1/*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5#include <linux/highmem.h>
6#include <linux/bootmem.h>
7#include <linux/sched.h>
8#include <linux/mm.h>
9#include <linux/interrupt.h>
10#include <linux/seq_file.h>
11#include <linux/debugfs.h>
12#include <linux/pfn.h>
13#include <linux/percpu.h>
14#include <linux/gfp.h>
15#include <linux/pci.h>
16#include <linux/vmalloc.h>
17
18#include <asm/e820.h>
19#include <asm/processor.h>
20#include <asm/tlbflush.h>
21#include <asm/sections.h>
22#include <asm/setup.h>
23#include <asm/uaccess.h>
24#include <asm/pgalloc.h>
25#include <asm/proto.h>
26#include <asm/pat.h>
27
28/*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31struct cpa_data {
32	unsigned long	*vaddr;
33	pgd_t		*pgd;
34	pgprot_t	mask_set;
35	pgprot_t	mask_clr;
36	unsigned long	numpages;
37	int		flags;
38	unsigned long	pfn;
39	unsigned	force_split : 1;
40	int		curpage;
41	struct page	**pages;
42};
43
44/*
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
49 */
50static DEFINE_SPINLOCK(cpa_lock);
51
52#define CPA_FLUSHTLB 1
53#define CPA_ARRAY 2
54#define CPA_PAGES_ARRAY 4
55
56#ifdef CONFIG_PROC_FS
57static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59void update_page_count(int level, unsigned long pages)
60{
61	/* Protect against CPA */
62	spin_lock(&pgd_lock);
63	direct_pages_count[level] += pages;
64	spin_unlock(&pgd_lock);
65}
66
67static void split_page_count(int level)
68{
69	direct_pages_count[level]--;
70	direct_pages_count[level - 1] += PTRS_PER_PTE;
71}
72
73void arch_report_meminfo(struct seq_file *m)
74{
75	seq_printf(m, "DirectMap4k:    %8lu kB\n",
76			direct_pages_count[PG_LEVEL_4K] << 2);
77#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78	seq_printf(m, "DirectMap2M:    %8lu kB\n",
79			direct_pages_count[PG_LEVEL_2M] << 11);
80#else
81	seq_printf(m, "DirectMap4M:    %8lu kB\n",
82			direct_pages_count[PG_LEVEL_2M] << 12);
83#endif
84	if (direct_gbpages)
85		seq_printf(m, "DirectMap1G:    %8lu kB\n",
86			direct_pages_count[PG_LEVEL_1G] << 20);
87}
88#else
89static inline void split_page_count(int level) { }
90#endif
91
92#ifdef CONFIG_X86_64
93
94static inline unsigned long highmap_start_pfn(void)
95{
96	return __pa_symbol(_text) >> PAGE_SHIFT;
97}
98
99static inline unsigned long highmap_end_pfn(void)
100{
101	return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102}
103
104#endif
105
106#ifdef CONFIG_DEBUG_PAGEALLOC
107# define debug_pagealloc 1
108#else
109# define debug_pagealloc 0
110#endif
111
112static inline int
113within(unsigned long addr, unsigned long start, unsigned long end)
114{
115	return addr >= start && addr < end;
116}
117
118/*
119 * Flushing functions
120 */
121
122/**
123 * clflush_cache_range - flush a cache range with clflush
124 * @vaddr:	virtual start address
125 * @size:	number of bytes to flush
126 *
127 * clflushopt is an unordered instruction which needs fencing with mfence or
128 * sfence to avoid ordering issues.
129 */
130void clflush_cache_range(void *vaddr, unsigned int size)
131{
132	unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
133	void *vend = vaddr + size;
134	void *p;
135
136	mb();
137
138	for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
139	     p < vend; p += boot_cpu_data.x86_clflush_size)
140		clflushopt(p);
141
142	mb();
143}
144EXPORT_SYMBOL_GPL(clflush_cache_range);
145
146static void __cpa_flush_all(void *arg)
147{
148	unsigned long cache = (unsigned long)arg;
149
150	/*
151	 * Flush all to work around Errata in early athlons regarding
152	 * large page flushing.
153	 */
154	__flush_tlb_all();
155
156	if (cache && boot_cpu_data.x86 >= 4)
157		wbinvd();
158}
159
160static void cpa_flush_all(unsigned long cache)
161{
162	BUG_ON(irqs_disabled());
163
164	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
165}
166
167static void __cpa_flush_range(void *arg)
168{
169	/*
170	 * We could optimize that further and do individual per page
171	 * tlb invalidates for a low number of pages. Caveat: we must
172	 * flush the high aliases on 64bit as well.
173	 */
174	__flush_tlb_all();
175}
176
177static void cpa_flush_range(unsigned long start, int numpages, int cache)
178{
179	unsigned int i, level;
180	unsigned long addr;
181
182	BUG_ON(irqs_disabled());
183	WARN_ON(PAGE_ALIGN(start) != start);
184
185	on_each_cpu(__cpa_flush_range, NULL, 1);
186
187	if (!cache)
188		return;
189
190	/*
191	 * We only need to flush on one CPU,
192	 * clflush is a MESI-coherent instruction that
193	 * will cause all other CPUs to flush the same
194	 * cachelines:
195	 */
196	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
197		pte_t *pte = lookup_address(addr, &level);
198
199		/*
200		 * Only flush present addresses:
201		 */
202		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
203			clflush_cache_range((void *) addr, PAGE_SIZE);
204	}
205}
206
207static void cpa_flush_array(unsigned long *start, int numpages, int cache,
208			    int in_flags, struct page **pages)
209{
210	unsigned int i, level;
211	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
212
213	BUG_ON(irqs_disabled());
214
215	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
216
217	if (!cache || do_wbinvd)
218		return;
219
220	/*
221	 * We only need to flush on one CPU,
222	 * clflush is a MESI-coherent instruction that
223	 * will cause all other CPUs to flush the same
224	 * cachelines:
225	 */
226	for (i = 0; i < numpages; i++) {
227		unsigned long addr;
228		pte_t *pte;
229
230		if (in_flags & CPA_PAGES_ARRAY)
231			addr = (unsigned long)page_address(pages[i]);
232		else
233			addr = start[i];
234
235		pte = lookup_address(addr, &level);
236
237		/*
238		 * Only flush present addresses:
239		 */
240		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
241			clflush_cache_range((void *)addr, PAGE_SIZE);
242	}
243}
244
245/*
246 * Certain areas of memory on x86 require very specific protection flags,
247 * for example the BIOS area or kernel text. Callers don't always get this
248 * right (again, ioremap() on BIOS memory is not uncommon) so this function
249 * checks and fixes these known static required protection bits.
250 */
251static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
252				   unsigned long pfn)
253{
254	pgprot_t forbidden = __pgprot(0);
255
256	/*
257	 * The BIOS area between 640k and 1Mb needs to be executable for
258	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259	 */
260#ifdef CONFIG_PCI_BIOS
261	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
262		pgprot_val(forbidden) |= _PAGE_NX;
263#endif
264
265	/*
266	 * The kernel text needs to be executable for obvious reasons
267	 * Does not cover __inittext since that is gone later on. On
268	 * 64bit we do not enforce !NX on the low mapping
269	 */
270	if (within(address, (unsigned long)_text, (unsigned long)_etext))
271		pgprot_val(forbidden) |= _PAGE_NX;
272
273	/*
274	 * The .rodata section needs to be read-only. Using the pfn
275	 * catches all aliases.
276	 */
277	if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
278		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
279		pgprot_val(forbidden) |= _PAGE_RW;
280
281#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
282	/*
283	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
284	 * kernel text mappings for the large page aligned text, rodata sections
285	 * will be always read-only. For the kernel identity mappings covering
286	 * the holes caused by this alignment can be anything that user asks.
287	 *
288	 * This will preserve the large page mappings for kernel text/data
289	 * at no extra cost.
290	 */
291	if (kernel_set_to_readonly &&
292	    within(address, (unsigned long)_text,
293		   (unsigned long)__end_rodata_hpage_align)) {
294		unsigned int level;
295
296		/*
297		 * Don't enforce the !RW mapping for the kernel text mapping,
298		 * if the current mapping is already using small page mapping.
299		 * No need to work hard to preserve large page mappings in this
300		 * case.
301		 *
302		 * This also fixes the Linux Xen paravirt guest boot failure
303		 * (because of unexpected read-only mappings for kernel identity
304		 * mappings). In this paravirt guest case, the kernel text
305		 * mapping and the kernel identity mapping share the same
306		 * page-table pages. Thus we can't really use different
307		 * protections for the kernel text and identity mappings. Also,
308		 * these shared mappings are made of small page mappings.
309		 * Thus this don't enforce !RW mapping for small page kernel
310		 * text mapping logic will help Linux Xen parvirt guest boot
311		 * as well.
312		 */
313		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
314			pgprot_val(forbidden) |= _PAGE_RW;
315	}
316#endif
317
318	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
319
320	return prot;
321}
322
323/*
324 * Lookup the page table entry for a virtual address in a specific pgd.
325 * Return a pointer to the entry and the level of the mapping.
326 */
327pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
328			     unsigned int *level)
329{
330	pud_t *pud;
331	pmd_t *pmd;
332
333	*level = PG_LEVEL_NONE;
334
335	if (pgd_none(*pgd))
336		return NULL;
337
338	pud = pud_offset(pgd, address);
339	if (pud_none(*pud))
340		return NULL;
341
342	*level = PG_LEVEL_1G;
343	if (pud_large(*pud) || !pud_present(*pud))
344		return (pte_t *)pud;
345
346	pmd = pmd_offset(pud, address);
347	if (pmd_none(*pmd))
348		return NULL;
349
350	*level = PG_LEVEL_2M;
351	if (pmd_large(*pmd) || !pmd_present(*pmd))
352		return (pte_t *)pmd;
353
354	*level = PG_LEVEL_4K;
355
356	return pte_offset_kernel(pmd, address);
357}
358
359/*
360 * Lookup the page table entry for a virtual address. Return a pointer
361 * to the entry and the level of the mapping.
362 *
363 * Note: We return pud and pmd either when the entry is marked large
364 * or when the present bit is not set. Otherwise we would return a
365 * pointer to a nonexisting mapping.
366 */
367pte_t *lookup_address(unsigned long address, unsigned int *level)
368{
369        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
370}
371EXPORT_SYMBOL_GPL(lookup_address);
372
373static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
374				  unsigned int *level)
375{
376        if (cpa->pgd)
377		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
378					       address, level);
379
380        return lookup_address(address, level);
381}
382
383/*
384 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
385 * or NULL if not present.
386 */
387pmd_t *lookup_pmd_address(unsigned long address)
388{
389	pgd_t *pgd;
390	pud_t *pud;
391
392	pgd = pgd_offset_k(address);
393	if (pgd_none(*pgd))
394		return NULL;
395
396	pud = pud_offset(pgd, address);
397	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
398		return NULL;
399
400	return pmd_offset(pud, address);
401}
402
403/*
404 * This is necessary because __pa() does not work on some
405 * kinds of memory, like vmalloc() or the alloc_remap()
406 * areas on 32-bit NUMA systems.  The percpu areas can
407 * end up in this kind of memory, for instance.
408 *
409 * This could be optimized, but it is only intended to be
410 * used at inititalization time, and keeping it
411 * unoptimized should increase the testing coverage for
412 * the more obscure platforms.
413 */
414phys_addr_t slow_virt_to_phys(void *__virt_addr)
415{
416	unsigned long virt_addr = (unsigned long)__virt_addr;
417	phys_addr_t phys_addr;
418	unsigned long offset;
419	enum pg_level level;
420	pte_t *pte;
421
422	pte = lookup_address(virt_addr, &level);
423	BUG_ON(!pte);
424
425	/*
426	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
427	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
428	 * make 32-PAE kernel work correctly.
429	 */
430	switch (level) {
431	case PG_LEVEL_1G:
432		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
433		offset = virt_addr & ~PUD_PAGE_MASK;
434		break;
435	case PG_LEVEL_2M:
436		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
437		offset = virt_addr & ~PMD_PAGE_MASK;
438		break;
439	default:
440		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
441		offset = virt_addr & ~PAGE_MASK;
442	}
443
444	return (phys_addr_t)(phys_addr | offset);
445}
446EXPORT_SYMBOL_GPL(slow_virt_to_phys);
447
448/*
449 * Set the new pmd in all the pgds we know about:
450 */
451static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
452{
453	/* change init_mm */
454	set_pte_atomic(kpte, pte);
455#ifdef CONFIG_X86_32
456	if (!SHARED_KERNEL_PMD) {
457		struct page *page;
458
459		list_for_each_entry(page, &pgd_list, lru) {
460			pgd_t *pgd;
461			pud_t *pud;
462			pmd_t *pmd;
463
464			pgd = (pgd_t *)page_address(page) + pgd_index(address);
465			pud = pud_offset(pgd, address);
466			pmd = pmd_offset(pud, address);
467			set_pte_atomic((pte_t *)pmd, pte);
468		}
469	}
470#endif
471}
472
473static int
474try_preserve_large_page(pte_t *kpte, unsigned long address,
475			struct cpa_data *cpa)
476{
477	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
478	pte_t new_pte, old_pte, *tmp;
479	pgprot_t old_prot, new_prot, req_prot;
480	int i, do_split = 1;
481	enum pg_level level;
482
483	if (cpa->force_split)
484		return 1;
485
486	spin_lock(&pgd_lock);
487	/*
488	 * Check for races, another CPU might have split this page
489	 * up already:
490	 */
491	tmp = _lookup_address_cpa(cpa, address, &level);
492	if (tmp != kpte)
493		goto out_unlock;
494
495	switch (level) {
496	case PG_LEVEL_2M:
497		old_prot = pmd_pgprot(*(pmd_t *)kpte);
498		old_pfn = pmd_pfn(*(pmd_t *)kpte);
499		break;
500	case PG_LEVEL_1G:
501		old_prot = pud_pgprot(*(pud_t *)kpte);
502		old_pfn = pud_pfn(*(pud_t *)kpte);
503		break;
504	default:
505		do_split = -EINVAL;
506		goto out_unlock;
507	}
508
509	psize = page_level_size(level);
510	pmask = page_level_mask(level);
511
512	/*
513	 * Calculate the number of pages, which fit into this large
514	 * page starting at address:
515	 */
516	nextpage_addr = (address + psize) & pmask;
517	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
518	if (numpages < cpa->numpages)
519		cpa->numpages = numpages;
520
521	/*
522	 * We are safe now. Check whether the new pgprot is the same:
523	 * Convert protection attributes to 4k-format, as cpa->mask* are set
524	 * up accordingly.
525	 */
526	old_pte = *kpte;
527	req_prot = pgprot_large_2_4k(old_prot);
528
529	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
530	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
531
532	/*
533	 * req_prot is in format of 4k pages. It must be converted to large
534	 * page format: the caching mode includes the PAT bit located at
535	 * different bit positions in the two formats.
536	 */
537	req_prot = pgprot_4k_2_large(req_prot);
538
539	/*
540	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
541	 * set otherwise pmd_present/pmd_huge will return true even on
542	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
543	 * for the ancient hardware that doesn't support it.
544	 */
545	if (pgprot_val(req_prot) & _PAGE_PRESENT)
546		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
547	else
548		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
549
550	req_prot = canon_pgprot(req_prot);
551
552	/*
553	 * old_pfn points to the large page base pfn. So we need
554	 * to add the offset of the virtual address:
555	 */
556	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
557	cpa->pfn = pfn;
558
559	new_prot = static_protections(req_prot, address, pfn);
560
561	/*
562	 * We need to check the full range, whether
563	 * static_protection() requires a different pgprot for one of
564	 * the pages in the range we try to preserve:
565	 */
566	addr = address & pmask;
567	pfn = old_pfn;
568	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
569		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
570
571		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
572			goto out_unlock;
573	}
574
575	/*
576	 * If there are no changes, return. maxpages has been updated
577	 * above:
578	 */
579	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
580		do_split = 0;
581		goto out_unlock;
582	}
583
584	/*
585	 * We need to change the attributes. Check, whether we can
586	 * change the large page in one go. We request a split, when
587	 * the address is not aligned and the number of pages is
588	 * smaller than the number of pages in the large page. Note
589	 * that we limited the number of possible pages already to
590	 * the number of pages in the large page.
591	 */
592	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
593		/*
594		 * The address is aligned and the number of pages
595		 * covers the full page.
596		 */
597		new_pte = pfn_pte(old_pfn, new_prot);
598		__set_pmd_pte(kpte, address, new_pte);
599		cpa->flags |= CPA_FLUSHTLB;
600		do_split = 0;
601	}
602
603out_unlock:
604	spin_unlock(&pgd_lock);
605
606	return do_split;
607}
608
609static int
610__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
611		   struct page *base)
612{
613	pte_t *pbase = (pte_t *)page_address(base);
614	unsigned long ref_pfn, pfn, pfninc = 1;
615	unsigned int i, level;
616	pte_t *tmp;
617	pgprot_t ref_prot;
618
619	spin_lock(&pgd_lock);
620	/*
621	 * Check for races, another CPU might have split this page
622	 * up for us already:
623	 */
624	tmp = _lookup_address_cpa(cpa, address, &level);
625	if (tmp != kpte) {
626		spin_unlock(&pgd_lock);
627		return 1;
628	}
629
630	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
631
632	switch (level) {
633	case PG_LEVEL_2M:
634		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
635		/* clear PSE and promote PAT bit to correct position */
636		ref_prot = pgprot_large_2_4k(ref_prot);
637		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
638		break;
639
640	case PG_LEVEL_1G:
641		ref_prot = pud_pgprot(*(pud_t *)kpte);
642		ref_pfn = pud_pfn(*(pud_t *)kpte);
643		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
644
645		/*
646		 * Clear the PSE flags if the PRESENT flag is not set
647		 * otherwise pmd_present/pmd_huge will return true
648		 * even on a non present pmd.
649		 */
650		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
651			pgprot_val(ref_prot) &= ~_PAGE_PSE;
652		break;
653
654	default:
655		spin_unlock(&pgd_lock);
656		return 1;
657	}
658
659	/*
660	 * Set the GLOBAL flags only if the PRESENT flag is set
661	 * otherwise pmd/pte_present will return true even on a non
662	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
663	 * for the ancient hardware that doesn't support it.
664	 */
665	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
666		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
667	else
668		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
669
670	/*
671	 * Get the target pfn from the original entry:
672	 */
673	pfn = ref_pfn;
674	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
675		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
676
677	if (virt_addr_valid(address)) {
678		unsigned long pfn = PFN_DOWN(__pa(address));
679
680		if (pfn_range_is_mapped(pfn, pfn + 1))
681			split_page_count(level);
682	}
683
684	/*
685	 * Install the new, split up pagetable.
686	 *
687	 * We use the standard kernel pagetable protections for the new
688	 * pagetable protections, the actual ptes set above control the
689	 * primary protection behavior:
690	 */
691	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
692
693	/*
694	 * Intel Atom errata AAH41 workaround.
695	 *
696	 * The real fix should be in hw or in a microcode update, but
697	 * we also probabilistically try to reduce the window of having
698	 * a large TLB mixed with 4K TLBs while instruction fetches are
699	 * going on.
700	 */
701	__flush_tlb_all();
702	spin_unlock(&pgd_lock);
703
704	return 0;
705}
706
707static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
708			    unsigned long address)
709{
710	struct page *base;
711
712	if (!debug_pagealloc)
713		spin_unlock(&cpa_lock);
714	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
715	if (!debug_pagealloc)
716		spin_lock(&cpa_lock);
717	if (!base)
718		return -ENOMEM;
719
720	if (__split_large_page(cpa, kpte, address, base))
721		__free_page(base);
722
723	return 0;
724}
725
726static bool try_to_free_pte_page(pte_t *pte)
727{
728	int i;
729
730	for (i = 0; i < PTRS_PER_PTE; i++)
731		if (!pte_none(pte[i]))
732			return false;
733
734	free_page((unsigned long)pte);
735	return true;
736}
737
738static bool try_to_free_pmd_page(pmd_t *pmd)
739{
740	int i;
741
742	for (i = 0; i < PTRS_PER_PMD; i++)
743		if (!pmd_none(pmd[i]))
744			return false;
745
746	free_page((unsigned long)pmd);
747	return true;
748}
749
750static bool try_to_free_pud_page(pud_t *pud)
751{
752	int i;
753
754	for (i = 0; i < PTRS_PER_PUD; i++)
755		if (!pud_none(pud[i]))
756			return false;
757
758	free_page((unsigned long)pud);
759	return true;
760}
761
762static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
763{
764	pte_t *pte = pte_offset_kernel(pmd, start);
765
766	while (start < end) {
767		set_pte(pte, __pte(0));
768
769		start += PAGE_SIZE;
770		pte++;
771	}
772
773	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
774		pmd_clear(pmd);
775		return true;
776	}
777	return false;
778}
779
780static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
781			      unsigned long start, unsigned long end)
782{
783	if (unmap_pte_range(pmd, start, end))
784		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
785			pud_clear(pud);
786}
787
788static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
789{
790	pmd_t *pmd = pmd_offset(pud, start);
791
792	/*
793	 * Not on a 2MB page boundary?
794	 */
795	if (start & (PMD_SIZE - 1)) {
796		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
797		unsigned long pre_end = min_t(unsigned long, end, next_page);
798
799		__unmap_pmd_range(pud, pmd, start, pre_end);
800
801		start = pre_end;
802		pmd++;
803	}
804
805	/*
806	 * Try to unmap in 2M chunks.
807	 */
808	while (end - start >= PMD_SIZE) {
809		if (pmd_large(*pmd))
810			pmd_clear(pmd);
811		else
812			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
813
814		start += PMD_SIZE;
815		pmd++;
816	}
817
818	/*
819	 * 4K leftovers?
820	 */
821	if (start < end)
822		return __unmap_pmd_range(pud, pmd, start, end);
823
824	/*
825	 * Try again to free the PMD page if haven't succeeded above.
826	 */
827	if (!pud_none(*pud))
828		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
829			pud_clear(pud);
830}
831
832static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
833{
834	pud_t *pud = pud_offset(pgd, start);
835
836	/*
837	 * Not on a GB page boundary?
838	 */
839	if (start & (PUD_SIZE - 1)) {
840		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
841		unsigned long pre_end	= min_t(unsigned long, end, next_page);
842
843		unmap_pmd_range(pud, start, pre_end);
844
845		start = pre_end;
846		pud++;
847	}
848
849	/*
850	 * Try to unmap in 1G chunks?
851	 */
852	while (end - start >= PUD_SIZE) {
853
854		if (pud_large(*pud))
855			pud_clear(pud);
856		else
857			unmap_pmd_range(pud, start, start + PUD_SIZE);
858
859		start += PUD_SIZE;
860		pud++;
861	}
862
863	/*
864	 * 2M leftovers?
865	 */
866	if (start < end)
867		unmap_pmd_range(pud, start, end);
868
869	/*
870	 * No need to try to free the PUD page because we'll free it in
871	 * populate_pgd's error path
872	 */
873}
874
875static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
876{
877	pgd_t *pgd_entry = root + pgd_index(addr);
878
879	unmap_pud_range(pgd_entry, addr, end);
880
881	if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
882		pgd_clear(pgd_entry);
883}
884
885static int alloc_pte_page(pmd_t *pmd)
886{
887	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
888	if (!pte)
889		return -1;
890
891	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
892	return 0;
893}
894
895static int alloc_pmd_page(pud_t *pud)
896{
897	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
898	if (!pmd)
899		return -1;
900
901	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
902	return 0;
903}
904
905static void populate_pte(struct cpa_data *cpa,
906			 unsigned long start, unsigned long end,
907			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
908{
909	pte_t *pte;
910
911	pte = pte_offset_kernel(pmd, start);
912
913	while (num_pages-- && start < end) {
914
915		/* deal with the NX bit */
916		if (!(pgprot_val(pgprot) & _PAGE_NX))
917			cpa->pfn &= ~_PAGE_NX;
918
919		set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
920
921		start	 += PAGE_SIZE;
922		cpa->pfn += PAGE_SIZE;
923		pte++;
924	}
925}
926
927static int populate_pmd(struct cpa_data *cpa,
928			unsigned long start, unsigned long end,
929			unsigned num_pages, pud_t *pud, pgprot_t pgprot)
930{
931	unsigned int cur_pages = 0;
932	pmd_t *pmd;
933	pgprot_t pmd_pgprot;
934
935	/*
936	 * Not on a 2M boundary?
937	 */
938	if (start & (PMD_SIZE - 1)) {
939		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
940		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
941
942		pre_end   = min_t(unsigned long, pre_end, next_page);
943		cur_pages = (pre_end - start) >> PAGE_SHIFT;
944		cur_pages = min_t(unsigned int, num_pages, cur_pages);
945
946		/*
947		 * Need a PTE page?
948		 */
949		pmd = pmd_offset(pud, start);
950		if (pmd_none(*pmd))
951			if (alloc_pte_page(pmd))
952				return -1;
953
954		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
955
956		start = pre_end;
957	}
958
959	/*
960	 * We mapped them all?
961	 */
962	if (num_pages == cur_pages)
963		return cur_pages;
964
965	pmd_pgprot = pgprot_4k_2_large(pgprot);
966
967	while (end - start >= PMD_SIZE) {
968
969		/*
970		 * We cannot use a 1G page so allocate a PMD page if needed.
971		 */
972		if (pud_none(*pud))
973			if (alloc_pmd_page(pud))
974				return -1;
975
976		pmd = pmd_offset(pud, start);
977
978		set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
979				   massage_pgprot(pmd_pgprot)));
980
981		start	  += PMD_SIZE;
982		cpa->pfn  += PMD_SIZE;
983		cur_pages += PMD_SIZE >> PAGE_SHIFT;
984	}
985
986	/*
987	 * Map trailing 4K pages.
988	 */
989	if (start < end) {
990		pmd = pmd_offset(pud, start);
991		if (pmd_none(*pmd))
992			if (alloc_pte_page(pmd))
993				return -1;
994
995		populate_pte(cpa, start, end, num_pages - cur_pages,
996			     pmd, pgprot);
997	}
998	return num_pages;
999}
1000
1001static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1002			pgprot_t pgprot)
1003{
1004	pud_t *pud;
1005	unsigned long end;
1006	int cur_pages = 0;
1007	pgprot_t pud_pgprot;
1008
1009	end = start + (cpa->numpages << PAGE_SHIFT);
1010
1011	/*
1012	 * Not on a Gb page boundary? => map everything up to it with
1013	 * smaller pages.
1014	 */
1015	if (start & (PUD_SIZE - 1)) {
1016		unsigned long pre_end;
1017		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1018
1019		pre_end   = min_t(unsigned long, end, next_page);
1020		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1021		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1022
1023		pud = pud_offset(pgd, start);
1024
1025		/*
1026		 * Need a PMD page?
1027		 */
1028		if (pud_none(*pud))
1029			if (alloc_pmd_page(pud))
1030				return -1;
1031
1032		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1033					 pud, pgprot);
1034		if (cur_pages < 0)
1035			return cur_pages;
1036
1037		start = pre_end;
1038	}
1039
1040	/* We mapped them all? */
1041	if (cpa->numpages == cur_pages)
1042		return cur_pages;
1043
1044	pud = pud_offset(pgd, start);
1045	pud_pgprot = pgprot_4k_2_large(pgprot);
1046
1047	/*
1048	 * Map everything starting from the Gb boundary, possibly with 1G pages
1049	 */
1050	while (end - start >= PUD_SIZE) {
1051		set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1052				   massage_pgprot(pud_pgprot)));
1053
1054		start	  += PUD_SIZE;
1055		cpa->pfn  += PUD_SIZE;
1056		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1057		pud++;
1058	}
1059
1060	/* Map trailing leftover */
1061	if (start < end) {
1062		int tmp;
1063
1064		pud = pud_offset(pgd, start);
1065		if (pud_none(*pud))
1066			if (alloc_pmd_page(pud))
1067				return -1;
1068
1069		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1070				   pud, pgprot);
1071		if (tmp < 0)
1072			return cur_pages;
1073
1074		cur_pages += tmp;
1075	}
1076	return cur_pages;
1077}
1078
1079/*
1080 * Restrictions for kernel page table do not necessarily apply when mapping in
1081 * an alternate PGD.
1082 */
1083static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1084{
1085	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1086	pud_t *pud = NULL;	/* shut up gcc */
1087	pgd_t *pgd_entry;
1088	int ret;
1089
1090	pgd_entry = cpa->pgd + pgd_index(addr);
1091
1092	/*
1093	 * Allocate a PUD page and hand it down for mapping.
1094	 */
1095	if (pgd_none(*pgd_entry)) {
1096		pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1097		if (!pud)
1098			return -1;
1099
1100		set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1101	}
1102
1103	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1104	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1105
1106	ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1107	if (ret < 0) {
1108		unmap_pgd_range(cpa->pgd, addr,
1109				addr + (cpa->numpages << PAGE_SHIFT));
1110		return ret;
1111	}
1112
1113	cpa->numpages = ret;
1114	return 0;
1115}
1116
1117static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1118			       int primary)
1119{
1120	if (cpa->pgd)
1121		return populate_pgd(cpa, vaddr);
1122
1123	/*
1124	 * Ignore all non primary paths.
1125	 */
1126	if (!primary)
1127		return 0;
1128
1129	/*
1130	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1131	 * to have holes.
1132	 * Also set numpages to '1' indicating that we processed cpa req for
1133	 * one virtual address page and its pfn. TBD: numpages can be set based
1134	 * on the initial value and the level returned by lookup_address().
1135	 */
1136	if (within(vaddr, PAGE_OFFSET,
1137		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1138		cpa->numpages = 1;
1139		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1140		return 0;
1141	} else {
1142		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1143			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1144			*cpa->vaddr);
1145
1146		return -EFAULT;
1147	}
1148}
1149
1150static int __change_page_attr(struct cpa_data *cpa, int primary)
1151{
1152	unsigned long address;
1153	int do_split, err;
1154	unsigned int level;
1155	pte_t *kpte, old_pte;
1156
1157	if (cpa->flags & CPA_PAGES_ARRAY) {
1158		struct page *page = cpa->pages[cpa->curpage];
1159		if (unlikely(PageHighMem(page)))
1160			return 0;
1161		address = (unsigned long)page_address(page);
1162	} else if (cpa->flags & CPA_ARRAY)
1163		address = cpa->vaddr[cpa->curpage];
1164	else
1165		address = *cpa->vaddr;
1166repeat:
1167	kpte = _lookup_address_cpa(cpa, address, &level);
1168	if (!kpte)
1169		return __cpa_process_fault(cpa, address, primary);
1170
1171	old_pte = *kpte;
1172	if (!pte_val(old_pte))
1173		return __cpa_process_fault(cpa, address, primary);
1174
1175	if (level == PG_LEVEL_4K) {
1176		pte_t new_pte;
1177		pgprot_t new_prot = pte_pgprot(old_pte);
1178		unsigned long pfn = pte_pfn(old_pte);
1179
1180		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1181		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1182
1183		new_prot = static_protections(new_prot, address, pfn);
1184
1185		/*
1186		 * Set the GLOBAL flags only if the PRESENT flag is
1187		 * set otherwise pte_present will return true even on
1188		 * a non present pte. The canon_pgprot will clear
1189		 * _PAGE_GLOBAL for the ancient hardware that doesn't
1190		 * support it.
1191		 */
1192		if (pgprot_val(new_prot) & _PAGE_PRESENT)
1193			pgprot_val(new_prot) |= _PAGE_GLOBAL;
1194		else
1195			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1196
1197		/*
1198		 * We need to keep the pfn from the existing PTE,
1199		 * after all we're only going to change it's attributes
1200		 * not the memory it points to
1201		 */
1202		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1203		cpa->pfn = pfn;
1204		/*
1205		 * Do we really change anything ?
1206		 */
1207		if (pte_val(old_pte) != pte_val(new_pte)) {
1208			set_pte_atomic(kpte, new_pte);
1209			cpa->flags |= CPA_FLUSHTLB;
1210		}
1211		cpa->numpages = 1;
1212		return 0;
1213	}
1214
1215	/*
1216	 * Check, whether we can keep the large page intact
1217	 * and just change the pte:
1218	 */
1219	do_split = try_preserve_large_page(kpte, address, cpa);
1220	/*
1221	 * When the range fits into the existing large page,
1222	 * return. cp->numpages and cpa->tlbflush have been updated in
1223	 * try_large_page:
1224	 */
1225	if (do_split <= 0)
1226		return do_split;
1227
1228	/*
1229	 * We have to split the large page:
1230	 */
1231	err = split_large_page(cpa, kpte, address);
1232	if (!err) {
1233		/*
1234	 	 * Do a global flush tlb after splitting the large page
1235	 	 * and before we do the actual change page attribute in the PTE.
1236	 	 *
1237	 	 * With out this, we violate the TLB application note, that says
1238	 	 * "The TLBs may contain both ordinary and large-page
1239		 *  translations for a 4-KByte range of linear addresses. This
1240		 *  may occur if software modifies the paging structures so that
1241		 *  the page size used for the address range changes. If the two
1242		 *  translations differ with respect to page frame or attributes
1243		 *  (e.g., permissions), processor behavior is undefined and may
1244		 *  be implementation-specific."
1245	 	 *
1246	 	 * We do this global tlb flush inside the cpa_lock, so that we
1247		 * don't allow any other cpu, with stale tlb entries change the
1248		 * page attribute in parallel, that also falls into the
1249		 * just split large page entry.
1250	 	 */
1251		flush_tlb_all();
1252		goto repeat;
1253	}
1254
1255	return err;
1256}
1257
1258static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1259
1260static int cpa_process_alias(struct cpa_data *cpa)
1261{
1262	struct cpa_data alias_cpa;
1263	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1264	unsigned long vaddr;
1265	int ret;
1266
1267	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1268		return 0;
1269
1270	/*
1271	 * No need to redo, when the primary call touched the direct
1272	 * mapping already:
1273	 */
1274	if (cpa->flags & CPA_PAGES_ARRAY) {
1275		struct page *page = cpa->pages[cpa->curpage];
1276		if (unlikely(PageHighMem(page)))
1277			return 0;
1278		vaddr = (unsigned long)page_address(page);
1279	} else if (cpa->flags & CPA_ARRAY)
1280		vaddr = cpa->vaddr[cpa->curpage];
1281	else
1282		vaddr = *cpa->vaddr;
1283
1284	if (!(within(vaddr, PAGE_OFFSET,
1285		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1286
1287		alias_cpa = *cpa;
1288		alias_cpa.vaddr = &laddr;
1289		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1290
1291		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1292		if (ret)
1293			return ret;
1294	}
1295
1296#ifdef CONFIG_X86_64
1297	/*
1298	 * If the primary call didn't touch the high mapping already
1299	 * and the physical address is inside the kernel map, we need
1300	 * to touch the high mapped kernel as well:
1301	 */
1302	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1303	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1304		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1305					       __START_KERNEL_map - phys_base;
1306		alias_cpa = *cpa;
1307		alias_cpa.vaddr = &temp_cpa_vaddr;
1308		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1309
1310		/*
1311		 * The high mapping range is imprecise, so ignore the
1312		 * return value.
1313		 */
1314		__change_page_attr_set_clr(&alias_cpa, 0);
1315	}
1316#endif
1317
1318	return 0;
1319}
1320
1321static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1322{
1323	int ret, numpages = cpa->numpages;
1324
1325	while (numpages) {
1326		/*
1327		 * Store the remaining nr of pages for the large page
1328		 * preservation check.
1329		 */
1330		cpa->numpages = numpages;
1331		/* for array changes, we can't use large page */
1332		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1333			cpa->numpages = 1;
1334
1335		if (!debug_pagealloc)
1336			spin_lock(&cpa_lock);
1337		ret = __change_page_attr(cpa, checkalias);
1338		if (!debug_pagealloc)
1339			spin_unlock(&cpa_lock);
1340		if (ret)
1341			return ret;
1342
1343		if (checkalias) {
1344			ret = cpa_process_alias(cpa);
1345			if (ret)
1346				return ret;
1347		}
1348
1349		/*
1350		 * Adjust the number of pages with the result of the
1351		 * CPA operation. Either a large page has been
1352		 * preserved or a single page update happened.
1353		 */
1354		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1355		numpages -= cpa->numpages;
1356		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1357			cpa->curpage++;
1358		else
1359			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
1360
1361	}
1362	return 0;
1363}
1364
1365static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1366				    pgprot_t mask_set, pgprot_t mask_clr,
1367				    int force_split, int in_flag,
1368				    struct page **pages)
1369{
1370	struct cpa_data cpa;
1371	int ret, cache, checkalias;
1372	unsigned long baddr = 0;
1373
1374	memset(&cpa, 0, sizeof(cpa));
1375
1376	/*
1377	 * Check, if we are requested to change a not supported
1378	 * feature:
1379	 */
1380	mask_set = canon_pgprot(mask_set);
1381	mask_clr = canon_pgprot(mask_clr);
1382	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1383		return 0;
1384
1385	/* Ensure we are PAGE_SIZE aligned */
1386	if (in_flag & CPA_ARRAY) {
1387		int i;
1388		for (i = 0; i < numpages; i++) {
1389			if (addr[i] & ~PAGE_MASK) {
1390				addr[i] &= PAGE_MASK;
1391				WARN_ON_ONCE(1);
1392			}
1393		}
1394	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1395		/*
1396		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1397		 * No need to cehck in that case
1398		 */
1399		if (*addr & ~PAGE_MASK) {
1400			*addr &= PAGE_MASK;
1401			/*
1402			 * People should not be passing in unaligned addresses:
1403			 */
1404			WARN_ON_ONCE(1);
1405		}
1406		/*
1407		 * Save address for cache flush. *addr is modified in the call
1408		 * to __change_page_attr_set_clr() below.
1409		 */
1410		baddr = *addr;
1411	}
1412
1413	/* Must avoid aliasing mappings in the highmem code */
1414	kmap_flush_unused();
1415
1416	vm_unmap_aliases();
1417
1418	cpa.vaddr = addr;
1419	cpa.pages = pages;
1420	cpa.numpages = numpages;
1421	cpa.mask_set = mask_set;
1422	cpa.mask_clr = mask_clr;
1423	cpa.flags = 0;
1424	cpa.curpage = 0;
1425	cpa.force_split = force_split;
1426
1427	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1428		cpa.flags |= in_flag;
1429
1430	/* No alias checking for _NX bit modifications */
1431	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1432
1433	ret = __change_page_attr_set_clr(&cpa, checkalias);
1434
1435	/*
1436	 * Check whether we really changed something:
1437	 */
1438	if (!(cpa.flags & CPA_FLUSHTLB))
1439		goto out;
1440
1441	/*
1442	 * No need to flush, when we did not set any of the caching
1443	 * attributes:
1444	 */
1445	cache = !!pgprot2cachemode(mask_set);
1446
1447	/*
1448	 * On success we use CLFLUSH, when the CPU supports it to
1449	 * avoid the WBINVD. If the CPU does not support it and in the
1450	 * error case we fall back to cpa_flush_all (which uses
1451	 * WBINVD):
1452	 */
1453	if (!ret && cpu_has_clflush) {
1454		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1455			cpa_flush_array(addr, numpages, cache,
1456					cpa.flags, pages);
1457		} else
1458			cpa_flush_range(baddr, numpages, cache);
1459	} else
1460		cpa_flush_all(cache);
1461
1462out:
1463	return ret;
1464}
1465
1466static inline int change_page_attr_set(unsigned long *addr, int numpages,
1467				       pgprot_t mask, int array)
1468{
1469	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1470		(array ? CPA_ARRAY : 0), NULL);
1471}
1472
1473static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1474					 pgprot_t mask, int array)
1475{
1476	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1477		(array ? CPA_ARRAY : 0), NULL);
1478}
1479
1480static inline int cpa_set_pages_array(struct page **pages, int numpages,
1481				       pgprot_t mask)
1482{
1483	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1484		CPA_PAGES_ARRAY, pages);
1485}
1486
1487static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1488					 pgprot_t mask)
1489{
1490	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1491		CPA_PAGES_ARRAY, pages);
1492}
1493
1494int _set_memory_uc(unsigned long addr, int numpages)
1495{
1496	/*
1497	 * for now UC MINUS. see comments in ioremap_nocache()
1498	 * If you really need strong UC use ioremap_uc(), but note
1499	 * that you cannot override IO areas with set_memory_*() as
1500	 * these helpers cannot work with IO memory.
1501	 */
1502	return change_page_attr_set(&addr, numpages,
1503				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1504				    0);
1505}
1506
1507int set_memory_uc(unsigned long addr, int numpages)
1508{
1509	int ret;
1510
1511	/*
1512	 * for now UC MINUS. see comments in ioremap_nocache()
1513	 */
1514	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1515			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1516	if (ret)
1517		goto out_err;
1518
1519	ret = _set_memory_uc(addr, numpages);
1520	if (ret)
1521		goto out_free;
1522
1523	return 0;
1524
1525out_free:
1526	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1527out_err:
1528	return ret;
1529}
1530EXPORT_SYMBOL(set_memory_uc);
1531
1532static int _set_memory_array(unsigned long *addr, int addrinarray,
1533		enum page_cache_mode new_type)
1534{
1535	enum page_cache_mode set_type;
1536	int i, j;
1537	int ret;
1538
1539	for (i = 0; i < addrinarray; i++) {
1540		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1541					new_type, NULL);
1542		if (ret)
1543			goto out_free;
1544	}
1545
1546	/* If WC, set to UC- first and then WC */
1547	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1548				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1549
1550	ret = change_page_attr_set(addr, addrinarray,
1551				   cachemode2pgprot(set_type), 1);
1552
1553	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1554		ret = change_page_attr_set_clr(addr, addrinarray,
1555					       cachemode2pgprot(
1556						_PAGE_CACHE_MODE_WC),
1557					       __pgprot(_PAGE_CACHE_MASK),
1558					       0, CPA_ARRAY, NULL);
1559	if (ret)
1560		goto out_free;
1561
1562	return 0;
1563
1564out_free:
1565	for (j = 0; j < i; j++)
1566		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1567
1568	return ret;
1569}
1570
1571int set_memory_array_uc(unsigned long *addr, int addrinarray)
1572{
1573	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1574}
1575EXPORT_SYMBOL(set_memory_array_uc);
1576
1577int set_memory_array_wc(unsigned long *addr, int addrinarray)
1578{
1579	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1580}
1581EXPORT_SYMBOL(set_memory_array_wc);
1582
1583int set_memory_array_wt(unsigned long *addr, int addrinarray)
1584{
1585	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1586}
1587EXPORT_SYMBOL_GPL(set_memory_array_wt);
1588
1589int _set_memory_wc(unsigned long addr, int numpages)
1590{
1591	int ret;
1592	unsigned long addr_copy = addr;
1593
1594	ret = change_page_attr_set(&addr, numpages,
1595				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1596				   0);
1597	if (!ret) {
1598		ret = change_page_attr_set_clr(&addr_copy, numpages,
1599					       cachemode2pgprot(
1600						_PAGE_CACHE_MODE_WC),
1601					       __pgprot(_PAGE_CACHE_MASK),
1602					       0, 0, NULL);
1603	}
1604	return ret;
1605}
1606
1607int set_memory_wc(unsigned long addr, int numpages)
1608{
1609	int ret;
1610
1611	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1612		_PAGE_CACHE_MODE_WC, NULL);
1613	if (ret)
1614		return ret;
1615
1616	ret = _set_memory_wc(addr, numpages);
1617	if (ret)
1618		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1619
1620	return ret;
1621}
1622EXPORT_SYMBOL(set_memory_wc);
1623
1624int _set_memory_wt(unsigned long addr, int numpages)
1625{
1626	return change_page_attr_set(&addr, numpages,
1627				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1628}
1629
1630int set_memory_wt(unsigned long addr, int numpages)
1631{
1632	int ret;
1633
1634	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1635			      _PAGE_CACHE_MODE_WT, NULL);
1636	if (ret)
1637		return ret;
1638
1639	ret = _set_memory_wt(addr, numpages);
1640	if (ret)
1641		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1642
1643	return ret;
1644}
1645EXPORT_SYMBOL_GPL(set_memory_wt);
1646
1647int _set_memory_wb(unsigned long addr, int numpages)
1648{
1649	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1650	return change_page_attr_clear(&addr, numpages,
1651				      __pgprot(_PAGE_CACHE_MASK), 0);
1652}
1653
1654int set_memory_wb(unsigned long addr, int numpages)
1655{
1656	int ret;
1657
1658	ret = _set_memory_wb(addr, numpages);
1659	if (ret)
1660		return ret;
1661
1662	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1663	return 0;
1664}
1665EXPORT_SYMBOL(set_memory_wb);
1666
1667int set_memory_array_wb(unsigned long *addr, int addrinarray)
1668{
1669	int i;
1670	int ret;
1671
1672	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1673	ret = change_page_attr_clear(addr, addrinarray,
1674				      __pgprot(_PAGE_CACHE_MASK), 1);
1675	if (ret)
1676		return ret;
1677
1678	for (i = 0; i < addrinarray; i++)
1679		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1680
1681	return 0;
1682}
1683EXPORT_SYMBOL(set_memory_array_wb);
1684
1685int set_memory_x(unsigned long addr, int numpages)
1686{
1687	if (!(__supported_pte_mask & _PAGE_NX))
1688		return 0;
1689
1690	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1691}
1692EXPORT_SYMBOL(set_memory_x);
1693
1694int set_memory_nx(unsigned long addr, int numpages)
1695{
1696	if (!(__supported_pte_mask & _PAGE_NX))
1697		return 0;
1698
1699	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1700}
1701EXPORT_SYMBOL(set_memory_nx);
1702
1703int set_memory_ro(unsigned long addr, int numpages)
1704{
1705	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1706}
1707
1708int set_memory_rw(unsigned long addr, int numpages)
1709{
1710	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1711}
1712
1713int set_memory_np(unsigned long addr, int numpages)
1714{
1715	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1716}
1717
1718int set_memory_4k(unsigned long addr, int numpages)
1719{
1720	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1721					__pgprot(0), 1, 0, NULL);
1722}
1723
1724int set_pages_uc(struct page *page, int numpages)
1725{
1726	unsigned long addr = (unsigned long)page_address(page);
1727
1728	return set_memory_uc(addr, numpages);
1729}
1730EXPORT_SYMBOL(set_pages_uc);
1731
1732static int _set_pages_array(struct page **pages, int addrinarray,
1733		enum page_cache_mode new_type)
1734{
1735	unsigned long start;
1736	unsigned long end;
1737	enum page_cache_mode set_type;
1738	int i;
1739	int free_idx;
1740	int ret;
1741
1742	for (i = 0; i < addrinarray; i++) {
1743		if (PageHighMem(pages[i]))
1744			continue;
1745		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1746		end = start + PAGE_SIZE;
1747		if (reserve_memtype(start, end, new_type, NULL))
1748			goto err_out;
1749	}
1750
1751	/* If WC, set to UC- first and then WC */
1752	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1753				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1754
1755	ret = cpa_set_pages_array(pages, addrinarray,
1756				  cachemode2pgprot(set_type));
1757	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1758		ret = change_page_attr_set_clr(NULL, addrinarray,
1759					       cachemode2pgprot(
1760						_PAGE_CACHE_MODE_WC),
1761					       __pgprot(_PAGE_CACHE_MASK),
1762					       0, CPA_PAGES_ARRAY, pages);
1763	if (ret)
1764		goto err_out;
1765	return 0; /* Success */
1766err_out:
1767	free_idx = i;
1768	for (i = 0; i < free_idx; i++) {
1769		if (PageHighMem(pages[i]))
1770			continue;
1771		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1772		end = start + PAGE_SIZE;
1773		free_memtype(start, end);
1774	}
1775	return -EINVAL;
1776}
1777
1778int set_pages_array_uc(struct page **pages, int addrinarray)
1779{
1780	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1781}
1782EXPORT_SYMBOL(set_pages_array_uc);
1783
1784int set_pages_array_wc(struct page **pages, int addrinarray)
1785{
1786	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1787}
1788EXPORT_SYMBOL(set_pages_array_wc);
1789
1790int set_pages_array_wt(struct page **pages, int addrinarray)
1791{
1792	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1793}
1794EXPORT_SYMBOL_GPL(set_pages_array_wt);
1795
1796int set_pages_wb(struct page *page, int numpages)
1797{
1798	unsigned long addr = (unsigned long)page_address(page);
1799
1800	return set_memory_wb(addr, numpages);
1801}
1802EXPORT_SYMBOL(set_pages_wb);
1803
1804int set_pages_array_wb(struct page **pages, int addrinarray)
1805{
1806	int retval;
1807	unsigned long start;
1808	unsigned long end;
1809	int i;
1810
1811	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1812	retval = cpa_clear_pages_array(pages, addrinarray,
1813			__pgprot(_PAGE_CACHE_MASK));
1814	if (retval)
1815		return retval;
1816
1817	for (i = 0; i < addrinarray; i++) {
1818		if (PageHighMem(pages[i]))
1819			continue;
1820		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1821		end = start + PAGE_SIZE;
1822		free_memtype(start, end);
1823	}
1824
1825	return 0;
1826}
1827EXPORT_SYMBOL(set_pages_array_wb);
1828
1829int set_pages_x(struct page *page, int numpages)
1830{
1831	unsigned long addr = (unsigned long)page_address(page);
1832
1833	return set_memory_x(addr, numpages);
1834}
1835EXPORT_SYMBOL(set_pages_x);
1836
1837int set_pages_nx(struct page *page, int numpages)
1838{
1839	unsigned long addr = (unsigned long)page_address(page);
1840
1841	return set_memory_nx(addr, numpages);
1842}
1843EXPORT_SYMBOL(set_pages_nx);
1844
1845int set_pages_ro(struct page *page, int numpages)
1846{
1847	unsigned long addr = (unsigned long)page_address(page);
1848
1849	return set_memory_ro(addr, numpages);
1850}
1851
1852int set_pages_rw(struct page *page, int numpages)
1853{
1854	unsigned long addr = (unsigned long)page_address(page);
1855
1856	return set_memory_rw(addr, numpages);
1857}
1858
1859#ifdef CONFIG_DEBUG_PAGEALLOC
1860
1861static int __set_pages_p(struct page *page, int numpages)
1862{
1863	unsigned long tempaddr = (unsigned long) page_address(page);
1864	struct cpa_data cpa = { .vaddr = &tempaddr,
1865				.pgd = NULL,
1866				.numpages = numpages,
1867				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1868				.mask_clr = __pgprot(0),
1869				.flags = 0};
1870
1871	/*
1872	 * No alias checking needed for setting present flag. otherwise,
1873	 * we may need to break large pages for 64-bit kernel text
1874	 * mappings (this adds to complexity if we want to do this from
1875	 * atomic context especially). Let's keep it simple!
1876	 */
1877	return __change_page_attr_set_clr(&cpa, 0);
1878}
1879
1880static int __set_pages_np(struct page *page, int numpages)
1881{
1882	unsigned long tempaddr = (unsigned long) page_address(page);
1883	struct cpa_data cpa = { .vaddr = &tempaddr,
1884				.pgd = NULL,
1885				.numpages = numpages,
1886				.mask_set = __pgprot(0),
1887				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1888				.flags = 0};
1889
1890	/*
1891	 * No alias checking needed for setting not present flag. otherwise,
1892	 * we may need to break large pages for 64-bit kernel text
1893	 * mappings (this adds to complexity if we want to do this from
1894	 * atomic context especially). Let's keep it simple!
1895	 */
1896	return __change_page_attr_set_clr(&cpa, 0);
1897}
1898
1899void __kernel_map_pages(struct page *page, int numpages, int enable)
1900{
1901	if (PageHighMem(page))
1902		return;
1903	if (!enable) {
1904		debug_check_no_locks_freed(page_address(page),
1905					   numpages * PAGE_SIZE);
1906	}
1907
1908	/*
1909	 * The return value is ignored as the calls cannot fail.
1910	 * Large pages for identity mappings are not used at boot time
1911	 * and hence no memory allocations during large page split.
1912	 */
1913	if (enable)
1914		__set_pages_p(page, numpages);
1915	else
1916		__set_pages_np(page, numpages);
1917
1918	/*
1919	 * We should perform an IPI and flush all tlbs,
1920	 * but that can deadlock->flush only current cpu:
1921	 */
1922	__flush_tlb_all();
1923
1924	arch_flush_lazy_mmu_mode();
1925}
1926
1927#ifdef CONFIG_HIBERNATION
1928
1929bool kernel_page_present(struct page *page)
1930{
1931	unsigned int level;
1932	pte_t *pte;
1933
1934	if (PageHighMem(page))
1935		return false;
1936
1937	pte = lookup_address((unsigned long)page_address(page), &level);
1938	return (pte_val(*pte) & _PAGE_PRESENT);
1939}
1940
1941#endif /* CONFIG_HIBERNATION */
1942
1943#endif /* CONFIG_DEBUG_PAGEALLOC */
1944
1945int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1946			    unsigned numpages, unsigned long page_flags)
1947{
1948	int retval = -EINVAL;
1949
1950	struct cpa_data cpa = {
1951		.vaddr = &address,
1952		.pfn = pfn,
1953		.pgd = pgd,
1954		.numpages = numpages,
1955		.mask_set = __pgprot(0),
1956		.mask_clr = __pgprot(0),
1957		.flags = 0,
1958	};
1959
1960	if (!(__supported_pte_mask & _PAGE_NX))
1961		goto out;
1962
1963	if (!(page_flags & _PAGE_NX))
1964		cpa.mask_clr = __pgprot(_PAGE_NX);
1965
1966	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1967
1968	retval = __change_page_attr_set_clr(&cpa, 0);
1969	__flush_tlb_all();
1970
1971out:
1972	return retval;
1973}
1974
1975void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1976			       unsigned numpages)
1977{
1978	unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1979}
1980
1981/*
1982 * The testcases use internal knowledge of the implementation that shouldn't
1983 * be exposed to the rest of the kernel. Include these directly here.
1984 */
1985#ifdef CONFIG_CPA_DEBUG
1986#include "pageattr-test.c"
1987#endif
1988