1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17 
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32 	unsigned long	*vaddr;
33 	pgd_t		*pgd;
34 	pgprot_t	mask_set;
35 	pgprot_t	mask_clr;
36 	unsigned long	numpages;
37 	int		flags;
38 	unsigned long	pfn;
39 	unsigned	force_split : 1;
40 	int		curpage;
41 	struct page	**pages;
42 };
43 
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51 
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55 
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58 
update_page_count(int level,unsigned long pages)59 void update_page_count(int level, unsigned long pages)
60 {
61 	/* Protect against CPA */
62 	spin_lock(&pgd_lock);
63 	direct_pages_count[level] += pages;
64 	spin_unlock(&pgd_lock);
65 }
66 
split_page_count(int level)67 static void split_page_count(int level)
68 {
69 	direct_pages_count[level]--;
70 	direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72 
arch_report_meminfo(struct seq_file * m)73 void arch_report_meminfo(struct seq_file *m)
74 {
75 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
76 			direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
79 			direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
82 			direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 	if (direct_gbpages)
85 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
86 			direct_pages_count[PG_LEVEL_1G] << 20);
87 }
88 #else
split_page_count(int level)89 static inline void split_page_count(int level) { }
90 #endif
91 
92 #ifdef CONFIG_X86_64
93 
highmap_start_pfn(void)94 static inline unsigned long highmap_start_pfn(void)
95 {
96 	return __pa_symbol(_text) >> PAGE_SHIFT;
97 }
98 
highmap_end_pfn(void)99 static inline unsigned long highmap_end_pfn(void)
100 {
101 	return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102 }
103 
104 #endif
105 
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
111 
112 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)113 within(unsigned long addr, unsigned long start, unsigned long end)
114 {
115 	return addr >= start && addr < end;
116 }
117 
118 /*
119  * Flushing functions
120  */
121 
122 /**
123  * clflush_cache_range - flush a cache range with clflush
124  * @vaddr:	virtual start address
125  * @size:	number of bytes to flush
126  *
127  * clflushopt is an unordered instruction which needs fencing with mfence or
128  * sfence to avoid ordering issues.
129  */
clflush_cache_range(void * vaddr,unsigned int size)130 void clflush_cache_range(void *vaddr, unsigned int size)
131 {
132 	unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
133 	void *vend = vaddr + size;
134 	void *p;
135 
136 	mb();
137 
138 	for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
139 	     p < vend; p += boot_cpu_data.x86_clflush_size)
140 		clflushopt(p);
141 
142 	mb();
143 }
144 EXPORT_SYMBOL_GPL(clflush_cache_range);
145 
__cpa_flush_all(void * arg)146 static void __cpa_flush_all(void *arg)
147 {
148 	unsigned long cache = (unsigned long)arg;
149 
150 	/*
151 	 * Flush all to work around Errata in early athlons regarding
152 	 * large page flushing.
153 	 */
154 	__flush_tlb_all();
155 
156 	if (cache && boot_cpu_data.x86 >= 4)
157 		wbinvd();
158 }
159 
cpa_flush_all(unsigned long cache)160 static void cpa_flush_all(unsigned long cache)
161 {
162 	BUG_ON(irqs_disabled());
163 
164 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
165 }
166 
__cpa_flush_range(void * arg)167 static void __cpa_flush_range(void *arg)
168 {
169 	/*
170 	 * We could optimize that further and do individual per page
171 	 * tlb invalidates for a low number of pages. Caveat: we must
172 	 * flush the high aliases on 64bit as well.
173 	 */
174 	__flush_tlb_all();
175 }
176 
cpa_flush_range(unsigned long start,int numpages,int cache)177 static void cpa_flush_range(unsigned long start, int numpages, int cache)
178 {
179 	unsigned int i, level;
180 	unsigned long addr;
181 
182 	BUG_ON(irqs_disabled());
183 	WARN_ON(PAGE_ALIGN(start) != start);
184 
185 	on_each_cpu(__cpa_flush_range, NULL, 1);
186 
187 	if (!cache)
188 		return;
189 
190 	/*
191 	 * We only need to flush on one CPU,
192 	 * clflush is a MESI-coherent instruction that
193 	 * will cause all other CPUs to flush the same
194 	 * cachelines:
195 	 */
196 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
197 		pte_t *pte = lookup_address(addr, &level);
198 
199 		/*
200 		 * Only flush present addresses:
201 		 */
202 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
203 			clflush_cache_range((void *) addr, PAGE_SIZE);
204 	}
205 }
206 
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)207 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
208 			    int in_flags, struct page **pages)
209 {
210 	unsigned int i, level;
211 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
212 
213 	BUG_ON(irqs_disabled());
214 
215 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
216 
217 	if (!cache || do_wbinvd)
218 		return;
219 
220 	/*
221 	 * We only need to flush on one CPU,
222 	 * clflush is a MESI-coherent instruction that
223 	 * will cause all other CPUs to flush the same
224 	 * cachelines:
225 	 */
226 	for (i = 0; i < numpages; i++) {
227 		unsigned long addr;
228 		pte_t *pte;
229 
230 		if (in_flags & CPA_PAGES_ARRAY)
231 			addr = (unsigned long)page_address(pages[i]);
232 		else
233 			addr = start[i];
234 
235 		pte = lookup_address(addr, &level);
236 
237 		/*
238 		 * Only flush present addresses:
239 		 */
240 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
241 			clflush_cache_range((void *)addr, PAGE_SIZE);
242 	}
243 }
244 
245 /*
246  * Certain areas of memory on x86 require very specific protection flags,
247  * for example the BIOS area or kernel text. Callers don't always get this
248  * right (again, ioremap() on BIOS memory is not uncommon) so this function
249  * checks and fixes these known static required protection bits.
250  */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)251 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
252 				   unsigned long pfn)
253 {
254 	pgprot_t forbidden = __pgprot(0);
255 
256 	/*
257 	 * The BIOS area between 640k and 1Mb needs to be executable for
258 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259 	 */
260 #ifdef CONFIG_PCI_BIOS
261 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
262 		pgprot_val(forbidden) |= _PAGE_NX;
263 #endif
264 
265 	/*
266 	 * The kernel text needs to be executable for obvious reasons
267 	 * Does not cover __inittext since that is gone later on. On
268 	 * 64bit we do not enforce !NX on the low mapping
269 	 */
270 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
271 		pgprot_val(forbidden) |= _PAGE_NX;
272 
273 	/*
274 	 * The .rodata section needs to be read-only. Using the pfn
275 	 * catches all aliases.
276 	 */
277 	if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
278 		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
279 		pgprot_val(forbidden) |= _PAGE_RW;
280 
281 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
282 	/*
283 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
284 	 * kernel text mappings for the large page aligned text, rodata sections
285 	 * will be always read-only. For the kernel identity mappings covering
286 	 * the holes caused by this alignment can be anything that user asks.
287 	 *
288 	 * This will preserve the large page mappings for kernel text/data
289 	 * at no extra cost.
290 	 */
291 	if (kernel_set_to_readonly &&
292 	    within(address, (unsigned long)_text,
293 		   (unsigned long)__end_rodata_hpage_align)) {
294 		unsigned int level;
295 
296 		/*
297 		 * Don't enforce the !RW mapping for the kernel text mapping,
298 		 * if the current mapping is already using small page mapping.
299 		 * No need to work hard to preserve large page mappings in this
300 		 * case.
301 		 *
302 		 * This also fixes the Linux Xen paravirt guest boot failure
303 		 * (because of unexpected read-only mappings for kernel identity
304 		 * mappings). In this paravirt guest case, the kernel text
305 		 * mapping and the kernel identity mapping share the same
306 		 * page-table pages. Thus we can't really use different
307 		 * protections for the kernel text and identity mappings. Also,
308 		 * these shared mappings are made of small page mappings.
309 		 * Thus this don't enforce !RW mapping for small page kernel
310 		 * text mapping logic will help Linux Xen parvirt guest boot
311 		 * as well.
312 		 */
313 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
314 			pgprot_val(forbidden) |= _PAGE_RW;
315 	}
316 #endif
317 
318 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
319 
320 	return prot;
321 }
322 
323 /*
324  * Lookup the page table entry for a virtual address in a specific pgd.
325  * Return a pointer to the entry and the level of the mapping.
326  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)327 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
328 			     unsigned int *level)
329 {
330 	pud_t *pud;
331 	pmd_t *pmd;
332 
333 	*level = PG_LEVEL_NONE;
334 
335 	if (pgd_none(*pgd))
336 		return NULL;
337 
338 	pud = pud_offset(pgd, address);
339 	if (pud_none(*pud))
340 		return NULL;
341 
342 	*level = PG_LEVEL_1G;
343 	if (pud_large(*pud) || !pud_present(*pud))
344 		return (pte_t *)pud;
345 
346 	pmd = pmd_offset(pud, address);
347 	if (pmd_none(*pmd))
348 		return NULL;
349 
350 	*level = PG_LEVEL_2M;
351 	if (pmd_large(*pmd) || !pmd_present(*pmd))
352 		return (pte_t *)pmd;
353 
354 	*level = PG_LEVEL_4K;
355 
356 	return pte_offset_kernel(pmd, address);
357 }
358 
359 /*
360  * Lookup the page table entry for a virtual address. Return a pointer
361  * to the entry and the level of the mapping.
362  *
363  * Note: We return pud and pmd either when the entry is marked large
364  * or when the present bit is not set. Otherwise we would return a
365  * pointer to a nonexisting mapping.
366  */
lookup_address(unsigned long address,unsigned int * level)367 pte_t *lookup_address(unsigned long address, unsigned int *level)
368 {
369         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
370 }
371 EXPORT_SYMBOL_GPL(lookup_address);
372 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)373 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
374 				  unsigned int *level)
375 {
376         if (cpa->pgd)
377 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
378 					       address, level);
379 
380         return lookup_address(address, level);
381 }
382 
383 /*
384  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
385  * or NULL if not present.
386  */
lookup_pmd_address(unsigned long address)387 pmd_t *lookup_pmd_address(unsigned long address)
388 {
389 	pgd_t *pgd;
390 	pud_t *pud;
391 
392 	pgd = pgd_offset_k(address);
393 	if (pgd_none(*pgd))
394 		return NULL;
395 
396 	pud = pud_offset(pgd, address);
397 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
398 		return NULL;
399 
400 	return pmd_offset(pud, address);
401 }
402 
403 /*
404  * This is necessary because __pa() does not work on some
405  * kinds of memory, like vmalloc() or the alloc_remap()
406  * areas on 32-bit NUMA systems.  The percpu areas can
407  * end up in this kind of memory, for instance.
408  *
409  * This could be optimized, but it is only intended to be
410  * used at inititalization time, and keeping it
411  * unoptimized should increase the testing coverage for
412  * the more obscure platforms.
413  */
slow_virt_to_phys(void * __virt_addr)414 phys_addr_t slow_virt_to_phys(void *__virt_addr)
415 {
416 	unsigned long virt_addr = (unsigned long)__virt_addr;
417 	phys_addr_t phys_addr;
418 	unsigned long offset;
419 	enum pg_level level;
420 	pte_t *pte;
421 
422 	pte = lookup_address(virt_addr, &level);
423 	BUG_ON(!pte);
424 
425 	/*
426 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
427 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
428 	 * make 32-PAE kernel work correctly.
429 	 */
430 	switch (level) {
431 	case PG_LEVEL_1G:
432 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
433 		offset = virt_addr & ~PUD_PAGE_MASK;
434 		break;
435 	case PG_LEVEL_2M:
436 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
437 		offset = virt_addr & ~PMD_PAGE_MASK;
438 		break;
439 	default:
440 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
441 		offset = virt_addr & ~PAGE_MASK;
442 	}
443 
444 	return (phys_addr_t)(phys_addr | offset);
445 }
446 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
447 
448 /*
449  * Set the new pmd in all the pgds we know about:
450  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)451 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
452 {
453 	/* change init_mm */
454 	set_pte_atomic(kpte, pte);
455 #ifdef CONFIG_X86_32
456 	if (!SHARED_KERNEL_PMD) {
457 		struct page *page;
458 
459 		list_for_each_entry(page, &pgd_list, lru) {
460 			pgd_t *pgd;
461 			pud_t *pud;
462 			pmd_t *pmd;
463 
464 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
465 			pud = pud_offset(pgd, address);
466 			pmd = pmd_offset(pud, address);
467 			set_pte_atomic((pte_t *)pmd, pte);
468 		}
469 	}
470 #endif
471 }
472 
473 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)474 try_preserve_large_page(pte_t *kpte, unsigned long address,
475 			struct cpa_data *cpa)
476 {
477 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
478 	pte_t new_pte, old_pte, *tmp;
479 	pgprot_t old_prot, new_prot, req_prot;
480 	int i, do_split = 1;
481 	enum pg_level level;
482 
483 	if (cpa->force_split)
484 		return 1;
485 
486 	spin_lock(&pgd_lock);
487 	/*
488 	 * Check for races, another CPU might have split this page
489 	 * up already:
490 	 */
491 	tmp = _lookup_address_cpa(cpa, address, &level);
492 	if (tmp != kpte)
493 		goto out_unlock;
494 
495 	switch (level) {
496 	case PG_LEVEL_2M:
497 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
498 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
499 		break;
500 	case PG_LEVEL_1G:
501 		old_prot = pud_pgprot(*(pud_t *)kpte);
502 		old_pfn = pud_pfn(*(pud_t *)kpte);
503 		break;
504 	default:
505 		do_split = -EINVAL;
506 		goto out_unlock;
507 	}
508 
509 	psize = page_level_size(level);
510 	pmask = page_level_mask(level);
511 
512 	/*
513 	 * Calculate the number of pages, which fit into this large
514 	 * page starting at address:
515 	 */
516 	nextpage_addr = (address + psize) & pmask;
517 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
518 	if (numpages < cpa->numpages)
519 		cpa->numpages = numpages;
520 
521 	/*
522 	 * We are safe now. Check whether the new pgprot is the same:
523 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
524 	 * up accordingly.
525 	 */
526 	old_pte = *kpte;
527 	req_prot = pgprot_large_2_4k(old_prot);
528 
529 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
530 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
531 
532 	/*
533 	 * req_prot is in format of 4k pages. It must be converted to large
534 	 * page format: the caching mode includes the PAT bit located at
535 	 * different bit positions in the two formats.
536 	 */
537 	req_prot = pgprot_4k_2_large(req_prot);
538 
539 	/*
540 	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
541 	 * set otherwise pmd_present/pmd_huge will return true even on
542 	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
543 	 * for the ancient hardware that doesn't support it.
544 	 */
545 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
546 		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
547 	else
548 		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
549 
550 	req_prot = canon_pgprot(req_prot);
551 
552 	/*
553 	 * old_pfn points to the large page base pfn. So we need
554 	 * to add the offset of the virtual address:
555 	 */
556 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
557 	cpa->pfn = pfn;
558 
559 	new_prot = static_protections(req_prot, address, pfn);
560 
561 	/*
562 	 * We need to check the full range, whether
563 	 * static_protection() requires a different pgprot for one of
564 	 * the pages in the range we try to preserve:
565 	 */
566 	addr = address & pmask;
567 	pfn = old_pfn;
568 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
569 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
570 
571 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
572 			goto out_unlock;
573 	}
574 
575 	/*
576 	 * If there are no changes, return. maxpages has been updated
577 	 * above:
578 	 */
579 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
580 		do_split = 0;
581 		goto out_unlock;
582 	}
583 
584 	/*
585 	 * We need to change the attributes. Check, whether we can
586 	 * change the large page in one go. We request a split, when
587 	 * the address is not aligned and the number of pages is
588 	 * smaller than the number of pages in the large page. Note
589 	 * that we limited the number of possible pages already to
590 	 * the number of pages in the large page.
591 	 */
592 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
593 		/*
594 		 * The address is aligned and the number of pages
595 		 * covers the full page.
596 		 */
597 		new_pte = pfn_pte(old_pfn, new_prot);
598 		__set_pmd_pte(kpte, address, new_pte);
599 		cpa->flags |= CPA_FLUSHTLB;
600 		do_split = 0;
601 	}
602 
603 out_unlock:
604 	spin_unlock(&pgd_lock);
605 
606 	return do_split;
607 }
608 
609 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)610 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
611 		   struct page *base)
612 {
613 	pte_t *pbase = (pte_t *)page_address(base);
614 	unsigned long ref_pfn, pfn, pfninc = 1;
615 	unsigned int i, level;
616 	pte_t *tmp;
617 	pgprot_t ref_prot;
618 
619 	spin_lock(&pgd_lock);
620 	/*
621 	 * Check for races, another CPU might have split this page
622 	 * up for us already:
623 	 */
624 	tmp = _lookup_address_cpa(cpa, address, &level);
625 	if (tmp != kpte) {
626 		spin_unlock(&pgd_lock);
627 		return 1;
628 	}
629 
630 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
631 
632 	switch (level) {
633 	case PG_LEVEL_2M:
634 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
635 		/* clear PSE and promote PAT bit to correct position */
636 		ref_prot = pgprot_large_2_4k(ref_prot);
637 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
638 		break;
639 
640 	case PG_LEVEL_1G:
641 		ref_prot = pud_pgprot(*(pud_t *)kpte);
642 		ref_pfn = pud_pfn(*(pud_t *)kpte);
643 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
644 
645 		/*
646 		 * Clear the PSE flags if the PRESENT flag is not set
647 		 * otherwise pmd_present/pmd_huge will return true
648 		 * even on a non present pmd.
649 		 */
650 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
651 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
652 		break;
653 
654 	default:
655 		spin_unlock(&pgd_lock);
656 		return 1;
657 	}
658 
659 	/*
660 	 * Set the GLOBAL flags only if the PRESENT flag is set
661 	 * otherwise pmd/pte_present will return true even on a non
662 	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
663 	 * for the ancient hardware that doesn't support it.
664 	 */
665 	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
666 		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
667 	else
668 		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
669 
670 	/*
671 	 * Get the target pfn from the original entry:
672 	 */
673 	pfn = ref_pfn;
674 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
675 		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
676 
677 	if (virt_addr_valid(address)) {
678 		unsigned long pfn = PFN_DOWN(__pa(address));
679 
680 		if (pfn_range_is_mapped(pfn, pfn + 1))
681 			split_page_count(level);
682 	}
683 
684 	/*
685 	 * Install the new, split up pagetable.
686 	 *
687 	 * We use the standard kernel pagetable protections for the new
688 	 * pagetable protections, the actual ptes set above control the
689 	 * primary protection behavior:
690 	 */
691 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
692 
693 	/*
694 	 * Intel Atom errata AAH41 workaround.
695 	 *
696 	 * The real fix should be in hw or in a microcode update, but
697 	 * we also probabilistically try to reduce the window of having
698 	 * a large TLB mixed with 4K TLBs while instruction fetches are
699 	 * going on.
700 	 */
701 	__flush_tlb_all();
702 	spin_unlock(&pgd_lock);
703 
704 	return 0;
705 }
706 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)707 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
708 			    unsigned long address)
709 {
710 	struct page *base;
711 
712 	if (!debug_pagealloc)
713 		spin_unlock(&cpa_lock);
714 	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
715 	if (!debug_pagealloc)
716 		spin_lock(&cpa_lock);
717 	if (!base)
718 		return -ENOMEM;
719 
720 	if (__split_large_page(cpa, kpte, address, base))
721 		__free_page(base);
722 
723 	return 0;
724 }
725 
try_to_free_pte_page(pte_t * pte)726 static bool try_to_free_pte_page(pte_t *pte)
727 {
728 	int i;
729 
730 	for (i = 0; i < PTRS_PER_PTE; i++)
731 		if (!pte_none(pte[i]))
732 			return false;
733 
734 	free_page((unsigned long)pte);
735 	return true;
736 }
737 
try_to_free_pmd_page(pmd_t * pmd)738 static bool try_to_free_pmd_page(pmd_t *pmd)
739 {
740 	int i;
741 
742 	for (i = 0; i < PTRS_PER_PMD; i++)
743 		if (!pmd_none(pmd[i]))
744 			return false;
745 
746 	free_page((unsigned long)pmd);
747 	return true;
748 }
749 
try_to_free_pud_page(pud_t * pud)750 static bool try_to_free_pud_page(pud_t *pud)
751 {
752 	int i;
753 
754 	for (i = 0; i < PTRS_PER_PUD; i++)
755 		if (!pud_none(pud[i]))
756 			return false;
757 
758 	free_page((unsigned long)pud);
759 	return true;
760 }
761 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)762 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
763 {
764 	pte_t *pte = pte_offset_kernel(pmd, start);
765 
766 	while (start < end) {
767 		set_pte(pte, __pte(0));
768 
769 		start += PAGE_SIZE;
770 		pte++;
771 	}
772 
773 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
774 		pmd_clear(pmd);
775 		return true;
776 	}
777 	return false;
778 }
779 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)780 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
781 			      unsigned long start, unsigned long end)
782 {
783 	if (unmap_pte_range(pmd, start, end))
784 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
785 			pud_clear(pud);
786 }
787 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)788 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
789 {
790 	pmd_t *pmd = pmd_offset(pud, start);
791 
792 	/*
793 	 * Not on a 2MB page boundary?
794 	 */
795 	if (start & (PMD_SIZE - 1)) {
796 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
797 		unsigned long pre_end = min_t(unsigned long, end, next_page);
798 
799 		__unmap_pmd_range(pud, pmd, start, pre_end);
800 
801 		start = pre_end;
802 		pmd++;
803 	}
804 
805 	/*
806 	 * Try to unmap in 2M chunks.
807 	 */
808 	while (end - start >= PMD_SIZE) {
809 		if (pmd_large(*pmd))
810 			pmd_clear(pmd);
811 		else
812 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
813 
814 		start += PMD_SIZE;
815 		pmd++;
816 	}
817 
818 	/*
819 	 * 4K leftovers?
820 	 */
821 	if (start < end)
822 		return __unmap_pmd_range(pud, pmd, start, end);
823 
824 	/*
825 	 * Try again to free the PMD page if haven't succeeded above.
826 	 */
827 	if (!pud_none(*pud))
828 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
829 			pud_clear(pud);
830 }
831 
unmap_pud_range(pgd_t * pgd,unsigned long start,unsigned long end)832 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
833 {
834 	pud_t *pud = pud_offset(pgd, start);
835 
836 	/*
837 	 * Not on a GB page boundary?
838 	 */
839 	if (start & (PUD_SIZE - 1)) {
840 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
841 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
842 
843 		unmap_pmd_range(pud, start, pre_end);
844 
845 		start = pre_end;
846 		pud++;
847 	}
848 
849 	/*
850 	 * Try to unmap in 1G chunks?
851 	 */
852 	while (end - start >= PUD_SIZE) {
853 
854 		if (pud_large(*pud))
855 			pud_clear(pud);
856 		else
857 			unmap_pmd_range(pud, start, start + PUD_SIZE);
858 
859 		start += PUD_SIZE;
860 		pud++;
861 	}
862 
863 	/*
864 	 * 2M leftovers?
865 	 */
866 	if (start < end)
867 		unmap_pmd_range(pud, start, end);
868 
869 	/*
870 	 * No need to try to free the PUD page because we'll free it in
871 	 * populate_pgd's error path
872 	 */
873 }
874 
unmap_pgd_range(pgd_t * root,unsigned long addr,unsigned long end)875 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
876 {
877 	pgd_t *pgd_entry = root + pgd_index(addr);
878 
879 	unmap_pud_range(pgd_entry, addr, end);
880 
881 	if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
882 		pgd_clear(pgd_entry);
883 }
884 
alloc_pte_page(pmd_t * pmd)885 static int alloc_pte_page(pmd_t *pmd)
886 {
887 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
888 	if (!pte)
889 		return -1;
890 
891 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
892 	return 0;
893 }
894 
alloc_pmd_page(pud_t * pud)895 static int alloc_pmd_page(pud_t *pud)
896 {
897 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
898 	if (!pmd)
899 		return -1;
900 
901 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
902 	return 0;
903 }
904 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)905 static void populate_pte(struct cpa_data *cpa,
906 			 unsigned long start, unsigned long end,
907 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
908 {
909 	pte_t *pte;
910 
911 	pte = pte_offset_kernel(pmd, start);
912 
913 	while (num_pages-- && start < end) {
914 
915 		/* deal with the NX bit */
916 		if (!(pgprot_val(pgprot) & _PAGE_NX))
917 			cpa->pfn &= ~_PAGE_NX;
918 
919 		set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
920 
921 		start	 += PAGE_SIZE;
922 		cpa->pfn += PAGE_SIZE;
923 		pte++;
924 	}
925 }
926 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)927 static int populate_pmd(struct cpa_data *cpa,
928 			unsigned long start, unsigned long end,
929 			unsigned num_pages, pud_t *pud, pgprot_t pgprot)
930 {
931 	unsigned int cur_pages = 0;
932 	pmd_t *pmd;
933 	pgprot_t pmd_pgprot;
934 
935 	/*
936 	 * Not on a 2M boundary?
937 	 */
938 	if (start & (PMD_SIZE - 1)) {
939 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
940 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
941 
942 		pre_end   = min_t(unsigned long, pre_end, next_page);
943 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
944 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
945 
946 		/*
947 		 * Need a PTE page?
948 		 */
949 		pmd = pmd_offset(pud, start);
950 		if (pmd_none(*pmd))
951 			if (alloc_pte_page(pmd))
952 				return -1;
953 
954 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
955 
956 		start = pre_end;
957 	}
958 
959 	/*
960 	 * We mapped them all?
961 	 */
962 	if (num_pages == cur_pages)
963 		return cur_pages;
964 
965 	pmd_pgprot = pgprot_4k_2_large(pgprot);
966 
967 	while (end - start >= PMD_SIZE) {
968 
969 		/*
970 		 * We cannot use a 1G page so allocate a PMD page if needed.
971 		 */
972 		if (pud_none(*pud))
973 			if (alloc_pmd_page(pud))
974 				return -1;
975 
976 		pmd = pmd_offset(pud, start);
977 
978 		set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
979 				   massage_pgprot(pmd_pgprot)));
980 
981 		start	  += PMD_SIZE;
982 		cpa->pfn  += PMD_SIZE;
983 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
984 	}
985 
986 	/*
987 	 * Map trailing 4K pages.
988 	 */
989 	if (start < end) {
990 		pmd = pmd_offset(pud, start);
991 		if (pmd_none(*pmd))
992 			if (alloc_pte_page(pmd))
993 				return -1;
994 
995 		populate_pte(cpa, start, end, num_pages - cur_pages,
996 			     pmd, pgprot);
997 	}
998 	return num_pages;
999 }
1000 
populate_pud(struct cpa_data * cpa,unsigned long start,pgd_t * pgd,pgprot_t pgprot)1001 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1002 			pgprot_t pgprot)
1003 {
1004 	pud_t *pud;
1005 	unsigned long end;
1006 	int cur_pages = 0;
1007 	pgprot_t pud_pgprot;
1008 
1009 	end = start + (cpa->numpages << PAGE_SHIFT);
1010 
1011 	/*
1012 	 * Not on a Gb page boundary? => map everything up to it with
1013 	 * smaller pages.
1014 	 */
1015 	if (start & (PUD_SIZE - 1)) {
1016 		unsigned long pre_end;
1017 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1018 
1019 		pre_end   = min_t(unsigned long, end, next_page);
1020 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1021 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1022 
1023 		pud = pud_offset(pgd, start);
1024 
1025 		/*
1026 		 * Need a PMD page?
1027 		 */
1028 		if (pud_none(*pud))
1029 			if (alloc_pmd_page(pud))
1030 				return -1;
1031 
1032 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1033 					 pud, pgprot);
1034 		if (cur_pages < 0)
1035 			return cur_pages;
1036 
1037 		start = pre_end;
1038 	}
1039 
1040 	/* We mapped them all? */
1041 	if (cpa->numpages == cur_pages)
1042 		return cur_pages;
1043 
1044 	pud = pud_offset(pgd, start);
1045 	pud_pgprot = pgprot_4k_2_large(pgprot);
1046 
1047 	/*
1048 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1049 	 */
1050 	while (end - start >= PUD_SIZE) {
1051 		set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1052 				   massage_pgprot(pud_pgprot)));
1053 
1054 		start	  += PUD_SIZE;
1055 		cpa->pfn  += PUD_SIZE;
1056 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1057 		pud++;
1058 	}
1059 
1060 	/* Map trailing leftover */
1061 	if (start < end) {
1062 		int tmp;
1063 
1064 		pud = pud_offset(pgd, start);
1065 		if (pud_none(*pud))
1066 			if (alloc_pmd_page(pud))
1067 				return -1;
1068 
1069 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1070 				   pud, pgprot);
1071 		if (tmp < 0)
1072 			return cur_pages;
1073 
1074 		cur_pages += tmp;
1075 	}
1076 	return cur_pages;
1077 }
1078 
1079 /*
1080  * Restrictions for kernel page table do not necessarily apply when mapping in
1081  * an alternate PGD.
1082  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1083 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1084 {
1085 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1086 	pud_t *pud = NULL;	/* shut up gcc */
1087 	pgd_t *pgd_entry;
1088 	int ret;
1089 
1090 	pgd_entry = cpa->pgd + pgd_index(addr);
1091 
1092 	/*
1093 	 * Allocate a PUD page and hand it down for mapping.
1094 	 */
1095 	if (pgd_none(*pgd_entry)) {
1096 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1097 		if (!pud)
1098 			return -1;
1099 
1100 		set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1101 	}
1102 
1103 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1104 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1105 
1106 	ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1107 	if (ret < 0) {
1108 		unmap_pgd_range(cpa->pgd, addr,
1109 				addr + (cpa->numpages << PAGE_SHIFT));
1110 		return ret;
1111 	}
1112 
1113 	cpa->numpages = ret;
1114 	return 0;
1115 }
1116 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1117 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1118 			       int primary)
1119 {
1120 	if (cpa->pgd)
1121 		return populate_pgd(cpa, vaddr);
1122 
1123 	/*
1124 	 * Ignore all non primary paths.
1125 	 */
1126 	if (!primary)
1127 		return 0;
1128 
1129 	/*
1130 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1131 	 * to have holes.
1132 	 * Also set numpages to '1' indicating that we processed cpa req for
1133 	 * one virtual address page and its pfn. TBD: numpages can be set based
1134 	 * on the initial value and the level returned by lookup_address().
1135 	 */
1136 	if (within(vaddr, PAGE_OFFSET,
1137 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1138 		cpa->numpages = 1;
1139 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1140 		return 0;
1141 	} else {
1142 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1143 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1144 			*cpa->vaddr);
1145 
1146 		return -EFAULT;
1147 	}
1148 }
1149 
__change_page_attr(struct cpa_data * cpa,int primary)1150 static int __change_page_attr(struct cpa_data *cpa, int primary)
1151 {
1152 	unsigned long address;
1153 	int do_split, err;
1154 	unsigned int level;
1155 	pte_t *kpte, old_pte;
1156 
1157 	if (cpa->flags & CPA_PAGES_ARRAY) {
1158 		struct page *page = cpa->pages[cpa->curpage];
1159 		if (unlikely(PageHighMem(page)))
1160 			return 0;
1161 		address = (unsigned long)page_address(page);
1162 	} else if (cpa->flags & CPA_ARRAY)
1163 		address = cpa->vaddr[cpa->curpage];
1164 	else
1165 		address = *cpa->vaddr;
1166 repeat:
1167 	kpte = _lookup_address_cpa(cpa, address, &level);
1168 	if (!kpte)
1169 		return __cpa_process_fault(cpa, address, primary);
1170 
1171 	old_pte = *kpte;
1172 	if (!pte_val(old_pte))
1173 		return __cpa_process_fault(cpa, address, primary);
1174 
1175 	if (level == PG_LEVEL_4K) {
1176 		pte_t new_pte;
1177 		pgprot_t new_prot = pte_pgprot(old_pte);
1178 		unsigned long pfn = pte_pfn(old_pte);
1179 
1180 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1181 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1182 
1183 		new_prot = static_protections(new_prot, address, pfn);
1184 
1185 		/*
1186 		 * Set the GLOBAL flags only if the PRESENT flag is
1187 		 * set otherwise pte_present will return true even on
1188 		 * a non present pte. The canon_pgprot will clear
1189 		 * _PAGE_GLOBAL for the ancient hardware that doesn't
1190 		 * support it.
1191 		 */
1192 		if (pgprot_val(new_prot) & _PAGE_PRESENT)
1193 			pgprot_val(new_prot) |= _PAGE_GLOBAL;
1194 		else
1195 			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1196 
1197 		/*
1198 		 * We need to keep the pfn from the existing PTE,
1199 		 * after all we're only going to change it's attributes
1200 		 * not the memory it points to
1201 		 */
1202 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1203 		cpa->pfn = pfn;
1204 		/*
1205 		 * Do we really change anything ?
1206 		 */
1207 		if (pte_val(old_pte) != pte_val(new_pte)) {
1208 			set_pte_atomic(kpte, new_pte);
1209 			cpa->flags |= CPA_FLUSHTLB;
1210 		}
1211 		cpa->numpages = 1;
1212 		return 0;
1213 	}
1214 
1215 	/*
1216 	 * Check, whether we can keep the large page intact
1217 	 * and just change the pte:
1218 	 */
1219 	do_split = try_preserve_large_page(kpte, address, cpa);
1220 	/*
1221 	 * When the range fits into the existing large page,
1222 	 * return. cp->numpages and cpa->tlbflush have been updated in
1223 	 * try_large_page:
1224 	 */
1225 	if (do_split <= 0)
1226 		return do_split;
1227 
1228 	/*
1229 	 * We have to split the large page:
1230 	 */
1231 	err = split_large_page(cpa, kpte, address);
1232 	if (!err) {
1233 		/*
1234 	 	 * Do a global flush tlb after splitting the large page
1235 	 	 * and before we do the actual change page attribute in the PTE.
1236 	 	 *
1237 	 	 * With out this, we violate the TLB application note, that says
1238 	 	 * "The TLBs may contain both ordinary and large-page
1239 		 *  translations for a 4-KByte range of linear addresses. This
1240 		 *  may occur if software modifies the paging structures so that
1241 		 *  the page size used for the address range changes. If the two
1242 		 *  translations differ with respect to page frame or attributes
1243 		 *  (e.g., permissions), processor behavior is undefined and may
1244 		 *  be implementation-specific."
1245 	 	 *
1246 	 	 * We do this global tlb flush inside the cpa_lock, so that we
1247 		 * don't allow any other cpu, with stale tlb entries change the
1248 		 * page attribute in parallel, that also falls into the
1249 		 * just split large page entry.
1250 	 	 */
1251 		flush_tlb_all();
1252 		goto repeat;
1253 	}
1254 
1255 	return err;
1256 }
1257 
1258 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1259 
cpa_process_alias(struct cpa_data * cpa)1260 static int cpa_process_alias(struct cpa_data *cpa)
1261 {
1262 	struct cpa_data alias_cpa;
1263 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1264 	unsigned long vaddr;
1265 	int ret;
1266 
1267 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1268 		return 0;
1269 
1270 	/*
1271 	 * No need to redo, when the primary call touched the direct
1272 	 * mapping already:
1273 	 */
1274 	if (cpa->flags & CPA_PAGES_ARRAY) {
1275 		struct page *page = cpa->pages[cpa->curpage];
1276 		if (unlikely(PageHighMem(page)))
1277 			return 0;
1278 		vaddr = (unsigned long)page_address(page);
1279 	} else if (cpa->flags & CPA_ARRAY)
1280 		vaddr = cpa->vaddr[cpa->curpage];
1281 	else
1282 		vaddr = *cpa->vaddr;
1283 
1284 	if (!(within(vaddr, PAGE_OFFSET,
1285 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1286 
1287 		alias_cpa = *cpa;
1288 		alias_cpa.vaddr = &laddr;
1289 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1290 
1291 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1292 		if (ret)
1293 			return ret;
1294 	}
1295 
1296 #ifdef CONFIG_X86_64
1297 	/*
1298 	 * If the primary call didn't touch the high mapping already
1299 	 * and the physical address is inside the kernel map, we need
1300 	 * to touch the high mapped kernel as well:
1301 	 */
1302 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1303 	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1304 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1305 					       __START_KERNEL_map - phys_base;
1306 		alias_cpa = *cpa;
1307 		alias_cpa.vaddr = &temp_cpa_vaddr;
1308 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1309 
1310 		/*
1311 		 * The high mapping range is imprecise, so ignore the
1312 		 * return value.
1313 		 */
1314 		__change_page_attr_set_clr(&alias_cpa, 0);
1315 	}
1316 #endif
1317 
1318 	return 0;
1319 }
1320 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1321 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1322 {
1323 	int ret, numpages = cpa->numpages;
1324 
1325 	while (numpages) {
1326 		/*
1327 		 * Store the remaining nr of pages for the large page
1328 		 * preservation check.
1329 		 */
1330 		cpa->numpages = numpages;
1331 		/* for array changes, we can't use large page */
1332 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1333 			cpa->numpages = 1;
1334 
1335 		if (!debug_pagealloc)
1336 			spin_lock(&cpa_lock);
1337 		ret = __change_page_attr(cpa, checkalias);
1338 		if (!debug_pagealloc)
1339 			spin_unlock(&cpa_lock);
1340 		if (ret)
1341 			return ret;
1342 
1343 		if (checkalias) {
1344 			ret = cpa_process_alias(cpa);
1345 			if (ret)
1346 				return ret;
1347 		}
1348 
1349 		/*
1350 		 * Adjust the number of pages with the result of the
1351 		 * CPA operation. Either a large page has been
1352 		 * preserved or a single page update happened.
1353 		 */
1354 		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1355 		numpages -= cpa->numpages;
1356 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1357 			cpa->curpage++;
1358 		else
1359 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
1360 
1361 	}
1362 	return 0;
1363 }
1364 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1365 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1366 				    pgprot_t mask_set, pgprot_t mask_clr,
1367 				    int force_split, int in_flag,
1368 				    struct page **pages)
1369 {
1370 	struct cpa_data cpa;
1371 	int ret, cache, checkalias;
1372 	unsigned long baddr = 0;
1373 
1374 	memset(&cpa, 0, sizeof(cpa));
1375 
1376 	/*
1377 	 * Check, if we are requested to change a not supported
1378 	 * feature:
1379 	 */
1380 	mask_set = canon_pgprot(mask_set);
1381 	mask_clr = canon_pgprot(mask_clr);
1382 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1383 		return 0;
1384 
1385 	/* Ensure we are PAGE_SIZE aligned */
1386 	if (in_flag & CPA_ARRAY) {
1387 		int i;
1388 		for (i = 0; i < numpages; i++) {
1389 			if (addr[i] & ~PAGE_MASK) {
1390 				addr[i] &= PAGE_MASK;
1391 				WARN_ON_ONCE(1);
1392 			}
1393 		}
1394 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1395 		/*
1396 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1397 		 * No need to cehck in that case
1398 		 */
1399 		if (*addr & ~PAGE_MASK) {
1400 			*addr &= PAGE_MASK;
1401 			/*
1402 			 * People should not be passing in unaligned addresses:
1403 			 */
1404 			WARN_ON_ONCE(1);
1405 		}
1406 		/*
1407 		 * Save address for cache flush. *addr is modified in the call
1408 		 * to __change_page_attr_set_clr() below.
1409 		 */
1410 		baddr = *addr;
1411 	}
1412 
1413 	/* Must avoid aliasing mappings in the highmem code */
1414 	kmap_flush_unused();
1415 
1416 	vm_unmap_aliases();
1417 
1418 	cpa.vaddr = addr;
1419 	cpa.pages = pages;
1420 	cpa.numpages = numpages;
1421 	cpa.mask_set = mask_set;
1422 	cpa.mask_clr = mask_clr;
1423 	cpa.flags = 0;
1424 	cpa.curpage = 0;
1425 	cpa.force_split = force_split;
1426 
1427 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1428 		cpa.flags |= in_flag;
1429 
1430 	/* No alias checking for _NX bit modifications */
1431 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1432 
1433 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1434 
1435 	/*
1436 	 * Check whether we really changed something:
1437 	 */
1438 	if (!(cpa.flags & CPA_FLUSHTLB))
1439 		goto out;
1440 
1441 	/*
1442 	 * No need to flush, when we did not set any of the caching
1443 	 * attributes:
1444 	 */
1445 	cache = !!pgprot2cachemode(mask_set);
1446 
1447 	/*
1448 	 * On success we use CLFLUSH, when the CPU supports it to
1449 	 * avoid the WBINVD. If the CPU does not support it and in the
1450 	 * error case we fall back to cpa_flush_all (which uses
1451 	 * WBINVD):
1452 	 */
1453 	if (!ret && cpu_has_clflush) {
1454 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1455 			cpa_flush_array(addr, numpages, cache,
1456 					cpa.flags, pages);
1457 		} else
1458 			cpa_flush_range(baddr, numpages, cache);
1459 	} else
1460 		cpa_flush_all(cache);
1461 
1462 out:
1463 	return ret;
1464 }
1465 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1466 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1467 				       pgprot_t mask, int array)
1468 {
1469 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1470 		(array ? CPA_ARRAY : 0), NULL);
1471 }
1472 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1473 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1474 					 pgprot_t mask, int array)
1475 {
1476 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1477 		(array ? CPA_ARRAY : 0), NULL);
1478 }
1479 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1480 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1481 				       pgprot_t mask)
1482 {
1483 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1484 		CPA_PAGES_ARRAY, pages);
1485 }
1486 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1487 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1488 					 pgprot_t mask)
1489 {
1490 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1491 		CPA_PAGES_ARRAY, pages);
1492 }
1493 
_set_memory_uc(unsigned long addr,int numpages)1494 int _set_memory_uc(unsigned long addr, int numpages)
1495 {
1496 	/*
1497 	 * for now UC MINUS. see comments in ioremap_nocache()
1498 	 * If you really need strong UC use ioremap_uc(), but note
1499 	 * that you cannot override IO areas with set_memory_*() as
1500 	 * these helpers cannot work with IO memory.
1501 	 */
1502 	return change_page_attr_set(&addr, numpages,
1503 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1504 				    0);
1505 }
1506 
set_memory_uc(unsigned long addr,int numpages)1507 int set_memory_uc(unsigned long addr, int numpages)
1508 {
1509 	int ret;
1510 
1511 	/*
1512 	 * for now UC MINUS. see comments in ioremap_nocache()
1513 	 */
1514 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1515 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1516 	if (ret)
1517 		goto out_err;
1518 
1519 	ret = _set_memory_uc(addr, numpages);
1520 	if (ret)
1521 		goto out_free;
1522 
1523 	return 0;
1524 
1525 out_free:
1526 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1527 out_err:
1528 	return ret;
1529 }
1530 EXPORT_SYMBOL(set_memory_uc);
1531 
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1532 static int _set_memory_array(unsigned long *addr, int addrinarray,
1533 		enum page_cache_mode new_type)
1534 {
1535 	enum page_cache_mode set_type;
1536 	int i, j;
1537 	int ret;
1538 
1539 	for (i = 0; i < addrinarray; i++) {
1540 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1541 					new_type, NULL);
1542 		if (ret)
1543 			goto out_free;
1544 	}
1545 
1546 	/* If WC, set to UC- first and then WC */
1547 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1548 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1549 
1550 	ret = change_page_attr_set(addr, addrinarray,
1551 				   cachemode2pgprot(set_type), 1);
1552 
1553 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1554 		ret = change_page_attr_set_clr(addr, addrinarray,
1555 					       cachemode2pgprot(
1556 						_PAGE_CACHE_MODE_WC),
1557 					       __pgprot(_PAGE_CACHE_MASK),
1558 					       0, CPA_ARRAY, NULL);
1559 	if (ret)
1560 		goto out_free;
1561 
1562 	return 0;
1563 
1564 out_free:
1565 	for (j = 0; j < i; j++)
1566 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1567 
1568 	return ret;
1569 }
1570 
set_memory_array_uc(unsigned long * addr,int addrinarray)1571 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1572 {
1573 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1574 }
1575 EXPORT_SYMBOL(set_memory_array_uc);
1576 
set_memory_array_wc(unsigned long * addr,int addrinarray)1577 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1578 {
1579 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1580 }
1581 EXPORT_SYMBOL(set_memory_array_wc);
1582 
set_memory_array_wt(unsigned long * addr,int addrinarray)1583 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1584 {
1585 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1586 }
1587 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1588 
_set_memory_wc(unsigned long addr,int numpages)1589 int _set_memory_wc(unsigned long addr, int numpages)
1590 {
1591 	int ret;
1592 	unsigned long addr_copy = addr;
1593 
1594 	ret = change_page_attr_set(&addr, numpages,
1595 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1596 				   0);
1597 	if (!ret) {
1598 		ret = change_page_attr_set_clr(&addr_copy, numpages,
1599 					       cachemode2pgprot(
1600 						_PAGE_CACHE_MODE_WC),
1601 					       __pgprot(_PAGE_CACHE_MASK),
1602 					       0, 0, NULL);
1603 	}
1604 	return ret;
1605 }
1606 
set_memory_wc(unsigned long addr,int numpages)1607 int set_memory_wc(unsigned long addr, int numpages)
1608 {
1609 	int ret;
1610 
1611 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1612 		_PAGE_CACHE_MODE_WC, NULL);
1613 	if (ret)
1614 		return ret;
1615 
1616 	ret = _set_memory_wc(addr, numpages);
1617 	if (ret)
1618 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1619 
1620 	return ret;
1621 }
1622 EXPORT_SYMBOL(set_memory_wc);
1623 
_set_memory_wt(unsigned long addr,int numpages)1624 int _set_memory_wt(unsigned long addr, int numpages)
1625 {
1626 	return change_page_attr_set(&addr, numpages,
1627 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1628 }
1629 
set_memory_wt(unsigned long addr,int numpages)1630 int set_memory_wt(unsigned long addr, int numpages)
1631 {
1632 	int ret;
1633 
1634 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1635 			      _PAGE_CACHE_MODE_WT, NULL);
1636 	if (ret)
1637 		return ret;
1638 
1639 	ret = _set_memory_wt(addr, numpages);
1640 	if (ret)
1641 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1642 
1643 	return ret;
1644 }
1645 EXPORT_SYMBOL_GPL(set_memory_wt);
1646 
_set_memory_wb(unsigned long addr,int numpages)1647 int _set_memory_wb(unsigned long addr, int numpages)
1648 {
1649 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1650 	return change_page_attr_clear(&addr, numpages,
1651 				      __pgprot(_PAGE_CACHE_MASK), 0);
1652 }
1653 
set_memory_wb(unsigned long addr,int numpages)1654 int set_memory_wb(unsigned long addr, int numpages)
1655 {
1656 	int ret;
1657 
1658 	ret = _set_memory_wb(addr, numpages);
1659 	if (ret)
1660 		return ret;
1661 
1662 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1663 	return 0;
1664 }
1665 EXPORT_SYMBOL(set_memory_wb);
1666 
set_memory_array_wb(unsigned long * addr,int addrinarray)1667 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1668 {
1669 	int i;
1670 	int ret;
1671 
1672 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1673 	ret = change_page_attr_clear(addr, addrinarray,
1674 				      __pgprot(_PAGE_CACHE_MASK), 1);
1675 	if (ret)
1676 		return ret;
1677 
1678 	for (i = 0; i < addrinarray; i++)
1679 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1680 
1681 	return 0;
1682 }
1683 EXPORT_SYMBOL(set_memory_array_wb);
1684 
set_memory_x(unsigned long addr,int numpages)1685 int set_memory_x(unsigned long addr, int numpages)
1686 {
1687 	if (!(__supported_pte_mask & _PAGE_NX))
1688 		return 0;
1689 
1690 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1691 }
1692 EXPORT_SYMBOL(set_memory_x);
1693 
set_memory_nx(unsigned long addr,int numpages)1694 int set_memory_nx(unsigned long addr, int numpages)
1695 {
1696 	if (!(__supported_pte_mask & _PAGE_NX))
1697 		return 0;
1698 
1699 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1700 }
1701 EXPORT_SYMBOL(set_memory_nx);
1702 
set_memory_ro(unsigned long addr,int numpages)1703 int set_memory_ro(unsigned long addr, int numpages)
1704 {
1705 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1706 }
1707 
set_memory_rw(unsigned long addr,int numpages)1708 int set_memory_rw(unsigned long addr, int numpages)
1709 {
1710 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1711 }
1712 
set_memory_np(unsigned long addr,int numpages)1713 int set_memory_np(unsigned long addr, int numpages)
1714 {
1715 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1716 }
1717 
set_memory_4k(unsigned long addr,int numpages)1718 int set_memory_4k(unsigned long addr, int numpages)
1719 {
1720 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1721 					__pgprot(0), 1, 0, NULL);
1722 }
1723 
set_pages_uc(struct page * page,int numpages)1724 int set_pages_uc(struct page *page, int numpages)
1725 {
1726 	unsigned long addr = (unsigned long)page_address(page);
1727 
1728 	return set_memory_uc(addr, numpages);
1729 }
1730 EXPORT_SYMBOL(set_pages_uc);
1731 
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1732 static int _set_pages_array(struct page **pages, int addrinarray,
1733 		enum page_cache_mode new_type)
1734 {
1735 	unsigned long start;
1736 	unsigned long end;
1737 	enum page_cache_mode set_type;
1738 	int i;
1739 	int free_idx;
1740 	int ret;
1741 
1742 	for (i = 0; i < addrinarray; i++) {
1743 		if (PageHighMem(pages[i]))
1744 			continue;
1745 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1746 		end = start + PAGE_SIZE;
1747 		if (reserve_memtype(start, end, new_type, NULL))
1748 			goto err_out;
1749 	}
1750 
1751 	/* If WC, set to UC- first and then WC */
1752 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1753 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1754 
1755 	ret = cpa_set_pages_array(pages, addrinarray,
1756 				  cachemode2pgprot(set_type));
1757 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1758 		ret = change_page_attr_set_clr(NULL, addrinarray,
1759 					       cachemode2pgprot(
1760 						_PAGE_CACHE_MODE_WC),
1761 					       __pgprot(_PAGE_CACHE_MASK),
1762 					       0, CPA_PAGES_ARRAY, pages);
1763 	if (ret)
1764 		goto err_out;
1765 	return 0; /* Success */
1766 err_out:
1767 	free_idx = i;
1768 	for (i = 0; i < free_idx; i++) {
1769 		if (PageHighMem(pages[i]))
1770 			continue;
1771 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1772 		end = start + PAGE_SIZE;
1773 		free_memtype(start, end);
1774 	}
1775 	return -EINVAL;
1776 }
1777 
set_pages_array_uc(struct page ** pages,int addrinarray)1778 int set_pages_array_uc(struct page **pages, int addrinarray)
1779 {
1780 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1781 }
1782 EXPORT_SYMBOL(set_pages_array_uc);
1783 
set_pages_array_wc(struct page ** pages,int addrinarray)1784 int set_pages_array_wc(struct page **pages, int addrinarray)
1785 {
1786 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1787 }
1788 EXPORT_SYMBOL(set_pages_array_wc);
1789 
set_pages_array_wt(struct page ** pages,int addrinarray)1790 int set_pages_array_wt(struct page **pages, int addrinarray)
1791 {
1792 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1793 }
1794 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1795 
set_pages_wb(struct page * page,int numpages)1796 int set_pages_wb(struct page *page, int numpages)
1797 {
1798 	unsigned long addr = (unsigned long)page_address(page);
1799 
1800 	return set_memory_wb(addr, numpages);
1801 }
1802 EXPORT_SYMBOL(set_pages_wb);
1803 
set_pages_array_wb(struct page ** pages,int addrinarray)1804 int set_pages_array_wb(struct page **pages, int addrinarray)
1805 {
1806 	int retval;
1807 	unsigned long start;
1808 	unsigned long end;
1809 	int i;
1810 
1811 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1812 	retval = cpa_clear_pages_array(pages, addrinarray,
1813 			__pgprot(_PAGE_CACHE_MASK));
1814 	if (retval)
1815 		return retval;
1816 
1817 	for (i = 0; i < addrinarray; i++) {
1818 		if (PageHighMem(pages[i]))
1819 			continue;
1820 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1821 		end = start + PAGE_SIZE;
1822 		free_memtype(start, end);
1823 	}
1824 
1825 	return 0;
1826 }
1827 EXPORT_SYMBOL(set_pages_array_wb);
1828 
set_pages_x(struct page * page,int numpages)1829 int set_pages_x(struct page *page, int numpages)
1830 {
1831 	unsigned long addr = (unsigned long)page_address(page);
1832 
1833 	return set_memory_x(addr, numpages);
1834 }
1835 EXPORT_SYMBOL(set_pages_x);
1836 
set_pages_nx(struct page * page,int numpages)1837 int set_pages_nx(struct page *page, int numpages)
1838 {
1839 	unsigned long addr = (unsigned long)page_address(page);
1840 
1841 	return set_memory_nx(addr, numpages);
1842 }
1843 EXPORT_SYMBOL(set_pages_nx);
1844 
set_pages_ro(struct page * page,int numpages)1845 int set_pages_ro(struct page *page, int numpages)
1846 {
1847 	unsigned long addr = (unsigned long)page_address(page);
1848 
1849 	return set_memory_ro(addr, numpages);
1850 }
1851 
set_pages_rw(struct page * page,int numpages)1852 int set_pages_rw(struct page *page, int numpages)
1853 {
1854 	unsigned long addr = (unsigned long)page_address(page);
1855 
1856 	return set_memory_rw(addr, numpages);
1857 }
1858 
1859 #ifdef CONFIG_DEBUG_PAGEALLOC
1860 
__set_pages_p(struct page * page,int numpages)1861 static int __set_pages_p(struct page *page, int numpages)
1862 {
1863 	unsigned long tempaddr = (unsigned long) page_address(page);
1864 	struct cpa_data cpa = { .vaddr = &tempaddr,
1865 				.pgd = NULL,
1866 				.numpages = numpages,
1867 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1868 				.mask_clr = __pgprot(0),
1869 				.flags = 0};
1870 
1871 	/*
1872 	 * No alias checking needed for setting present flag. otherwise,
1873 	 * we may need to break large pages for 64-bit kernel text
1874 	 * mappings (this adds to complexity if we want to do this from
1875 	 * atomic context especially). Let's keep it simple!
1876 	 */
1877 	return __change_page_attr_set_clr(&cpa, 0);
1878 }
1879 
__set_pages_np(struct page * page,int numpages)1880 static int __set_pages_np(struct page *page, int numpages)
1881 {
1882 	unsigned long tempaddr = (unsigned long) page_address(page);
1883 	struct cpa_data cpa = { .vaddr = &tempaddr,
1884 				.pgd = NULL,
1885 				.numpages = numpages,
1886 				.mask_set = __pgprot(0),
1887 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1888 				.flags = 0};
1889 
1890 	/*
1891 	 * No alias checking needed for setting not present flag. otherwise,
1892 	 * we may need to break large pages for 64-bit kernel text
1893 	 * mappings (this adds to complexity if we want to do this from
1894 	 * atomic context especially). Let's keep it simple!
1895 	 */
1896 	return __change_page_attr_set_clr(&cpa, 0);
1897 }
1898 
__kernel_map_pages(struct page * page,int numpages,int enable)1899 void __kernel_map_pages(struct page *page, int numpages, int enable)
1900 {
1901 	if (PageHighMem(page))
1902 		return;
1903 	if (!enable) {
1904 		debug_check_no_locks_freed(page_address(page),
1905 					   numpages * PAGE_SIZE);
1906 	}
1907 
1908 	/*
1909 	 * The return value is ignored as the calls cannot fail.
1910 	 * Large pages for identity mappings are not used at boot time
1911 	 * and hence no memory allocations during large page split.
1912 	 */
1913 	if (enable)
1914 		__set_pages_p(page, numpages);
1915 	else
1916 		__set_pages_np(page, numpages);
1917 
1918 	/*
1919 	 * We should perform an IPI and flush all tlbs,
1920 	 * but that can deadlock->flush only current cpu:
1921 	 */
1922 	__flush_tlb_all();
1923 
1924 	arch_flush_lazy_mmu_mode();
1925 }
1926 
1927 #ifdef CONFIG_HIBERNATION
1928 
kernel_page_present(struct page * page)1929 bool kernel_page_present(struct page *page)
1930 {
1931 	unsigned int level;
1932 	pte_t *pte;
1933 
1934 	if (PageHighMem(page))
1935 		return false;
1936 
1937 	pte = lookup_address((unsigned long)page_address(page), &level);
1938 	return (pte_val(*pte) & _PAGE_PRESENT);
1939 }
1940 
1941 #endif /* CONFIG_HIBERNATION */
1942 
1943 #endif /* CONFIG_DEBUG_PAGEALLOC */
1944 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)1945 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1946 			    unsigned numpages, unsigned long page_flags)
1947 {
1948 	int retval = -EINVAL;
1949 
1950 	struct cpa_data cpa = {
1951 		.vaddr = &address,
1952 		.pfn = pfn,
1953 		.pgd = pgd,
1954 		.numpages = numpages,
1955 		.mask_set = __pgprot(0),
1956 		.mask_clr = __pgprot(0),
1957 		.flags = 0,
1958 	};
1959 
1960 	if (!(__supported_pte_mask & _PAGE_NX))
1961 		goto out;
1962 
1963 	if (!(page_flags & _PAGE_NX))
1964 		cpa.mask_clr = __pgprot(_PAGE_NX);
1965 
1966 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1967 
1968 	retval = __change_page_attr_set_clr(&cpa, 0);
1969 	__flush_tlb_all();
1970 
1971 out:
1972 	return retval;
1973 }
1974 
kernel_unmap_pages_in_pgd(pgd_t * root,unsigned long address,unsigned numpages)1975 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1976 			       unsigned numpages)
1977 {
1978 	unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1979 }
1980 
1981 /*
1982  * The testcases use internal knowledge of the implementation that shouldn't
1983  * be exposed to the rest of the kernel. Include these directly here.
1984  */
1985 #ifdef CONFIG_CPA_DEBUG
1986 #include "pageattr-test.c"
1987 #endif
1988