsigned numpages)
1977 {
1978 unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1979 }
1980
1981 /*
1982 * The testcases use internal knowledge of the implementation that shouldn't
1983 * be exposed to the rest of the kernel. Include these directly here.
1984 */
1985 #ifdef CONFIG_CPA_DEBUG
1986 #include "pageattr-test.c"
1987 #endif
1988