1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37 
38 #include <asm/cpu.h>
39 #include <asm/io.h>
40 #include <asm/desc.h>
41 #include <asm/vmx.h>
42 #include <asm/virtext.h>
43 #include <asm/mce.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48 #include <asm/apic.h>
49 #include <asm/irq_remapping.h>
50 
51 #include "trace.h"
52 #include "pmu.h"
53 
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55 #define __ex_clear(x, reg) \
56 	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
57 
58 MODULE_AUTHOR("Qumranet");
59 MODULE_LICENSE("GPL");
60 
61 static const struct x86_cpu_id vmx_cpu_id[] = {
62 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
63 	{}
64 };
65 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
66 
67 static bool __read_mostly enable_vpid = 1;
68 module_param_named(vpid, enable_vpid, bool, 0444);
69 
70 static bool __read_mostly flexpriority_enabled = 1;
71 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
72 
73 static bool __read_mostly enable_ept = 1;
74 module_param_named(ept, enable_ept, bool, S_IRUGO);
75 
76 static bool __read_mostly enable_unrestricted_guest = 1;
77 module_param_named(unrestricted_guest,
78 			enable_unrestricted_guest, bool, S_IRUGO);
79 
80 static bool __read_mostly enable_ept_ad_bits = 1;
81 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
82 
83 static bool __read_mostly emulate_invalid_guest_state = true;
84 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
85 
86 static bool __read_mostly vmm_exclusive = 1;
87 module_param(vmm_exclusive, bool, S_IRUGO);
88 
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91 
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94 
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98  * If nested=1, nested virtualization is supported, i.e., guests may use
99  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100  * use VMX instructions.
101  */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104 
105 static u64 __read_mostly host_xss;
106 
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109 
110 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
111 
112 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
113 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
114 #define KVM_VM_CR0_ALWAYS_ON						\
115 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
116 #define KVM_CR4_GUEST_OWNED_BITS				      \
117 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
118 	 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
119 
120 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
121 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
122 
123 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
124 
125 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
126 
127 /*
128  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
129  * ple_gap:    upper bound on the amount of time between two successive
130  *             executions of PAUSE in a loop. Also indicate if ple enabled.
131  *             According to test, this time is usually smaller than 128 cycles.
132  * ple_window: upper bound on the amount of time a guest is allowed to execute
133  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
134  *             less than 2^12 cycles
135  * Time is measured based on a counter that runs at the same rate as the TSC,
136  * refer SDM volume 3b section 21.6.13 & 22.1.3.
137  */
138 #define KVM_VMX_DEFAULT_PLE_GAP           128
139 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
140 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
143 		INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
144 
145 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
146 module_param(ple_gap, int, S_IRUGO);
147 
148 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
149 module_param(ple_window, int, S_IRUGO);
150 
151 /* Default doubles per-vcpu window every exit. */
152 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
153 module_param(ple_window_grow, int, S_IRUGO);
154 
155 /* Default resets per-vcpu window every exit to ple_window. */
156 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
157 module_param(ple_window_shrink, int, S_IRUGO);
158 
159 /* Default is to compute the maximum so we can never overflow. */
160 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
161 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162 module_param(ple_window_max, int, S_IRUGO);
163 
164 extern const ulong vmx_return;
165 
166 #define NR_AUTOLOAD_MSRS 8
167 #define VMCS02_POOL_SIZE 1
168 
169 struct vmcs {
170 	u32 revision_id;
171 	u32 abort;
172 	char data[0];
173 };
174 
175 /*
176  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
177  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
178  * loaded on this CPU (so we can clear them if the CPU goes down).
179  */
180 struct loaded_vmcs {
181 	struct vmcs *vmcs;
182 	int cpu;
183 	int launched;
184 	struct list_head loaded_vmcss_on_cpu_link;
185 };
186 
187 struct shared_msr_entry {
188 	unsigned index;
189 	u64 data;
190 	u64 mask;
191 };
192 
193 /*
194  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
195  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
196  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
197  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
198  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
199  * More than one of these structures may exist, if L1 runs multiple L2 guests.
200  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
201  * underlying hardware which will be used to run L2.
202  * This structure is packed to ensure that its layout is identical across
203  * machines (necessary for live migration).
204  * If there are changes in this struct, VMCS12_REVISION must be changed.
205  */
206 typedef u64 natural_width;
207 struct __packed vmcs12 {
208 	/* According to the Intel spec, a VMCS region must start with the
209 	 * following two fields. Then follow implementation-specific data.
210 	 */
211 	u32 revision_id;
212 	u32 abort;
213 
214 	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
215 	u32 padding[7]; /* room for future expansion */
216 
217 	u64 io_bitmap_a;
218 	u64 io_bitmap_b;
219 	u64 msr_bitmap;
220 	u64 vm_exit_msr_store_addr;
221 	u64 vm_exit_msr_load_addr;
222 	u64 vm_entry_msr_load_addr;
223 	u64 tsc_offset;
224 	u64 virtual_apic_page_addr;
225 	u64 apic_access_addr;
226 	u64 posted_intr_desc_addr;
227 	u64 ept_pointer;
228 	u64 eoi_exit_bitmap0;
229 	u64 eoi_exit_bitmap1;
230 	u64 eoi_exit_bitmap2;
231 	u64 eoi_exit_bitmap3;
232 	u64 xss_exit_bitmap;
233 	u64 guest_physical_address;
234 	u64 vmcs_link_pointer;
235 	u64 guest_ia32_debugctl;
236 	u64 guest_ia32_pat;
237 	u64 guest_ia32_efer;
238 	u64 guest_ia32_perf_global_ctrl;
239 	u64 guest_pdptr0;
240 	u64 guest_pdptr1;
241 	u64 guest_pdptr2;
242 	u64 guest_pdptr3;
243 	u64 guest_bndcfgs;
244 	u64 host_ia32_pat;
245 	u64 host_ia32_efer;
246 	u64 host_ia32_perf_global_ctrl;
247 	u64 padding64[8]; /* room for future expansion */
248 	/*
249 	 * To allow migration of L1 (complete with its L2 guests) between
250 	 * machines of different natural widths (32 or 64 bit), we cannot have
251 	 * unsigned long fields with no explict size. We use u64 (aliased
252 	 * natural_width) instead. Luckily, x86 is little-endian.
253 	 */
254 	natural_width cr0_guest_host_mask;
255 	natural_width cr4_guest_host_mask;
256 	natural_width cr0_read_shadow;
257 	natural_width cr4_read_shadow;
258 	natural_width cr3_target_value0;
259 	natural_width cr3_target_value1;
260 	natural_width cr3_target_value2;
261 	natural_width cr3_target_value3;
262 	natural_width exit_qualification;
263 	natural_width guest_linear_address;
264 	natural_width guest_cr0;
265 	natural_width guest_cr3;
266 	natural_width guest_cr4;
267 	natural_width guest_es_base;
268 	natural_width guest_cs_base;
269 	natural_width guest_ss_base;
270 	natural_width guest_ds_base;
271 	natural_width guest_fs_base;
272 	natural_width guest_gs_base;
273 	natural_width guest_ldtr_base;
274 	natural_width guest_tr_base;
275 	natural_width guest_gdtr_base;
276 	natural_width guest_idtr_base;
277 	natural_width guest_dr7;
278 	natural_width guest_rsp;
279 	natural_width guest_rip;
280 	natural_width guest_rflags;
281 	natural_width guest_pending_dbg_exceptions;
282 	natural_width guest_sysenter_esp;
283 	natural_width guest_sysenter_eip;
284 	natural_width host_cr0;
285 	natural_width host_cr3;
286 	natural_width host_cr4;
287 	natural_width host_fs_base;
288 	natural_width host_gs_base;
289 	natural_width host_tr_base;
290 	natural_width host_gdtr_base;
291 	natural_width host_idtr_base;
292 	natural_width host_ia32_sysenter_esp;
293 	natural_width host_ia32_sysenter_eip;
294 	natural_width host_rsp;
295 	natural_width host_rip;
296 	natural_width paddingl[8]; /* room for future expansion */
297 	u32 pin_based_vm_exec_control;
298 	u32 cpu_based_vm_exec_control;
299 	u32 exception_bitmap;
300 	u32 page_fault_error_code_mask;
301 	u32 page_fault_error_code_match;
302 	u32 cr3_target_count;
303 	u32 vm_exit_controls;
304 	u32 vm_exit_msr_store_count;
305 	u32 vm_exit_msr_load_count;
306 	u32 vm_entry_controls;
307 	u32 vm_entry_msr_load_count;
308 	u32 vm_entry_intr_info_field;
309 	u32 vm_entry_exception_error_code;
310 	u32 vm_entry_instruction_len;
311 	u32 tpr_threshold;
312 	u32 secondary_vm_exec_control;
313 	u32 vm_instruction_error;
314 	u32 vm_exit_reason;
315 	u32 vm_exit_intr_info;
316 	u32 vm_exit_intr_error_code;
317 	u32 idt_vectoring_info_field;
318 	u32 idt_vectoring_error_code;
319 	u32 vm_exit_instruction_len;
320 	u32 vmx_instruction_info;
321 	u32 guest_es_limit;
322 	u32 guest_cs_limit;
323 	u32 guest_ss_limit;
324 	u32 guest_ds_limit;
325 	u32 guest_fs_limit;
326 	u32 guest_gs_limit;
327 	u32 guest_ldtr_limit;
328 	u32 guest_tr_limit;
329 	u32 guest_gdtr_limit;
330 	u32 guest_idtr_limit;
331 	u32 guest_es_ar_bytes;
332 	u32 guest_cs_ar_bytes;
333 	u32 guest_ss_ar_bytes;
334 	u32 guest_ds_ar_bytes;
335 	u32 guest_fs_ar_bytes;
336 	u32 guest_gs_ar_bytes;
337 	u32 guest_ldtr_ar_bytes;
338 	u32 guest_tr_ar_bytes;
339 	u32 guest_interruptibility_info;
340 	u32 guest_activity_state;
341 	u32 guest_sysenter_cs;
342 	u32 host_ia32_sysenter_cs;
343 	u32 vmx_preemption_timer_value;
344 	u32 padding32[7]; /* room for future expansion */
345 	u16 virtual_processor_id;
346 	u16 posted_intr_nv;
347 	u16 guest_es_selector;
348 	u16 guest_cs_selector;
349 	u16 guest_ss_selector;
350 	u16 guest_ds_selector;
351 	u16 guest_fs_selector;
352 	u16 guest_gs_selector;
353 	u16 guest_ldtr_selector;
354 	u16 guest_tr_selector;
355 	u16 guest_intr_status;
356 	u16 host_es_selector;
357 	u16 host_cs_selector;
358 	u16 host_ss_selector;
359 	u16 host_ds_selector;
360 	u16 host_fs_selector;
361 	u16 host_gs_selector;
362 	u16 host_tr_selector;
363 };
364 
365 /*
366  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
367  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
368  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
369  */
370 #define VMCS12_REVISION 0x11e57ed0
371 
372 /*
373  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
374  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
375  * current implementation, 4K are reserved to avoid future complications.
376  */
377 #define VMCS12_SIZE 0x1000
378 
379 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
380 struct vmcs02_list {
381 	struct list_head list;
382 	gpa_t vmptr;
383 	struct loaded_vmcs vmcs02;
384 };
385 
386 /*
387  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
388  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
389  */
390 struct nested_vmx {
391 	/* Has the level1 guest done vmxon? */
392 	bool vmxon;
393 	gpa_t vmxon_ptr;
394 
395 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
396 	gpa_t current_vmptr;
397 	/* The host-usable pointer to the above */
398 	struct page *current_vmcs12_page;
399 	struct vmcs12 *current_vmcs12;
400 	struct vmcs *current_shadow_vmcs;
401 	/*
402 	 * Indicates if the shadow vmcs must be updated with the
403 	 * data hold by vmcs12
404 	 */
405 	bool sync_shadow_vmcs;
406 
407 	/* vmcs02_list cache of VMCSs recently used to run L2 guests */
408 	struct list_head vmcs02_pool;
409 	int vmcs02_num;
410 	u64 vmcs01_tsc_offset;
411 	/* L2 must run next, and mustn't decide to exit to L1. */
412 	bool nested_run_pending;
413 	/*
414 	 * Guest pages referred to in vmcs02 with host-physical pointers, so
415 	 * we must keep them pinned while L2 runs.
416 	 */
417 	struct page *apic_access_page;
418 	struct page *virtual_apic_page;
419 	struct page *pi_desc_page;
420 	struct pi_desc *pi_desc;
421 	bool pi_pending;
422 	u16 posted_intr_nv;
423 	u64 msr_ia32_feature_control;
424 
425 	struct hrtimer preemption_timer;
426 	bool preemption_timer_expired;
427 
428 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
429 	u64 vmcs01_debugctl;
430 
431 	u16 vpid02;
432 	u16 last_vpid;
433 
434 	u32 nested_vmx_procbased_ctls_low;
435 	u32 nested_vmx_procbased_ctls_high;
436 	u32 nested_vmx_true_procbased_ctls_low;
437 	u32 nested_vmx_secondary_ctls_low;
438 	u32 nested_vmx_secondary_ctls_high;
439 	u32 nested_vmx_pinbased_ctls_low;
440 	u32 nested_vmx_pinbased_ctls_high;
441 	u32 nested_vmx_exit_ctls_low;
442 	u32 nested_vmx_exit_ctls_high;
443 	u32 nested_vmx_true_exit_ctls_low;
444 	u32 nested_vmx_entry_ctls_low;
445 	u32 nested_vmx_entry_ctls_high;
446 	u32 nested_vmx_true_entry_ctls_low;
447 	u32 nested_vmx_misc_low;
448 	u32 nested_vmx_misc_high;
449 	u32 nested_vmx_ept_caps;
450 	u32 nested_vmx_vpid_caps;
451 };
452 
453 #define POSTED_INTR_ON  0
454 #define POSTED_INTR_SN  1
455 
456 /* Posted-Interrupt Descriptor */
457 struct pi_desc {
458 	u32 pir[8];     /* Posted interrupt requested */
459 	union {
460 		struct {
461 				/* bit 256 - Outstanding Notification */
462 			u16	on	: 1,
463 				/* bit 257 - Suppress Notification */
464 				sn	: 1,
465 				/* bit 271:258 - Reserved */
466 				rsvd_1	: 14;
467 				/* bit 279:272 - Notification Vector */
468 			u8	nv;
469 				/* bit 287:280 - Reserved */
470 			u8	rsvd_2;
471 				/* bit 319:288 - Notification Destination */
472 			u32	ndst;
473 		};
474 		u64 control;
475 	};
476 	u32 rsvd[6];
477 } __aligned(64);
478 
pi_test_and_set_on(struct pi_desc * pi_desc)479 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
480 {
481 	return test_and_set_bit(POSTED_INTR_ON,
482 			(unsigned long *)&pi_desc->control);
483 }
484 
pi_test_and_clear_on(struct pi_desc * pi_desc)485 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
486 {
487 	return test_and_clear_bit(POSTED_INTR_ON,
488 			(unsigned long *)&pi_desc->control);
489 }
490 
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)491 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
492 {
493 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
494 }
495 
pi_clear_sn(struct pi_desc * pi_desc)496 static inline void pi_clear_sn(struct pi_desc *pi_desc)
497 {
498 	return clear_bit(POSTED_INTR_SN,
499 			(unsigned long *)&pi_desc->control);
500 }
501 
pi_set_sn(struct pi_desc * pi_desc)502 static inline void pi_set_sn(struct pi_desc *pi_desc)
503 {
504 	return set_bit(POSTED_INTR_SN,
505 			(unsigned long *)&pi_desc->control);
506 }
507 
pi_test_on(struct pi_desc * pi_desc)508 static inline int pi_test_on(struct pi_desc *pi_desc)
509 {
510 	return test_bit(POSTED_INTR_ON,
511 			(unsigned long *)&pi_desc->control);
512 }
513 
pi_test_sn(struct pi_desc * pi_desc)514 static inline int pi_test_sn(struct pi_desc *pi_desc)
515 {
516 	return test_bit(POSTED_INTR_SN,
517 			(unsigned long *)&pi_desc->control);
518 }
519 
520 struct vcpu_vmx {
521 	struct kvm_vcpu       vcpu;
522 	unsigned long         host_rsp;
523 	u8                    fail;
524 	bool                  nmi_known_unmasked;
525 	u32                   exit_intr_info;
526 	u32                   idt_vectoring_info;
527 	ulong                 rflags;
528 	struct shared_msr_entry *guest_msrs;
529 	int                   nmsrs;
530 	int                   save_nmsrs;
531 	unsigned long	      host_idt_base;
532 #ifdef CONFIG_X86_64
533 	u64 		      msr_host_kernel_gs_base;
534 	u64 		      msr_guest_kernel_gs_base;
535 #endif
536 	u32 vm_entry_controls_shadow;
537 	u32 vm_exit_controls_shadow;
538 	/*
539 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
540 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
541 	 * guest (L2), it points to a different VMCS.
542 	 */
543 	struct loaded_vmcs    vmcs01;
544 	struct loaded_vmcs   *loaded_vmcs;
545 	bool                  __launched; /* temporary, used in vmx_vcpu_run */
546 	struct msr_autoload {
547 		unsigned nr;
548 		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
549 		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
550 	} msr_autoload;
551 	struct {
552 		int           loaded;
553 		u16           fs_sel, gs_sel, ldt_sel;
554 #ifdef CONFIG_X86_64
555 		u16           ds_sel, es_sel;
556 #endif
557 		int           gs_ldt_reload_needed;
558 		int           fs_reload_needed;
559 		u64           msr_host_bndcfgs;
560 		unsigned long vmcs_host_cr4;	/* May not match real cr4 */
561 	} host_state;
562 	struct {
563 		int vm86_active;
564 		ulong save_rflags;
565 		struct kvm_segment segs[8];
566 	} rmode;
567 	struct {
568 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
569 		struct kvm_save_segment {
570 			u16 selector;
571 			unsigned long base;
572 			u32 limit;
573 			u32 ar;
574 		} seg[8];
575 	} segment_cache;
576 	int vpid;
577 	bool emulation_required;
578 
579 	/* Support for vnmi-less CPUs */
580 	int soft_vnmi_blocked;
581 	ktime_t entry_time;
582 	s64 vnmi_blocked_time;
583 	u32 exit_reason;
584 
585 	/* Posted interrupt descriptor */
586 	struct pi_desc pi_desc;
587 
588 	/* Support for a guest hypervisor (nested VMX) */
589 	struct nested_vmx nested;
590 
591 	/* Dynamic PLE window. */
592 	int ple_window;
593 	bool ple_window_dirty;
594 
595 	/* Support for PML */
596 #define PML_ENTITY_NUM		512
597 	struct page *pml_pg;
598 
599 	u64 current_tsc_ratio;
600 };
601 
602 enum segment_cache_field {
603 	SEG_FIELD_SEL = 0,
604 	SEG_FIELD_BASE = 1,
605 	SEG_FIELD_LIMIT = 2,
606 	SEG_FIELD_AR = 3,
607 
608 	SEG_FIELD_NR = 4
609 };
610 
to_vmx(struct kvm_vcpu * vcpu)611 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
612 {
613 	return container_of(vcpu, struct vcpu_vmx, vcpu);
614 }
615 
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)616 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
617 {
618 	return &(to_vmx(vcpu)->pi_desc);
619 }
620 
621 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
622 #define FIELD(number, name)	[number] = VMCS12_OFFSET(name)
623 #define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \
624 				[number##_HIGH] = VMCS12_OFFSET(name)+4
625 
626 
627 static unsigned long shadow_read_only_fields[] = {
628 	/*
629 	 * We do NOT shadow fields that are modified when L0
630 	 * traps and emulates any vmx instruction (e.g. VMPTRLD,
631 	 * VMXON...) executed by L1.
632 	 * For example, VM_INSTRUCTION_ERROR is read
633 	 * by L1 if a vmx instruction fails (part of the error path).
634 	 * Note the code assumes this logic. If for some reason
635 	 * we start shadowing these fields then we need to
636 	 * force a shadow sync when L0 emulates vmx instructions
637 	 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
638 	 * by nested_vmx_failValid)
639 	 */
640 	VM_EXIT_REASON,
641 	VM_EXIT_INTR_INFO,
642 	VM_EXIT_INSTRUCTION_LEN,
643 	IDT_VECTORING_INFO_FIELD,
644 	IDT_VECTORING_ERROR_CODE,
645 	VM_EXIT_INTR_ERROR_CODE,
646 	EXIT_QUALIFICATION,
647 	GUEST_LINEAR_ADDRESS,
648 	GUEST_PHYSICAL_ADDRESS
649 };
650 static int max_shadow_read_only_fields =
651 	ARRAY_SIZE(shadow_read_only_fields);
652 
653 static unsigned long shadow_read_write_fields[] = {
654 	TPR_THRESHOLD,
655 	GUEST_RIP,
656 	GUEST_RSP,
657 	GUEST_CR0,
658 	GUEST_CR3,
659 	GUEST_CR4,
660 	GUEST_INTERRUPTIBILITY_INFO,
661 	GUEST_RFLAGS,
662 	GUEST_CS_SELECTOR,
663 	GUEST_CS_AR_BYTES,
664 	GUEST_CS_LIMIT,
665 	GUEST_CS_BASE,
666 	GUEST_ES_BASE,
667 	GUEST_BNDCFGS,
668 	CR0_GUEST_HOST_MASK,
669 	CR0_READ_SHADOW,
670 	CR4_READ_SHADOW,
671 	TSC_OFFSET,
672 	EXCEPTION_BITMAP,
673 	CPU_BASED_VM_EXEC_CONTROL,
674 	VM_ENTRY_EXCEPTION_ERROR_CODE,
675 	VM_ENTRY_INTR_INFO_FIELD,
676 	VM_ENTRY_INSTRUCTION_LEN,
677 	VM_ENTRY_EXCEPTION_ERROR_CODE,
678 	HOST_FS_BASE,
679 	HOST_GS_BASE,
680 	HOST_FS_SELECTOR,
681 	HOST_GS_SELECTOR
682 };
683 static int max_shadow_read_write_fields =
684 	ARRAY_SIZE(shadow_read_write_fields);
685 
686 static const unsigned short vmcs_field_to_offset_table[] = {
687 	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
688 	FIELD(POSTED_INTR_NV, posted_intr_nv),
689 	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
690 	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
691 	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
692 	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
693 	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
694 	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
695 	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
696 	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
697 	FIELD(GUEST_INTR_STATUS, guest_intr_status),
698 	FIELD(HOST_ES_SELECTOR, host_es_selector),
699 	FIELD(HOST_CS_SELECTOR, host_cs_selector),
700 	FIELD(HOST_SS_SELECTOR, host_ss_selector),
701 	FIELD(HOST_DS_SELECTOR, host_ds_selector),
702 	FIELD(HOST_FS_SELECTOR, host_fs_selector),
703 	FIELD(HOST_GS_SELECTOR, host_gs_selector),
704 	FIELD(HOST_TR_SELECTOR, host_tr_selector),
705 	FIELD64(IO_BITMAP_A, io_bitmap_a),
706 	FIELD64(IO_BITMAP_B, io_bitmap_b),
707 	FIELD64(MSR_BITMAP, msr_bitmap),
708 	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
709 	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
710 	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
711 	FIELD64(TSC_OFFSET, tsc_offset),
712 	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
713 	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
714 	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
715 	FIELD64(EPT_POINTER, ept_pointer),
716 	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
717 	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
718 	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
719 	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
720 	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
721 	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
722 	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
723 	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
724 	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
725 	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
726 	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
727 	FIELD64(GUEST_PDPTR0, guest_pdptr0),
728 	FIELD64(GUEST_PDPTR1, guest_pdptr1),
729 	FIELD64(GUEST_PDPTR2, guest_pdptr2),
730 	FIELD64(GUEST_PDPTR3, guest_pdptr3),
731 	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
732 	FIELD64(HOST_IA32_PAT, host_ia32_pat),
733 	FIELD64(HOST_IA32_EFER, host_ia32_efer),
734 	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
735 	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
736 	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
737 	FIELD(EXCEPTION_BITMAP, exception_bitmap),
738 	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
739 	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
740 	FIELD(CR3_TARGET_COUNT, cr3_target_count),
741 	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
742 	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
743 	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
744 	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
745 	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
746 	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
747 	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
748 	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
749 	FIELD(TPR_THRESHOLD, tpr_threshold),
750 	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
751 	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
752 	FIELD(VM_EXIT_REASON, vm_exit_reason),
753 	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
754 	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
755 	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
756 	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
757 	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
758 	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
759 	FIELD(GUEST_ES_LIMIT, guest_es_limit),
760 	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
761 	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
762 	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
763 	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
764 	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
765 	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
766 	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
767 	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
768 	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
769 	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
770 	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
771 	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
772 	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
773 	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
774 	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
775 	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
776 	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
777 	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
778 	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
779 	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
780 	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
781 	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
782 	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
783 	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
784 	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
785 	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
786 	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
787 	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
788 	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
789 	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
790 	FIELD(EXIT_QUALIFICATION, exit_qualification),
791 	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
792 	FIELD(GUEST_CR0, guest_cr0),
793 	FIELD(GUEST_CR3, guest_cr3),
794 	FIELD(GUEST_CR4, guest_cr4),
795 	FIELD(GUEST_ES_BASE, guest_es_base),
796 	FIELD(GUEST_CS_BASE, guest_cs_base),
797 	FIELD(GUEST_SS_BASE, guest_ss_base),
798 	FIELD(GUEST_DS_BASE, guest_ds_base),
799 	FIELD(GUEST_FS_BASE, guest_fs_base),
800 	FIELD(GUEST_GS_BASE, guest_gs_base),
801 	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
802 	FIELD(GUEST_TR_BASE, guest_tr_base),
803 	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
804 	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
805 	FIELD(GUEST_DR7, guest_dr7),
806 	FIELD(GUEST_RSP, guest_rsp),
807 	FIELD(GUEST_RIP, guest_rip),
808 	FIELD(GUEST_RFLAGS, guest_rflags),
809 	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
810 	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
811 	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
812 	FIELD(HOST_CR0, host_cr0),
813 	FIELD(HOST_CR3, host_cr3),
814 	FIELD(HOST_CR4, host_cr4),
815 	FIELD(HOST_FS_BASE, host_fs_base),
816 	FIELD(HOST_GS_BASE, host_gs_base),
817 	FIELD(HOST_TR_BASE, host_tr_base),
818 	FIELD(HOST_GDTR_BASE, host_gdtr_base),
819 	FIELD(HOST_IDTR_BASE, host_idtr_base),
820 	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
821 	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
822 	FIELD(HOST_RSP, host_rsp),
823 	FIELD(HOST_RIP, host_rip),
824 };
825 
vmcs_field_to_offset(unsigned long field)826 static inline short vmcs_field_to_offset(unsigned long field)
827 {
828 	BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
829 
830 	if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
831 	    vmcs_field_to_offset_table[field] == 0)
832 		return -ENOENT;
833 
834 	return vmcs_field_to_offset_table[field];
835 }
836 
get_vmcs12(struct kvm_vcpu * vcpu)837 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
838 {
839 	return to_vmx(vcpu)->nested.current_vmcs12;
840 }
841 
nested_get_page(struct kvm_vcpu * vcpu,gpa_t addr)842 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
843 {
844 	struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
845 	if (is_error_page(page))
846 		return NULL;
847 
848 	return page;
849 }
850 
nested_release_page(struct page * page)851 static void nested_release_page(struct page *page)
852 {
853 	kvm_release_page_dirty(page);
854 }
855 
nested_release_page_clean(struct page * page)856 static void nested_release_page_clean(struct page *page)
857 {
858 	kvm_release_page_clean(page);
859 }
860 
861 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
862 static u64 construct_eptp(unsigned long root_hpa);
863 static void kvm_cpu_vmxon(u64 addr);
864 static void kvm_cpu_vmxoff(void);
865 static bool vmx_mpx_supported(void);
866 static bool vmx_xsaves_supported(void);
867 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
868 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
869 static void vmx_set_segment(struct kvm_vcpu *vcpu,
870 			    struct kvm_segment *var, int seg);
871 static void vmx_get_segment(struct kvm_vcpu *vcpu,
872 			    struct kvm_segment *var, int seg);
873 static bool guest_state_valid(struct kvm_vcpu *vcpu);
874 static u32 vmx_segment_access_rights(struct kvm_segment *var);
875 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
876 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
877 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
878 static int alloc_identity_pagetable(struct kvm *kvm);
879 
880 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
881 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
882 /*
883  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
884  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
885  */
886 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
887 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
888 
889 /*
890  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
891  * can find which vCPU should be waken up.
892  */
893 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
894 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
895 
896 static unsigned long *vmx_io_bitmap_a;
897 static unsigned long *vmx_io_bitmap_b;
898 static unsigned long *vmx_msr_bitmap_legacy;
899 static unsigned long *vmx_msr_bitmap_longmode;
900 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
901 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
902 static unsigned long *vmx_msr_bitmap_nested;
903 static unsigned long *vmx_vmread_bitmap;
904 static unsigned long *vmx_vmwrite_bitmap;
905 
906 static bool cpu_has_load_ia32_efer;
907 static bool cpu_has_load_perf_global_ctrl;
908 
909 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
910 static DEFINE_SPINLOCK(vmx_vpid_lock);
911 
912 static struct vmcs_config {
913 	int size;
914 	int order;
915 	u32 revision_id;
916 	u32 pin_based_exec_ctrl;
917 	u32 cpu_based_exec_ctrl;
918 	u32 cpu_based_2nd_exec_ctrl;
919 	u32 vmexit_ctrl;
920 	u32 vmentry_ctrl;
921 } vmcs_config;
922 
923 static struct vmx_capability {
924 	u32 ept;
925 	u32 vpid;
926 } vmx_capability;
927 
928 #define VMX_SEGMENT_FIELD(seg)					\
929 	[VCPU_SREG_##seg] = {                                   \
930 		.selector = GUEST_##seg##_SELECTOR,		\
931 		.base = GUEST_##seg##_BASE,		   	\
932 		.limit = GUEST_##seg##_LIMIT,		   	\
933 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
934 	}
935 
936 static const struct kvm_vmx_segment_field {
937 	unsigned selector;
938 	unsigned base;
939 	unsigned limit;
940 	unsigned ar_bytes;
941 } kvm_vmx_segment_fields[] = {
942 	VMX_SEGMENT_FIELD(CS),
943 	VMX_SEGMENT_FIELD(DS),
944 	VMX_SEGMENT_FIELD(ES),
945 	VMX_SEGMENT_FIELD(FS),
946 	VMX_SEGMENT_FIELD(GS),
947 	VMX_SEGMENT_FIELD(SS),
948 	VMX_SEGMENT_FIELD(TR),
949 	VMX_SEGMENT_FIELD(LDTR),
950 };
951 
952 static u64 host_efer;
953 
954 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
955 
956 /*
957  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
958  * away by decrementing the array size.
959  */
960 static const u32 vmx_msr_index[] = {
961 #ifdef CONFIG_X86_64
962 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
963 #endif
964 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
965 };
966 
is_page_fault(u32 intr_info)967 static inline bool is_page_fault(u32 intr_info)
968 {
969 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
970 			     INTR_INFO_VALID_MASK)) ==
971 		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
972 }
973 
is_no_device(u32 intr_info)974 static inline bool is_no_device(u32 intr_info)
975 {
976 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
977 			     INTR_INFO_VALID_MASK)) ==
978 		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
979 }
980 
is_invalid_opcode(u32 intr_info)981 static inline bool is_invalid_opcode(u32 intr_info)
982 {
983 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
984 			     INTR_INFO_VALID_MASK)) ==
985 		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
986 }
987 
is_external_interrupt(u32 intr_info)988 static inline bool is_external_interrupt(u32 intr_info)
989 {
990 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
991 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
992 }
993 
is_machine_check(u32 intr_info)994 static inline bool is_machine_check(u32 intr_info)
995 {
996 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
997 			     INTR_INFO_VALID_MASK)) ==
998 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
999 }
1000 
cpu_has_vmx_msr_bitmap(void)1001 static inline bool cpu_has_vmx_msr_bitmap(void)
1002 {
1003 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1004 }
1005 
cpu_has_vmx_tpr_shadow(void)1006 static inline bool cpu_has_vmx_tpr_shadow(void)
1007 {
1008 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1009 }
1010 
cpu_need_tpr_shadow(struct kvm_vcpu * vcpu)1011 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1012 {
1013 	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1014 }
1015 
cpu_has_secondary_exec_ctrls(void)1016 static inline bool cpu_has_secondary_exec_ctrls(void)
1017 {
1018 	return vmcs_config.cpu_based_exec_ctrl &
1019 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1020 }
1021 
cpu_has_vmx_virtualize_apic_accesses(void)1022 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1023 {
1024 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1025 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1026 }
1027 
cpu_has_vmx_virtualize_x2apic_mode(void)1028 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1029 {
1030 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1031 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1032 }
1033 
cpu_has_vmx_apic_register_virt(void)1034 static inline bool cpu_has_vmx_apic_register_virt(void)
1035 {
1036 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1037 		SECONDARY_EXEC_APIC_REGISTER_VIRT;
1038 }
1039 
cpu_has_vmx_virtual_intr_delivery(void)1040 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1041 {
1042 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1043 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1044 }
1045 
cpu_has_vmx_posted_intr(void)1046 static inline bool cpu_has_vmx_posted_intr(void)
1047 {
1048 	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1049 		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1050 }
1051 
cpu_has_vmx_apicv(void)1052 static inline bool cpu_has_vmx_apicv(void)
1053 {
1054 	return cpu_has_vmx_apic_register_virt() &&
1055 		cpu_has_vmx_virtual_intr_delivery() &&
1056 		cpu_has_vmx_posted_intr();
1057 }
1058 
cpu_has_vmx_flexpriority(void)1059 static inline bool cpu_has_vmx_flexpriority(void)
1060 {
1061 	return cpu_has_vmx_tpr_shadow() &&
1062 		cpu_has_vmx_virtualize_apic_accesses();
1063 }
1064 
cpu_has_vmx_ept_execute_only(void)1065 static inline bool cpu_has_vmx_ept_execute_only(void)
1066 {
1067 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1068 }
1069 
cpu_has_vmx_ept_2m_page(void)1070 static inline bool cpu_has_vmx_ept_2m_page(void)
1071 {
1072 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1073 }
1074 
cpu_has_vmx_ept_1g_page(void)1075 static inline bool cpu_has_vmx_ept_1g_page(void)
1076 {
1077 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1078 }
1079 
cpu_has_vmx_ept_4levels(void)1080 static inline bool cpu_has_vmx_ept_4levels(void)
1081 {
1082 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1083 }
1084 
cpu_has_vmx_ept_ad_bits(void)1085 static inline bool cpu_has_vmx_ept_ad_bits(void)
1086 {
1087 	return vmx_capability.ept & VMX_EPT_AD_BIT;
1088 }
1089 
cpu_has_vmx_invept_context(void)1090 static inline bool cpu_has_vmx_invept_context(void)
1091 {
1092 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1093 }
1094 
cpu_has_vmx_invept_global(void)1095 static inline bool cpu_has_vmx_invept_global(void)
1096 {
1097 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1098 }
1099 
cpu_has_vmx_invvpid_single(void)1100 static inline bool cpu_has_vmx_invvpid_single(void)
1101 {
1102 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1103 }
1104 
cpu_has_vmx_invvpid_global(void)1105 static inline bool cpu_has_vmx_invvpid_global(void)
1106 {
1107 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1108 }
1109 
cpu_has_vmx_ept(void)1110 static inline bool cpu_has_vmx_ept(void)
1111 {
1112 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1113 		SECONDARY_EXEC_ENABLE_EPT;
1114 }
1115 
cpu_has_vmx_unrestricted_guest(void)1116 static inline bool cpu_has_vmx_unrestricted_guest(void)
1117 {
1118 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1119 		SECONDARY_EXEC_UNRESTRICTED_GUEST;
1120 }
1121 
cpu_has_vmx_ple(void)1122 static inline bool cpu_has_vmx_ple(void)
1123 {
1124 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1125 		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1126 }
1127 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)1128 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1129 {
1130 	return flexpriority_enabled && lapic_in_kernel(vcpu);
1131 }
1132 
cpu_has_vmx_vpid(void)1133 static inline bool cpu_has_vmx_vpid(void)
1134 {
1135 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1136 		SECONDARY_EXEC_ENABLE_VPID;
1137 }
1138 
cpu_has_vmx_rdtscp(void)1139 static inline bool cpu_has_vmx_rdtscp(void)
1140 {
1141 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1142 		SECONDARY_EXEC_RDTSCP;
1143 }
1144 
cpu_has_vmx_invpcid(void)1145 static inline bool cpu_has_vmx_invpcid(void)
1146 {
1147 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1148 		SECONDARY_EXEC_ENABLE_INVPCID;
1149 }
1150 
cpu_has_virtual_nmis(void)1151 static inline bool cpu_has_virtual_nmis(void)
1152 {
1153 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1154 }
1155 
cpu_has_vmx_wbinvd_exit(void)1156 static inline bool cpu_has_vmx_wbinvd_exit(void)
1157 {
1158 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1159 		SECONDARY_EXEC_WBINVD_EXITING;
1160 }
1161 
cpu_has_vmx_shadow_vmcs(void)1162 static inline bool cpu_has_vmx_shadow_vmcs(void)
1163 {
1164 	u64 vmx_msr;
1165 	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1166 	/* check if the cpu supports writing r/o exit information fields */
1167 	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1168 		return false;
1169 
1170 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1171 		SECONDARY_EXEC_SHADOW_VMCS;
1172 }
1173 
cpu_has_vmx_pml(void)1174 static inline bool cpu_has_vmx_pml(void)
1175 {
1176 	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1177 }
1178 
cpu_has_vmx_tsc_scaling(void)1179 static inline bool cpu_has_vmx_tsc_scaling(void)
1180 {
1181 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1182 		SECONDARY_EXEC_TSC_SCALING;
1183 }
1184 
report_flexpriority(void)1185 static inline bool report_flexpriority(void)
1186 {
1187 	return flexpriority_enabled;
1188 }
1189 
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1190 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1191 {
1192 	return vmcs12->cpu_based_vm_exec_control & bit;
1193 }
1194 
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1195 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1196 {
1197 	return (vmcs12->cpu_based_vm_exec_control &
1198 			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1199 		(vmcs12->secondary_vm_exec_control & bit);
1200 }
1201 
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12)1202 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1203 {
1204 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1205 }
1206 
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1207 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1208 {
1209 	return vmcs12->pin_based_vm_exec_control &
1210 		PIN_BASED_VMX_PREEMPTION_TIMER;
1211 }
1212 
nested_cpu_has_ept(struct vmcs12 * vmcs12)1213 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1214 {
1215 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1216 }
1217 
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)1218 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1219 {
1220 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1221 		vmx_xsaves_supported();
1222 }
1223 
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)1224 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1225 {
1226 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1227 }
1228 
nested_cpu_has_vpid(struct vmcs12 * vmcs12)1229 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1230 {
1231 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1232 }
1233 
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)1234 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1235 {
1236 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1237 }
1238 
nested_cpu_has_vid(struct vmcs12 * vmcs12)1239 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1240 {
1241 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1242 }
1243 
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)1244 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1245 {
1246 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1247 }
1248 
is_exception(u32 intr_info)1249 static inline bool is_exception(u32 intr_info)
1250 {
1251 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1252 		== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1253 }
1254 
1255 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1256 			      u32 exit_intr_info,
1257 			      unsigned long exit_qualification);
1258 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1259 			struct vmcs12 *vmcs12,
1260 			u32 reason, unsigned long qualification);
1261 
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)1262 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1263 {
1264 	int i;
1265 
1266 	for (i = 0; i < vmx->nmsrs; ++i)
1267 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1268 			return i;
1269 	return -1;
1270 }
1271 
__invvpid(int ext,u16 vpid,gva_t gva)1272 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1273 {
1274     struct {
1275 	u64 vpid : 16;
1276 	u64 rsvd : 48;
1277 	u64 gva;
1278     } operand = { vpid, 0, gva };
1279 
1280     asm volatile (__ex(ASM_VMX_INVVPID)
1281 		  /* CF==1 or ZF==1 --> rc = -1 */
1282 		  "; ja 1f ; ud2 ; 1:"
1283 		  : : "a"(&operand), "c"(ext) : "cc", "memory");
1284 }
1285 
__invept(int ext,u64 eptp,gpa_t gpa)1286 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1287 {
1288 	struct {
1289 		u64 eptp, gpa;
1290 	} operand = {eptp, gpa};
1291 
1292 	asm volatile (__ex(ASM_VMX_INVEPT)
1293 			/* CF==1 or ZF==1 --> rc = -1 */
1294 			"; ja 1f ; ud2 ; 1:\n"
1295 			: : "a" (&operand), "c" (ext) : "cc", "memory");
1296 }
1297 
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)1298 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1299 {
1300 	int i;
1301 
1302 	i = __find_msr_index(vmx, msr);
1303 	if (i >= 0)
1304 		return &vmx->guest_msrs[i];
1305 	return NULL;
1306 }
1307 
vmcs_clear(struct vmcs * vmcs)1308 static void vmcs_clear(struct vmcs *vmcs)
1309 {
1310 	u64 phys_addr = __pa(vmcs);
1311 	u8 error;
1312 
1313 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1314 		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1315 		      : "cc", "memory");
1316 	if (error)
1317 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1318 		       vmcs, phys_addr);
1319 }
1320 
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)1321 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1322 {
1323 	vmcs_clear(loaded_vmcs->vmcs);
1324 	loaded_vmcs->cpu = -1;
1325 	loaded_vmcs->launched = 0;
1326 }
1327 
vmcs_load(struct vmcs * vmcs)1328 static void vmcs_load(struct vmcs *vmcs)
1329 {
1330 	u64 phys_addr = __pa(vmcs);
1331 	u8 error;
1332 
1333 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1334 			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1335 			: "cc", "memory");
1336 	if (error)
1337 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1338 		       vmcs, phys_addr);
1339 }
1340 
1341 #ifdef CONFIG_KEXEC_CORE
1342 /*
1343  * This bitmap is used to indicate whether the vmclear
1344  * operation is enabled on all cpus. All disabled by
1345  * default.
1346  */
1347 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1348 
crash_enable_local_vmclear(int cpu)1349 static inline void crash_enable_local_vmclear(int cpu)
1350 {
1351 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1352 }
1353 
crash_disable_local_vmclear(int cpu)1354 static inline void crash_disable_local_vmclear(int cpu)
1355 {
1356 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1357 }
1358 
crash_local_vmclear_enabled(int cpu)1359 static inline int crash_local_vmclear_enabled(int cpu)
1360 {
1361 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1362 }
1363 
crash_vmclear_local_loaded_vmcss(void)1364 static void crash_vmclear_local_loaded_vmcss(void)
1365 {
1366 	int cpu = raw_smp_processor_id();
1367 	struct loaded_vmcs *v;
1368 
1369 	if (!crash_local_vmclear_enabled(cpu))
1370 		return;
1371 
1372 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1373 			    loaded_vmcss_on_cpu_link)
1374 		vmcs_clear(v->vmcs);
1375 }
1376 #else
crash_enable_local_vmclear(int cpu)1377 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)1378 static inline void crash_disable_local_vmclear(int cpu) { }
1379 #endif /* CONFIG_KEXEC_CORE */
1380 
__loaded_vmcs_clear(void * arg)1381 static void __loaded_vmcs_clear(void *arg)
1382 {
1383 	struct loaded_vmcs *loaded_vmcs = arg;
1384 	int cpu = raw_smp_processor_id();
1385 
1386 	if (loaded_vmcs->cpu != cpu)
1387 		return; /* vcpu migration can race with cpu offline */
1388 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1389 		per_cpu(current_vmcs, cpu) = NULL;
1390 	crash_disable_local_vmclear(cpu);
1391 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1392 
1393 	/*
1394 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1395 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
1396 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1397 	 * then adds the vmcs into percpu list before it is deleted.
1398 	 */
1399 	smp_wmb();
1400 
1401 	loaded_vmcs_init(loaded_vmcs);
1402 	crash_enable_local_vmclear(cpu);
1403 }
1404 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)1405 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1406 {
1407 	int cpu = loaded_vmcs->cpu;
1408 
1409 	if (cpu != -1)
1410 		smp_call_function_single(cpu,
1411 			 __loaded_vmcs_clear, loaded_vmcs, 1);
1412 }
1413 
vpid_sync_vcpu_single(int vpid)1414 static inline void vpid_sync_vcpu_single(int vpid)
1415 {
1416 	if (vpid == 0)
1417 		return;
1418 
1419 	if (cpu_has_vmx_invvpid_single())
1420 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1421 }
1422 
vpid_sync_vcpu_global(void)1423 static inline void vpid_sync_vcpu_global(void)
1424 {
1425 	if (cpu_has_vmx_invvpid_global())
1426 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1427 }
1428 
vpid_sync_context(int vpid)1429 static inline void vpid_sync_context(int vpid)
1430 {
1431 	if (cpu_has_vmx_invvpid_single())
1432 		vpid_sync_vcpu_single(vpid);
1433 	else
1434 		vpid_sync_vcpu_global();
1435 }
1436 
ept_sync_global(void)1437 static inline void ept_sync_global(void)
1438 {
1439 	if (cpu_has_vmx_invept_global())
1440 		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1441 }
1442 
ept_sync_context(u64 eptp)1443 static inline void ept_sync_context(u64 eptp)
1444 {
1445 	if (enable_ept) {
1446 		if (cpu_has_vmx_invept_context())
1447 			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1448 		else
1449 			ept_sync_global();
1450 	}
1451 }
1452 
vmcs_readl(unsigned long field)1453 static __always_inline unsigned long vmcs_readl(unsigned long field)
1454 {
1455 	unsigned long value;
1456 
1457 	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1458 		      : "=a"(value) : "d"(field) : "cc");
1459 	return value;
1460 }
1461 
vmcs_read16(unsigned long field)1462 static __always_inline u16 vmcs_read16(unsigned long field)
1463 {
1464 	return vmcs_readl(field);
1465 }
1466 
vmcs_read32(unsigned long field)1467 static __always_inline u32 vmcs_read32(unsigned long field)
1468 {
1469 	return vmcs_readl(field);
1470 }
1471 
vmcs_read64(unsigned long field)1472 static __always_inline u64 vmcs_read64(unsigned long field)
1473 {
1474 #ifdef CONFIG_X86_64
1475 	return vmcs_readl(field);
1476 #else
1477 	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1478 #endif
1479 }
1480 
vmwrite_error(unsigned long field,unsigned long value)1481 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1482 {
1483 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1484 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1485 	dump_stack();
1486 }
1487 
vmcs_writel(unsigned long field,unsigned long value)1488 static void vmcs_writel(unsigned long field, unsigned long value)
1489 {
1490 	u8 error;
1491 
1492 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1493 		       : "=q"(error) : "a"(value), "d"(field) : "cc");
1494 	if (unlikely(error))
1495 		vmwrite_error(field, value);
1496 }
1497 
vmcs_write16(unsigned long field,u16 value)1498 static void vmcs_write16(unsigned long field, u16 value)
1499 {
1500 	vmcs_writel(field, value);
1501 }
1502 
vmcs_write32(unsigned long field,u32 value)1503 static void vmcs_write32(unsigned long field, u32 value)
1504 {
1505 	vmcs_writel(field, value);
1506 }
1507 
vmcs_write64(unsigned long field,u64 value)1508 static void vmcs_write64(unsigned long field, u64 value)
1509 {
1510 	vmcs_writel(field, value);
1511 #ifndef CONFIG_X86_64
1512 	asm volatile ("");
1513 	vmcs_writel(field+1, value >> 32);
1514 #endif
1515 }
1516 
vmcs_clear_bits(unsigned long field,u32 mask)1517 static void vmcs_clear_bits(unsigned long field, u32 mask)
1518 {
1519 	vmcs_writel(field, vmcs_readl(field) & ~mask);
1520 }
1521 
vmcs_set_bits(unsigned long field,u32 mask)1522 static void vmcs_set_bits(unsigned long field, u32 mask)
1523 {
1524 	vmcs_writel(field, vmcs_readl(field) | mask);
1525 }
1526 
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)1527 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1528 {
1529 	vmcs_write32(VM_ENTRY_CONTROLS, val);
1530 	vmx->vm_entry_controls_shadow = val;
1531 }
1532 
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)1533 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1534 {
1535 	if (vmx->vm_entry_controls_shadow != val)
1536 		vm_entry_controls_init(vmx, val);
1537 }
1538 
vm_entry_controls_get(struct vcpu_vmx * vmx)1539 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1540 {
1541 	return vmx->vm_entry_controls_shadow;
1542 }
1543 
1544 
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)1545 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1546 {
1547 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1548 }
1549 
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1550 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1551 {
1552 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1553 }
1554 
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)1555 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1556 {
1557 	vmcs_write32(VM_EXIT_CONTROLS, val);
1558 	vmx->vm_exit_controls_shadow = val;
1559 }
1560 
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)1561 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1562 {
1563 	if (vmx->vm_exit_controls_shadow != val)
1564 		vm_exit_controls_init(vmx, val);
1565 }
1566 
vm_exit_controls_get(struct vcpu_vmx * vmx)1567 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1568 {
1569 	return vmx->vm_exit_controls_shadow;
1570 }
1571 
1572 
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)1573 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1574 {
1575 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1576 }
1577 
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1578 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1579 {
1580 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1581 }
1582 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1583 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1584 {
1585 	vmx->segment_cache.bitmask = 0;
1586 }
1587 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1588 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1589 				       unsigned field)
1590 {
1591 	bool ret;
1592 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1593 
1594 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1595 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1596 		vmx->segment_cache.bitmask = 0;
1597 	}
1598 	ret = vmx->segment_cache.bitmask & mask;
1599 	vmx->segment_cache.bitmask |= mask;
1600 	return ret;
1601 }
1602 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)1603 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1604 {
1605 	u16 *p = &vmx->segment_cache.seg[seg].selector;
1606 
1607 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1608 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1609 	return *p;
1610 }
1611 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)1612 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1613 {
1614 	ulong *p = &vmx->segment_cache.seg[seg].base;
1615 
1616 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1617 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1618 	return *p;
1619 }
1620 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)1621 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1622 {
1623 	u32 *p = &vmx->segment_cache.seg[seg].limit;
1624 
1625 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1626 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1627 	return *p;
1628 }
1629 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)1630 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1631 {
1632 	u32 *p = &vmx->segment_cache.seg[seg].ar;
1633 
1634 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1635 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1636 	return *p;
1637 }
1638 
update_exception_bitmap(struct kvm_vcpu * vcpu)1639 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1640 {
1641 	u32 eb;
1642 
1643 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1644 	     (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1645 	if ((vcpu->guest_debug &
1646 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1647 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1648 		eb |= 1u << BP_VECTOR;
1649 	if (to_vmx(vcpu)->rmode.vm86_active)
1650 		eb = ~0;
1651 	if (enable_ept)
1652 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1653 	if (vcpu->fpu_active)
1654 		eb &= ~(1u << NM_VECTOR);
1655 
1656 	/* When we are running a nested L2 guest and L1 specified for it a
1657 	 * certain exception bitmap, we must trap the same exceptions and pass
1658 	 * them to L1. When running L2, we will only handle the exceptions
1659 	 * specified above if L1 did not want them.
1660 	 */
1661 	if (is_guest_mode(vcpu))
1662 		eb |= get_vmcs12(vcpu)->exception_bitmap;
1663 
1664 	vmcs_write32(EXCEPTION_BITMAP, eb);
1665 }
1666 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)1667 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1668 		unsigned long entry, unsigned long exit)
1669 {
1670 	vm_entry_controls_clearbit(vmx, entry);
1671 	vm_exit_controls_clearbit(vmx, exit);
1672 }
1673 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1674 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1675 {
1676 	unsigned i;
1677 	struct msr_autoload *m = &vmx->msr_autoload;
1678 
1679 	switch (msr) {
1680 	case MSR_EFER:
1681 		if (cpu_has_load_ia32_efer) {
1682 			clear_atomic_switch_msr_special(vmx,
1683 					VM_ENTRY_LOAD_IA32_EFER,
1684 					VM_EXIT_LOAD_IA32_EFER);
1685 			return;
1686 		}
1687 		break;
1688 	case MSR_CORE_PERF_GLOBAL_CTRL:
1689 		if (cpu_has_load_perf_global_ctrl) {
1690 			clear_atomic_switch_msr_special(vmx,
1691 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1692 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1693 			return;
1694 		}
1695 		break;
1696 	}
1697 
1698 	for (i = 0; i < m->nr; ++i)
1699 		if (m->guest[i].index == msr)
1700 			break;
1701 
1702 	if (i == m->nr)
1703 		return;
1704 	--m->nr;
1705 	m->guest[i] = m->guest[m->nr];
1706 	m->host[i] = m->host[m->nr];
1707 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1708 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1709 }
1710 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1711 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1712 		unsigned long entry, unsigned long exit,
1713 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1714 		u64 guest_val, u64 host_val)
1715 {
1716 	vmcs_write64(guest_val_vmcs, guest_val);
1717 	vmcs_write64(host_val_vmcs, host_val);
1718 	vm_entry_controls_setbit(vmx, entry);
1719 	vm_exit_controls_setbit(vmx, exit);
1720 }
1721 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val)1722 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1723 				  u64 guest_val, u64 host_val)
1724 {
1725 	unsigned i;
1726 	struct msr_autoload *m = &vmx->msr_autoload;
1727 
1728 	switch (msr) {
1729 	case MSR_EFER:
1730 		if (cpu_has_load_ia32_efer) {
1731 			add_atomic_switch_msr_special(vmx,
1732 					VM_ENTRY_LOAD_IA32_EFER,
1733 					VM_EXIT_LOAD_IA32_EFER,
1734 					GUEST_IA32_EFER,
1735 					HOST_IA32_EFER,
1736 					guest_val, host_val);
1737 			return;
1738 		}
1739 		break;
1740 	case MSR_CORE_PERF_GLOBAL_CTRL:
1741 		if (cpu_has_load_perf_global_ctrl) {
1742 			add_atomic_switch_msr_special(vmx,
1743 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1744 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1745 					GUEST_IA32_PERF_GLOBAL_CTRL,
1746 					HOST_IA32_PERF_GLOBAL_CTRL,
1747 					guest_val, host_val);
1748 			return;
1749 		}
1750 		break;
1751 	case MSR_IA32_PEBS_ENABLE:
1752 		/* PEBS needs a quiescent period after being disabled (to write
1753 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1754 		 * provide that period, so a CPU could write host's record into
1755 		 * guest's memory.
1756 		 */
1757 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1758 	}
1759 
1760 	for (i = 0; i < m->nr; ++i)
1761 		if (m->guest[i].index == msr)
1762 			break;
1763 
1764 	if (i == NR_AUTOLOAD_MSRS) {
1765 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1766 				"Can't add msr %x\n", msr);
1767 		return;
1768 	} else if (i == m->nr) {
1769 		++m->nr;
1770 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1771 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1772 	}
1773 
1774 	m->guest[i].index = msr;
1775 	m->guest[i].value = guest_val;
1776 	m->host[i].index = msr;
1777 	m->host[i].value = host_val;
1778 }
1779 
reload_tss(void)1780 static void reload_tss(void)
1781 {
1782 	/*
1783 	 * VT restores TR but not its size.  Useless.
1784 	 */
1785 	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1786 	struct desc_struct *descs;
1787 
1788 	descs = (void *)gdt->address;
1789 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1790 	load_TR_desc();
1791 }
1792 
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)1793 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1794 {
1795 	u64 guest_efer = vmx->vcpu.arch.efer;
1796 	u64 ignore_bits = 0;
1797 
1798 	if (!enable_ept) {
1799 		/*
1800 		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
1801 		 * host CPUID is more efficient than testing guest CPUID
1802 		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
1803 		 */
1804 		if (boot_cpu_has(X86_FEATURE_SMEP))
1805 			guest_efer |= EFER_NX;
1806 		else if (!(guest_efer & EFER_NX))
1807 			ignore_bits |= EFER_NX;
1808 	}
1809 
1810 	/*
1811 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1812 	 */
1813 	ignore_bits |= EFER_SCE;
1814 #ifdef CONFIG_X86_64
1815 	ignore_bits |= EFER_LMA | EFER_LME;
1816 	/* SCE is meaningful only in long mode on Intel */
1817 	if (guest_efer & EFER_LMA)
1818 		ignore_bits &= ~(u64)EFER_SCE;
1819 #endif
1820 
1821 	clear_atomic_switch_msr(vmx, MSR_EFER);
1822 
1823 	/*
1824 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1825 	 * On CPUs that support "load IA32_EFER", always switch EFER
1826 	 * atomically, since it's faster than switching it manually.
1827 	 */
1828 	if (cpu_has_load_ia32_efer ||
1829 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1830 		if (!(guest_efer & EFER_LMA))
1831 			guest_efer &= ~EFER_LME;
1832 		if (guest_efer != host_efer)
1833 			add_atomic_switch_msr(vmx, MSR_EFER,
1834 					      guest_efer, host_efer);
1835 		return false;
1836 	} else {
1837 		guest_efer &= ~ignore_bits;
1838 		guest_efer |= host_efer & ignore_bits;
1839 
1840 		vmx->guest_msrs[efer_offset].data = guest_efer;
1841 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1842 
1843 		return true;
1844 	}
1845 }
1846 
segment_base(u16 selector)1847 static unsigned long segment_base(u16 selector)
1848 {
1849 	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1850 	struct desc_struct *d;
1851 	unsigned long table_base;
1852 	unsigned long v;
1853 
1854 	if (!(selector & ~3))
1855 		return 0;
1856 
1857 	table_base = gdt->address;
1858 
1859 	if (selector & 4) {           /* from ldt */
1860 		u16 ldt_selector = kvm_read_ldt();
1861 
1862 		if (!(ldt_selector & ~3))
1863 			return 0;
1864 
1865 		table_base = segment_base(ldt_selector);
1866 	}
1867 	d = (struct desc_struct *)(table_base + (selector & ~7));
1868 	v = get_desc_base(d);
1869 #ifdef CONFIG_X86_64
1870        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1871                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1872 #endif
1873 	return v;
1874 }
1875 
kvm_read_tr_base(void)1876 static inline unsigned long kvm_read_tr_base(void)
1877 {
1878 	u16 tr;
1879 	asm("str %0" : "=g"(tr));
1880 	return segment_base(tr);
1881 }
1882 
vmx_save_host_state(struct kvm_vcpu * vcpu)1883 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1884 {
1885 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1886 	int i;
1887 
1888 	if (vmx->host_state.loaded)
1889 		return;
1890 
1891 	vmx->host_state.loaded = 1;
1892 	/*
1893 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1894 	 * allow segment selectors with cpl > 0 or ti == 1.
1895 	 */
1896 	vmx->host_state.ldt_sel = kvm_read_ldt();
1897 	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1898 	savesegment(fs, vmx->host_state.fs_sel);
1899 	if (!(vmx->host_state.fs_sel & 7)) {
1900 		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1901 		vmx->host_state.fs_reload_needed = 0;
1902 	} else {
1903 		vmcs_write16(HOST_FS_SELECTOR, 0);
1904 		vmx->host_state.fs_reload_needed = 1;
1905 	}
1906 	savesegment(gs, vmx->host_state.gs_sel);
1907 	if (!(vmx->host_state.gs_sel & 7))
1908 		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1909 	else {
1910 		vmcs_write16(HOST_GS_SELECTOR, 0);
1911 		vmx->host_state.gs_ldt_reload_needed = 1;
1912 	}
1913 
1914 #ifdef CONFIG_X86_64
1915 	savesegment(ds, vmx->host_state.ds_sel);
1916 	savesegment(es, vmx->host_state.es_sel);
1917 #endif
1918 
1919 #ifdef CONFIG_X86_64
1920 	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1921 	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1922 #else
1923 	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1924 	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1925 #endif
1926 
1927 #ifdef CONFIG_X86_64
1928 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1929 	if (is_long_mode(&vmx->vcpu))
1930 		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1931 #endif
1932 	if (boot_cpu_has(X86_FEATURE_MPX))
1933 		rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1934 	for (i = 0; i < vmx->save_nmsrs; ++i)
1935 		kvm_set_shared_msr(vmx->guest_msrs[i].index,
1936 				   vmx->guest_msrs[i].data,
1937 				   vmx->guest_msrs[i].mask);
1938 }
1939 
__vmx_load_host_state(struct vcpu_vmx * vmx)1940 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1941 {
1942 	if (!vmx->host_state.loaded)
1943 		return;
1944 
1945 	++vmx->vcpu.stat.host_state_reload;
1946 	vmx->host_state.loaded = 0;
1947 #ifdef CONFIG_X86_64
1948 	if (is_long_mode(&vmx->vcpu))
1949 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1950 #endif
1951 	if (vmx->host_state.gs_ldt_reload_needed) {
1952 		kvm_load_ldt(vmx->host_state.ldt_sel);
1953 #ifdef CONFIG_X86_64
1954 		load_gs_index(vmx->host_state.gs_sel);
1955 #else
1956 		loadsegment(gs, vmx->host_state.gs_sel);
1957 #endif
1958 	}
1959 	if (vmx->host_state.fs_reload_needed)
1960 		loadsegment(fs, vmx->host_state.fs_sel);
1961 #ifdef CONFIG_X86_64
1962 	if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1963 		loadsegment(ds, vmx->host_state.ds_sel);
1964 		loadsegment(es, vmx->host_state.es_sel);
1965 	}
1966 #endif
1967 	reload_tss();
1968 #ifdef CONFIG_X86_64
1969 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1970 #endif
1971 	if (vmx->host_state.msr_host_bndcfgs)
1972 		wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1973 	/*
1974 	 * If the FPU is not active (through the host task or
1975 	 * the guest vcpu), then restore the cr0.TS bit.
1976 	 */
1977 	if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1978 		stts();
1979 	load_gdt(this_cpu_ptr(&host_gdt));
1980 }
1981 
vmx_load_host_state(struct vcpu_vmx * vmx)1982 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1983 {
1984 	preempt_disable();
1985 	__vmx_load_host_state(vmx);
1986 	preempt_enable();
1987 }
1988 
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)1989 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1990 {
1991 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1992 	struct pi_desc old, new;
1993 	unsigned int dest;
1994 
1995 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1996 		!irq_remapping_cap(IRQ_POSTING_CAP))
1997 		return;
1998 
1999 	do {
2000 		old.control = new.control = pi_desc->control;
2001 
2002 		/*
2003 		 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2004 		 * are two possible cases:
2005 		 * 1. After running 'pre_block', context switch
2006 		 *    happened. For this case, 'sn' was set in
2007 		 *    vmx_vcpu_put(), so we need to clear it here.
2008 		 * 2. After running 'pre_block', we were blocked,
2009 		 *    and woken up by some other guy. For this case,
2010 		 *    we don't need to do anything, 'pi_post_block'
2011 		 *    will do everything for us. However, we cannot
2012 		 *    check whether it is case #1 or case #2 here
2013 		 *    (maybe, not needed), so we also clear sn here,
2014 		 *    I think it is not a big deal.
2015 		 */
2016 		if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2017 			if (vcpu->cpu != cpu) {
2018 				dest = cpu_physical_id(cpu);
2019 
2020 				if (x2apic_enabled())
2021 					new.ndst = dest;
2022 				else
2023 					new.ndst = (dest << 8) & 0xFF00;
2024 			}
2025 
2026 			/* set 'NV' to 'notification vector' */
2027 			new.nv = POSTED_INTR_VECTOR;
2028 		}
2029 
2030 		/* Allow posting non-urgent interrupts */
2031 		new.sn = 0;
2032 	} while (cmpxchg(&pi_desc->control, old.control,
2033 			new.control) != old.control);
2034 }
2035 /*
2036  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2037  * vcpu mutex is already taken.
2038  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2039 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2040 {
2041 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2042 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2043 
2044 	if (!vmm_exclusive)
2045 		kvm_cpu_vmxon(phys_addr);
2046 	else if (vmx->loaded_vmcs->cpu != cpu)
2047 		loaded_vmcs_clear(vmx->loaded_vmcs);
2048 
2049 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2050 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2051 		vmcs_load(vmx->loaded_vmcs->vmcs);
2052 	}
2053 
2054 	if (vmx->loaded_vmcs->cpu != cpu) {
2055 		struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2056 		unsigned long sysenter_esp;
2057 
2058 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2059 		local_irq_disable();
2060 		crash_disable_local_vmclear(cpu);
2061 
2062 		/*
2063 		 * Read loaded_vmcs->cpu should be before fetching
2064 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2065 		 * See the comments in __loaded_vmcs_clear().
2066 		 */
2067 		smp_rmb();
2068 
2069 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2070 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
2071 		crash_enable_local_vmclear(cpu);
2072 		local_irq_enable();
2073 
2074 		/*
2075 		 * Linux uses per-cpu TSS and GDT, so set these when switching
2076 		 * processors.
2077 		 */
2078 		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2079 		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
2080 
2081 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2082 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2083 
2084 		vmx->loaded_vmcs->cpu = cpu;
2085 	}
2086 
2087 	/* Setup TSC multiplier */
2088 	if (kvm_has_tsc_control &&
2089 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2090 		vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2091 		vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2092 	}
2093 
2094 	vmx_vcpu_pi_load(vcpu, cpu);
2095 }
2096 
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)2097 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2098 {
2099 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2100 
2101 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2102 		!irq_remapping_cap(IRQ_POSTING_CAP))
2103 		return;
2104 
2105 	/* Set SN when the vCPU is preempted */
2106 	if (vcpu->preempted)
2107 		pi_set_sn(pi_desc);
2108 }
2109 
vmx_vcpu_put(struct kvm_vcpu * vcpu)2110 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2111 {
2112 	vmx_vcpu_pi_put(vcpu);
2113 
2114 	__vmx_load_host_state(to_vmx(vcpu));
2115 	if (!vmm_exclusive) {
2116 		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2117 		vcpu->cpu = -1;
2118 		kvm_cpu_vmxoff();
2119 	}
2120 }
2121 
vmx_fpu_activate(struct kvm_vcpu * vcpu)2122 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2123 {
2124 	ulong cr0;
2125 
2126 	if (vcpu->fpu_active)
2127 		return;
2128 	vcpu->fpu_active = 1;
2129 	cr0 = vmcs_readl(GUEST_CR0);
2130 	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2131 	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2132 	vmcs_writel(GUEST_CR0, cr0);
2133 	update_exception_bitmap(vcpu);
2134 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2135 	if (is_guest_mode(vcpu))
2136 		vcpu->arch.cr0_guest_owned_bits &=
2137 			~get_vmcs12(vcpu)->cr0_guest_host_mask;
2138 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2139 }
2140 
2141 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2142 
2143 /*
2144  * Return the cr0 value that a nested guest would read. This is a combination
2145  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2146  * its hypervisor (cr0_read_shadow).
2147  */
nested_read_cr0(struct vmcs12 * fields)2148 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2149 {
2150 	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2151 		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2152 }
nested_read_cr4(struct vmcs12 * fields)2153 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2154 {
2155 	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2156 		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2157 }
2158 
vmx_fpu_deactivate(struct kvm_vcpu * vcpu)2159 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2160 {
2161 	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
2162 	 * set this *before* calling this function.
2163 	 */
2164 	vmx_decache_cr0_guest_bits(vcpu);
2165 	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2166 	update_exception_bitmap(vcpu);
2167 	vcpu->arch.cr0_guest_owned_bits = 0;
2168 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2169 	if (is_guest_mode(vcpu)) {
2170 		/*
2171 		 * L1's specified read shadow might not contain the TS bit,
2172 		 * so now that we turned on shadowing of this bit, we need to
2173 		 * set this bit of the shadow. Like in nested_vmx_run we need
2174 		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2175 		 * up-to-date here because we just decached cr0.TS (and we'll
2176 		 * only update vmcs12->guest_cr0 on nested exit).
2177 		 */
2178 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2179 		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2180 			(vcpu->arch.cr0 & X86_CR0_TS);
2181 		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2182 	} else
2183 		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2184 }
2185 
vmx_get_rflags(struct kvm_vcpu * vcpu)2186 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2187 {
2188 	unsigned long rflags, save_rflags;
2189 
2190 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2191 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2192 		rflags = vmcs_readl(GUEST_RFLAGS);
2193 		if (to_vmx(vcpu)->rmode.vm86_active) {
2194 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2195 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2196 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2197 		}
2198 		to_vmx(vcpu)->rflags = rflags;
2199 	}
2200 	return to_vmx(vcpu)->rflags;
2201 }
2202 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2203 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2204 {
2205 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2206 	to_vmx(vcpu)->rflags = rflags;
2207 	if (to_vmx(vcpu)->rmode.vm86_active) {
2208 		to_vmx(vcpu)->rmode.save_rflags = rflags;
2209 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2210 	}
2211 	vmcs_writel(GUEST_RFLAGS, rflags);
2212 }
2213 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)2214 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2215 {
2216 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2217 	int ret = 0;
2218 
2219 	if (interruptibility & GUEST_INTR_STATE_STI)
2220 		ret |= KVM_X86_SHADOW_INT_STI;
2221 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2222 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
2223 
2224 	return ret;
2225 }
2226 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)2227 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2228 {
2229 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2230 	u32 interruptibility = interruptibility_old;
2231 
2232 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2233 
2234 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2235 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
2236 	else if (mask & KVM_X86_SHADOW_INT_STI)
2237 		interruptibility |= GUEST_INTR_STATE_STI;
2238 
2239 	if ((interruptibility != interruptibility_old))
2240 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2241 }
2242 
skip_emulated_instruction(struct kvm_vcpu * vcpu)2243 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2244 {
2245 	unsigned long rip;
2246 
2247 	rip = kvm_rip_read(vcpu);
2248 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2249 	kvm_rip_write(vcpu, rip);
2250 
2251 	/* skipping an emulated instruction also counts */
2252 	vmx_set_interrupt_shadow(vcpu, 0);
2253 }
2254 
2255 /*
2256  * KVM wants to inject page-faults which it got to the guest. This function
2257  * checks whether in a nested guest, we need to inject them to L1 or L2.
2258  */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned nr)2259 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2260 {
2261 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2262 
2263 	if (!(vmcs12->exception_bitmap & (1u << nr)))
2264 		return 0;
2265 
2266 	nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2267 			  vmcs_read32(VM_EXIT_INTR_INFO),
2268 			  vmcs_readl(EXIT_QUALIFICATION));
2269 	return 1;
2270 }
2271 
vmx_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)2272 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2273 				bool has_error_code, u32 error_code,
2274 				bool reinject)
2275 {
2276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2277 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
2278 
2279 	if (!reinject && is_guest_mode(vcpu) &&
2280 	    nested_vmx_check_exception(vcpu, nr))
2281 		return;
2282 
2283 	if (has_error_code) {
2284 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2285 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2286 	}
2287 
2288 	if (vmx->rmode.vm86_active) {
2289 		int inc_eip = 0;
2290 		if (kvm_exception_is_soft(nr))
2291 			inc_eip = vcpu->arch.event_exit_inst_len;
2292 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2293 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2294 		return;
2295 	}
2296 
2297 	if (kvm_exception_is_soft(nr)) {
2298 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2299 			     vmx->vcpu.arch.event_exit_inst_len);
2300 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2301 	} else
2302 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
2303 
2304 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2305 }
2306 
vmx_rdtscp_supported(void)2307 static bool vmx_rdtscp_supported(void)
2308 {
2309 	return cpu_has_vmx_rdtscp();
2310 }
2311 
vmx_invpcid_supported(void)2312 static bool vmx_invpcid_supported(void)
2313 {
2314 	return cpu_has_vmx_invpcid() && enable_ept;
2315 }
2316 
2317 /*
2318  * Swap MSR entry in host/guest MSR entry array.
2319  */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)2320 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2321 {
2322 	struct shared_msr_entry tmp;
2323 
2324 	tmp = vmx->guest_msrs[to];
2325 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
2326 	vmx->guest_msrs[from] = tmp;
2327 }
2328 
vmx_set_msr_bitmap(struct kvm_vcpu * vcpu)2329 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2330 {
2331 	unsigned long *msr_bitmap;
2332 
2333 	if (is_guest_mode(vcpu))
2334 		msr_bitmap = vmx_msr_bitmap_nested;
2335 	else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2336 		if (is_long_mode(vcpu))
2337 			msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2338 		else
2339 			msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2340 	} else {
2341 		if (is_long_mode(vcpu))
2342 			msr_bitmap = vmx_msr_bitmap_longmode;
2343 		else
2344 			msr_bitmap = vmx_msr_bitmap_legacy;
2345 	}
2346 
2347 	vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2348 }
2349 
2350 /*
2351  * Set up the vmcs to automatically save and restore system
2352  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2353  * mode, as fiddling with msrs is very expensive.
2354  */
setup_msrs(struct vcpu_vmx * vmx)2355 static void setup_msrs(struct vcpu_vmx *vmx)
2356 {
2357 	int save_nmsrs, index;
2358 
2359 	save_nmsrs = 0;
2360 #ifdef CONFIG_X86_64
2361 	if (is_long_mode(&vmx->vcpu)) {
2362 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2363 		if (index >= 0)
2364 			move_msr_up(vmx, index, save_nmsrs++);
2365 		index = __find_msr_index(vmx, MSR_LSTAR);
2366 		if (index >= 0)
2367 			move_msr_up(vmx, index, save_nmsrs++);
2368 		index = __find_msr_index(vmx, MSR_CSTAR);
2369 		if (index >= 0)
2370 			move_msr_up(vmx, index, save_nmsrs++);
2371 		index = __find_msr_index(vmx, MSR_TSC_AUX);
2372 		if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2373 			move_msr_up(vmx, index, save_nmsrs++);
2374 		/*
2375 		 * MSR_STAR is only needed on long mode guests, and only
2376 		 * if efer.sce is enabled.
2377 		 */
2378 		index = __find_msr_index(vmx, MSR_STAR);
2379 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2380 			move_msr_up(vmx, index, save_nmsrs++);
2381 	}
2382 #endif
2383 	index = __find_msr_index(vmx, MSR_EFER);
2384 	if (index >= 0 && update_transition_efer(vmx, index))
2385 		move_msr_up(vmx, index, save_nmsrs++);
2386 
2387 	vmx->save_nmsrs = save_nmsrs;
2388 
2389 	if (cpu_has_vmx_msr_bitmap())
2390 		vmx_set_msr_bitmap(&vmx->vcpu);
2391 }
2392 
2393 /*
2394  * reads and returns guest's timestamp counter "register"
2395  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2396  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2397  */
guest_read_tsc(struct kvm_vcpu * vcpu)2398 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2399 {
2400 	u64 host_tsc, tsc_offset;
2401 
2402 	host_tsc = rdtsc();
2403 	tsc_offset = vmcs_read64(TSC_OFFSET);
2404 	return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2405 }
2406 
2407 /*
2408  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2409  * counter, even if a nested guest (L2) is currently running.
2410  */
vmx_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2411 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2412 {
2413 	u64 tsc_offset;
2414 
2415 	tsc_offset = is_guest_mode(vcpu) ?
2416 		to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2417 		vmcs_read64(TSC_OFFSET);
2418 	return host_tsc + tsc_offset;
2419 }
2420 
vmx_read_tsc_offset(struct kvm_vcpu * vcpu)2421 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2422 {
2423 	return vmcs_read64(TSC_OFFSET);
2424 }
2425 
2426 /*
2427  * writes 'offset' into guest's timestamp counter offset register
2428  */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2429 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2430 {
2431 	if (is_guest_mode(vcpu)) {
2432 		/*
2433 		 * We're here if L1 chose not to trap WRMSR to TSC. According
2434 		 * to the spec, this should set L1's TSC; The offset that L1
2435 		 * set for L2 remains unchanged, and still needs to be added
2436 		 * to the newly set TSC to get L2's TSC.
2437 		 */
2438 		struct vmcs12 *vmcs12;
2439 		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2440 		/* recalculate vmcs02.TSC_OFFSET: */
2441 		vmcs12 = get_vmcs12(vcpu);
2442 		vmcs_write64(TSC_OFFSET, offset +
2443 			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2444 			 vmcs12->tsc_offset : 0));
2445 	} else {
2446 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2447 					   vmcs_read64(TSC_OFFSET), offset);
2448 		vmcs_write64(TSC_OFFSET, offset);
2449 	}
2450 }
2451 
vmx_adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2452 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2453 {
2454 	u64 offset = vmcs_read64(TSC_OFFSET);
2455 
2456 	vmcs_write64(TSC_OFFSET, offset + adjustment);
2457 	if (is_guest_mode(vcpu)) {
2458 		/* Even when running L2, the adjustment needs to apply to L1 */
2459 		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2460 	} else
2461 		trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2462 					   offset + adjustment);
2463 }
2464 
guest_cpuid_has_vmx(struct kvm_vcpu * vcpu)2465 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2466 {
2467 	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2468 	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2469 }
2470 
2471 /*
2472  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2473  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2474  * all guests if the "nested" module option is off, and can also be disabled
2475  * for a single guest by disabling its VMX cpuid bit.
2476  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)2477 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2478 {
2479 	return nested && guest_cpuid_has_vmx(vcpu);
2480 }
2481 
2482 /*
2483  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2484  * returned for the various VMX controls MSRs when nested VMX is enabled.
2485  * The same values should also be used to verify that vmcs12 control fields are
2486  * valid during nested entry from L1 to L2.
2487  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2488  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2489  * bit in the high half is on if the corresponding bit in the control field
2490  * may be on. See also vmx_control_verify().
2491  */
nested_vmx_setup_ctls_msrs(struct vcpu_vmx * vmx)2492 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2493 {
2494 	/*
2495 	 * Note that as a general rule, the high half of the MSRs (bits in
2496 	 * the control fields which may be 1) should be initialized by the
2497 	 * intersection of the underlying hardware's MSR (i.e., features which
2498 	 * can be supported) and the list of features we want to expose -
2499 	 * because they are known to be properly supported in our code.
2500 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
2501 	 * be set to 0, meaning that L1 may turn off any of these bits. The
2502 	 * reason is that if one of these bits is necessary, it will appear
2503 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2504 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
2505 	 * nested_vmx_exit_handled() will not pass related exits to L1.
2506 	 * These rules have exceptions below.
2507 	 */
2508 
2509 	/* pin-based controls */
2510 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2511 		vmx->nested.nested_vmx_pinbased_ctls_low,
2512 		vmx->nested.nested_vmx_pinbased_ctls_high);
2513 	vmx->nested.nested_vmx_pinbased_ctls_low |=
2514 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2515 	vmx->nested.nested_vmx_pinbased_ctls_high &=
2516 		PIN_BASED_EXT_INTR_MASK |
2517 		PIN_BASED_NMI_EXITING |
2518 		PIN_BASED_VIRTUAL_NMIS;
2519 	vmx->nested.nested_vmx_pinbased_ctls_high |=
2520 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2521 		PIN_BASED_VMX_PREEMPTION_TIMER;
2522 	if (vmx_cpu_uses_apicv(&vmx->vcpu))
2523 		vmx->nested.nested_vmx_pinbased_ctls_high |=
2524 			PIN_BASED_POSTED_INTR;
2525 
2526 	/* exit controls */
2527 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2528 		vmx->nested.nested_vmx_exit_ctls_low,
2529 		vmx->nested.nested_vmx_exit_ctls_high);
2530 	vmx->nested.nested_vmx_exit_ctls_low =
2531 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2532 
2533 	vmx->nested.nested_vmx_exit_ctls_high &=
2534 #ifdef CONFIG_X86_64
2535 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
2536 #endif
2537 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2538 	vmx->nested.nested_vmx_exit_ctls_high |=
2539 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2540 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2541 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2542 
2543 	if (vmx_mpx_supported())
2544 		vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2545 
2546 	/* We support free control of debug control saving. */
2547 	vmx->nested.nested_vmx_true_exit_ctls_low =
2548 		vmx->nested.nested_vmx_exit_ctls_low &
2549 		~VM_EXIT_SAVE_DEBUG_CONTROLS;
2550 
2551 	/* entry controls */
2552 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2553 		vmx->nested.nested_vmx_entry_ctls_low,
2554 		vmx->nested.nested_vmx_entry_ctls_high);
2555 	vmx->nested.nested_vmx_entry_ctls_low =
2556 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2557 	vmx->nested.nested_vmx_entry_ctls_high &=
2558 #ifdef CONFIG_X86_64
2559 		VM_ENTRY_IA32E_MODE |
2560 #endif
2561 		VM_ENTRY_LOAD_IA32_PAT;
2562 	vmx->nested.nested_vmx_entry_ctls_high |=
2563 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2564 	if (vmx_mpx_supported())
2565 		vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2566 
2567 	/* We support free control of debug control loading. */
2568 	vmx->nested.nested_vmx_true_entry_ctls_low =
2569 		vmx->nested.nested_vmx_entry_ctls_low &
2570 		~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2571 
2572 	/* cpu-based controls */
2573 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2574 		vmx->nested.nested_vmx_procbased_ctls_low,
2575 		vmx->nested.nested_vmx_procbased_ctls_high);
2576 	vmx->nested.nested_vmx_procbased_ctls_low =
2577 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2578 	vmx->nested.nested_vmx_procbased_ctls_high &=
2579 		CPU_BASED_VIRTUAL_INTR_PENDING |
2580 		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2581 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2582 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2583 		CPU_BASED_CR3_STORE_EXITING |
2584 #ifdef CONFIG_X86_64
2585 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2586 #endif
2587 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2588 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2589 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2590 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2591 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2592 	/*
2593 	 * We can allow some features even when not supported by the
2594 	 * hardware. For example, L1 can specify an MSR bitmap - and we
2595 	 * can use it to avoid exits to L1 - even when L0 runs L2
2596 	 * without MSR bitmaps.
2597 	 */
2598 	vmx->nested.nested_vmx_procbased_ctls_high |=
2599 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2600 		CPU_BASED_USE_MSR_BITMAPS;
2601 
2602 	/* We support free control of CR3 access interception. */
2603 	vmx->nested.nested_vmx_true_procbased_ctls_low =
2604 		vmx->nested.nested_vmx_procbased_ctls_low &
2605 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2606 
2607 	/* secondary cpu-based controls */
2608 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2609 		vmx->nested.nested_vmx_secondary_ctls_low,
2610 		vmx->nested.nested_vmx_secondary_ctls_high);
2611 	vmx->nested.nested_vmx_secondary_ctls_low = 0;
2612 	vmx->nested.nested_vmx_secondary_ctls_high &=
2613 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2614 		SECONDARY_EXEC_RDTSCP |
2615 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2616 		SECONDARY_EXEC_ENABLE_VPID |
2617 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
2618 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2619 		SECONDARY_EXEC_WBINVD_EXITING |
2620 		SECONDARY_EXEC_XSAVES |
2621 		SECONDARY_EXEC_PCOMMIT;
2622 
2623 	if (enable_ept) {
2624 		/* nested EPT: emulate EPT also to L1 */
2625 		vmx->nested.nested_vmx_secondary_ctls_high |=
2626 			SECONDARY_EXEC_ENABLE_EPT;
2627 		vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2628 			 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2629 			 VMX_EPT_INVEPT_BIT;
2630 		vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2631 		/*
2632 		 * For nested guests, we don't do anything specific
2633 		 * for single context invalidation. Hence, only advertise
2634 		 * support for global context invalidation.
2635 		 */
2636 		vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2637 	} else
2638 		vmx->nested.nested_vmx_ept_caps = 0;
2639 
2640 	/*
2641 	 * Old versions of KVM use the single-context version without
2642 	 * checking for support, so declare that it is supported even
2643 	 * though it is treated as global context.  The alternative is
2644 	 * not failing the single-context invvpid, and it is worse.
2645 	 */
2646 	if (enable_vpid)
2647 		vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2648 				VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2649 				VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2650 	else
2651 		vmx->nested.nested_vmx_vpid_caps = 0;
2652 
2653 	if (enable_unrestricted_guest)
2654 		vmx->nested.nested_vmx_secondary_ctls_high |=
2655 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
2656 
2657 	/* miscellaneous data */
2658 	rdmsr(MSR_IA32_VMX_MISC,
2659 		vmx->nested.nested_vmx_misc_low,
2660 		vmx->nested.nested_vmx_misc_high);
2661 	vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2662 	vmx->nested.nested_vmx_misc_low |=
2663 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2664 		VMX_MISC_ACTIVITY_HLT;
2665 	vmx->nested.nested_vmx_misc_high = 0;
2666 }
2667 
vmx_control_verify(u32 control,u32 low,u32 high)2668 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2669 {
2670 	/*
2671 	 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2672 	 */
2673 	return ((control & high) | low) == control;
2674 }
2675 
vmx_control_msr(u32 low,u32 high)2676 static inline u64 vmx_control_msr(u32 low, u32 high)
2677 {
2678 	return low | ((u64)high << 32);
2679 }
2680 
2681 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2682 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2683 {
2684 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2685 
2686 	switch (msr_index) {
2687 	case MSR_IA32_VMX_BASIC:
2688 		/*
2689 		 * This MSR reports some information about VMX support. We
2690 		 * should return information about the VMX we emulate for the
2691 		 * guest, and the VMCS structure we give it - not about the
2692 		 * VMX support of the underlying hardware.
2693 		 */
2694 		*pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2695 			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2696 			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2697 		break;
2698 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2699 	case MSR_IA32_VMX_PINBASED_CTLS:
2700 		*pdata = vmx_control_msr(
2701 			vmx->nested.nested_vmx_pinbased_ctls_low,
2702 			vmx->nested.nested_vmx_pinbased_ctls_high);
2703 		break;
2704 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2705 		*pdata = vmx_control_msr(
2706 			vmx->nested.nested_vmx_true_procbased_ctls_low,
2707 			vmx->nested.nested_vmx_procbased_ctls_high);
2708 		break;
2709 	case MSR_IA32_VMX_PROCBASED_CTLS:
2710 		*pdata = vmx_control_msr(
2711 			vmx->nested.nested_vmx_procbased_ctls_low,
2712 			vmx->nested.nested_vmx_procbased_ctls_high);
2713 		break;
2714 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2715 		*pdata = vmx_control_msr(
2716 			vmx->nested.nested_vmx_true_exit_ctls_low,
2717 			vmx->nested.nested_vmx_exit_ctls_high);
2718 		break;
2719 	case MSR_IA32_VMX_EXIT_CTLS:
2720 		*pdata = vmx_control_msr(
2721 			vmx->nested.nested_vmx_exit_ctls_low,
2722 			vmx->nested.nested_vmx_exit_ctls_high);
2723 		break;
2724 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2725 		*pdata = vmx_control_msr(
2726 			vmx->nested.nested_vmx_true_entry_ctls_low,
2727 			vmx->nested.nested_vmx_entry_ctls_high);
2728 		break;
2729 	case MSR_IA32_VMX_ENTRY_CTLS:
2730 		*pdata = vmx_control_msr(
2731 			vmx->nested.nested_vmx_entry_ctls_low,
2732 			vmx->nested.nested_vmx_entry_ctls_high);
2733 		break;
2734 	case MSR_IA32_VMX_MISC:
2735 		*pdata = vmx_control_msr(
2736 			vmx->nested.nested_vmx_misc_low,
2737 			vmx->nested.nested_vmx_misc_high);
2738 		break;
2739 	/*
2740 	 * These MSRs specify bits which the guest must keep fixed (on or off)
2741 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2742 	 * We picked the standard core2 setting.
2743 	 */
2744 #define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2745 #define VMXON_CR4_ALWAYSON	X86_CR4_VMXE
2746 	case MSR_IA32_VMX_CR0_FIXED0:
2747 		*pdata = VMXON_CR0_ALWAYSON;
2748 		break;
2749 	case MSR_IA32_VMX_CR0_FIXED1:
2750 		*pdata = -1ULL;
2751 		break;
2752 	case MSR_IA32_VMX_CR4_FIXED0:
2753 		*pdata = VMXON_CR4_ALWAYSON;
2754 		break;
2755 	case MSR_IA32_VMX_CR4_FIXED1:
2756 		*pdata = -1ULL;
2757 		break;
2758 	case MSR_IA32_VMX_VMCS_ENUM:
2759 		*pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2760 		break;
2761 	case MSR_IA32_VMX_PROCBASED_CTLS2:
2762 		*pdata = vmx_control_msr(
2763 			vmx->nested.nested_vmx_secondary_ctls_low,
2764 			vmx->nested.nested_vmx_secondary_ctls_high);
2765 		break;
2766 	case MSR_IA32_VMX_EPT_VPID_CAP:
2767 		/* Currently, no nested vpid support */
2768 		*pdata = vmx->nested.nested_vmx_ept_caps |
2769 			((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2770 		break;
2771 	default:
2772 		return 1;
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 /*
2779  * Reads an msr value (of 'msr_index') into 'pdata'.
2780  * Returns 0 on success, non-0 otherwise.
2781  * Assumes vcpu_load() was already called.
2782  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2783 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2784 {
2785 	struct shared_msr_entry *msr;
2786 
2787 	switch (msr_info->index) {
2788 #ifdef CONFIG_X86_64
2789 	case MSR_FS_BASE:
2790 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2791 		break;
2792 	case MSR_GS_BASE:
2793 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2794 		break;
2795 	case MSR_KERNEL_GS_BASE:
2796 		vmx_load_host_state(to_vmx(vcpu));
2797 		msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2798 		break;
2799 #endif
2800 	case MSR_EFER:
2801 		return kvm_get_msr_common(vcpu, msr_info);
2802 	case MSR_IA32_TSC:
2803 		msr_info->data = guest_read_tsc(vcpu);
2804 		break;
2805 	case MSR_IA32_SYSENTER_CS:
2806 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2807 		break;
2808 	case MSR_IA32_SYSENTER_EIP:
2809 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2810 		break;
2811 	case MSR_IA32_SYSENTER_ESP:
2812 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2813 		break;
2814 	case MSR_IA32_BNDCFGS:
2815 		if (!vmx_mpx_supported())
2816 			return 1;
2817 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2818 		break;
2819 	case MSR_IA32_FEATURE_CONTROL:
2820 		if (!nested_vmx_allowed(vcpu))
2821 			return 1;
2822 		msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2823 		break;
2824 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2825 		if (!nested_vmx_allowed(vcpu))
2826 			return 1;
2827 		return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2828 	case MSR_IA32_XSS:
2829 		if (!vmx_xsaves_supported())
2830 			return 1;
2831 		msr_info->data = vcpu->arch.ia32_xss;
2832 		break;
2833 	case MSR_TSC_AUX:
2834 		if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2835 			return 1;
2836 		/* Otherwise falls through */
2837 	default:
2838 		msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2839 		if (msr) {
2840 			msr_info->data = msr->data;
2841 			break;
2842 		}
2843 		return kvm_get_msr_common(vcpu, msr_info);
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2850 
2851 /*
2852  * Writes msr value into into the appropriate "register".
2853  * Returns 0 on success, non-0 otherwise.
2854  * Assumes vcpu_load() was already called.
2855  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2856 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2857 {
2858 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2859 	struct shared_msr_entry *msr;
2860 	int ret = 0;
2861 	u32 msr_index = msr_info->index;
2862 	u64 data = msr_info->data;
2863 
2864 	switch (msr_index) {
2865 	case MSR_EFER:
2866 		ret = kvm_set_msr_common(vcpu, msr_info);
2867 		break;
2868 #ifdef CONFIG_X86_64
2869 	case MSR_FS_BASE:
2870 		vmx_segment_cache_clear(vmx);
2871 		vmcs_writel(GUEST_FS_BASE, data);
2872 		break;
2873 	case MSR_GS_BASE:
2874 		vmx_segment_cache_clear(vmx);
2875 		vmcs_writel(GUEST_GS_BASE, data);
2876 		break;
2877 	case MSR_KERNEL_GS_BASE:
2878 		vmx_load_host_state(vmx);
2879 		vmx->msr_guest_kernel_gs_base = data;
2880 		break;
2881 #endif
2882 	case MSR_IA32_SYSENTER_CS:
2883 		vmcs_write32(GUEST_SYSENTER_CS, data);
2884 		break;
2885 	case MSR_IA32_SYSENTER_EIP:
2886 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2887 		break;
2888 	case MSR_IA32_SYSENTER_ESP:
2889 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2890 		break;
2891 	case MSR_IA32_BNDCFGS:
2892 		if (!vmx_mpx_supported())
2893 			return 1;
2894 		vmcs_write64(GUEST_BNDCFGS, data);
2895 		break;
2896 	case MSR_IA32_TSC:
2897 		kvm_write_tsc(vcpu, msr_info);
2898 		break;
2899 	case MSR_IA32_CR_PAT:
2900 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2901 			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2902 				return 1;
2903 			vmcs_write64(GUEST_IA32_PAT, data);
2904 			vcpu->arch.pat = data;
2905 			break;
2906 		}
2907 		ret = kvm_set_msr_common(vcpu, msr_info);
2908 		break;
2909 	case MSR_IA32_TSC_ADJUST:
2910 		ret = kvm_set_msr_common(vcpu, msr_info);
2911 		break;
2912 	case MSR_IA32_FEATURE_CONTROL:
2913 		if (!nested_vmx_allowed(vcpu) ||
2914 		    (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2915 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2916 			return 1;
2917 		vmx->nested.msr_ia32_feature_control = data;
2918 		if (msr_info->host_initiated && data == 0)
2919 			vmx_leave_nested(vcpu);
2920 		break;
2921 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2922 		return 1; /* they are read-only */
2923 	case MSR_IA32_XSS:
2924 		if (!vmx_xsaves_supported())
2925 			return 1;
2926 		/*
2927 		 * The only supported bit as of Skylake is bit 8, but
2928 		 * it is not supported on KVM.
2929 		 */
2930 		if (data != 0)
2931 			return 1;
2932 		vcpu->arch.ia32_xss = data;
2933 		if (vcpu->arch.ia32_xss != host_xss)
2934 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2935 				vcpu->arch.ia32_xss, host_xss);
2936 		else
2937 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2938 		break;
2939 	case MSR_TSC_AUX:
2940 		if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2941 			return 1;
2942 		/* Check reserved bit, higher 32 bits should be zero */
2943 		if ((data >> 32) != 0)
2944 			return 1;
2945 		/* Otherwise falls through */
2946 	default:
2947 		msr = find_msr_entry(vmx, msr_index);
2948 		if (msr) {
2949 			u64 old_msr_data = msr->data;
2950 			msr->data = data;
2951 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2952 				preempt_disable();
2953 				ret = kvm_set_shared_msr(msr->index, msr->data,
2954 							 msr->mask);
2955 				preempt_enable();
2956 				if (ret)
2957 					msr->data = old_msr_data;
2958 			}
2959 			break;
2960 		}
2961 		ret = kvm_set_msr_common(vcpu, msr_info);
2962 	}
2963 
2964 	return ret;
2965 }
2966 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2967 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2968 {
2969 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2970 	switch (reg) {
2971 	case VCPU_REGS_RSP:
2972 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2973 		break;
2974 	case VCPU_REGS_RIP:
2975 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2976 		break;
2977 	case VCPU_EXREG_PDPTR:
2978 		if (enable_ept)
2979 			ept_save_pdptrs(vcpu);
2980 		break;
2981 	default:
2982 		break;
2983 	}
2984 }
2985 
cpu_has_kvm_support(void)2986 static __init int cpu_has_kvm_support(void)
2987 {
2988 	return cpu_has_vmx();
2989 }
2990 
vmx_disabled_by_bios(void)2991 static __init int vmx_disabled_by_bios(void)
2992 {
2993 	u64 msr;
2994 
2995 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2996 	if (msr & FEATURE_CONTROL_LOCKED) {
2997 		/* launched w/ TXT and VMX disabled */
2998 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2999 			&& tboot_enabled())
3000 			return 1;
3001 		/* launched w/o TXT and VMX only enabled w/ TXT */
3002 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3003 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3004 			&& !tboot_enabled()) {
3005 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3006 				"activate TXT before enabling KVM\n");
3007 			return 1;
3008 		}
3009 		/* launched w/o TXT and VMX disabled */
3010 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3011 			&& !tboot_enabled())
3012 			return 1;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
kvm_cpu_vmxon(u64 addr)3018 static void kvm_cpu_vmxon(u64 addr)
3019 {
3020 	asm volatile (ASM_VMX_VMXON_RAX
3021 			: : "a"(&addr), "m"(addr)
3022 			: "memory", "cc");
3023 }
3024 
hardware_enable(void)3025 static int hardware_enable(void)
3026 {
3027 	int cpu = raw_smp_processor_id();
3028 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3029 	u64 old, test_bits;
3030 
3031 	if (cr4_read_shadow() & X86_CR4_VMXE)
3032 		return -EBUSY;
3033 
3034 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3035 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3036 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3037 
3038 	/*
3039 	 * Now we can enable the vmclear operation in kdump
3040 	 * since the loaded_vmcss_on_cpu list on this cpu
3041 	 * has been initialized.
3042 	 *
3043 	 * Though the cpu is not in VMX operation now, there
3044 	 * is no problem to enable the vmclear operation
3045 	 * for the loaded_vmcss_on_cpu list is empty!
3046 	 */
3047 	crash_enable_local_vmclear(cpu);
3048 
3049 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3050 
3051 	test_bits = FEATURE_CONTROL_LOCKED;
3052 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3053 	if (tboot_enabled())
3054 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3055 
3056 	if ((old & test_bits) != test_bits) {
3057 		/* enable and lock */
3058 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3059 	}
3060 	cr4_set_bits(X86_CR4_VMXE);
3061 
3062 	if (vmm_exclusive) {
3063 		kvm_cpu_vmxon(phys_addr);
3064 		ept_sync_global();
3065 	}
3066 
3067 	native_store_gdt(this_cpu_ptr(&host_gdt));
3068 
3069 	return 0;
3070 }
3071 
vmclear_local_loaded_vmcss(void)3072 static void vmclear_local_loaded_vmcss(void)
3073 {
3074 	int cpu = raw_smp_processor_id();
3075 	struct loaded_vmcs *v, *n;
3076 
3077 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3078 				 loaded_vmcss_on_cpu_link)
3079 		__loaded_vmcs_clear(v);
3080 }
3081 
3082 
3083 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3084  * tricks.
3085  */
kvm_cpu_vmxoff(void)3086 static void kvm_cpu_vmxoff(void)
3087 {
3088 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3089 }
3090 
hardware_disable(void)3091 static void hardware_disable(void)
3092 {
3093 	if (vmm_exclusive) {
3094 		vmclear_local_loaded_vmcss();
3095 		kvm_cpu_vmxoff();
3096 	}
3097 	cr4_clear_bits(X86_CR4_VMXE);
3098 }
3099 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)3100 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3101 				      u32 msr, u32 *result)
3102 {
3103 	u32 vmx_msr_low, vmx_msr_high;
3104 	u32 ctl = ctl_min | ctl_opt;
3105 
3106 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
3107 
3108 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3109 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3110 
3111 	/* Ensure minimum (required) set of control bits are supported. */
3112 	if (ctl_min & ~ctl)
3113 		return -EIO;
3114 
3115 	*result = ctl;
3116 	return 0;
3117 }
3118 
allow_1_setting(u32 msr,u32 ctl)3119 static __init bool allow_1_setting(u32 msr, u32 ctl)
3120 {
3121 	u32 vmx_msr_low, vmx_msr_high;
3122 
3123 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
3124 	return vmx_msr_high & ctl;
3125 }
3126 
setup_vmcs_config(struct vmcs_config * vmcs_conf)3127 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3128 {
3129 	u32 vmx_msr_low, vmx_msr_high;
3130 	u32 min, opt, min2, opt2;
3131 	u32 _pin_based_exec_control = 0;
3132 	u32 _cpu_based_exec_control = 0;
3133 	u32 _cpu_based_2nd_exec_control = 0;
3134 	u32 _vmexit_control = 0;
3135 	u32 _vmentry_control = 0;
3136 
3137 	min = CPU_BASED_HLT_EXITING |
3138 #ifdef CONFIG_X86_64
3139 	      CPU_BASED_CR8_LOAD_EXITING |
3140 	      CPU_BASED_CR8_STORE_EXITING |
3141 #endif
3142 	      CPU_BASED_CR3_LOAD_EXITING |
3143 	      CPU_BASED_CR3_STORE_EXITING |
3144 	      CPU_BASED_USE_IO_BITMAPS |
3145 	      CPU_BASED_MOV_DR_EXITING |
3146 	      CPU_BASED_USE_TSC_OFFSETING |
3147 	      CPU_BASED_MWAIT_EXITING |
3148 	      CPU_BASED_MONITOR_EXITING |
3149 	      CPU_BASED_INVLPG_EXITING |
3150 	      CPU_BASED_RDPMC_EXITING;
3151 
3152 	opt = CPU_BASED_TPR_SHADOW |
3153 	      CPU_BASED_USE_MSR_BITMAPS |
3154 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3155 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3156 				&_cpu_based_exec_control) < 0)
3157 		return -EIO;
3158 #ifdef CONFIG_X86_64
3159 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3160 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3161 					   ~CPU_BASED_CR8_STORE_EXITING;
3162 #endif
3163 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3164 		min2 = 0;
3165 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3166 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3167 			SECONDARY_EXEC_WBINVD_EXITING |
3168 			SECONDARY_EXEC_ENABLE_VPID |
3169 			SECONDARY_EXEC_ENABLE_EPT |
3170 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
3171 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3172 			SECONDARY_EXEC_RDTSCP |
3173 			SECONDARY_EXEC_ENABLE_INVPCID |
3174 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
3175 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3176 			SECONDARY_EXEC_SHADOW_VMCS |
3177 			SECONDARY_EXEC_XSAVES |
3178 			SECONDARY_EXEC_ENABLE_PML |
3179 			SECONDARY_EXEC_PCOMMIT |
3180 			SECONDARY_EXEC_TSC_SCALING;
3181 		if (adjust_vmx_controls(min2, opt2,
3182 					MSR_IA32_VMX_PROCBASED_CTLS2,
3183 					&_cpu_based_2nd_exec_control) < 0)
3184 			return -EIO;
3185 	}
3186 #ifndef CONFIG_X86_64
3187 	if (!(_cpu_based_2nd_exec_control &
3188 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3189 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3190 #endif
3191 
3192 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3193 		_cpu_based_2nd_exec_control &= ~(
3194 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
3195 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3196 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3197 
3198 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3199 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3200 		   enabled */
3201 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3202 					     CPU_BASED_CR3_STORE_EXITING |
3203 					     CPU_BASED_INVLPG_EXITING);
3204 		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3205 		      vmx_capability.ept, vmx_capability.vpid);
3206 	}
3207 
3208 	min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3209 #ifdef CONFIG_X86_64
3210 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3211 #endif
3212 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3213 		VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3214 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3215 				&_vmexit_control) < 0)
3216 		return -EIO;
3217 
3218 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3219 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3220 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3221 				&_pin_based_exec_control) < 0)
3222 		return -EIO;
3223 
3224 	if (!(_cpu_based_2nd_exec_control &
3225 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3226 		!(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3227 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3228 
3229 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3230 	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3231 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3232 				&_vmentry_control) < 0)
3233 		return -EIO;
3234 
3235 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3236 
3237 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3238 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3239 		return -EIO;
3240 
3241 #ifdef CONFIG_X86_64
3242 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3243 	if (vmx_msr_high & (1u<<16))
3244 		return -EIO;
3245 #endif
3246 
3247 	/* Require Write-Back (WB) memory type for VMCS accesses. */
3248 	if (((vmx_msr_high >> 18) & 15) != 6)
3249 		return -EIO;
3250 
3251 	vmcs_conf->size = vmx_msr_high & 0x1fff;
3252 	vmcs_conf->order = get_order(vmcs_config.size);
3253 	vmcs_conf->revision_id = vmx_msr_low;
3254 
3255 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3256 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3257 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3258 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
3259 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
3260 
3261 	cpu_has_load_ia32_efer =
3262 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3263 				VM_ENTRY_LOAD_IA32_EFER)
3264 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3265 				   VM_EXIT_LOAD_IA32_EFER);
3266 
3267 	cpu_has_load_perf_global_ctrl =
3268 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3269 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3270 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3271 				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3272 
3273 	/*
3274 	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3275 	 * but due to arrata below it can't be used. Workaround is to use
3276 	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3277 	 *
3278 	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3279 	 *
3280 	 * AAK155             (model 26)
3281 	 * AAP115             (model 30)
3282 	 * AAT100             (model 37)
3283 	 * BC86,AAY89,BD102   (model 44)
3284 	 * BA97               (model 46)
3285 	 *
3286 	 */
3287 	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3288 		switch (boot_cpu_data.x86_model) {
3289 		case 26:
3290 		case 30:
3291 		case 37:
3292 		case 44:
3293 		case 46:
3294 			cpu_has_load_perf_global_ctrl = false;
3295 			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3296 					"does not work properly. Using workaround\n");
3297 			break;
3298 		default:
3299 			break;
3300 		}
3301 	}
3302 
3303 	if (cpu_has_xsaves)
3304 		rdmsrl(MSR_IA32_XSS, host_xss);
3305 
3306 	return 0;
3307 }
3308 
alloc_vmcs_cpu(int cpu)3309 static struct vmcs *alloc_vmcs_cpu(int cpu)
3310 {
3311 	int node = cpu_to_node(cpu);
3312 	struct page *pages;
3313 	struct vmcs *vmcs;
3314 
3315 	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3316 	if (!pages)
3317 		return NULL;
3318 	vmcs = page_address(pages);
3319 	memset(vmcs, 0, vmcs_config.size);
3320 	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3321 	return vmcs;
3322 }
3323 
alloc_vmcs(void)3324 static struct vmcs *alloc_vmcs(void)
3325 {
3326 	return alloc_vmcs_cpu(raw_smp_processor_id());
3327 }
3328 
free_vmcs(struct vmcs * vmcs)3329 static void free_vmcs(struct vmcs *vmcs)
3330 {
3331 	free_pages((unsigned long)vmcs, vmcs_config.order);
3332 }
3333 
3334 /*
3335  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3336  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3337 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3338 {
3339 	if (!loaded_vmcs->vmcs)
3340 		return;
3341 	loaded_vmcs_clear(loaded_vmcs);
3342 	free_vmcs(loaded_vmcs->vmcs);
3343 	loaded_vmcs->vmcs = NULL;
3344 }
3345 
free_kvm_area(void)3346 static void free_kvm_area(void)
3347 {
3348 	int cpu;
3349 
3350 	for_each_possible_cpu(cpu) {
3351 		free_vmcs(per_cpu(vmxarea, cpu));
3352 		per_cpu(vmxarea, cpu) = NULL;
3353 	}
3354 }
3355 
init_vmcs_shadow_fields(void)3356 static void init_vmcs_shadow_fields(void)
3357 {
3358 	int i, j;
3359 
3360 	/* No checks for read only fields yet */
3361 
3362 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3363 		switch (shadow_read_write_fields[i]) {
3364 		case GUEST_BNDCFGS:
3365 			if (!vmx_mpx_supported())
3366 				continue;
3367 			break;
3368 		default:
3369 			break;
3370 		}
3371 
3372 		if (j < i)
3373 			shadow_read_write_fields[j] =
3374 				shadow_read_write_fields[i];
3375 		j++;
3376 	}
3377 	max_shadow_read_write_fields = j;
3378 
3379 	/* shadowed fields guest access without vmexit */
3380 	for (i = 0; i < max_shadow_read_write_fields; i++) {
3381 		clear_bit(shadow_read_write_fields[i],
3382 			  vmx_vmwrite_bitmap);
3383 		clear_bit(shadow_read_write_fields[i],
3384 			  vmx_vmread_bitmap);
3385 	}
3386 	for (i = 0; i < max_shadow_read_only_fields; i++)
3387 		clear_bit(shadow_read_only_fields[i],
3388 			  vmx_vmread_bitmap);
3389 }
3390 
alloc_kvm_area(void)3391 static __init int alloc_kvm_area(void)
3392 {
3393 	int cpu;
3394 
3395 	for_each_possible_cpu(cpu) {
3396 		struct vmcs *vmcs;
3397 
3398 		vmcs = alloc_vmcs_cpu(cpu);
3399 		if (!vmcs) {
3400 			free_kvm_area();
3401 			return -ENOMEM;
3402 		}
3403 
3404 		per_cpu(vmxarea, cpu) = vmcs;
3405 	}
3406 	return 0;
3407 }
3408 
emulation_required(struct kvm_vcpu * vcpu)3409 static bool emulation_required(struct kvm_vcpu *vcpu)
3410 {
3411 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3412 }
3413 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3414 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3415 		struct kvm_segment *save)
3416 {
3417 	if (!emulate_invalid_guest_state) {
3418 		/*
3419 		 * CS and SS RPL should be equal during guest entry according
3420 		 * to VMX spec, but in reality it is not always so. Since vcpu
3421 		 * is in the middle of the transition from real mode to
3422 		 * protected mode it is safe to assume that RPL 0 is a good
3423 		 * default value.
3424 		 */
3425 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3426 			save->selector &= ~SEGMENT_RPL_MASK;
3427 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3428 		save->s = 1;
3429 	}
3430 	vmx_set_segment(vcpu, save, seg);
3431 }
3432 
enter_pmode(struct kvm_vcpu * vcpu)3433 static void enter_pmode(struct kvm_vcpu *vcpu)
3434 {
3435 	unsigned long flags;
3436 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3437 
3438 	/*
3439 	 * Update real mode segment cache. It may be not up-to-date if sement
3440 	 * register was written while vcpu was in a guest mode.
3441 	 */
3442 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3443 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3444 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3445 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3446 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3447 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3448 
3449 	vmx->rmode.vm86_active = 0;
3450 
3451 	vmx_segment_cache_clear(vmx);
3452 
3453 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3454 
3455 	flags = vmcs_readl(GUEST_RFLAGS);
3456 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3457 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3458 	vmcs_writel(GUEST_RFLAGS, flags);
3459 
3460 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3461 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3462 
3463 	update_exception_bitmap(vcpu);
3464 
3465 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3466 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3467 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3468 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3469 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3470 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3471 }
3472 
fix_rmode_seg(int seg,struct kvm_segment * save)3473 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3474 {
3475 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3476 	struct kvm_segment var = *save;
3477 
3478 	var.dpl = 0x3;
3479 	if (seg == VCPU_SREG_CS)
3480 		var.type = 0x3;
3481 
3482 	if (!emulate_invalid_guest_state) {
3483 		var.selector = var.base >> 4;
3484 		var.base = var.base & 0xffff0;
3485 		var.limit = 0xffff;
3486 		var.g = 0;
3487 		var.db = 0;
3488 		var.present = 1;
3489 		var.s = 1;
3490 		var.l = 0;
3491 		var.unusable = 0;
3492 		var.type = 0x3;
3493 		var.avl = 0;
3494 		if (save->base & 0xf)
3495 			printk_once(KERN_WARNING "kvm: segment base is not "
3496 					"paragraph aligned when entering "
3497 					"protected mode (seg=%d)", seg);
3498 	}
3499 
3500 	vmcs_write16(sf->selector, var.selector);
3501 	vmcs_write32(sf->base, var.base);
3502 	vmcs_write32(sf->limit, var.limit);
3503 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3504 }
3505 
enter_rmode(struct kvm_vcpu * vcpu)3506 static void enter_rmode(struct kvm_vcpu *vcpu)
3507 {
3508 	unsigned long flags;
3509 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3510 
3511 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3512 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3513 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3514 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3515 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3516 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3517 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3518 
3519 	vmx->rmode.vm86_active = 1;
3520 
3521 	/*
3522 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3523 	 * vcpu. Warn the user that an update is overdue.
3524 	 */
3525 	if (!vcpu->kvm->arch.tss_addr)
3526 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3527 			     "called before entering vcpu\n");
3528 
3529 	vmx_segment_cache_clear(vmx);
3530 
3531 	vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3532 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3533 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3534 
3535 	flags = vmcs_readl(GUEST_RFLAGS);
3536 	vmx->rmode.save_rflags = flags;
3537 
3538 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3539 
3540 	vmcs_writel(GUEST_RFLAGS, flags);
3541 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3542 	update_exception_bitmap(vcpu);
3543 
3544 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3545 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3546 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3547 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3548 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3549 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3550 
3551 	kvm_mmu_reset_context(vcpu);
3552 }
3553 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3554 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3555 {
3556 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3557 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3558 
3559 	if (!msr)
3560 		return;
3561 
3562 	/*
3563 	 * Force kernel_gs_base reloading before EFER changes, as control
3564 	 * of this msr depends on is_long_mode().
3565 	 */
3566 	vmx_load_host_state(to_vmx(vcpu));
3567 	vcpu->arch.efer = efer;
3568 	if (efer & EFER_LMA) {
3569 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3570 		msr->data = efer;
3571 	} else {
3572 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3573 
3574 		msr->data = efer & ~EFER_LME;
3575 	}
3576 	setup_msrs(vmx);
3577 }
3578 
3579 #ifdef CONFIG_X86_64
3580 
enter_lmode(struct kvm_vcpu * vcpu)3581 static void enter_lmode(struct kvm_vcpu *vcpu)
3582 {
3583 	u32 guest_tr_ar;
3584 
3585 	vmx_segment_cache_clear(to_vmx(vcpu));
3586 
3587 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3588 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3589 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3590 				     __func__);
3591 		vmcs_write32(GUEST_TR_AR_BYTES,
3592 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3593 			     | VMX_AR_TYPE_BUSY_64_TSS);
3594 	}
3595 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3596 }
3597 
exit_lmode(struct kvm_vcpu * vcpu)3598 static void exit_lmode(struct kvm_vcpu *vcpu)
3599 {
3600 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3601 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3602 }
3603 
3604 #endif
3605 
__vmx_flush_tlb(struct kvm_vcpu * vcpu,int vpid)3606 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3607 {
3608 	vpid_sync_context(vpid);
3609 	if (enable_ept) {
3610 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3611 			return;
3612 		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3613 	}
3614 }
3615 
vmx_flush_tlb(struct kvm_vcpu * vcpu)3616 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3617 {
3618 	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3619 }
3620 
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)3621 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3622 {
3623 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3624 
3625 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3626 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3627 }
3628 
vmx_decache_cr3(struct kvm_vcpu * vcpu)3629 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3630 {
3631 	if (enable_ept && is_paging(vcpu))
3632 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3633 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3634 }
3635 
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)3636 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3637 {
3638 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3639 
3640 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3641 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3642 }
3643 
ept_load_pdptrs(struct kvm_vcpu * vcpu)3644 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3645 {
3646 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3647 
3648 	if (!test_bit(VCPU_EXREG_PDPTR,
3649 		      (unsigned long *)&vcpu->arch.regs_dirty))
3650 		return;
3651 
3652 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3653 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3654 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3655 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3656 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3657 	}
3658 }
3659 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3660 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3661 {
3662 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3663 
3664 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3665 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3666 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3667 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3668 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3669 	}
3670 
3671 	__set_bit(VCPU_EXREG_PDPTR,
3672 		  (unsigned long *)&vcpu->arch.regs_avail);
3673 	__set_bit(VCPU_EXREG_PDPTR,
3674 		  (unsigned long *)&vcpu->arch.regs_dirty);
3675 }
3676 
3677 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3678 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3679 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3680 					unsigned long cr0,
3681 					struct kvm_vcpu *vcpu)
3682 {
3683 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3684 		vmx_decache_cr3(vcpu);
3685 	if (!(cr0 & X86_CR0_PG)) {
3686 		/* From paging/starting to nonpaging */
3687 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3688 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3689 			     (CPU_BASED_CR3_LOAD_EXITING |
3690 			      CPU_BASED_CR3_STORE_EXITING));
3691 		vcpu->arch.cr0 = cr0;
3692 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3693 	} else if (!is_paging(vcpu)) {
3694 		/* From nonpaging to paging */
3695 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3696 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3697 			     ~(CPU_BASED_CR3_LOAD_EXITING |
3698 			       CPU_BASED_CR3_STORE_EXITING));
3699 		vcpu->arch.cr0 = cr0;
3700 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3701 	}
3702 
3703 	if (!(cr0 & X86_CR0_WP))
3704 		*hw_cr0 &= ~X86_CR0_WP;
3705 }
3706 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3707 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3708 {
3709 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3710 	unsigned long hw_cr0;
3711 
3712 	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3713 	if (enable_unrestricted_guest)
3714 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3715 	else {
3716 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3717 
3718 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3719 			enter_pmode(vcpu);
3720 
3721 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3722 			enter_rmode(vcpu);
3723 	}
3724 
3725 #ifdef CONFIG_X86_64
3726 	if (vcpu->arch.efer & EFER_LME) {
3727 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3728 			enter_lmode(vcpu);
3729 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3730 			exit_lmode(vcpu);
3731 	}
3732 #endif
3733 
3734 	if (enable_ept)
3735 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3736 
3737 	if (!vcpu->fpu_active)
3738 		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3739 
3740 	vmcs_writel(CR0_READ_SHADOW, cr0);
3741 	vmcs_writel(GUEST_CR0, hw_cr0);
3742 	vcpu->arch.cr0 = cr0;
3743 
3744 	/* depends on vcpu->arch.cr0 to be set to a new value */
3745 	vmx->emulation_required = emulation_required(vcpu);
3746 }
3747 
construct_eptp(unsigned long root_hpa)3748 static u64 construct_eptp(unsigned long root_hpa)
3749 {
3750 	u64 eptp;
3751 
3752 	/* TODO write the value reading from MSR */
3753 	eptp = VMX_EPT_DEFAULT_MT |
3754 		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3755 	if (enable_ept_ad_bits)
3756 		eptp |= VMX_EPT_AD_ENABLE_BIT;
3757 	eptp |= (root_hpa & PAGE_MASK);
3758 
3759 	return eptp;
3760 }
3761 
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)3762 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3763 {
3764 	unsigned long guest_cr3;
3765 	u64 eptp;
3766 
3767 	guest_cr3 = cr3;
3768 	if (enable_ept) {
3769 		eptp = construct_eptp(cr3);
3770 		vmcs_write64(EPT_POINTER, eptp);
3771 		if (is_paging(vcpu) || is_guest_mode(vcpu))
3772 			guest_cr3 = kvm_read_cr3(vcpu);
3773 		else
3774 			guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3775 		ept_load_pdptrs(vcpu);
3776 	}
3777 
3778 	vmx_flush_tlb(vcpu);
3779 	vmcs_writel(GUEST_CR3, guest_cr3);
3780 }
3781 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3782 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3783 {
3784 	/*
3785 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3786 	 * is in force while we are in guest mode.  Do not let guests control
3787 	 * this bit, even if host CR4.MCE == 0.
3788 	 */
3789 	unsigned long hw_cr4 =
3790 		(cr4_read_shadow() & X86_CR4_MCE) |
3791 		(cr4 & ~X86_CR4_MCE) |
3792 		(to_vmx(vcpu)->rmode.vm86_active ?
3793 		 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3794 
3795 	if (cr4 & X86_CR4_VMXE) {
3796 		/*
3797 		 * To use VMXON (and later other VMX instructions), a guest
3798 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3799 		 * So basically the check on whether to allow nested VMX
3800 		 * is here.
3801 		 */
3802 		if (!nested_vmx_allowed(vcpu))
3803 			return 1;
3804 	}
3805 	if (to_vmx(vcpu)->nested.vmxon &&
3806 	    ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3807 		return 1;
3808 
3809 	vcpu->arch.cr4 = cr4;
3810 	if (enable_ept) {
3811 		if (!is_paging(vcpu)) {
3812 			hw_cr4 &= ~X86_CR4_PAE;
3813 			hw_cr4 |= X86_CR4_PSE;
3814 		} else if (!(cr4 & X86_CR4_PAE)) {
3815 			hw_cr4 &= ~X86_CR4_PAE;
3816 		}
3817 	}
3818 
3819 	if (!enable_unrestricted_guest && !is_paging(vcpu))
3820 		/*
3821 		 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3822 		 * hardware.  However KVM always uses paging mode without
3823 		 * unrestricted guest.
3824 		 * To emulate this behavior, SMEP/SMAP needs to be manually
3825 		 * disabled when guest switches to non-paging mode.
3826 		 */
3827 		hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3828 
3829 	vmcs_writel(CR4_READ_SHADOW, cr4);
3830 	vmcs_writel(GUEST_CR4, hw_cr4);
3831 	return 0;
3832 }
3833 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3834 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3835 			    struct kvm_segment *var, int seg)
3836 {
3837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3838 	u32 ar;
3839 
3840 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3841 		*var = vmx->rmode.segs[seg];
3842 		if (seg == VCPU_SREG_TR
3843 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3844 			return;
3845 		var->base = vmx_read_guest_seg_base(vmx, seg);
3846 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3847 		return;
3848 	}
3849 	var->base = vmx_read_guest_seg_base(vmx, seg);
3850 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3851 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3852 	ar = vmx_read_guest_seg_ar(vmx, seg);
3853 	var->unusable = (ar >> 16) & 1;
3854 	var->type = ar & 15;
3855 	var->s = (ar >> 4) & 1;
3856 	var->dpl = (ar >> 5) & 3;
3857 	/*
3858 	 * Some userspaces do not preserve unusable property. Since usable
3859 	 * segment has to be present according to VMX spec we can use present
3860 	 * property to amend userspace bug by making unusable segment always
3861 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3862 	 * segment as unusable.
3863 	 */
3864 	var->present = !var->unusable;
3865 	var->avl = (ar >> 12) & 1;
3866 	var->l = (ar >> 13) & 1;
3867 	var->db = (ar >> 14) & 1;
3868 	var->g = (ar >> 15) & 1;
3869 }
3870 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3871 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3872 {
3873 	struct kvm_segment s;
3874 
3875 	if (to_vmx(vcpu)->rmode.vm86_active) {
3876 		vmx_get_segment(vcpu, &s, seg);
3877 		return s.base;
3878 	}
3879 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3880 }
3881 
vmx_get_cpl(struct kvm_vcpu * vcpu)3882 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3883 {
3884 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3885 
3886 	if (unlikely(vmx->rmode.vm86_active))
3887 		return 0;
3888 	else {
3889 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3890 		return VMX_AR_DPL(ar);
3891 	}
3892 }
3893 
vmx_segment_access_rights(struct kvm_segment * var)3894 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3895 {
3896 	u32 ar;
3897 
3898 	if (var->unusable || !var->present)
3899 		ar = 1 << 16;
3900 	else {
3901 		ar = var->type & 15;
3902 		ar |= (var->s & 1) << 4;
3903 		ar |= (var->dpl & 3) << 5;
3904 		ar |= (var->present & 1) << 7;
3905 		ar |= (var->avl & 1) << 12;
3906 		ar |= (var->l & 1) << 13;
3907 		ar |= (var->db & 1) << 14;
3908 		ar |= (var->g & 1) << 15;
3909 	}
3910 
3911 	return ar;
3912 }
3913 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3914 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3915 			    struct kvm_segment *var, int seg)
3916 {
3917 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3918 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3919 
3920 	vmx_segment_cache_clear(vmx);
3921 
3922 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3923 		vmx->rmode.segs[seg] = *var;
3924 		if (seg == VCPU_SREG_TR)
3925 			vmcs_write16(sf->selector, var->selector);
3926 		else if (var->s)
3927 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3928 		goto out;
3929 	}
3930 
3931 	vmcs_writel(sf->base, var->base);
3932 	vmcs_write32(sf->limit, var->limit);
3933 	vmcs_write16(sf->selector, var->selector);
3934 
3935 	/*
3936 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3937 	 * qemu binaries.
3938 	 *   IA32 arch specifies that at the time of processor reset the
3939 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3940 	 * is setting it to 0 in the userland code. This causes invalid guest
3941 	 * state vmexit when "unrestricted guest" mode is turned on.
3942 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3943 	 * tree. Newer qemu binaries with that qemu fix would not need this
3944 	 * kvm hack.
3945 	 */
3946 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3947 		var->type |= 0x1; /* Accessed */
3948 
3949 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3950 
3951 out:
3952 	vmx->emulation_required = emulation_required(vcpu);
3953 }
3954 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3955 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3956 {
3957 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3958 
3959 	*db = (ar >> 14) & 1;
3960 	*l = (ar >> 13) & 1;
3961 }
3962 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3963 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3964 {
3965 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3966 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3967 }
3968 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3969 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3970 {
3971 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3972 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3973 }
3974 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3975 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3976 {
3977 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3978 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3979 }
3980 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3981 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3982 {
3983 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3984 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3985 }
3986 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3987 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3988 {
3989 	struct kvm_segment var;
3990 	u32 ar;
3991 
3992 	vmx_get_segment(vcpu, &var, seg);
3993 	var.dpl = 0x3;
3994 	if (seg == VCPU_SREG_CS)
3995 		var.type = 0x3;
3996 	ar = vmx_segment_access_rights(&var);
3997 
3998 	if (var.base != (var.selector << 4))
3999 		return false;
4000 	if (var.limit != 0xffff)
4001 		return false;
4002 	if (ar != 0xf3)
4003 		return false;
4004 
4005 	return true;
4006 }
4007 
code_segment_valid(struct kvm_vcpu * vcpu)4008 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4009 {
4010 	struct kvm_segment cs;
4011 	unsigned int cs_rpl;
4012 
4013 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4014 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4015 
4016 	if (cs.unusable)
4017 		return false;
4018 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4019 		return false;
4020 	if (!cs.s)
4021 		return false;
4022 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4023 		if (cs.dpl > cs_rpl)
4024 			return false;
4025 	} else {
4026 		if (cs.dpl != cs_rpl)
4027 			return false;
4028 	}
4029 	if (!cs.present)
4030 		return false;
4031 
4032 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4033 	return true;
4034 }
4035 
stack_segment_valid(struct kvm_vcpu * vcpu)4036 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4037 {
4038 	struct kvm_segment ss;
4039 	unsigned int ss_rpl;
4040 
4041 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4042 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4043 
4044 	if (ss.unusable)
4045 		return true;
4046 	if (ss.type != 3 && ss.type != 7)
4047 		return false;
4048 	if (!ss.s)
4049 		return false;
4050 	if (ss.dpl != ss_rpl) /* DPL != RPL */
4051 		return false;
4052 	if (!ss.present)
4053 		return false;
4054 
4055 	return true;
4056 }
4057 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)4058 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4059 {
4060 	struct kvm_segment var;
4061 	unsigned int rpl;
4062 
4063 	vmx_get_segment(vcpu, &var, seg);
4064 	rpl = var.selector & SEGMENT_RPL_MASK;
4065 
4066 	if (var.unusable)
4067 		return true;
4068 	if (!var.s)
4069 		return false;
4070 	if (!var.present)
4071 		return false;
4072 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4073 		if (var.dpl < rpl) /* DPL < RPL */
4074 			return false;
4075 	}
4076 
4077 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
4078 	 * rights flags
4079 	 */
4080 	return true;
4081 }
4082 
tr_valid(struct kvm_vcpu * vcpu)4083 static bool tr_valid(struct kvm_vcpu *vcpu)
4084 {
4085 	struct kvm_segment tr;
4086 
4087 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4088 
4089 	if (tr.unusable)
4090 		return false;
4091 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
4092 		return false;
4093 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4094 		return false;
4095 	if (!tr.present)
4096 		return false;
4097 
4098 	return true;
4099 }
4100 
ldtr_valid(struct kvm_vcpu * vcpu)4101 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4102 {
4103 	struct kvm_segment ldtr;
4104 
4105 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4106 
4107 	if (ldtr.unusable)
4108 		return true;
4109 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
4110 		return false;
4111 	if (ldtr.type != 2)
4112 		return false;
4113 	if (!ldtr.present)
4114 		return false;
4115 
4116 	return true;
4117 }
4118 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)4119 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4120 {
4121 	struct kvm_segment cs, ss;
4122 
4123 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4124 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4125 
4126 	return ((cs.selector & SEGMENT_RPL_MASK) ==
4127 		 (ss.selector & SEGMENT_RPL_MASK));
4128 }
4129 
4130 /*
4131  * Check if guest state is valid. Returns true if valid, false if
4132  * not.
4133  * We assume that registers are always usable
4134  */
guest_state_valid(struct kvm_vcpu * vcpu)4135 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4136 {
4137 	if (enable_unrestricted_guest)
4138 		return true;
4139 
4140 	/* real mode guest state checks */
4141 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4142 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4143 			return false;
4144 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4145 			return false;
4146 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4147 			return false;
4148 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4149 			return false;
4150 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4151 			return false;
4152 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4153 			return false;
4154 	} else {
4155 	/* protected mode guest state checks */
4156 		if (!cs_ss_rpl_check(vcpu))
4157 			return false;
4158 		if (!code_segment_valid(vcpu))
4159 			return false;
4160 		if (!stack_segment_valid(vcpu))
4161 			return false;
4162 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4163 			return false;
4164 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4165 			return false;
4166 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4167 			return false;
4168 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4169 			return false;
4170 		if (!tr_valid(vcpu))
4171 			return false;
4172 		if (!ldtr_valid(vcpu))
4173 			return false;
4174 	}
4175 	/* TODO:
4176 	 * - Add checks on RIP
4177 	 * - Add checks on RFLAGS
4178 	 */
4179 
4180 	return true;
4181 }
4182 
init_rmode_tss(struct kvm * kvm)4183 static int init_rmode_tss(struct kvm *kvm)
4184 {
4185 	gfn_t fn;
4186 	u16 data = 0;
4187 	int idx, r;
4188 
4189 	idx = srcu_read_lock(&kvm->srcu);
4190 	fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4191 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4192 	if (r < 0)
4193 		goto out;
4194 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4195 	r = kvm_write_guest_page(kvm, fn++, &data,
4196 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
4197 	if (r < 0)
4198 		goto out;
4199 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4200 	if (r < 0)
4201 		goto out;
4202 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4203 	if (r < 0)
4204 		goto out;
4205 	data = ~0;
4206 	r = kvm_write_guest_page(kvm, fn, &data,
4207 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4208 				 sizeof(u8));
4209 out:
4210 	srcu_read_unlock(&kvm->srcu, idx);
4211 	return r;
4212 }
4213 
init_rmode_identity_map(struct kvm * kvm)4214 static int init_rmode_identity_map(struct kvm *kvm)
4215 {
4216 	int i, idx, r = 0;
4217 	pfn_t identity_map_pfn;
4218 	u32 tmp;
4219 
4220 	if (!enable_ept)
4221 		return 0;
4222 
4223 	/* Protect kvm->arch.ept_identity_pagetable_done. */
4224 	mutex_lock(&kvm->slots_lock);
4225 
4226 	if (likely(kvm->arch.ept_identity_pagetable_done))
4227 		goto out2;
4228 
4229 	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4230 
4231 	r = alloc_identity_pagetable(kvm);
4232 	if (r < 0)
4233 		goto out2;
4234 
4235 	idx = srcu_read_lock(&kvm->srcu);
4236 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4237 	if (r < 0)
4238 		goto out;
4239 	/* Set up identity-mapping pagetable for EPT in real mode */
4240 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4241 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4242 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4243 		r = kvm_write_guest_page(kvm, identity_map_pfn,
4244 				&tmp, i * sizeof(tmp), sizeof(tmp));
4245 		if (r < 0)
4246 			goto out;
4247 	}
4248 	kvm->arch.ept_identity_pagetable_done = true;
4249 
4250 out:
4251 	srcu_read_unlock(&kvm->srcu, idx);
4252 
4253 out2:
4254 	mutex_unlock(&kvm->slots_lock);
4255 	return r;
4256 }
4257 
seg_setup(int seg)4258 static void seg_setup(int seg)
4259 {
4260 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4261 	unsigned int ar;
4262 
4263 	vmcs_write16(sf->selector, 0);
4264 	vmcs_writel(sf->base, 0);
4265 	vmcs_write32(sf->limit, 0xffff);
4266 	ar = 0x93;
4267 	if (seg == VCPU_SREG_CS)
4268 		ar |= 0x08; /* code segment */
4269 
4270 	vmcs_write32(sf->ar_bytes, ar);
4271 }
4272 
alloc_apic_access_page(struct kvm * kvm)4273 static int alloc_apic_access_page(struct kvm *kvm)
4274 {
4275 	struct page *page;
4276 	int r = 0;
4277 
4278 	mutex_lock(&kvm->slots_lock);
4279 	if (kvm->arch.apic_access_page_done)
4280 		goto out;
4281 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4282 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4283 	if (r)
4284 		goto out;
4285 
4286 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4287 	if (is_error_page(page)) {
4288 		r = -EFAULT;
4289 		goto out;
4290 	}
4291 
4292 	/*
4293 	 * Do not pin the page in memory, so that memory hot-unplug
4294 	 * is able to migrate it.
4295 	 */
4296 	put_page(page);
4297 	kvm->arch.apic_access_page_done = true;
4298 out:
4299 	mutex_unlock(&kvm->slots_lock);
4300 	return r;
4301 }
4302 
alloc_identity_pagetable(struct kvm * kvm)4303 static int alloc_identity_pagetable(struct kvm *kvm)
4304 {
4305 	/* Called with kvm->slots_lock held. */
4306 
4307 	int r = 0;
4308 
4309 	BUG_ON(kvm->arch.ept_identity_pagetable_done);
4310 
4311 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4312 				    kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4313 
4314 	return r;
4315 }
4316 
allocate_vpid(void)4317 static int allocate_vpid(void)
4318 {
4319 	int vpid;
4320 
4321 	if (!enable_vpid)
4322 		return 0;
4323 	spin_lock(&vmx_vpid_lock);
4324 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4325 	if (vpid < VMX_NR_VPIDS)
4326 		__set_bit(vpid, vmx_vpid_bitmap);
4327 	else
4328 		vpid = 0;
4329 	spin_unlock(&vmx_vpid_lock);
4330 	return vpid;
4331 }
4332 
free_vpid(int vpid)4333 static void free_vpid(int vpid)
4334 {
4335 	if (!enable_vpid || vpid == 0)
4336 		return;
4337 	spin_lock(&vmx_vpid_lock);
4338 	__clear_bit(vpid, vmx_vpid_bitmap);
4339 	spin_unlock(&vmx_vpid_lock);
4340 }
4341 
4342 #define MSR_TYPE_R	1
4343 #define MSR_TYPE_W	2
__vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4344 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4345 						u32 msr, int type)
4346 {
4347 	int f = sizeof(unsigned long);
4348 
4349 	if (!cpu_has_vmx_msr_bitmap())
4350 		return;
4351 
4352 	/*
4353 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4354 	 * have the write-low and read-high bitmap offsets the wrong way round.
4355 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4356 	 */
4357 	if (msr <= 0x1fff) {
4358 		if (type & MSR_TYPE_R)
4359 			/* read-low */
4360 			__clear_bit(msr, msr_bitmap + 0x000 / f);
4361 
4362 		if (type & MSR_TYPE_W)
4363 			/* write-low */
4364 			__clear_bit(msr, msr_bitmap + 0x800 / f);
4365 
4366 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4367 		msr &= 0x1fff;
4368 		if (type & MSR_TYPE_R)
4369 			/* read-high */
4370 			__clear_bit(msr, msr_bitmap + 0x400 / f);
4371 
4372 		if (type & MSR_TYPE_W)
4373 			/* write-high */
4374 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
4375 
4376 	}
4377 }
4378 
__vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4379 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4380 						u32 msr, int type)
4381 {
4382 	int f = sizeof(unsigned long);
4383 
4384 	if (!cpu_has_vmx_msr_bitmap())
4385 		return;
4386 
4387 	/*
4388 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4389 	 * have the write-low and read-high bitmap offsets the wrong way round.
4390 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4391 	 */
4392 	if (msr <= 0x1fff) {
4393 		if (type & MSR_TYPE_R)
4394 			/* read-low */
4395 			__set_bit(msr, msr_bitmap + 0x000 / f);
4396 
4397 		if (type & MSR_TYPE_W)
4398 			/* write-low */
4399 			__set_bit(msr, msr_bitmap + 0x800 / f);
4400 
4401 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4402 		msr &= 0x1fff;
4403 		if (type & MSR_TYPE_R)
4404 			/* read-high */
4405 			__set_bit(msr, msr_bitmap + 0x400 / f);
4406 
4407 		if (type & MSR_TYPE_W)
4408 			/* write-high */
4409 			__set_bit(msr, msr_bitmap + 0xc00 / f);
4410 
4411 	}
4412 }
4413 
4414 /*
4415  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4416  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4417  */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)4418 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4419 					       unsigned long *msr_bitmap_nested,
4420 					       u32 msr, int type)
4421 {
4422 	int f = sizeof(unsigned long);
4423 
4424 	if (!cpu_has_vmx_msr_bitmap()) {
4425 		WARN_ON(1);
4426 		return;
4427 	}
4428 
4429 	/*
4430 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4431 	 * have the write-low and read-high bitmap offsets the wrong way round.
4432 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4433 	 */
4434 	if (msr <= 0x1fff) {
4435 		if (type & MSR_TYPE_R &&
4436 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4437 			/* read-low */
4438 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4439 
4440 		if (type & MSR_TYPE_W &&
4441 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4442 			/* write-low */
4443 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4444 
4445 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4446 		msr &= 0x1fff;
4447 		if (type & MSR_TYPE_R &&
4448 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4449 			/* read-high */
4450 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4451 
4452 		if (type & MSR_TYPE_W &&
4453 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4454 			/* write-high */
4455 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4456 
4457 	}
4458 }
4459 
vmx_disable_intercept_for_msr(u32 msr,bool longmode_only)4460 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4461 {
4462 	if (!longmode_only)
4463 		__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4464 						msr, MSR_TYPE_R | MSR_TYPE_W);
4465 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4466 						msr, MSR_TYPE_R | MSR_TYPE_W);
4467 }
4468 
vmx_enable_intercept_msr_read_x2apic(u32 msr)4469 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4470 {
4471 	__vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4472 			msr, MSR_TYPE_R);
4473 	__vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4474 			msr, MSR_TYPE_R);
4475 }
4476 
vmx_disable_intercept_msr_read_x2apic(u32 msr)4477 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4478 {
4479 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4480 			msr, MSR_TYPE_R);
4481 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4482 			msr, MSR_TYPE_R);
4483 }
4484 
vmx_disable_intercept_msr_write_x2apic(u32 msr)4485 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4486 {
4487 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4488 			msr, MSR_TYPE_W);
4489 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4490 			msr, MSR_TYPE_W);
4491 }
4492 
vmx_cpu_uses_apicv(struct kvm_vcpu * vcpu)4493 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4494 {
4495 	return enable_apicv && lapic_in_kernel(vcpu);
4496 }
4497 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4498 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4499 {
4500 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4501 	int max_irr;
4502 	void *vapic_page;
4503 	u16 status;
4504 
4505 	if (vmx->nested.pi_desc &&
4506 	    vmx->nested.pi_pending) {
4507 		vmx->nested.pi_pending = false;
4508 		if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4509 			return 0;
4510 
4511 		max_irr = find_last_bit(
4512 			(unsigned long *)vmx->nested.pi_desc->pir, 256);
4513 
4514 		if (max_irr == 256)
4515 			return 0;
4516 
4517 		vapic_page = kmap(vmx->nested.virtual_apic_page);
4518 		if (!vapic_page) {
4519 			WARN_ON(1);
4520 			return -ENOMEM;
4521 		}
4522 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4523 		kunmap(vmx->nested.virtual_apic_page);
4524 
4525 		status = vmcs_read16(GUEST_INTR_STATUS);
4526 		if ((u8)max_irr > ((u8)status & 0xff)) {
4527 			status &= ~0xff;
4528 			status |= (u8)max_irr;
4529 			vmcs_write16(GUEST_INTR_STATUS, status);
4530 		}
4531 	}
4532 	return 0;
4533 }
4534 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu)4535 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4536 {
4537 #ifdef CONFIG_SMP
4538 	if (vcpu->mode == IN_GUEST_MODE) {
4539 		struct vcpu_vmx *vmx = to_vmx(vcpu);
4540 
4541 		/*
4542 		 * Currently, we don't support urgent interrupt,
4543 		 * all interrupts are recognized as non-urgent
4544 		 * interrupt, so we cannot post interrupts when
4545 		 * 'SN' is set.
4546 		 *
4547 		 * If the vcpu is in guest mode, it means it is
4548 		 * running instead of being scheduled out and
4549 		 * waiting in the run queue, and that's the only
4550 		 * case when 'SN' is set currently, warning if
4551 		 * 'SN' is set.
4552 		 */
4553 		WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4554 
4555 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4556 				POSTED_INTR_VECTOR);
4557 		return true;
4558 	}
4559 #endif
4560 	return false;
4561 }
4562 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4563 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4564 						int vector)
4565 {
4566 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4567 
4568 	if (is_guest_mode(vcpu) &&
4569 	    vector == vmx->nested.posted_intr_nv) {
4570 		/* the PIR and ON have been set by L1. */
4571 		kvm_vcpu_trigger_posted_interrupt(vcpu);
4572 		/*
4573 		 * If a posted intr is not recognized by hardware,
4574 		 * we will accomplish it in the next vmentry.
4575 		 */
4576 		vmx->nested.pi_pending = true;
4577 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4578 		return 0;
4579 	}
4580 	return -1;
4581 }
4582 /*
4583  * Send interrupt to vcpu via posted interrupt way.
4584  * 1. If target vcpu is running(non-root mode), send posted interrupt
4585  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4586  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4587  * interrupt from PIR in next vmentry.
4588  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4589 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4590 {
4591 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4592 	int r;
4593 
4594 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4595 	if (!r)
4596 		return;
4597 
4598 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4599 		return;
4600 
4601 	r = pi_test_and_set_on(&vmx->pi_desc);
4602 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4603 	if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4604 		kvm_vcpu_kick(vcpu);
4605 }
4606 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)4607 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4608 {
4609 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4610 
4611 	if (!pi_test_and_clear_on(&vmx->pi_desc))
4612 		return;
4613 
4614 	kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4615 }
4616 
vmx_sync_pir_to_irr_dummy(struct kvm_vcpu * vcpu)4617 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4618 {
4619 	return;
4620 }
4621 
4622 /*
4623  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4624  * will not change in the lifetime of the guest.
4625  * Note that host-state that does change is set elsewhere. E.g., host-state
4626  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4627  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4628 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4629 {
4630 	u32 low32, high32;
4631 	unsigned long tmpl;
4632 	struct desc_ptr dt;
4633 	unsigned long cr4;
4634 
4635 	vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4636 	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4637 
4638 	/* Save the most likely value for this task's CR4 in the VMCS. */
4639 	cr4 = cr4_read_shadow();
4640 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4641 	vmx->host_state.vmcs_host_cr4 = cr4;
4642 
4643 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4644 #ifdef CONFIG_X86_64
4645 	/*
4646 	 * Load null selectors, so we can avoid reloading them in
4647 	 * __vmx_load_host_state(), in case userspace uses the null selectors
4648 	 * too (the expected case).
4649 	 */
4650 	vmcs_write16(HOST_DS_SELECTOR, 0);
4651 	vmcs_write16(HOST_ES_SELECTOR, 0);
4652 #else
4653 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4654 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4655 #endif
4656 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4657 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4658 
4659 	native_store_idt(&dt);
4660 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4661 	vmx->host_idt_base = dt.address;
4662 
4663 	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4664 
4665 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4666 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4667 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4668 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4669 
4670 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4671 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4672 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4673 	}
4674 }
4675 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4676 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4677 {
4678 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4679 	if (enable_ept)
4680 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4681 	if (is_guest_mode(&vmx->vcpu))
4682 		vmx->vcpu.arch.cr4_guest_owned_bits &=
4683 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4684 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4685 }
4686 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4687 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4688 {
4689 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4690 
4691 	if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4692 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4693 	return pin_based_exec_ctrl;
4694 }
4695 
vmx_exec_control(struct vcpu_vmx * vmx)4696 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4697 {
4698 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4699 
4700 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4701 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4702 
4703 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4704 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4705 #ifdef CONFIG_X86_64
4706 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4707 				CPU_BASED_CR8_LOAD_EXITING;
4708 #endif
4709 	}
4710 	if (!enable_ept)
4711 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4712 				CPU_BASED_CR3_LOAD_EXITING  |
4713 				CPU_BASED_INVLPG_EXITING;
4714 	return exec_control;
4715 }
4716 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4717 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4718 {
4719 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4720 	if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4721 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4722 	if (vmx->vpid == 0)
4723 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4724 	if (!enable_ept) {
4725 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4726 		enable_unrestricted_guest = 0;
4727 		/* Enable INVPCID for non-ept guests may cause performance regression. */
4728 		exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4729 	}
4730 	if (!enable_unrestricted_guest)
4731 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4732 	if (!ple_gap)
4733 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4734 	if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4735 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4736 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4737 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4738 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4739 	   (handle_vmptrld).
4740 	   We can NOT enable shadow_vmcs here because we don't have yet
4741 	   a current VMCS12
4742 	*/
4743 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4744 
4745 	if (!enable_pml)
4746 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4747 
4748 	/* Currently, we allow L1 guest to directly run pcommit instruction. */
4749 	exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4750 
4751 	return exec_control;
4752 }
4753 
ept_set_mmio_spte_mask(void)4754 static void ept_set_mmio_spte_mask(void)
4755 {
4756 	/*
4757 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4758 	 * of an EPT paging-structure entry is 110b (write/execute).
4759 	 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4760 	 * spte.
4761 	 */
4762 	kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4763 }
4764 
4765 #define VMX_XSS_EXIT_BITMAP 0
4766 /*
4767  * Sets up the vmcs for emulated real mode.
4768  */
vmx_vcpu_setup(struct vcpu_vmx * vmx)4769 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4770 {
4771 #ifdef CONFIG_X86_64
4772 	unsigned long a;
4773 #endif
4774 	int i;
4775 
4776 	/* I/O */
4777 	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4778 	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4779 
4780 	if (enable_shadow_vmcs) {
4781 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4782 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4783 	}
4784 	if (cpu_has_vmx_msr_bitmap())
4785 		vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4786 
4787 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4788 
4789 	/* Control */
4790 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4791 
4792 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4793 
4794 	if (cpu_has_secondary_exec_ctrls())
4795 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4796 				vmx_secondary_exec_control(vmx));
4797 
4798 	if (vmx_cpu_uses_apicv(&vmx->vcpu)) {
4799 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4800 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4801 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4802 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4803 
4804 		vmcs_write16(GUEST_INTR_STATUS, 0);
4805 
4806 		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4807 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4808 	}
4809 
4810 	if (ple_gap) {
4811 		vmcs_write32(PLE_GAP, ple_gap);
4812 		vmx->ple_window = ple_window;
4813 		vmx->ple_window_dirty = true;
4814 	}
4815 
4816 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4817 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4818 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4819 
4820 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4821 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4822 	vmx_set_constant_host_state(vmx);
4823 #ifdef CONFIG_X86_64
4824 	rdmsrl(MSR_FS_BASE, a);
4825 	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4826 	rdmsrl(MSR_GS_BASE, a);
4827 	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4828 #else
4829 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4830 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4831 #endif
4832 
4833 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4834 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4835 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4836 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4837 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4838 
4839 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4840 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4841 
4842 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4843 		u32 index = vmx_msr_index[i];
4844 		u32 data_low, data_high;
4845 		int j = vmx->nmsrs;
4846 
4847 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
4848 			continue;
4849 		if (wrmsr_safe(index, data_low, data_high) < 0)
4850 			continue;
4851 		vmx->guest_msrs[j].index = i;
4852 		vmx->guest_msrs[j].data = 0;
4853 		vmx->guest_msrs[j].mask = -1ull;
4854 		++vmx->nmsrs;
4855 	}
4856 
4857 
4858 	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4859 
4860 	/* 22.2.1, 20.8.1 */
4861 	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4862 
4863 	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4864 	set_cr4_guest_host_mask(vmx);
4865 
4866 	if (vmx_xsaves_supported())
4867 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4868 
4869 	return 0;
4870 }
4871 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4872 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4873 {
4874 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4875 	struct msr_data apic_base_msr;
4876 	u64 cr0;
4877 
4878 	vmx->rmode.vm86_active = 0;
4879 
4880 	vmx->soft_vnmi_blocked = 0;
4881 
4882 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4883 	kvm_set_cr8(vcpu, 0);
4884 
4885 	if (!init_event) {
4886 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4887 				     MSR_IA32_APICBASE_ENABLE;
4888 		if (kvm_vcpu_is_reset_bsp(vcpu))
4889 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4890 		apic_base_msr.host_initiated = true;
4891 		kvm_set_apic_base(vcpu, &apic_base_msr);
4892 	}
4893 
4894 	vmx_segment_cache_clear(vmx);
4895 
4896 	seg_setup(VCPU_SREG_CS);
4897 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4898 	vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4899 
4900 	seg_setup(VCPU_SREG_DS);
4901 	seg_setup(VCPU_SREG_ES);
4902 	seg_setup(VCPU_SREG_FS);
4903 	seg_setup(VCPU_SREG_GS);
4904 	seg_setup(VCPU_SREG_SS);
4905 
4906 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4907 	vmcs_writel(GUEST_TR_BASE, 0);
4908 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4909 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4910 
4911 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4912 	vmcs_writel(GUEST_LDTR_BASE, 0);
4913 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4914 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4915 
4916 	if (!init_event) {
4917 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4918 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4919 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4920 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4921 	}
4922 
4923 	vmcs_writel(GUEST_RFLAGS, 0x02);
4924 	kvm_rip_write(vcpu, 0xfff0);
4925 
4926 	vmcs_writel(GUEST_GDTR_BASE, 0);
4927 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4928 
4929 	vmcs_writel(GUEST_IDTR_BASE, 0);
4930 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4931 
4932 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4933 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4934 	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4935 
4936 	setup_msrs(vmx);
4937 
4938 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4939 
4940 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4941 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4942 		if (cpu_need_tpr_shadow(vcpu))
4943 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4944 				     __pa(vcpu->arch.apic->regs));
4945 		vmcs_write32(TPR_THRESHOLD, 0);
4946 	}
4947 
4948 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4949 
4950 	if (vmx_cpu_uses_apicv(vcpu))
4951 		memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4952 
4953 	if (vmx->vpid != 0)
4954 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4955 
4956 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4957 	vmx->vcpu.arch.cr0 = cr0;
4958 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4959 	vmx_set_cr4(vcpu, 0);
4960 	vmx_set_efer(vcpu, 0);
4961 	vmx_fpu_activate(vcpu);
4962 	update_exception_bitmap(vcpu);
4963 
4964 	vpid_sync_context(vmx->vpid);
4965 }
4966 
4967 /*
4968  * In nested virtualization, check if L1 asked to exit on external interrupts.
4969  * For most existing hypervisors, this will always return true.
4970  */
nested_exit_on_intr(struct kvm_vcpu * vcpu)4971 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4972 {
4973 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4974 		PIN_BASED_EXT_INTR_MASK;
4975 }
4976 
4977 /*
4978  * In nested virtualization, check if L1 has set
4979  * VM_EXIT_ACK_INTR_ON_EXIT
4980  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)4981 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4982 {
4983 	return get_vmcs12(vcpu)->vm_exit_controls &
4984 		VM_EXIT_ACK_INTR_ON_EXIT;
4985 }
4986 
nested_exit_on_nmi(struct kvm_vcpu * vcpu)4987 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4988 {
4989 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4990 		PIN_BASED_NMI_EXITING;
4991 }
4992 
enable_irq_window(struct kvm_vcpu * vcpu)4993 static void enable_irq_window(struct kvm_vcpu *vcpu)
4994 {
4995 	u32 cpu_based_vm_exec_control;
4996 
4997 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4998 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4999 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5000 }
5001 
enable_nmi_window(struct kvm_vcpu * vcpu)5002 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5003 {
5004 	u32 cpu_based_vm_exec_control;
5005 
5006 	if (!cpu_has_virtual_nmis() ||
5007 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5008 		enable_irq_window(vcpu);
5009 		return;
5010 	}
5011 
5012 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5013 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5014 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5015 }
5016 
vmx_inject_irq(struct kvm_vcpu * vcpu)5017 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5018 {
5019 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5020 	uint32_t intr;
5021 	int irq = vcpu->arch.interrupt.nr;
5022 
5023 	trace_kvm_inj_virq(irq);
5024 
5025 	++vcpu->stat.irq_injections;
5026 	if (vmx->rmode.vm86_active) {
5027 		int inc_eip = 0;
5028 		if (vcpu->arch.interrupt.soft)
5029 			inc_eip = vcpu->arch.event_exit_inst_len;
5030 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5031 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5032 		return;
5033 	}
5034 	intr = irq | INTR_INFO_VALID_MASK;
5035 	if (vcpu->arch.interrupt.soft) {
5036 		intr |= INTR_TYPE_SOFT_INTR;
5037 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5038 			     vmx->vcpu.arch.event_exit_inst_len);
5039 	} else
5040 		intr |= INTR_TYPE_EXT_INTR;
5041 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5042 }
5043 
vmx_inject_nmi(struct kvm_vcpu * vcpu)5044 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5045 {
5046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5047 
5048 	if (is_guest_mode(vcpu))
5049 		return;
5050 
5051 	if (!cpu_has_virtual_nmis()) {
5052 		/*
5053 		 * Tracking the NMI-blocked state in software is built upon
5054 		 * finding the next open IRQ window. This, in turn, depends on
5055 		 * well-behaving guests: They have to keep IRQs disabled at
5056 		 * least as long as the NMI handler runs. Otherwise we may
5057 		 * cause NMI nesting, maybe breaking the guest. But as this is
5058 		 * highly unlikely, we can live with the residual risk.
5059 		 */
5060 		vmx->soft_vnmi_blocked = 1;
5061 		vmx->vnmi_blocked_time = 0;
5062 	}
5063 
5064 	++vcpu->stat.nmi_injections;
5065 	vmx->nmi_known_unmasked = false;
5066 	if (vmx->rmode.vm86_active) {
5067 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5068 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5069 		return;
5070 	}
5071 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5072 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5073 }
5074 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5075 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5076 {
5077 	if (!cpu_has_virtual_nmis())
5078 		return to_vmx(vcpu)->soft_vnmi_blocked;
5079 	if (to_vmx(vcpu)->nmi_known_unmasked)
5080 		return false;
5081 	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
5082 }
5083 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5084 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5085 {
5086 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5087 
5088 	if (!cpu_has_virtual_nmis()) {
5089 		if (vmx->soft_vnmi_blocked != masked) {
5090 			vmx->soft_vnmi_blocked = masked;
5091 			vmx->vnmi_blocked_time = 0;
5092 		}
5093 	} else {
5094 		vmx->nmi_known_unmasked = !masked;
5095 		if (masked)
5096 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5097 				      GUEST_INTR_STATE_NMI);
5098 		else
5099 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5100 					GUEST_INTR_STATE_NMI);
5101 	}
5102 }
5103 
vmx_nmi_allowed(struct kvm_vcpu * vcpu)5104 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5105 {
5106 	if (to_vmx(vcpu)->nested.nested_run_pending)
5107 		return 0;
5108 
5109 	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5110 		return 0;
5111 
5112 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5113 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5114 		   | GUEST_INTR_STATE_NMI));
5115 }
5116 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)5117 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5118 {
5119 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
5120 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5121 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5122 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5123 }
5124 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5125 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5126 {
5127 	int ret;
5128 
5129 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5130 				    PAGE_SIZE * 3);
5131 	if (ret)
5132 		return ret;
5133 	kvm->arch.tss_addr = addr;
5134 	return init_rmode_tss(kvm);
5135 }
5136 
rmode_exception(struct kvm_vcpu * vcpu,int vec)5137 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5138 {
5139 	switch (vec) {
5140 	case BP_VECTOR:
5141 		/*
5142 		 * Update instruction length as we may reinject the exception
5143 		 * from user space while in guest debugging mode.
5144 		 */
5145 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5146 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5147 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5148 			return false;
5149 		/* fall through */
5150 	case DB_VECTOR:
5151 		if (vcpu->guest_debug &
5152 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5153 			return false;
5154 		/* fall through */
5155 	case DE_VECTOR:
5156 	case OF_VECTOR:
5157 	case BR_VECTOR:
5158 	case UD_VECTOR:
5159 	case DF_VECTOR:
5160 	case SS_VECTOR:
5161 	case GP_VECTOR:
5162 	case MF_VECTOR:
5163 		return true;
5164 	break;
5165 	}
5166 	return false;
5167 }
5168 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5169 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5170 				  int vec, u32 err_code)
5171 {
5172 	/*
5173 	 * Instruction with address size override prefix opcode 0x67
5174 	 * Cause the #SS fault with 0 error code in VM86 mode.
5175 	 */
5176 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5177 		if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5178 			if (vcpu->arch.halt_request) {
5179 				vcpu->arch.halt_request = 0;
5180 				return kvm_vcpu_halt(vcpu);
5181 			}
5182 			return 1;
5183 		}
5184 		return 0;
5185 	}
5186 
5187 	/*
5188 	 * Forward all other exceptions that are valid in real mode.
5189 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5190 	 *        the required debugging infrastructure rework.
5191 	 */
5192 	kvm_queue_exception(vcpu, vec);
5193 	return 1;
5194 }
5195 
5196 /*
5197  * Trigger machine check on the host. We assume all the MSRs are already set up
5198  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5199  * We pass a fake environment to the machine check handler because we want
5200  * the guest to be always treated like user space, no matter what context
5201  * it used internally.
5202  */
kvm_machine_check(void)5203 static void kvm_machine_check(void)
5204 {
5205 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5206 	struct pt_regs regs = {
5207 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
5208 		.flags = X86_EFLAGS_IF,
5209 	};
5210 
5211 	do_machine_check(&regs, 0);
5212 #endif
5213 }
5214 
handle_machine_check(struct kvm_vcpu * vcpu)5215 static int handle_machine_check(struct kvm_vcpu *vcpu)
5216 {
5217 	/* already handled by vcpu_run */
5218 	return 1;
5219 }
5220 
handle_exception(struct kvm_vcpu * vcpu)5221 static int handle_exception(struct kvm_vcpu *vcpu)
5222 {
5223 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5224 	struct kvm_run *kvm_run = vcpu->run;
5225 	u32 intr_info, ex_no, error_code;
5226 	unsigned long cr2, rip, dr6;
5227 	u32 vect_info;
5228 	enum emulation_result er;
5229 
5230 	vect_info = vmx->idt_vectoring_info;
5231 	intr_info = vmx->exit_intr_info;
5232 
5233 	if (is_machine_check(intr_info))
5234 		return handle_machine_check(vcpu);
5235 
5236 	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5237 		return 1;  /* already handled by vmx_vcpu_run() */
5238 
5239 	if (is_no_device(intr_info)) {
5240 		vmx_fpu_activate(vcpu);
5241 		return 1;
5242 	}
5243 
5244 	if (is_invalid_opcode(intr_info)) {
5245 		if (is_guest_mode(vcpu)) {
5246 			kvm_queue_exception(vcpu, UD_VECTOR);
5247 			return 1;
5248 		}
5249 		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5250 		if (er != EMULATE_DONE)
5251 			kvm_queue_exception(vcpu, UD_VECTOR);
5252 		return 1;
5253 	}
5254 
5255 	error_code = 0;
5256 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5257 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5258 
5259 	/*
5260 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5261 	 * MMIO, it is better to report an internal error.
5262 	 * See the comments in vmx_handle_exit.
5263 	 */
5264 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5265 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5266 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5267 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5268 		vcpu->run->internal.ndata = 3;
5269 		vcpu->run->internal.data[0] = vect_info;
5270 		vcpu->run->internal.data[1] = intr_info;
5271 		vcpu->run->internal.data[2] = error_code;
5272 		return 0;
5273 	}
5274 
5275 	if (is_page_fault(intr_info)) {
5276 		/* EPT won't cause page fault directly */
5277 		BUG_ON(enable_ept);
5278 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
5279 		trace_kvm_page_fault(cr2, error_code);
5280 
5281 		if (kvm_event_needs_reinjection(vcpu))
5282 			kvm_mmu_unprotect_page_virt(vcpu, cr2);
5283 		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5284 	}
5285 
5286 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5287 
5288 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5289 		return handle_rmode_exception(vcpu, ex_no, error_code);
5290 
5291 	switch (ex_no) {
5292 	case AC_VECTOR:
5293 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5294 		return 1;
5295 	case DB_VECTOR:
5296 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
5297 		if (!(vcpu->guest_debug &
5298 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5299 			vcpu->arch.dr6 &= ~15;
5300 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5301 			if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5302 				skip_emulated_instruction(vcpu);
5303 
5304 			kvm_queue_exception(vcpu, DB_VECTOR);
5305 			return 1;
5306 		}
5307 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5308 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5309 		/* fall through */
5310 	case BP_VECTOR:
5311 		/*
5312 		 * Update instruction length as we may reinject #BP from
5313 		 * user space while in guest debugging mode. Reading it for
5314 		 * #DB as well causes no harm, it is not used in that case.
5315 		 */
5316 		vmx->vcpu.arch.event_exit_inst_len =
5317 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5318 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5319 		rip = kvm_rip_read(vcpu);
5320 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5321 		kvm_run->debug.arch.exception = ex_no;
5322 		break;
5323 	default:
5324 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5325 		kvm_run->ex.exception = ex_no;
5326 		kvm_run->ex.error_code = error_code;
5327 		break;
5328 	}
5329 	return 0;
5330 }
5331 
handle_external_interrupt(struct kvm_vcpu * vcpu)5332 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5333 {
5334 	++vcpu->stat.irq_exits;
5335 	return 1;
5336 }
5337 
handle_triple_fault(struct kvm_vcpu * vcpu)5338 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5339 {
5340 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5341 	return 0;
5342 }
5343 
handle_io(struct kvm_vcpu * vcpu)5344 static int handle_io(struct kvm_vcpu *vcpu)
5345 {
5346 	unsigned long exit_qualification;
5347 	int size, in, string;
5348 	unsigned port;
5349 
5350 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5351 	string = (exit_qualification & 16) != 0;
5352 	in = (exit_qualification & 8) != 0;
5353 
5354 	++vcpu->stat.io_exits;
5355 
5356 	if (string || in)
5357 		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5358 
5359 	port = exit_qualification >> 16;
5360 	size = (exit_qualification & 7) + 1;
5361 	skip_emulated_instruction(vcpu);
5362 
5363 	return kvm_fast_pio_out(vcpu, size, port);
5364 }
5365 
5366 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5367 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5368 {
5369 	/*
5370 	 * Patch in the VMCALL instruction:
5371 	 */
5372 	hypercall[0] = 0x0f;
5373 	hypercall[1] = 0x01;
5374 	hypercall[2] = 0xc1;
5375 }
5376 
nested_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5377 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5378 {
5379 	unsigned long always_on = VMXON_CR0_ALWAYSON;
5380 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5381 
5382 	if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5383 		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5384 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5385 		always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5386 	return (val & always_on) == always_on;
5387 }
5388 
5389 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5390 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5391 {
5392 	if (is_guest_mode(vcpu)) {
5393 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5394 		unsigned long orig_val = val;
5395 
5396 		/*
5397 		 * We get here when L2 changed cr0 in a way that did not change
5398 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5399 		 * but did change L0 shadowed bits. So we first calculate the
5400 		 * effective cr0 value that L1 would like to write into the
5401 		 * hardware. It consists of the L2-owned bits from the new
5402 		 * value combined with the L1-owned bits from L1's guest_cr0.
5403 		 */
5404 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5405 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5406 
5407 		if (!nested_cr0_valid(vcpu, val))
5408 			return 1;
5409 
5410 		if (kvm_set_cr0(vcpu, val))
5411 			return 1;
5412 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5413 		return 0;
5414 	} else {
5415 		if (to_vmx(vcpu)->nested.vmxon &&
5416 		    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5417 			return 1;
5418 		return kvm_set_cr0(vcpu, val);
5419 	}
5420 }
5421 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5422 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5423 {
5424 	if (is_guest_mode(vcpu)) {
5425 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5426 		unsigned long orig_val = val;
5427 
5428 		/* analogously to handle_set_cr0 */
5429 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5430 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5431 		if (kvm_set_cr4(vcpu, val))
5432 			return 1;
5433 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5434 		return 0;
5435 	} else
5436 		return kvm_set_cr4(vcpu, val);
5437 }
5438 
5439 /* called to set cr0 as approriate for clts instruction exit. */
handle_clts(struct kvm_vcpu * vcpu)5440 static void handle_clts(struct kvm_vcpu *vcpu)
5441 {
5442 	if (is_guest_mode(vcpu)) {
5443 		/*
5444 		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5445 		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5446 		 * just pretend it's off (also in arch.cr0 for fpu_activate).
5447 		 */
5448 		vmcs_writel(CR0_READ_SHADOW,
5449 			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5450 		vcpu->arch.cr0 &= ~X86_CR0_TS;
5451 	} else
5452 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5453 }
5454 
handle_cr(struct kvm_vcpu * vcpu)5455 static int handle_cr(struct kvm_vcpu *vcpu)
5456 {
5457 	unsigned long exit_qualification, val;
5458 	int cr;
5459 	int reg;
5460 	int err;
5461 
5462 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5463 	cr = exit_qualification & 15;
5464 	reg = (exit_qualification >> 8) & 15;
5465 	switch ((exit_qualification >> 4) & 3) {
5466 	case 0: /* mov to cr */
5467 		val = kvm_register_readl(vcpu, reg);
5468 		trace_kvm_cr_write(cr, val);
5469 		switch (cr) {
5470 		case 0:
5471 			err = handle_set_cr0(vcpu, val);
5472 			kvm_complete_insn_gp(vcpu, err);
5473 			return 1;
5474 		case 3:
5475 			err = kvm_set_cr3(vcpu, val);
5476 			kvm_complete_insn_gp(vcpu, err);
5477 			return 1;
5478 		case 4:
5479 			err = handle_set_cr4(vcpu, val);
5480 			kvm_complete_insn_gp(vcpu, err);
5481 			return 1;
5482 		case 8: {
5483 				u8 cr8_prev = kvm_get_cr8(vcpu);
5484 				u8 cr8 = (u8)val;
5485 				err = kvm_set_cr8(vcpu, cr8);
5486 				kvm_complete_insn_gp(vcpu, err);
5487 				if (lapic_in_kernel(vcpu))
5488 					return 1;
5489 				if (cr8_prev <= cr8)
5490 					return 1;
5491 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5492 				return 0;
5493 			}
5494 		}
5495 		break;
5496 	case 2: /* clts */
5497 		handle_clts(vcpu);
5498 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5499 		skip_emulated_instruction(vcpu);
5500 		vmx_fpu_activate(vcpu);
5501 		return 1;
5502 	case 1: /*mov from cr*/
5503 		switch (cr) {
5504 		case 3:
5505 			val = kvm_read_cr3(vcpu);
5506 			kvm_register_write(vcpu, reg, val);
5507 			trace_kvm_cr_read(cr, val);
5508 			skip_emulated_instruction(vcpu);
5509 			return 1;
5510 		case 8:
5511 			val = kvm_get_cr8(vcpu);
5512 			kvm_register_write(vcpu, reg, val);
5513 			trace_kvm_cr_read(cr, val);
5514 			skip_emulated_instruction(vcpu);
5515 			return 1;
5516 		}
5517 		break;
5518 	case 3: /* lmsw */
5519 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5520 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5521 		kvm_lmsw(vcpu, val);
5522 
5523 		skip_emulated_instruction(vcpu);
5524 		return 1;
5525 	default:
5526 		break;
5527 	}
5528 	vcpu->run->exit_reason = 0;
5529 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5530 	       (int)(exit_qualification >> 4) & 3, cr);
5531 	return 0;
5532 }
5533 
handle_dr(struct kvm_vcpu * vcpu)5534 static int handle_dr(struct kvm_vcpu *vcpu)
5535 {
5536 	unsigned long exit_qualification;
5537 	int dr, dr7, reg;
5538 
5539 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5540 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5541 
5542 	/* First, if DR does not exist, trigger UD */
5543 	if (!kvm_require_dr(vcpu, dr))
5544 		return 1;
5545 
5546 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5547 	if (!kvm_require_cpl(vcpu, 0))
5548 		return 1;
5549 	dr7 = vmcs_readl(GUEST_DR7);
5550 	if (dr7 & DR7_GD) {
5551 		/*
5552 		 * As the vm-exit takes precedence over the debug trap, we
5553 		 * need to emulate the latter, either for the host or the
5554 		 * guest debugging itself.
5555 		 */
5556 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5557 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5558 			vcpu->run->debug.arch.dr7 = dr7;
5559 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5560 			vcpu->run->debug.arch.exception = DB_VECTOR;
5561 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5562 			return 0;
5563 		} else {
5564 			vcpu->arch.dr6 &= ~15;
5565 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5566 			kvm_queue_exception(vcpu, DB_VECTOR);
5567 			return 1;
5568 		}
5569 	}
5570 
5571 	if (vcpu->guest_debug == 0) {
5572 		u32 cpu_based_vm_exec_control;
5573 
5574 		cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5575 		cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5576 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5577 
5578 		/*
5579 		 * No more DR vmexits; force a reload of the debug registers
5580 		 * and reenter on this instruction.  The next vmexit will
5581 		 * retrieve the full state of the debug registers.
5582 		 */
5583 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5584 		return 1;
5585 	}
5586 
5587 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5588 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5589 		unsigned long val;
5590 
5591 		if (kvm_get_dr(vcpu, dr, &val))
5592 			return 1;
5593 		kvm_register_write(vcpu, reg, val);
5594 	} else
5595 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5596 			return 1;
5597 
5598 	skip_emulated_instruction(vcpu);
5599 	return 1;
5600 }
5601 
vmx_get_dr6(struct kvm_vcpu * vcpu)5602 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5603 {
5604 	return vcpu->arch.dr6;
5605 }
5606 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5607 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5608 {
5609 }
5610 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5611 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5612 {
5613 	u32 cpu_based_vm_exec_control;
5614 
5615 	get_debugreg(vcpu->arch.db[0], 0);
5616 	get_debugreg(vcpu->arch.db[1], 1);
5617 	get_debugreg(vcpu->arch.db[2], 2);
5618 	get_debugreg(vcpu->arch.db[3], 3);
5619 	get_debugreg(vcpu->arch.dr6, 6);
5620 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5621 
5622 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5623 
5624 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5625 	cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5626 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5627 }
5628 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5629 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5630 {
5631 	vmcs_writel(GUEST_DR7, val);
5632 }
5633 
handle_cpuid(struct kvm_vcpu * vcpu)5634 static int handle_cpuid(struct kvm_vcpu *vcpu)
5635 {
5636 	kvm_emulate_cpuid(vcpu);
5637 	return 1;
5638 }
5639 
handle_rdmsr(struct kvm_vcpu * vcpu)5640 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5641 {
5642 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5643 	struct msr_data msr_info;
5644 
5645 	msr_info.index = ecx;
5646 	msr_info.host_initiated = false;
5647 	if (vmx_get_msr(vcpu, &msr_info)) {
5648 		trace_kvm_msr_read_ex(ecx);
5649 		kvm_inject_gp(vcpu, 0);
5650 		return 1;
5651 	}
5652 
5653 	trace_kvm_msr_read(ecx, msr_info.data);
5654 
5655 	/* FIXME: handling of bits 32:63 of rax, rdx */
5656 	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5657 	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5658 	skip_emulated_instruction(vcpu);
5659 	return 1;
5660 }
5661 
handle_wrmsr(struct kvm_vcpu * vcpu)5662 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5663 {
5664 	struct msr_data msr;
5665 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5666 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5667 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5668 
5669 	msr.data = data;
5670 	msr.index = ecx;
5671 	msr.host_initiated = false;
5672 	if (kvm_set_msr(vcpu, &msr) != 0) {
5673 		trace_kvm_msr_write_ex(ecx, data);
5674 		kvm_inject_gp(vcpu, 0);
5675 		return 1;
5676 	}
5677 
5678 	trace_kvm_msr_write(ecx, data);
5679 	skip_emulated_instruction(vcpu);
5680 	return 1;
5681 }
5682 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5683 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5684 {
5685 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5686 	return 1;
5687 }
5688 
handle_interrupt_window(struct kvm_vcpu * vcpu)5689 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5690 {
5691 	u32 cpu_based_vm_exec_control;
5692 
5693 	/* clear pending irq */
5694 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5695 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5696 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5697 
5698 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5699 
5700 	++vcpu->stat.irq_window_exits;
5701 	return 1;
5702 }
5703 
handle_halt(struct kvm_vcpu * vcpu)5704 static int handle_halt(struct kvm_vcpu *vcpu)
5705 {
5706 	return kvm_emulate_halt(vcpu);
5707 }
5708 
handle_vmcall(struct kvm_vcpu * vcpu)5709 static int handle_vmcall(struct kvm_vcpu *vcpu)
5710 {
5711 	kvm_emulate_hypercall(vcpu);
5712 	return 1;
5713 }
5714 
handle_invd(struct kvm_vcpu * vcpu)5715 static int handle_invd(struct kvm_vcpu *vcpu)
5716 {
5717 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5718 }
5719 
handle_invlpg(struct kvm_vcpu * vcpu)5720 static int handle_invlpg(struct kvm_vcpu *vcpu)
5721 {
5722 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5723 
5724 	kvm_mmu_invlpg(vcpu, exit_qualification);
5725 	skip_emulated_instruction(vcpu);
5726 	return 1;
5727 }
5728 
handle_rdpmc(struct kvm_vcpu * vcpu)5729 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5730 {
5731 	int err;
5732 
5733 	err = kvm_rdpmc(vcpu);
5734 	kvm_complete_insn_gp(vcpu, err);
5735 
5736 	return 1;
5737 }
5738 
handle_wbinvd(struct kvm_vcpu * vcpu)5739 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5740 {
5741 	kvm_emulate_wbinvd(vcpu);
5742 	return 1;
5743 }
5744 
handle_xsetbv(struct kvm_vcpu * vcpu)5745 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5746 {
5747 	u64 new_bv = kvm_read_edx_eax(vcpu);
5748 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5749 
5750 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5751 		skip_emulated_instruction(vcpu);
5752 	return 1;
5753 }
5754 
handle_xsaves(struct kvm_vcpu * vcpu)5755 static int handle_xsaves(struct kvm_vcpu *vcpu)
5756 {
5757 	skip_emulated_instruction(vcpu);
5758 	WARN(1, "this should never happen\n");
5759 	return 1;
5760 }
5761 
handle_xrstors(struct kvm_vcpu * vcpu)5762 static int handle_xrstors(struct kvm_vcpu *vcpu)
5763 {
5764 	skip_emulated_instruction(vcpu);
5765 	WARN(1, "this should never happen\n");
5766 	return 1;
5767 }
5768 
handle_apic_access(struct kvm_vcpu * vcpu)5769 static int handle_apic_access(struct kvm_vcpu *vcpu)
5770 {
5771 	if (likely(fasteoi)) {
5772 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5773 		int access_type, offset;
5774 
5775 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5776 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5777 		/*
5778 		 * Sane guest uses MOV to write EOI, with written value
5779 		 * not cared. So make a short-circuit here by avoiding
5780 		 * heavy instruction emulation.
5781 		 */
5782 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5783 		    (offset == APIC_EOI)) {
5784 			kvm_lapic_set_eoi(vcpu);
5785 			skip_emulated_instruction(vcpu);
5786 			return 1;
5787 		}
5788 	}
5789 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5790 }
5791 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5792 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5793 {
5794 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5795 	int vector = exit_qualification & 0xff;
5796 
5797 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5798 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5799 	return 1;
5800 }
5801 
handle_apic_write(struct kvm_vcpu * vcpu)5802 static int handle_apic_write(struct kvm_vcpu *vcpu)
5803 {
5804 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5805 	u32 offset = exit_qualification & 0xfff;
5806 
5807 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5808 	kvm_apic_write_nodecode(vcpu, offset);
5809 	return 1;
5810 }
5811 
handle_task_switch(struct kvm_vcpu * vcpu)5812 static int handle_task_switch(struct kvm_vcpu *vcpu)
5813 {
5814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5815 	unsigned long exit_qualification;
5816 	bool has_error_code = false;
5817 	u32 error_code = 0;
5818 	u16 tss_selector;
5819 	int reason, type, idt_v, idt_index;
5820 
5821 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5822 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5823 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5824 
5825 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5826 
5827 	reason = (u32)exit_qualification >> 30;
5828 	if (reason == TASK_SWITCH_GATE && idt_v) {
5829 		switch (type) {
5830 		case INTR_TYPE_NMI_INTR:
5831 			vcpu->arch.nmi_injected = false;
5832 			vmx_set_nmi_mask(vcpu, true);
5833 			break;
5834 		case INTR_TYPE_EXT_INTR:
5835 		case INTR_TYPE_SOFT_INTR:
5836 			kvm_clear_interrupt_queue(vcpu);
5837 			break;
5838 		case INTR_TYPE_HARD_EXCEPTION:
5839 			if (vmx->idt_vectoring_info &
5840 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5841 				has_error_code = true;
5842 				error_code =
5843 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5844 			}
5845 			/* fall through */
5846 		case INTR_TYPE_SOFT_EXCEPTION:
5847 			kvm_clear_exception_queue(vcpu);
5848 			break;
5849 		default:
5850 			break;
5851 		}
5852 	}
5853 	tss_selector = exit_qualification;
5854 
5855 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5856 		       type != INTR_TYPE_EXT_INTR &&
5857 		       type != INTR_TYPE_NMI_INTR))
5858 		skip_emulated_instruction(vcpu);
5859 
5860 	if (kvm_task_switch(vcpu, tss_selector,
5861 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5862 			    has_error_code, error_code) == EMULATE_FAIL) {
5863 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5864 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5865 		vcpu->run->internal.ndata = 0;
5866 		return 0;
5867 	}
5868 
5869 	/*
5870 	 * TODO: What about debug traps on tss switch?
5871 	 *       Are we supposed to inject them and update dr6?
5872 	 */
5873 
5874 	return 1;
5875 }
5876 
handle_ept_violation(struct kvm_vcpu * vcpu)5877 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5878 {
5879 	unsigned long exit_qualification;
5880 	gpa_t gpa;
5881 	u32 error_code;
5882 	int gla_validity;
5883 
5884 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5885 
5886 	gla_validity = (exit_qualification >> 7) & 0x3;
5887 	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5888 		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5889 		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5890 			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5891 			vmcs_readl(GUEST_LINEAR_ADDRESS));
5892 		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5893 			(long unsigned int)exit_qualification);
5894 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5895 		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5896 		return 0;
5897 	}
5898 
5899 	/*
5900 	 * EPT violation happened while executing iret from NMI,
5901 	 * "blocked by NMI" bit has to be set before next VM entry.
5902 	 * There are errata that may cause this bit to not be set:
5903 	 * AAK134, BY25.
5904 	 */
5905 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5906 			cpu_has_virtual_nmis() &&
5907 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5908 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5909 
5910 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5911 	trace_kvm_page_fault(gpa, exit_qualification);
5912 
5913 	/* It is a write fault? */
5914 	error_code = exit_qualification & PFERR_WRITE_MASK;
5915 	/* It is a fetch fault? */
5916 	error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5917 	/* ept page table is present? */
5918 	error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5919 
5920 	vcpu->arch.exit_qualification = exit_qualification;
5921 
5922 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5923 }
5924 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5925 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5926 {
5927 	int ret;
5928 	gpa_t gpa;
5929 
5930 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5931 	if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5932 		skip_emulated_instruction(vcpu);
5933 		trace_kvm_fast_mmio(gpa);
5934 		return 1;
5935 	}
5936 
5937 	ret = handle_mmio_page_fault(vcpu, gpa, true);
5938 	if (likely(ret == RET_MMIO_PF_EMULATE))
5939 		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5940 					      EMULATE_DONE;
5941 
5942 	if (unlikely(ret == RET_MMIO_PF_INVALID))
5943 		return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5944 
5945 	if (unlikely(ret == RET_MMIO_PF_RETRY))
5946 		return 1;
5947 
5948 	/* It is the real ept misconfig */
5949 	WARN_ON(1);
5950 
5951 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5952 	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5953 
5954 	return 0;
5955 }
5956 
handle_nmi_window(struct kvm_vcpu * vcpu)5957 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5958 {
5959 	u32 cpu_based_vm_exec_control;
5960 
5961 	/* clear pending NMI */
5962 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5963 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5964 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5965 	++vcpu->stat.nmi_window_exits;
5966 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5967 
5968 	return 1;
5969 }
5970 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5971 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5972 {
5973 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5974 	enum emulation_result err = EMULATE_DONE;
5975 	int ret = 1;
5976 	u32 cpu_exec_ctrl;
5977 	bool intr_window_requested;
5978 	unsigned count = 130;
5979 
5980 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5981 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5982 
5983 	while (vmx->emulation_required && count-- != 0) {
5984 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5985 			return handle_interrupt_window(&vmx->vcpu);
5986 
5987 		if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5988 			return 1;
5989 
5990 		err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5991 
5992 		if (err == EMULATE_USER_EXIT) {
5993 			++vcpu->stat.mmio_exits;
5994 			ret = 0;
5995 			goto out;
5996 		}
5997 
5998 		if (err != EMULATE_DONE) {
5999 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6000 			vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6001 			vcpu->run->internal.ndata = 0;
6002 			return 0;
6003 		}
6004 
6005 		if (vcpu->arch.halt_request) {
6006 			vcpu->arch.halt_request = 0;
6007 			ret = kvm_vcpu_halt(vcpu);
6008 			goto out;
6009 		}
6010 
6011 		if (signal_pending(current))
6012 			goto out;
6013 		if (need_resched())
6014 			schedule();
6015 	}
6016 
6017 out:
6018 	return ret;
6019 }
6020 
__grow_ple_window(int val)6021 static int __grow_ple_window(int val)
6022 {
6023 	if (ple_window_grow < 1)
6024 		return ple_window;
6025 
6026 	val = min(val, ple_window_actual_max);
6027 
6028 	if (ple_window_grow < ple_window)
6029 		val *= ple_window_grow;
6030 	else
6031 		val += ple_window_grow;
6032 
6033 	return val;
6034 }
6035 
__shrink_ple_window(int val,int modifier,int minimum)6036 static int __shrink_ple_window(int val, int modifier, int minimum)
6037 {
6038 	if (modifier < 1)
6039 		return ple_window;
6040 
6041 	if (modifier < ple_window)
6042 		val /= modifier;
6043 	else
6044 		val -= modifier;
6045 
6046 	return max(val, minimum);
6047 }
6048 
grow_ple_window(struct kvm_vcpu * vcpu)6049 static void grow_ple_window(struct kvm_vcpu *vcpu)
6050 {
6051 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6052 	int old = vmx->ple_window;
6053 
6054 	vmx->ple_window = __grow_ple_window(old);
6055 
6056 	if (vmx->ple_window != old)
6057 		vmx->ple_window_dirty = true;
6058 
6059 	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6060 }
6061 
shrink_ple_window(struct kvm_vcpu * vcpu)6062 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6063 {
6064 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6065 	int old = vmx->ple_window;
6066 
6067 	vmx->ple_window = __shrink_ple_window(old,
6068 	                                      ple_window_shrink, ple_window);
6069 
6070 	if (vmx->ple_window != old)
6071 		vmx->ple_window_dirty = true;
6072 
6073 	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6074 }
6075 
6076 /*
6077  * ple_window_actual_max is computed to be one grow_ple_window() below
6078  * ple_window_max. (See __grow_ple_window for the reason.)
6079  * This prevents overflows, because ple_window_max is int.
6080  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6081  * this process.
6082  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6083  */
update_ple_window_actual_max(void)6084 static void update_ple_window_actual_max(void)
6085 {
6086 	ple_window_actual_max =
6087 			__shrink_ple_window(max(ple_window_max, ple_window),
6088 			                    ple_window_grow, INT_MIN);
6089 }
6090 
6091 /*
6092  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6093  */
wakeup_handler(void)6094 static void wakeup_handler(void)
6095 {
6096 	struct kvm_vcpu *vcpu;
6097 	int cpu = smp_processor_id();
6098 
6099 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6100 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6101 			blocked_vcpu_list) {
6102 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6103 
6104 		if (pi_test_on(pi_desc) == 1)
6105 			kvm_vcpu_kick(vcpu);
6106 	}
6107 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6108 }
6109 
hardware_setup(void)6110 static __init int hardware_setup(void)
6111 {
6112 	int r = -ENOMEM, i, msr;
6113 
6114 	rdmsrl_safe(MSR_EFER, &host_efer);
6115 
6116 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6117 		kvm_define_shared_msr(i, vmx_msr_index[i]);
6118 
6119 	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6120 	if (!vmx_io_bitmap_a)
6121 		return r;
6122 
6123 	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6124 	if (!vmx_io_bitmap_b)
6125 		goto out;
6126 
6127 	vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6128 	if (!vmx_msr_bitmap_legacy)
6129 		goto out1;
6130 
6131 	vmx_msr_bitmap_legacy_x2apic =
6132 				(unsigned long *)__get_free_page(GFP_KERNEL);
6133 	if (!vmx_msr_bitmap_legacy_x2apic)
6134 		goto out2;
6135 
6136 	vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6137 	if (!vmx_msr_bitmap_longmode)
6138 		goto out3;
6139 
6140 	vmx_msr_bitmap_longmode_x2apic =
6141 				(unsigned long *)__get_free_page(GFP_KERNEL);
6142 	if (!vmx_msr_bitmap_longmode_x2apic)
6143 		goto out4;
6144 
6145 	if (nested) {
6146 		vmx_msr_bitmap_nested =
6147 			(unsigned long *)__get_free_page(GFP_KERNEL);
6148 		if (!vmx_msr_bitmap_nested)
6149 			goto out5;
6150 	}
6151 
6152 	vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6153 	if (!vmx_vmread_bitmap)
6154 		goto out6;
6155 
6156 	vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6157 	if (!vmx_vmwrite_bitmap)
6158 		goto out7;
6159 
6160 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6161 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6162 
6163 	/*
6164 	 * Allow direct access to the PC debug port (it is often used for I/O
6165 	 * delays, but the vmexits simply slow things down).
6166 	 */
6167 	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6168 	clear_bit(0x80, vmx_io_bitmap_a);
6169 
6170 	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6171 
6172 	memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6173 	memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6174 	if (nested)
6175 		memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6176 
6177 	if (setup_vmcs_config(&vmcs_config) < 0) {
6178 		r = -EIO;
6179 		goto out8;
6180 	}
6181 
6182 	if (boot_cpu_has(X86_FEATURE_NX))
6183 		kvm_enable_efer_bits(EFER_NX);
6184 
6185 	if (!cpu_has_vmx_vpid())
6186 		enable_vpid = 0;
6187 	if (!cpu_has_vmx_shadow_vmcs())
6188 		enable_shadow_vmcs = 0;
6189 	if (enable_shadow_vmcs)
6190 		init_vmcs_shadow_fields();
6191 
6192 	if (!cpu_has_vmx_ept() ||
6193 	    !cpu_has_vmx_ept_4levels()) {
6194 		enable_ept = 0;
6195 		enable_unrestricted_guest = 0;
6196 		enable_ept_ad_bits = 0;
6197 	}
6198 
6199 	if (!cpu_has_vmx_ept_ad_bits())
6200 		enable_ept_ad_bits = 0;
6201 
6202 	if (!cpu_has_vmx_unrestricted_guest())
6203 		enable_unrestricted_guest = 0;
6204 
6205 	if (!cpu_has_vmx_flexpriority())
6206 		flexpriority_enabled = 0;
6207 
6208 	/*
6209 	 * set_apic_access_page_addr() is used to reload apic access
6210 	 * page upon invalidation.  No need to do anything if not
6211 	 * using the APIC_ACCESS_ADDR VMCS field.
6212 	 */
6213 	if (!flexpriority_enabled)
6214 		kvm_x86_ops->set_apic_access_page_addr = NULL;
6215 
6216 	if (!cpu_has_vmx_tpr_shadow())
6217 		kvm_x86_ops->update_cr8_intercept = NULL;
6218 
6219 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
6220 		kvm_disable_largepages();
6221 
6222 	if (!cpu_has_vmx_ple())
6223 		ple_gap = 0;
6224 
6225 	if (!cpu_has_vmx_apicv())
6226 		enable_apicv = 0;
6227 
6228 	if (cpu_has_vmx_tsc_scaling()) {
6229 		kvm_has_tsc_control = true;
6230 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6231 		kvm_tsc_scaling_ratio_frac_bits = 48;
6232 	}
6233 
6234 	if (enable_apicv)
6235 		kvm_x86_ops->update_cr8_intercept = NULL;
6236 	else {
6237 		kvm_x86_ops->hwapic_irr_update = NULL;
6238 		kvm_x86_ops->hwapic_isr_update = NULL;
6239 		kvm_x86_ops->deliver_posted_interrupt = NULL;
6240 		kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6241 	}
6242 
6243 	vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6244 	vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6245 	vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6246 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6247 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6248 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6249 	vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6250 
6251 	memcpy(vmx_msr_bitmap_legacy_x2apic,
6252 			vmx_msr_bitmap_legacy, PAGE_SIZE);
6253 	memcpy(vmx_msr_bitmap_longmode_x2apic,
6254 			vmx_msr_bitmap_longmode, PAGE_SIZE);
6255 
6256 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6257 
6258 	if (enable_apicv) {
6259 		for (msr = 0x800; msr <= 0x8ff; msr++)
6260 			vmx_disable_intercept_msr_read_x2apic(msr);
6261 
6262 		/* According SDM, in x2apic mode, the whole id reg is used.
6263 		 * But in KVM, it only use the highest eight bits. Need to
6264 		 * intercept it */
6265 		vmx_enable_intercept_msr_read_x2apic(0x802);
6266 		/* TMCCT */
6267 		vmx_enable_intercept_msr_read_x2apic(0x839);
6268 		/* TPR */
6269 		vmx_disable_intercept_msr_write_x2apic(0x808);
6270 		/* EOI */
6271 		vmx_disable_intercept_msr_write_x2apic(0x80b);
6272 		/* SELF-IPI */
6273 		vmx_disable_intercept_msr_write_x2apic(0x83f);
6274 	}
6275 
6276 	if (enable_ept) {
6277 		kvm_mmu_set_mask_ptes(0ull,
6278 			(enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6279 			(enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6280 			0ull, VMX_EPT_EXECUTABLE_MASK);
6281 		ept_set_mmio_spte_mask();
6282 		kvm_enable_tdp();
6283 	} else
6284 		kvm_disable_tdp();
6285 
6286 	update_ple_window_actual_max();
6287 
6288 	/*
6289 	 * Only enable PML when hardware supports PML feature, and both EPT
6290 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
6291 	 */
6292 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6293 		enable_pml = 0;
6294 
6295 	if (!enable_pml) {
6296 		kvm_x86_ops->slot_enable_log_dirty = NULL;
6297 		kvm_x86_ops->slot_disable_log_dirty = NULL;
6298 		kvm_x86_ops->flush_log_dirty = NULL;
6299 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6300 	}
6301 
6302 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6303 
6304 	return alloc_kvm_area();
6305 
6306 out8:
6307 	free_page((unsigned long)vmx_vmwrite_bitmap);
6308 out7:
6309 	free_page((unsigned long)vmx_vmread_bitmap);
6310 out6:
6311 	if (nested)
6312 		free_page((unsigned long)vmx_msr_bitmap_nested);
6313 out5:
6314 	free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6315 out4:
6316 	free_page((unsigned long)vmx_msr_bitmap_longmode);
6317 out3:
6318 	free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6319 out2:
6320 	free_page((unsigned long)vmx_msr_bitmap_legacy);
6321 out1:
6322 	free_page((unsigned long)vmx_io_bitmap_b);
6323 out:
6324 	free_page((unsigned long)vmx_io_bitmap_a);
6325 
6326     return r;
6327 }
6328 
hardware_unsetup(void)6329 static __exit void hardware_unsetup(void)
6330 {
6331 	free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6332 	free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6333 	free_page((unsigned long)vmx_msr_bitmap_legacy);
6334 	free_page((unsigned long)vmx_msr_bitmap_longmode);
6335 	free_page((unsigned long)vmx_io_bitmap_b);
6336 	free_page((unsigned long)vmx_io_bitmap_a);
6337 	free_page((unsigned long)vmx_vmwrite_bitmap);
6338 	free_page((unsigned long)vmx_vmread_bitmap);
6339 	if (nested)
6340 		free_page((unsigned long)vmx_msr_bitmap_nested);
6341 
6342 	free_kvm_area();
6343 }
6344 
6345 /*
6346  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6347  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6348  */
handle_pause(struct kvm_vcpu * vcpu)6349 static int handle_pause(struct kvm_vcpu *vcpu)
6350 {
6351 	if (ple_gap)
6352 		grow_ple_window(vcpu);
6353 
6354 	skip_emulated_instruction(vcpu);
6355 	kvm_vcpu_on_spin(vcpu);
6356 
6357 	return 1;
6358 }
6359 
handle_nop(struct kvm_vcpu * vcpu)6360 static int handle_nop(struct kvm_vcpu *vcpu)
6361 {
6362 	skip_emulated_instruction(vcpu);
6363 	return 1;
6364 }
6365 
handle_mwait(struct kvm_vcpu * vcpu)6366 static int handle_mwait(struct kvm_vcpu *vcpu)
6367 {
6368 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6369 	return handle_nop(vcpu);
6370 }
6371 
handle_monitor_trap(struct kvm_vcpu * vcpu)6372 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6373 {
6374 	return 1;
6375 }
6376 
handle_monitor(struct kvm_vcpu * vcpu)6377 static int handle_monitor(struct kvm_vcpu *vcpu)
6378 {
6379 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6380 	return handle_nop(vcpu);
6381 }
6382 
6383 /*
6384  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6385  * We could reuse a single VMCS for all the L2 guests, but we also want the
6386  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6387  * allows keeping them loaded on the processor, and in the future will allow
6388  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6389  * every entry if they never change.
6390  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6391  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6392  *
6393  * The following functions allocate and free a vmcs02 in this pool.
6394  */
6395 
6396 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
nested_get_current_vmcs02(struct vcpu_vmx * vmx)6397 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6398 {
6399 	struct vmcs02_list *item;
6400 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6401 		if (item->vmptr == vmx->nested.current_vmptr) {
6402 			list_move(&item->list, &vmx->nested.vmcs02_pool);
6403 			return &item->vmcs02;
6404 		}
6405 
6406 	if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6407 		/* Recycle the least recently used VMCS. */
6408 		item = list_entry(vmx->nested.vmcs02_pool.prev,
6409 			struct vmcs02_list, list);
6410 		item->vmptr = vmx->nested.current_vmptr;
6411 		list_move(&item->list, &vmx->nested.vmcs02_pool);
6412 		return &item->vmcs02;
6413 	}
6414 
6415 	/* Create a new VMCS */
6416 	item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6417 	if (!item)
6418 		return NULL;
6419 	item->vmcs02.vmcs = alloc_vmcs();
6420 	if (!item->vmcs02.vmcs) {
6421 		kfree(item);
6422 		return NULL;
6423 	}
6424 	loaded_vmcs_init(&item->vmcs02);
6425 	item->vmptr = vmx->nested.current_vmptr;
6426 	list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6427 	vmx->nested.vmcs02_num++;
6428 	return &item->vmcs02;
6429 }
6430 
6431 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
nested_free_vmcs02(struct vcpu_vmx * vmx,gpa_t vmptr)6432 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6433 {
6434 	struct vmcs02_list *item;
6435 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6436 		if (item->vmptr == vmptr) {
6437 			free_loaded_vmcs(&item->vmcs02);
6438 			list_del(&item->list);
6439 			kfree(item);
6440 			vmx->nested.vmcs02_num--;
6441 			return;
6442 		}
6443 }
6444 
6445 /*
6446  * Free all VMCSs saved for this vcpu, except the one pointed by
6447  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6448  * must be &vmx->vmcs01.
6449  */
nested_free_all_saved_vmcss(struct vcpu_vmx * vmx)6450 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6451 {
6452 	struct vmcs02_list *item, *n;
6453 
6454 	WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6455 	list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6456 		/*
6457 		 * Something will leak if the above WARN triggers.  Better than
6458 		 * a use-after-free.
6459 		 */
6460 		if (vmx->loaded_vmcs == &item->vmcs02)
6461 			continue;
6462 
6463 		free_loaded_vmcs(&item->vmcs02);
6464 		list_del(&item->list);
6465 		kfree(item);
6466 		vmx->nested.vmcs02_num--;
6467 	}
6468 }
6469 
6470 /*
6471  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6472  * set the success or error code of an emulated VMX instruction, as specified
6473  * by Vol 2B, VMX Instruction Reference, "Conventions".
6474  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)6475 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6476 {
6477 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6478 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6479 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6480 }
6481 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)6482 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6483 {
6484 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6485 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6486 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
6487 			| X86_EFLAGS_CF);
6488 }
6489 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)6490 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6491 					u32 vm_instruction_error)
6492 {
6493 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6494 		/*
6495 		 * failValid writes the error number to the current VMCS, which
6496 		 * can't be done there isn't a current VMCS.
6497 		 */
6498 		nested_vmx_failInvalid(vcpu);
6499 		return;
6500 	}
6501 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6502 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6503 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
6504 			| X86_EFLAGS_ZF);
6505 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6506 	/*
6507 	 * We don't need to force a shadow sync because
6508 	 * VM_INSTRUCTION_ERROR is not shadowed
6509 	 */
6510 }
6511 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)6512 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6513 {
6514 	/* TODO: not to reset guest simply here. */
6515 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6516 	pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6517 }
6518 
vmx_preemption_timer_fn(struct hrtimer * timer)6519 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6520 {
6521 	struct vcpu_vmx *vmx =
6522 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6523 
6524 	vmx->nested.preemption_timer_expired = true;
6525 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6526 	kvm_vcpu_kick(&vmx->vcpu);
6527 
6528 	return HRTIMER_NORESTART;
6529 }
6530 
6531 /*
6532  * Decode the memory-address operand of a vmx instruction, as recorded on an
6533  * exit caused by such an instruction (run by a guest hypervisor).
6534  * On success, returns 0. When the operand is invalid, returns 1 and throws
6535  * #UD or #GP.
6536  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,gva_t * ret)6537 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6538 				 unsigned long exit_qualification,
6539 				 u32 vmx_instruction_info, bool wr, gva_t *ret)
6540 {
6541 	gva_t off;
6542 	bool exn;
6543 	struct kvm_segment s;
6544 
6545 	/*
6546 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6547 	 * Execution", on an exit, vmx_instruction_info holds most of the
6548 	 * addressing components of the operand. Only the displacement part
6549 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6550 	 * For how an actual address is calculated from all these components,
6551 	 * refer to Vol. 1, "Operand Addressing".
6552 	 */
6553 	int  scaling = vmx_instruction_info & 3;
6554 	int  addr_size = (vmx_instruction_info >> 7) & 7;
6555 	bool is_reg = vmx_instruction_info & (1u << 10);
6556 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
6557 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6558 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6559 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6560 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6561 
6562 	if (is_reg) {
6563 		kvm_queue_exception(vcpu, UD_VECTOR);
6564 		return 1;
6565 	}
6566 
6567 	/* Addr = segment_base + offset */
6568 	/* offset = base + [index * scale] + displacement */
6569 	off = exit_qualification; /* holds the displacement */
6570 	if (base_is_valid)
6571 		off += kvm_register_read(vcpu, base_reg);
6572 	if (index_is_valid)
6573 		off += kvm_register_read(vcpu, index_reg)<<scaling;
6574 	vmx_get_segment(vcpu, &s, seg_reg);
6575 	*ret = s.base + off;
6576 
6577 	if (addr_size == 1) /* 32 bit */
6578 		*ret &= 0xffffffff;
6579 
6580 	/* Checks for #GP/#SS exceptions. */
6581 	exn = false;
6582 	if (is_protmode(vcpu)) {
6583 		/* Protected mode: apply checks for segment validity in the
6584 		 * following order:
6585 		 * - segment type check (#GP(0) may be thrown)
6586 		 * - usability check (#GP(0)/#SS(0))
6587 		 * - limit check (#GP(0)/#SS(0))
6588 		 */
6589 		if (wr)
6590 			/* #GP(0) if the destination operand is located in a
6591 			 * read-only data segment or any code segment.
6592 			 */
6593 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
6594 		else
6595 			/* #GP(0) if the source operand is located in an
6596 			 * execute-only code segment
6597 			 */
6598 			exn = ((s.type & 0xa) == 8);
6599 	}
6600 	if (exn) {
6601 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6602 		return 1;
6603 	}
6604 	if (is_long_mode(vcpu)) {
6605 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
6606 		 * non-canonical form. This is an only check for long mode.
6607 		 */
6608 		exn = is_noncanonical_address(*ret);
6609 	} else if (is_protmode(vcpu)) {
6610 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6611 		 */
6612 		exn = (s.unusable != 0);
6613 		/* Protected mode: #GP(0)/#SS(0) if the memory
6614 		 * operand is outside the segment limit.
6615 		 */
6616 		exn = exn || (off + sizeof(u64) > s.limit);
6617 	}
6618 	if (exn) {
6619 		kvm_queue_exception_e(vcpu,
6620 				      seg_reg == VCPU_SREG_SS ?
6621 						SS_VECTOR : GP_VECTOR,
6622 				      0);
6623 		return 1;
6624 	}
6625 
6626 	return 0;
6627 }
6628 
6629 /*
6630  * This function performs the various checks including
6631  * - if it's 4KB aligned
6632  * - No bits beyond the physical address width are set
6633  * - Returns 0 on success or else 1
6634  * (Intel SDM Section 30.3)
6635  */
nested_vmx_check_vmptr(struct kvm_vcpu * vcpu,int exit_reason,gpa_t * vmpointer)6636 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6637 				  gpa_t *vmpointer)
6638 {
6639 	gva_t gva;
6640 	gpa_t vmptr;
6641 	struct x86_exception e;
6642 	struct page *page;
6643 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6644 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
6645 
6646 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6647 			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6648 		return 1;
6649 
6650 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6651 				sizeof(vmptr), &e)) {
6652 		kvm_inject_page_fault(vcpu, &e);
6653 		return 1;
6654 	}
6655 
6656 	switch (exit_reason) {
6657 	case EXIT_REASON_VMON:
6658 		/*
6659 		 * SDM 3: 24.11.5
6660 		 * The first 4 bytes of VMXON region contain the supported
6661 		 * VMCS revision identifier
6662 		 *
6663 		 * Note - IA32_VMX_BASIC[48] will never be 1
6664 		 * for the nested case;
6665 		 * which replaces physical address width with 32
6666 		 *
6667 		 */
6668 		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6669 			nested_vmx_failInvalid(vcpu);
6670 			skip_emulated_instruction(vcpu);
6671 			return 1;
6672 		}
6673 
6674 		page = nested_get_page(vcpu, vmptr);
6675 		if (page == NULL ||
6676 		    *(u32 *)kmap(page) != VMCS12_REVISION) {
6677 			nested_vmx_failInvalid(vcpu);
6678 			kunmap(page);
6679 			skip_emulated_instruction(vcpu);
6680 			return 1;
6681 		}
6682 		kunmap(page);
6683 		vmx->nested.vmxon_ptr = vmptr;
6684 		break;
6685 	case EXIT_REASON_VMCLEAR:
6686 		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6687 			nested_vmx_failValid(vcpu,
6688 					     VMXERR_VMCLEAR_INVALID_ADDRESS);
6689 			skip_emulated_instruction(vcpu);
6690 			return 1;
6691 		}
6692 
6693 		if (vmptr == vmx->nested.vmxon_ptr) {
6694 			nested_vmx_failValid(vcpu,
6695 					     VMXERR_VMCLEAR_VMXON_POINTER);
6696 			skip_emulated_instruction(vcpu);
6697 			return 1;
6698 		}
6699 		break;
6700 	case EXIT_REASON_VMPTRLD:
6701 		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6702 			nested_vmx_failValid(vcpu,
6703 					     VMXERR_VMPTRLD_INVALID_ADDRESS);
6704 			skip_emulated_instruction(vcpu);
6705 			return 1;
6706 		}
6707 
6708 		if (vmptr == vmx->nested.vmxon_ptr) {
6709 			nested_vmx_failValid(vcpu,
6710 					     VMXERR_VMCLEAR_VMXON_POINTER);
6711 			skip_emulated_instruction(vcpu);
6712 			return 1;
6713 		}
6714 		break;
6715 	default:
6716 		return 1; /* shouldn't happen */
6717 	}
6718 
6719 	if (vmpointer)
6720 		*vmpointer = vmptr;
6721 	return 0;
6722 }
6723 
6724 /*
6725  * Emulate the VMXON instruction.
6726  * Currently, we just remember that VMX is active, and do not save or even
6727  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6728  * do not currently need to store anything in that guest-allocated memory
6729  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6730  * argument is different from the VMXON pointer (which the spec says they do).
6731  */
handle_vmon(struct kvm_vcpu * vcpu)6732 static int handle_vmon(struct kvm_vcpu *vcpu)
6733 {
6734 	struct kvm_segment cs;
6735 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6736 	struct vmcs *shadow_vmcs;
6737 	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6738 		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6739 
6740 	/* The Intel VMX Instruction Reference lists a bunch of bits that
6741 	 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6742 	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6743 	 * Otherwise, we should fail with #UD. We test these now:
6744 	 */
6745 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6746 	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6747 	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6748 		kvm_queue_exception(vcpu, UD_VECTOR);
6749 		return 1;
6750 	}
6751 
6752 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6753 	if (is_long_mode(vcpu) && !cs.l) {
6754 		kvm_queue_exception(vcpu, UD_VECTOR);
6755 		return 1;
6756 	}
6757 
6758 	if (vmx_get_cpl(vcpu)) {
6759 		kvm_inject_gp(vcpu, 0);
6760 		return 1;
6761 	}
6762 
6763 	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6764 		return 1;
6765 
6766 	if (vmx->nested.vmxon) {
6767 		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6768 		skip_emulated_instruction(vcpu);
6769 		return 1;
6770 	}
6771 
6772 	if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6773 			!= VMXON_NEEDED_FEATURES) {
6774 		kvm_inject_gp(vcpu, 0);
6775 		return 1;
6776 	}
6777 
6778 	if (enable_shadow_vmcs) {
6779 		shadow_vmcs = alloc_vmcs();
6780 		if (!shadow_vmcs)
6781 			return -ENOMEM;
6782 		/* mark vmcs as shadow */
6783 		shadow_vmcs->revision_id |= (1u << 31);
6784 		/* init shadow vmcs */
6785 		vmcs_clear(shadow_vmcs);
6786 		vmx->nested.current_shadow_vmcs = shadow_vmcs;
6787 	}
6788 
6789 	INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6790 	vmx->nested.vmcs02_num = 0;
6791 
6792 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6793 		     HRTIMER_MODE_REL);
6794 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6795 
6796 	vmx->nested.vmxon = true;
6797 
6798 	skip_emulated_instruction(vcpu);
6799 	nested_vmx_succeed(vcpu);
6800 	return 1;
6801 }
6802 
6803 /*
6804  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6805  * for running VMX instructions (except VMXON, whose prerequisites are
6806  * slightly different). It also specifies what exception to inject otherwise.
6807  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)6808 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6809 {
6810 	struct kvm_segment cs;
6811 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6812 
6813 	if (!vmx->nested.vmxon) {
6814 		kvm_queue_exception(vcpu, UD_VECTOR);
6815 		return 0;
6816 	}
6817 
6818 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6819 	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6820 	    (is_long_mode(vcpu) && !cs.l)) {
6821 		kvm_queue_exception(vcpu, UD_VECTOR);
6822 		return 0;
6823 	}
6824 
6825 	if (vmx_get_cpl(vcpu)) {
6826 		kvm_inject_gp(vcpu, 0);
6827 		return 0;
6828 	}
6829 
6830 	return 1;
6831 }
6832 
nested_release_vmcs12(struct vcpu_vmx * vmx)6833 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6834 {
6835 	if (vmx->nested.current_vmptr == -1ull)
6836 		return;
6837 
6838 	/* current_vmptr and current_vmcs12 are always set/reset together */
6839 	if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6840 		return;
6841 
6842 	if (enable_shadow_vmcs) {
6843 		/* copy to memory all shadowed fields in case
6844 		   they were modified */
6845 		copy_shadow_to_vmcs12(vmx);
6846 		vmx->nested.sync_shadow_vmcs = false;
6847 		vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6848 				SECONDARY_EXEC_SHADOW_VMCS);
6849 		vmcs_write64(VMCS_LINK_POINTER, -1ull);
6850 	}
6851 	vmx->nested.posted_intr_nv = -1;
6852 	kunmap(vmx->nested.current_vmcs12_page);
6853 	nested_release_page(vmx->nested.current_vmcs12_page);
6854 	vmx->nested.current_vmptr = -1ull;
6855 	vmx->nested.current_vmcs12 = NULL;
6856 }
6857 
6858 /*
6859  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6860  * just stops using VMX.
6861  */
free_nested(struct vcpu_vmx * vmx)6862 static void free_nested(struct vcpu_vmx *vmx)
6863 {
6864 	if (!vmx->nested.vmxon)
6865 		return;
6866 
6867 	vmx->nested.vmxon = false;
6868 	free_vpid(vmx->nested.vpid02);
6869 	nested_release_vmcs12(vmx);
6870 	if (enable_shadow_vmcs)
6871 		free_vmcs(vmx->nested.current_shadow_vmcs);
6872 	/* Unpin physical memory we referred to in current vmcs02 */
6873 	if (vmx->nested.apic_access_page) {
6874 		nested_release_page(vmx->nested.apic_access_page);
6875 		vmx->nested.apic_access_page = NULL;
6876 	}
6877 	if (vmx->nested.virtual_apic_page) {
6878 		nested_release_page(vmx->nested.virtual_apic_page);
6879 		vmx->nested.virtual_apic_page = NULL;
6880 	}
6881 	if (vmx->nested.pi_desc_page) {
6882 		kunmap(vmx->nested.pi_desc_page);
6883 		nested_release_page(vmx->nested.pi_desc_page);
6884 		vmx->nested.pi_desc_page = NULL;
6885 		vmx->nested.pi_desc = NULL;
6886 	}
6887 
6888 	nested_free_all_saved_vmcss(vmx);
6889 }
6890 
6891 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)6892 static int handle_vmoff(struct kvm_vcpu *vcpu)
6893 {
6894 	if (!nested_vmx_check_permission(vcpu))
6895 		return 1;
6896 	free_nested(to_vmx(vcpu));
6897 	skip_emulated_instruction(vcpu);
6898 	nested_vmx_succeed(vcpu);
6899 	return 1;
6900 }
6901 
6902 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)6903 static int handle_vmclear(struct kvm_vcpu *vcpu)
6904 {
6905 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6906 	gpa_t vmptr;
6907 	struct vmcs12 *vmcs12;
6908 	struct page *page;
6909 
6910 	if (!nested_vmx_check_permission(vcpu))
6911 		return 1;
6912 
6913 	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6914 		return 1;
6915 
6916 	if (vmptr == vmx->nested.current_vmptr)
6917 		nested_release_vmcs12(vmx);
6918 
6919 	page = nested_get_page(vcpu, vmptr);
6920 	if (page == NULL) {
6921 		/*
6922 		 * For accurate processor emulation, VMCLEAR beyond available
6923 		 * physical memory should do nothing at all. However, it is
6924 		 * possible that a nested vmx bug, not a guest hypervisor bug,
6925 		 * resulted in this case, so let's shut down before doing any
6926 		 * more damage:
6927 		 */
6928 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6929 		return 1;
6930 	}
6931 	vmcs12 = kmap(page);
6932 	vmcs12->launch_state = 0;
6933 	kunmap(page);
6934 	nested_release_page(page);
6935 
6936 	nested_free_vmcs02(vmx, vmptr);
6937 
6938 	skip_emulated_instruction(vcpu);
6939 	nested_vmx_succeed(vcpu);
6940 	return 1;
6941 }
6942 
6943 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6944 
6945 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)6946 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6947 {
6948 	return nested_vmx_run(vcpu, true);
6949 }
6950 
6951 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)6952 static int handle_vmresume(struct kvm_vcpu *vcpu)
6953 {
6954 
6955 	return nested_vmx_run(vcpu, false);
6956 }
6957 
6958 enum vmcs_field_type {
6959 	VMCS_FIELD_TYPE_U16 = 0,
6960 	VMCS_FIELD_TYPE_U64 = 1,
6961 	VMCS_FIELD_TYPE_U32 = 2,
6962 	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6963 };
6964 
vmcs_field_type(unsigned long field)6965 static inline int vmcs_field_type(unsigned long field)
6966 {
6967 	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
6968 		return VMCS_FIELD_TYPE_U32;
6969 	return (field >> 13) & 0x3 ;
6970 }
6971 
vmcs_field_readonly(unsigned long field)6972 static inline int vmcs_field_readonly(unsigned long field)
6973 {
6974 	return (((field >> 10) & 0x3) == 1);
6975 }
6976 
6977 /*
6978  * Read a vmcs12 field. Since these can have varying lengths and we return
6979  * one type, we chose the biggest type (u64) and zero-extend the return value
6980  * to that size. Note that the caller, handle_vmread, might need to use only
6981  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6982  * 64-bit fields are to be returned).
6983  */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)6984 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6985 				  unsigned long field, u64 *ret)
6986 {
6987 	short offset = vmcs_field_to_offset(field);
6988 	char *p;
6989 
6990 	if (offset < 0)
6991 		return offset;
6992 
6993 	p = ((char *)(get_vmcs12(vcpu))) + offset;
6994 
6995 	switch (vmcs_field_type(field)) {
6996 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6997 		*ret = *((natural_width *)p);
6998 		return 0;
6999 	case VMCS_FIELD_TYPE_U16:
7000 		*ret = *((u16 *)p);
7001 		return 0;
7002 	case VMCS_FIELD_TYPE_U32:
7003 		*ret = *((u32 *)p);
7004 		return 0;
7005 	case VMCS_FIELD_TYPE_U64:
7006 		*ret = *((u64 *)p);
7007 		return 0;
7008 	default:
7009 		WARN_ON(1);
7010 		return -ENOENT;
7011 	}
7012 }
7013 
7014 
vmcs12_write_any(struct kvm_vcpu * vcpu,unsigned long field,u64 field_value)7015 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7016 				   unsigned long field, u64 field_value){
7017 	short offset = vmcs_field_to_offset(field);
7018 	char *p = ((char *) get_vmcs12(vcpu)) + offset;
7019 	if (offset < 0)
7020 		return offset;
7021 
7022 	switch (vmcs_field_type(field)) {
7023 	case VMCS_FIELD_TYPE_U16:
7024 		*(u16 *)p = field_value;
7025 		return 0;
7026 	case VMCS_FIELD_TYPE_U32:
7027 		*(u32 *)p = field_value;
7028 		return 0;
7029 	case VMCS_FIELD_TYPE_U64:
7030 		*(u64 *)p = field_value;
7031 		return 0;
7032 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7033 		*(natural_width *)p = field_value;
7034 		return 0;
7035 	default:
7036 		WARN_ON(1);
7037 		return -ENOENT;
7038 	}
7039 
7040 }
7041 
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)7042 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7043 {
7044 	int i;
7045 	unsigned long field;
7046 	u64 field_value;
7047 	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7048 	const unsigned long *fields = shadow_read_write_fields;
7049 	const int num_fields = max_shadow_read_write_fields;
7050 
7051 	preempt_disable();
7052 
7053 	vmcs_load(shadow_vmcs);
7054 
7055 	for (i = 0; i < num_fields; i++) {
7056 		field = fields[i];
7057 		switch (vmcs_field_type(field)) {
7058 		case VMCS_FIELD_TYPE_U16:
7059 			field_value = vmcs_read16(field);
7060 			break;
7061 		case VMCS_FIELD_TYPE_U32:
7062 			field_value = vmcs_read32(field);
7063 			break;
7064 		case VMCS_FIELD_TYPE_U64:
7065 			field_value = vmcs_read64(field);
7066 			break;
7067 		case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7068 			field_value = vmcs_readl(field);
7069 			break;
7070 		default:
7071 			WARN_ON(1);
7072 			continue;
7073 		}
7074 		vmcs12_write_any(&vmx->vcpu, field, field_value);
7075 	}
7076 
7077 	vmcs_clear(shadow_vmcs);
7078 	vmcs_load(vmx->loaded_vmcs->vmcs);
7079 
7080 	preempt_enable();
7081 }
7082 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)7083 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7084 {
7085 	const unsigned long *fields[] = {
7086 		shadow_read_write_fields,
7087 		shadow_read_only_fields
7088 	};
7089 	const int max_fields[] = {
7090 		max_shadow_read_write_fields,
7091 		max_shadow_read_only_fields
7092 	};
7093 	int i, q;
7094 	unsigned long field;
7095 	u64 field_value = 0;
7096 	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7097 
7098 	vmcs_load(shadow_vmcs);
7099 
7100 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
7101 		for (i = 0; i < max_fields[q]; i++) {
7102 			field = fields[q][i];
7103 			vmcs12_read_any(&vmx->vcpu, field, &field_value);
7104 
7105 			switch (vmcs_field_type(field)) {
7106 			case VMCS_FIELD_TYPE_U16:
7107 				vmcs_write16(field, (u16)field_value);
7108 				break;
7109 			case VMCS_FIELD_TYPE_U32:
7110 				vmcs_write32(field, (u32)field_value);
7111 				break;
7112 			case VMCS_FIELD_TYPE_U64:
7113 				vmcs_write64(field, (u64)field_value);
7114 				break;
7115 			case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7116 				vmcs_writel(field, (long)field_value);
7117 				break;
7118 			default:
7119 				WARN_ON(1);
7120 				break;
7121 			}
7122 		}
7123 	}
7124 
7125 	vmcs_clear(shadow_vmcs);
7126 	vmcs_load(vmx->loaded_vmcs->vmcs);
7127 }
7128 
7129 /*
7130  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7131  * used before) all generate the same failure when it is missing.
7132  */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)7133 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7134 {
7135 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7136 	if (vmx->nested.current_vmptr == -1ull) {
7137 		nested_vmx_failInvalid(vcpu);
7138 		skip_emulated_instruction(vcpu);
7139 		return 0;
7140 	}
7141 	return 1;
7142 }
7143 
handle_vmread(struct kvm_vcpu * vcpu)7144 static int handle_vmread(struct kvm_vcpu *vcpu)
7145 {
7146 	unsigned long field;
7147 	u64 field_value;
7148 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7149 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7150 	gva_t gva = 0;
7151 
7152 	if (!nested_vmx_check_permission(vcpu) ||
7153 	    !nested_vmx_check_vmcs12(vcpu))
7154 		return 1;
7155 
7156 	/* Decode instruction info and find the field to read */
7157 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7158 	/* Read the field, zero-extended to a u64 field_value */
7159 	if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7160 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7161 		skip_emulated_instruction(vcpu);
7162 		return 1;
7163 	}
7164 	/*
7165 	 * Now copy part of this value to register or memory, as requested.
7166 	 * Note that the number of bits actually copied is 32 or 64 depending
7167 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
7168 	 */
7169 	if (vmx_instruction_info & (1u << 10)) {
7170 		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7171 			field_value);
7172 	} else {
7173 		if (get_vmx_mem_address(vcpu, exit_qualification,
7174 				vmx_instruction_info, true, &gva))
7175 			return 1;
7176 		/* _system ok, as nested_vmx_check_permission verified cpl=0 */
7177 		kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7178 			     &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7179 	}
7180 
7181 	nested_vmx_succeed(vcpu);
7182 	skip_emulated_instruction(vcpu);
7183 	return 1;
7184 }
7185 
7186 
handle_vmwrite(struct kvm_vcpu * vcpu)7187 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7188 {
7189 	unsigned long field;
7190 	gva_t gva;
7191 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7192 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7193 	/* The value to write might be 32 or 64 bits, depending on L1's long
7194 	 * mode, and eventually we need to write that into a field of several
7195 	 * possible lengths. The code below first zero-extends the value to 64
7196 	 * bit (field_value), and then copies only the approriate number of
7197 	 * bits into the vmcs12 field.
7198 	 */
7199 	u64 field_value = 0;
7200 	struct x86_exception e;
7201 
7202 	if (!nested_vmx_check_permission(vcpu) ||
7203 	    !nested_vmx_check_vmcs12(vcpu))
7204 		return 1;
7205 
7206 	if (vmx_instruction_info & (1u << 10))
7207 		field_value = kvm_register_readl(vcpu,
7208 			(((vmx_instruction_info) >> 3) & 0xf));
7209 	else {
7210 		if (get_vmx_mem_address(vcpu, exit_qualification,
7211 				vmx_instruction_info, false, &gva))
7212 			return 1;
7213 		if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7214 			   &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7215 			kvm_inject_page_fault(vcpu, &e);
7216 			return 1;
7217 		}
7218 	}
7219 
7220 
7221 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7222 	if (vmcs_field_readonly(field)) {
7223 		nested_vmx_failValid(vcpu,
7224 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7225 		skip_emulated_instruction(vcpu);
7226 		return 1;
7227 	}
7228 
7229 	if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7230 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7231 		skip_emulated_instruction(vcpu);
7232 		return 1;
7233 	}
7234 
7235 	nested_vmx_succeed(vcpu);
7236 	skip_emulated_instruction(vcpu);
7237 	return 1;
7238 }
7239 
7240 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)7241 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7242 {
7243 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7244 	gpa_t vmptr;
7245 
7246 	if (!nested_vmx_check_permission(vcpu))
7247 		return 1;
7248 
7249 	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7250 		return 1;
7251 
7252 	if (vmx->nested.current_vmptr != vmptr) {
7253 		struct vmcs12 *new_vmcs12;
7254 		struct page *page;
7255 		page = nested_get_page(vcpu, vmptr);
7256 		if (page == NULL) {
7257 			nested_vmx_failInvalid(vcpu);
7258 			skip_emulated_instruction(vcpu);
7259 			return 1;
7260 		}
7261 		new_vmcs12 = kmap(page);
7262 		if (new_vmcs12->revision_id != VMCS12_REVISION) {
7263 			kunmap(page);
7264 			nested_release_page_clean(page);
7265 			nested_vmx_failValid(vcpu,
7266 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7267 			skip_emulated_instruction(vcpu);
7268 			return 1;
7269 		}
7270 
7271 		nested_release_vmcs12(vmx);
7272 		vmx->nested.current_vmptr = vmptr;
7273 		vmx->nested.current_vmcs12 = new_vmcs12;
7274 		vmx->nested.current_vmcs12_page = page;
7275 		if (enable_shadow_vmcs) {
7276 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7277 				      SECONDARY_EXEC_SHADOW_VMCS);
7278 			vmcs_write64(VMCS_LINK_POINTER,
7279 				     __pa(vmx->nested.current_shadow_vmcs));
7280 			vmx->nested.sync_shadow_vmcs = true;
7281 		}
7282 	}
7283 
7284 	nested_vmx_succeed(vcpu);
7285 	skip_emulated_instruction(vcpu);
7286 	return 1;
7287 }
7288 
7289 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)7290 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7291 {
7292 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7293 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7294 	gva_t vmcs_gva;
7295 	struct x86_exception e;
7296 
7297 	if (!nested_vmx_check_permission(vcpu))
7298 		return 1;
7299 
7300 	if (get_vmx_mem_address(vcpu, exit_qualification,
7301 			vmx_instruction_info, true, &vmcs_gva))
7302 		return 1;
7303 	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7304 	if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7305 				 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7306 				 sizeof(u64), &e)) {
7307 		kvm_inject_page_fault(vcpu, &e);
7308 		return 1;
7309 	}
7310 	nested_vmx_succeed(vcpu);
7311 	skip_emulated_instruction(vcpu);
7312 	return 1;
7313 }
7314 
7315 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)7316 static int handle_invept(struct kvm_vcpu *vcpu)
7317 {
7318 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7319 	u32 vmx_instruction_info, types;
7320 	unsigned long type;
7321 	gva_t gva;
7322 	struct x86_exception e;
7323 	struct {
7324 		u64 eptp, gpa;
7325 	} operand;
7326 
7327 	if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7328 	      SECONDARY_EXEC_ENABLE_EPT) ||
7329 	    !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7330 		kvm_queue_exception(vcpu, UD_VECTOR);
7331 		return 1;
7332 	}
7333 
7334 	if (!nested_vmx_check_permission(vcpu))
7335 		return 1;
7336 
7337 	if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7338 		kvm_queue_exception(vcpu, UD_VECTOR);
7339 		return 1;
7340 	}
7341 
7342 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7343 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7344 
7345 	types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7346 
7347 	if (!(types & (1UL << type))) {
7348 		nested_vmx_failValid(vcpu,
7349 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7350 		skip_emulated_instruction(vcpu);
7351 		return 1;
7352 	}
7353 
7354 	/* According to the Intel VMX instruction reference, the memory
7355 	 * operand is read even if it isn't needed (e.g., for type==global)
7356 	 */
7357 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7358 			vmx_instruction_info, false, &gva))
7359 		return 1;
7360 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7361 				sizeof(operand), &e)) {
7362 		kvm_inject_page_fault(vcpu, &e);
7363 		return 1;
7364 	}
7365 
7366 	switch (type) {
7367 	case VMX_EPT_EXTENT_GLOBAL:
7368 		kvm_mmu_sync_roots(vcpu);
7369 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7370 		nested_vmx_succeed(vcpu);
7371 		break;
7372 	default:
7373 		/* Trap single context invalidation invept calls */
7374 		BUG_ON(1);
7375 		break;
7376 	}
7377 
7378 	skip_emulated_instruction(vcpu);
7379 	return 1;
7380 }
7381 
handle_invvpid(struct kvm_vcpu * vcpu)7382 static int handle_invvpid(struct kvm_vcpu *vcpu)
7383 {
7384 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7385 	u32 vmx_instruction_info;
7386 	unsigned long type, types;
7387 	gva_t gva;
7388 	struct x86_exception e;
7389 	int vpid;
7390 
7391 	if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7392 	      SECONDARY_EXEC_ENABLE_VPID) ||
7393 			!(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7394 		kvm_queue_exception(vcpu, UD_VECTOR);
7395 		return 1;
7396 	}
7397 
7398 	if (!nested_vmx_check_permission(vcpu))
7399 		return 1;
7400 
7401 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7402 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7403 
7404 	types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7405 
7406 	if (!(types & (1UL << type))) {
7407 		nested_vmx_failValid(vcpu,
7408 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7409 		skip_emulated_instruction(vcpu);
7410 		return 1;
7411 	}
7412 
7413 	/* according to the intel vmx instruction reference, the memory
7414 	 * operand is read even if it isn't needed (e.g., for type==global)
7415 	 */
7416 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7417 			vmx_instruction_info, false, &gva))
7418 		return 1;
7419 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7420 				sizeof(u32), &e)) {
7421 		kvm_inject_page_fault(vcpu, &e);
7422 		return 1;
7423 	}
7424 
7425 	switch (type) {
7426 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7427 		/*
7428 		 * Old versions of KVM use the single-context version so we
7429 		 * have to support it; just treat it the same as all-context.
7430 		 */
7431 	case VMX_VPID_EXTENT_ALL_CONTEXT:
7432 		__vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7433 		nested_vmx_succeed(vcpu);
7434 		break;
7435 	default:
7436 		/* Trap individual address invalidation invvpid calls */
7437 		BUG_ON(1);
7438 		break;
7439 	}
7440 
7441 	skip_emulated_instruction(vcpu);
7442 	return 1;
7443 }
7444 
handle_pml_full(struct kvm_vcpu * vcpu)7445 static int handle_pml_full(struct kvm_vcpu *vcpu)
7446 {
7447 	unsigned long exit_qualification;
7448 
7449 	trace_kvm_pml_full(vcpu->vcpu_id);
7450 
7451 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7452 
7453 	/*
7454 	 * PML buffer FULL happened while executing iret from NMI,
7455 	 * "blocked by NMI" bit has to be set before next VM entry.
7456 	 */
7457 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7458 			cpu_has_virtual_nmis() &&
7459 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
7460 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7461 				GUEST_INTR_STATE_NMI);
7462 
7463 	/*
7464 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7465 	 * here.., and there's no userspace involvement needed for PML.
7466 	 */
7467 	return 1;
7468 }
7469 
handle_pcommit(struct kvm_vcpu * vcpu)7470 static int handle_pcommit(struct kvm_vcpu *vcpu)
7471 {
7472 	/* we never catch pcommit instruct for L1 guest. */
7473 	WARN_ON(1);
7474 	return 1;
7475 }
7476 
7477 /*
7478  * The exit handlers return 1 if the exit was handled fully and guest execution
7479  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7480  * to be done to userspace and return 0.
7481  */
7482 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7483 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7484 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7485 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7486 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
7487 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7488 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
7489 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
7490 	[EXIT_REASON_CPUID]                   = handle_cpuid,
7491 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
7492 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7493 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7494 	[EXIT_REASON_HLT]                     = handle_halt,
7495 	[EXIT_REASON_INVD]		      = handle_invd,
7496 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
7497 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
7498 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
7499 	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
7500 	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7501 	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7502 	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7503 	[EXIT_REASON_VMREAD]                  = handle_vmread,
7504 	[EXIT_REASON_VMRESUME]                = handle_vmresume,
7505 	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7506 	[EXIT_REASON_VMOFF]                   = handle_vmoff,
7507 	[EXIT_REASON_VMON]                    = handle_vmon,
7508 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7509 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7510 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7511 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7512 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
7513 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
7514 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7515 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7516 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
7517 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7518 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7519 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
7520 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7521 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7522 	[EXIT_REASON_INVEPT]                  = handle_invept,
7523 	[EXIT_REASON_INVVPID]                 = handle_invvpid,
7524 	[EXIT_REASON_XSAVES]                  = handle_xsaves,
7525 	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
7526 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
7527 	[EXIT_REASON_PCOMMIT]                 = handle_pcommit,
7528 };
7529 
7530 static const int kvm_vmx_max_exit_handlers =
7531 	ARRAY_SIZE(kvm_vmx_exit_handlers);
7532 
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7533 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7534 				       struct vmcs12 *vmcs12)
7535 {
7536 	unsigned long exit_qualification;
7537 	gpa_t bitmap, last_bitmap;
7538 	unsigned int port;
7539 	int size;
7540 	u8 b;
7541 
7542 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7543 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7544 
7545 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7546 
7547 	port = exit_qualification >> 16;
7548 	size = (exit_qualification & 7) + 1;
7549 
7550 	last_bitmap = (gpa_t)-1;
7551 	b = -1;
7552 
7553 	while (size > 0) {
7554 		if (port < 0x8000)
7555 			bitmap = vmcs12->io_bitmap_a;
7556 		else if (port < 0x10000)
7557 			bitmap = vmcs12->io_bitmap_b;
7558 		else
7559 			return true;
7560 		bitmap += (port & 0x7fff) / 8;
7561 
7562 		if (last_bitmap != bitmap)
7563 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7564 				return true;
7565 		if (b & (1 << (port & 7)))
7566 			return true;
7567 
7568 		port++;
7569 		size--;
7570 		last_bitmap = bitmap;
7571 	}
7572 
7573 	return false;
7574 }
7575 
7576 /*
7577  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7578  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7579  * disinterest in the current event (read or write a specific MSR) by using an
7580  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7581  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)7582 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7583 	struct vmcs12 *vmcs12, u32 exit_reason)
7584 {
7585 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7586 	gpa_t bitmap;
7587 
7588 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7589 		return true;
7590 
7591 	/*
7592 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7593 	 * for the four combinations of read/write and low/high MSR numbers.
7594 	 * First we need to figure out which of the four to use:
7595 	 */
7596 	bitmap = vmcs12->msr_bitmap;
7597 	if (exit_reason == EXIT_REASON_MSR_WRITE)
7598 		bitmap += 2048;
7599 	if (msr_index >= 0xc0000000) {
7600 		msr_index -= 0xc0000000;
7601 		bitmap += 1024;
7602 	}
7603 
7604 	/* Then read the msr_index'th bit from this bitmap: */
7605 	if (msr_index < 1024*8) {
7606 		unsigned char b;
7607 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7608 			return true;
7609 		return 1 & (b >> (msr_index & 7));
7610 	} else
7611 		return true; /* let L1 handle the wrong parameter */
7612 }
7613 
7614 /*
7615  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7616  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7617  * intercept (via guest_host_mask etc.) the current event.
7618  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7619 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7620 	struct vmcs12 *vmcs12)
7621 {
7622 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7623 	int cr = exit_qualification & 15;
7624 	int reg = (exit_qualification >> 8) & 15;
7625 	unsigned long val = kvm_register_readl(vcpu, reg);
7626 
7627 	switch ((exit_qualification >> 4) & 3) {
7628 	case 0: /* mov to cr */
7629 		switch (cr) {
7630 		case 0:
7631 			if (vmcs12->cr0_guest_host_mask &
7632 			    (val ^ vmcs12->cr0_read_shadow))
7633 				return true;
7634 			break;
7635 		case 3:
7636 			if ((vmcs12->cr3_target_count >= 1 &&
7637 					vmcs12->cr3_target_value0 == val) ||
7638 				(vmcs12->cr3_target_count >= 2 &&
7639 					vmcs12->cr3_target_value1 == val) ||
7640 				(vmcs12->cr3_target_count >= 3 &&
7641 					vmcs12->cr3_target_value2 == val) ||
7642 				(vmcs12->cr3_target_count >= 4 &&
7643 					vmcs12->cr3_target_value3 == val))
7644 				return false;
7645 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7646 				return true;
7647 			break;
7648 		case 4:
7649 			if (vmcs12->cr4_guest_host_mask &
7650 			    (vmcs12->cr4_read_shadow ^ val))
7651 				return true;
7652 			break;
7653 		case 8:
7654 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7655 				return true;
7656 			break;
7657 		}
7658 		break;
7659 	case 2: /* clts */
7660 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7661 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
7662 			return true;
7663 		break;
7664 	case 1: /* mov from cr */
7665 		switch (cr) {
7666 		case 3:
7667 			if (vmcs12->cpu_based_vm_exec_control &
7668 			    CPU_BASED_CR3_STORE_EXITING)
7669 				return true;
7670 			break;
7671 		case 8:
7672 			if (vmcs12->cpu_based_vm_exec_control &
7673 			    CPU_BASED_CR8_STORE_EXITING)
7674 				return true;
7675 			break;
7676 		}
7677 		break;
7678 	case 3: /* lmsw */
7679 		/*
7680 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7681 		 * cr0. Other attempted changes are ignored, with no exit.
7682 		 */
7683 		if (vmcs12->cr0_guest_host_mask & 0xe &
7684 		    (val ^ vmcs12->cr0_read_shadow))
7685 			return true;
7686 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7687 		    !(vmcs12->cr0_read_shadow & 0x1) &&
7688 		    (val & 0x1))
7689 			return true;
7690 		break;
7691 	}
7692 	return false;
7693 }
7694 
7695 /*
7696  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7697  * should handle it ourselves in L0 (and then continue L2). Only call this
7698  * when in is_guest_mode (L2).
7699  */
nested_vmx_exit_handled(struct kvm_vcpu * vcpu)7700 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7701 {
7702 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7703 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7704 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7705 	u32 exit_reason = vmx->exit_reason;
7706 
7707 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7708 				vmcs_readl(EXIT_QUALIFICATION),
7709 				vmx->idt_vectoring_info,
7710 				intr_info,
7711 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7712 				KVM_ISA_VMX);
7713 
7714 	if (vmx->nested.nested_run_pending)
7715 		return false;
7716 
7717 	if (unlikely(vmx->fail)) {
7718 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7719 				    vmcs_read32(VM_INSTRUCTION_ERROR));
7720 		return true;
7721 	}
7722 
7723 	switch (exit_reason) {
7724 	case EXIT_REASON_EXCEPTION_NMI:
7725 		if (!is_exception(intr_info))
7726 			return false;
7727 		else if (is_page_fault(intr_info))
7728 			return enable_ept;
7729 		else if (is_no_device(intr_info) &&
7730 			 !(vmcs12->guest_cr0 & X86_CR0_TS))
7731 			return false;
7732 		return vmcs12->exception_bitmap &
7733 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
7734 	case EXIT_REASON_EXTERNAL_INTERRUPT:
7735 		return false;
7736 	case EXIT_REASON_TRIPLE_FAULT:
7737 		return true;
7738 	case EXIT_REASON_PENDING_INTERRUPT:
7739 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7740 	case EXIT_REASON_NMI_WINDOW:
7741 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7742 	case EXIT_REASON_TASK_SWITCH:
7743 		return true;
7744 	case EXIT_REASON_CPUID:
7745 		if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7746 			return false;
7747 		return true;
7748 	case EXIT_REASON_HLT:
7749 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7750 	case EXIT_REASON_INVD:
7751 		return true;
7752 	case EXIT_REASON_INVLPG:
7753 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7754 	case EXIT_REASON_RDPMC:
7755 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7756 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7757 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7758 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7759 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7760 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7761 	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7762 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7763 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7764 		/*
7765 		 * VMX instructions trap unconditionally. This allows L1 to
7766 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7767 		 */
7768 		return true;
7769 	case EXIT_REASON_CR_ACCESS:
7770 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7771 	case EXIT_REASON_DR_ACCESS:
7772 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7773 	case EXIT_REASON_IO_INSTRUCTION:
7774 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
7775 	case EXIT_REASON_MSR_READ:
7776 	case EXIT_REASON_MSR_WRITE:
7777 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7778 	case EXIT_REASON_INVALID_STATE:
7779 		return true;
7780 	case EXIT_REASON_MWAIT_INSTRUCTION:
7781 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7782 	case EXIT_REASON_MONITOR_TRAP_FLAG:
7783 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7784 	case EXIT_REASON_MONITOR_INSTRUCTION:
7785 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7786 	case EXIT_REASON_PAUSE_INSTRUCTION:
7787 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7788 			nested_cpu_has2(vmcs12,
7789 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7790 	case EXIT_REASON_MCE_DURING_VMENTRY:
7791 		return false;
7792 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
7793 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7794 	case EXIT_REASON_APIC_ACCESS:
7795 		return nested_cpu_has2(vmcs12,
7796 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7797 	case EXIT_REASON_APIC_WRITE:
7798 	case EXIT_REASON_EOI_INDUCED:
7799 		/* apic_write and eoi_induced should exit unconditionally. */
7800 		return true;
7801 	case EXIT_REASON_EPT_VIOLATION:
7802 		/*
7803 		 * L0 always deals with the EPT violation. If nested EPT is
7804 		 * used, and the nested mmu code discovers that the address is
7805 		 * missing in the guest EPT table (EPT12), the EPT violation
7806 		 * will be injected with nested_ept_inject_page_fault()
7807 		 */
7808 		return false;
7809 	case EXIT_REASON_EPT_MISCONFIG:
7810 		/*
7811 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
7812 		 * table (shadow on EPT) or a merged EPT table that L0 built
7813 		 * (EPT on EPT). So any problems with the structure of the
7814 		 * table is L0's fault.
7815 		 */
7816 		return false;
7817 	case EXIT_REASON_WBINVD:
7818 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7819 	case EXIT_REASON_XSETBV:
7820 		return true;
7821 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7822 		/*
7823 		 * This should never happen, since it is not possible to
7824 		 * set XSS to a non-zero value---neither in L1 nor in L2.
7825 		 * If if it were, XSS would have to be checked against
7826 		 * the XSS exit bitmap in vmcs12.
7827 		 */
7828 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7829 	case EXIT_REASON_PCOMMIT:
7830 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7831 	default:
7832 		return true;
7833 	}
7834 }
7835 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)7836 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7837 {
7838 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
7839 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7840 }
7841 
vmx_create_pml_buffer(struct vcpu_vmx * vmx)7842 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
7843 {
7844 	struct page *pml_pg;
7845 
7846 	pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7847 	if (!pml_pg)
7848 		return -ENOMEM;
7849 
7850 	vmx->pml_pg = pml_pg;
7851 
7852 	vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7853 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7854 
7855 	return 0;
7856 }
7857 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)7858 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7859 {
7860 	if (vmx->pml_pg) {
7861 		__free_page(vmx->pml_pg);
7862 		vmx->pml_pg = NULL;
7863 	}
7864 }
7865 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)7866 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7867 {
7868 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7869 	u64 *pml_buf;
7870 	u16 pml_idx;
7871 
7872 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
7873 
7874 	/* Do nothing if PML buffer is empty */
7875 	if (pml_idx == (PML_ENTITY_NUM - 1))
7876 		return;
7877 
7878 	/* PML index always points to next available PML buffer entity */
7879 	if (pml_idx >= PML_ENTITY_NUM)
7880 		pml_idx = 0;
7881 	else
7882 		pml_idx++;
7883 
7884 	pml_buf = page_address(vmx->pml_pg);
7885 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7886 		u64 gpa;
7887 
7888 		gpa = pml_buf[pml_idx];
7889 		WARN_ON(gpa & (PAGE_SIZE - 1));
7890 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7891 	}
7892 
7893 	/* reset PML index */
7894 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7895 }
7896 
7897 /*
7898  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7899  * Called before reporting dirty_bitmap to userspace.
7900  */
kvm_flush_pml_buffers(struct kvm * kvm)7901 static void kvm_flush_pml_buffers(struct kvm *kvm)
7902 {
7903 	int i;
7904 	struct kvm_vcpu *vcpu;
7905 	/*
7906 	 * We only need to kick vcpu out of guest mode here, as PML buffer
7907 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
7908 	 * vcpus running in guest are possible to have unflushed GPAs in PML
7909 	 * buffer.
7910 	 */
7911 	kvm_for_each_vcpu(i, vcpu, kvm)
7912 		kvm_vcpu_kick(vcpu);
7913 }
7914 
vmx_dump_sel(char * name,uint32_t sel)7915 static void vmx_dump_sel(char *name, uint32_t sel)
7916 {
7917 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7918 	       name, vmcs_read32(sel),
7919 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7920 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7921 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7922 }
7923 
vmx_dump_dtsel(char * name,uint32_t limit)7924 static void vmx_dump_dtsel(char *name, uint32_t limit)
7925 {
7926 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
7927 	       name, vmcs_read32(limit),
7928 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7929 }
7930 
dump_vmcs(void)7931 static void dump_vmcs(void)
7932 {
7933 	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7934 	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7935 	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7936 	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7937 	u32 secondary_exec_control = 0;
7938 	unsigned long cr4 = vmcs_readl(GUEST_CR4);
7939 	u64 efer = vmcs_readl(GUEST_IA32_EFER);
7940 	int i, n;
7941 
7942 	if (cpu_has_secondary_exec_ctrls())
7943 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7944 
7945 	pr_err("*** Guest State ***\n");
7946 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7947 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7948 	       vmcs_readl(CR0_GUEST_HOST_MASK));
7949 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7950 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7951 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7952 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7953 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7954 	{
7955 		pr_err("PDPTR0 = 0x%016lx  PDPTR1 = 0x%016lx\n",
7956 		       vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7957 		pr_err("PDPTR2 = 0x%016lx  PDPTR3 = 0x%016lx\n",
7958 		       vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7959 	}
7960 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
7961 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7962 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
7963 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7964 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7965 	       vmcs_readl(GUEST_SYSENTER_ESP),
7966 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7967 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
7968 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
7969 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
7970 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
7971 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
7972 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
7973 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7974 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7975 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7976 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
7977 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7978 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7979 		pr_err("EFER =     0x%016llx  PAT = 0x%016lx\n",
7980 		       efer, vmcs_readl(GUEST_IA32_PAT));
7981 	pr_err("DebugCtl = 0x%016lx  DebugExceptions = 0x%016lx\n",
7982 	       vmcs_readl(GUEST_IA32_DEBUGCTL),
7983 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7984 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7985 		pr_err("PerfGlobCtl = 0x%016lx\n",
7986 		       vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7987 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7988 		pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7989 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
7990 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7991 	       vmcs_read32(GUEST_ACTIVITY_STATE));
7992 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7993 		pr_err("InterruptStatus = %04x\n",
7994 		       vmcs_read16(GUEST_INTR_STATUS));
7995 
7996 	pr_err("*** Host State ***\n");
7997 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
7998 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7999 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8000 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8001 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8002 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8003 	       vmcs_read16(HOST_TR_SELECTOR));
8004 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8005 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8006 	       vmcs_readl(HOST_TR_BASE));
8007 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8008 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8009 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8010 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8011 	       vmcs_readl(HOST_CR4));
8012 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8013 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
8014 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
8015 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
8016 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8017 		pr_err("EFER = 0x%016lx  PAT = 0x%016lx\n",
8018 		       vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
8019 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8020 		pr_err("PerfGlobCtl = 0x%016lx\n",
8021 		       vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
8022 
8023 	pr_err("*** Control State ***\n");
8024 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8025 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8026 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8027 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8028 	       vmcs_read32(EXCEPTION_BITMAP),
8029 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8030 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8031 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8032 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8033 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8034 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8035 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8036 	       vmcs_read32(VM_EXIT_INTR_INFO),
8037 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8038 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8039 	pr_err("        reason=%08x qualification=%016lx\n",
8040 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8041 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8042 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
8043 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
8044 	pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8045 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8046 		pr_err("TSC Multiplier = 0x%016lx\n",
8047 		       vmcs_readl(TSC_MULTIPLIER));
8048 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8049 		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8050 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8051 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8052 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8053 		pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
8054 	n = vmcs_read32(CR3_TARGET_COUNT);
8055 	for (i = 0; i + 1 < n; i += 4)
8056 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8057 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8058 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8059 	if (i < n)
8060 		pr_err("CR3 target%u=%016lx\n",
8061 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8062 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8063 		pr_err("PLE Gap=%08x Window=%08x\n",
8064 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8065 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8066 		pr_err("Virtual processor ID = 0x%04x\n",
8067 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
8068 }
8069 
8070 /*
8071  * The guest has exited.  See if we can fix it or if we need userspace
8072  * assistance.
8073  */
vmx_handle_exit(struct kvm_vcpu * vcpu)8074 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8075 {
8076 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8077 	u32 exit_reason = vmx->exit_reason;
8078 	u32 vectoring_info = vmx->idt_vectoring_info;
8079 
8080 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8081 
8082 	/*
8083 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8084 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8085 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8086 	 * mode as if vcpus is in root mode, the PML buffer must has been
8087 	 * flushed already.
8088 	 */
8089 	if (enable_pml)
8090 		vmx_flush_pml_buffer(vcpu);
8091 
8092 	/* If guest state is invalid, start emulating */
8093 	if (vmx->emulation_required)
8094 		return handle_invalid_guest_state(vcpu);
8095 
8096 	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8097 		nested_vmx_vmexit(vcpu, exit_reason,
8098 				  vmcs_read32(VM_EXIT_INTR_INFO),
8099 				  vmcs_readl(EXIT_QUALIFICATION));
8100 		return 1;
8101 	}
8102 
8103 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8104 		dump_vmcs();
8105 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8106 		vcpu->run->fail_entry.hardware_entry_failure_reason
8107 			= exit_reason;
8108 		return 0;
8109 	}
8110 
8111 	if (unlikely(vmx->fail)) {
8112 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8113 		vcpu->run->fail_entry.hardware_entry_failure_reason
8114 			= vmcs_read32(VM_INSTRUCTION_ERROR);
8115 		return 0;
8116 	}
8117 
8118 	/*
8119 	 * Note:
8120 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8121 	 * delivery event since it indicates guest is accessing MMIO.
8122 	 * The vm-exit can be triggered again after return to guest that
8123 	 * will cause infinite loop.
8124 	 */
8125 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8126 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8127 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
8128 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
8129 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8130 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8131 		vcpu->run->internal.ndata = 2;
8132 		vcpu->run->internal.data[0] = vectoring_info;
8133 		vcpu->run->internal.data[1] = exit_reason;
8134 		return 0;
8135 	}
8136 
8137 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8138 	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8139 					get_vmcs12(vcpu))))) {
8140 		if (vmx_interrupt_allowed(vcpu)) {
8141 			vmx->soft_vnmi_blocked = 0;
8142 		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
8143 			   vcpu->arch.nmi_pending) {
8144 			/*
8145 			 * This CPU don't support us in finding the end of an
8146 			 * NMI-blocked window if the guest runs with IRQs
8147 			 * disabled. So we pull the trigger after 1 s of
8148 			 * futile waiting, but inform the user about this.
8149 			 */
8150 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8151 			       "state on VCPU %d after 1 s timeout\n",
8152 			       __func__, vcpu->vcpu_id);
8153 			vmx->soft_vnmi_blocked = 0;
8154 		}
8155 	}
8156 
8157 	if (exit_reason < kvm_vmx_max_exit_handlers
8158 	    && kvm_vmx_exit_handlers[exit_reason])
8159 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
8160 	else {
8161 		WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8162 		kvm_queue_exception(vcpu, UD_VECTOR);
8163 		return 1;
8164 	}
8165 }
8166 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)8167 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8168 {
8169 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8170 
8171 	if (is_guest_mode(vcpu) &&
8172 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8173 		return;
8174 
8175 	if (irr == -1 || tpr < irr) {
8176 		vmcs_write32(TPR_THRESHOLD, 0);
8177 		return;
8178 	}
8179 
8180 	vmcs_write32(TPR_THRESHOLD, irr);
8181 }
8182 
vmx_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)8183 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8184 {
8185 	u32 sec_exec_control;
8186 
8187 	/*
8188 	 * There is not point to enable virtualize x2apic without enable
8189 	 * apicv
8190 	 */
8191 	if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8192 				!vmx_cpu_uses_apicv(vcpu))
8193 		return;
8194 
8195 	if (!cpu_need_tpr_shadow(vcpu))
8196 		return;
8197 
8198 	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8199 
8200 	if (set) {
8201 		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8202 		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8203 	} else {
8204 		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8205 		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8206 	}
8207 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8208 
8209 	vmx_set_msr_bitmap(vcpu);
8210 }
8211 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)8212 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8213 {
8214 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8215 
8216 	/*
8217 	 * Currently we do not handle the nested case where L2 has an
8218 	 * APIC access page of its own; that page is still pinned.
8219 	 * Hence, we skip the case where the VCPU is in guest mode _and_
8220 	 * L1 prepared an APIC access page for L2.
8221 	 *
8222 	 * For the case where L1 and L2 share the same APIC access page
8223 	 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8224 	 * in the vmcs12), this function will only update either the vmcs01
8225 	 * or the vmcs02.  If the former, the vmcs02 will be updated by
8226 	 * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8227 	 * the next L2->L1 exit.
8228 	 */
8229 	if (!is_guest_mode(vcpu) ||
8230 	    !nested_cpu_has2(vmx->nested.current_vmcs12,
8231 			     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8232 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
8233 }
8234 
vmx_hwapic_isr_update(struct kvm * kvm,int isr)8235 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8236 {
8237 	u16 status;
8238 	u8 old;
8239 
8240 	if (isr == -1)
8241 		isr = 0;
8242 
8243 	status = vmcs_read16(GUEST_INTR_STATUS);
8244 	old = status >> 8;
8245 	if (isr != old) {
8246 		status &= 0xff;
8247 		status |= isr << 8;
8248 		vmcs_write16(GUEST_INTR_STATUS, status);
8249 	}
8250 }
8251 
vmx_set_rvi(int vector)8252 static void vmx_set_rvi(int vector)
8253 {
8254 	u16 status;
8255 	u8 old;
8256 
8257 	if (vector == -1)
8258 		vector = 0;
8259 
8260 	status = vmcs_read16(GUEST_INTR_STATUS);
8261 	old = (u8)status & 0xff;
8262 	if ((u8)vector != old) {
8263 		status &= ~0xff;
8264 		status |= (u8)vector;
8265 		vmcs_write16(GUEST_INTR_STATUS, status);
8266 	}
8267 }
8268 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)8269 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8270 {
8271 	if (!is_guest_mode(vcpu)) {
8272 		vmx_set_rvi(max_irr);
8273 		return;
8274 	}
8275 
8276 	if (max_irr == -1)
8277 		return;
8278 
8279 	/*
8280 	 * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8281 	 * handles it.
8282 	 */
8283 	if (nested_exit_on_intr(vcpu))
8284 		return;
8285 
8286 	/*
8287 	 * Else, fall back to pre-APICv interrupt injection since L2
8288 	 * is run without virtual interrupt delivery.
8289 	 */
8290 	if (!kvm_event_needs_reinjection(vcpu) &&
8291 	    vmx_interrupt_allowed(vcpu)) {
8292 		kvm_queue_interrupt(vcpu, max_irr, false);
8293 		vmx_inject_irq(vcpu);
8294 	}
8295 }
8296 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu)8297 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8298 {
8299 	u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8300 	if (!vmx_cpu_uses_apicv(vcpu))
8301 		return;
8302 
8303 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8304 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8305 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8306 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8307 }
8308 
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)8309 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8310 {
8311 	u32 exit_intr_info;
8312 
8313 	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8314 	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8315 		return;
8316 
8317 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8318 	exit_intr_info = vmx->exit_intr_info;
8319 
8320 	/* Handle machine checks before interrupts are enabled */
8321 	if (is_machine_check(exit_intr_info))
8322 		kvm_machine_check();
8323 
8324 	/* We need to handle NMIs before interrupts are enabled */
8325 	if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8326 	    (exit_intr_info & INTR_INFO_VALID_MASK)) {
8327 		kvm_before_handle_nmi(&vmx->vcpu);
8328 		asm("int $2");
8329 		kvm_after_handle_nmi(&vmx->vcpu);
8330 	}
8331 }
8332 
vmx_handle_external_intr(struct kvm_vcpu * vcpu)8333 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8334 {
8335 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8336 
8337 	/*
8338 	 * If external interrupt exists, IF bit is set in rflags/eflags on the
8339 	 * interrupt stack frame, and interrupt will be enabled on a return
8340 	 * from interrupt handler.
8341 	 */
8342 	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8343 			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8344 		unsigned int vector;
8345 		unsigned long entry;
8346 		gate_desc *desc;
8347 		struct vcpu_vmx *vmx = to_vmx(vcpu);
8348 #ifdef CONFIG_X86_64
8349 		unsigned long tmp;
8350 #endif
8351 
8352 		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8353 		desc = (gate_desc *)vmx->host_idt_base + vector;
8354 		entry = gate_offset(*desc);
8355 		asm volatile(
8356 #ifdef CONFIG_X86_64
8357 			"mov %%" _ASM_SP ", %[sp]\n\t"
8358 			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8359 			"push $%c[ss]\n\t"
8360 			"push %[sp]\n\t"
8361 #endif
8362 			"pushf\n\t"
8363 			"orl $0x200, (%%" _ASM_SP ")\n\t"
8364 			__ASM_SIZE(push) " $%c[cs]\n\t"
8365 			"call *%[entry]\n\t"
8366 			:
8367 #ifdef CONFIG_X86_64
8368 			[sp]"=&r"(tmp)
8369 #endif
8370 			:
8371 			[entry]"r"(entry),
8372 			[ss]"i"(__KERNEL_DS),
8373 			[cs]"i"(__KERNEL_CS)
8374 			);
8375 	} else
8376 		local_irq_enable();
8377 }
8378 
vmx_has_high_real_mode_segbase(void)8379 static bool vmx_has_high_real_mode_segbase(void)
8380 {
8381 	return enable_unrestricted_guest || emulate_invalid_guest_state;
8382 }
8383 
vmx_mpx_supported(void)8384 static bool vmx_mpx_supported(void)
8385 {
8386 	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8387 		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8388 }
8389 
vmx_xsaves_supported(void)8390 static bool vmx_xsaves_supported(void)
8391 {
8392 	return vmcs_config.cpu_based_2nd_exec_ctrl &
8393 		SECONDARY_EXEC_XSAVES;
8394 }
8395 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)8396 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8397 {
8398 	u32 exit_intr_info;
8399 	bool unblock_nmi;
8400 	u8 vector;
8401 	bool idtv_info_valid;
8402 
8403 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8404 
8405 	if (cpu_has_virtual_nmis()) {
8406 		if (vmx->nmi_known_unmasked)
8407 			return;
8408 		/*
8409 		 * Can't use vmx->exit_intr_info since we're not sure what
8410 		 * the exit reason is.
8411 		 */
8412 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8413 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8414 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8415 		/*
8416 		 * SDM 3: 27.7.1.2 (September 2008)
8417 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8418 		 * a guest IRET fault.
8419 		 * SDM 3: 23.2.2 (September 2008)
8420 		 * Bit 12 is undefined in any of the following cases:
8421 		 *  If the VM exit sets the valid bit in the IDT-vectoring
8422 		 *   information field.
8423 		 *  If the VM exit is due to a double fault.
8424 		 */
8425 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8426 		    vector != DF_VECTOR && !idtv_info_valid)
8427 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8428 				      GUEST_INTR_STATE_NMI);
8429 		else
8430 			vmx->nmi_known_unmasked =
8431 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8432 				  & GUEST_INTR_STATE_NMI);
8433 	} else if (unlikely(vmx->soft_vnmi_blocked))
8434 		vmx->vnmi_blocked_time +=
8435 			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8436 }
8437 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)8438 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8439 				      u32 idt_vectoring_info,
8440 				      int instr_len_field,
8441 				      int error_code_field)
8442 {
8443 	u8 vector;
8444 	int type;
8445 	bool idtv_info_valid;
8446 
8447 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8448 
8449 	vcpu->arch.nmi_injected = false;
8450 	kvm_clear_exception_queue(vcpu);
8451 	kvm_clear_interrupt_queue(vcpu);
8452 
8453 	if (!idtv_info_valid)
8454 		return;
8455 
8456 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8457 
8458 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8459 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8460 
8461 	switch (type) {
8462 	case INTR_TYPE_NMI_INTR:
8463 		vcpu->arch.nmi_injected = true;
8464 		/*
8465 		 * SDM 3: 27.7.1.2 (September 2008)
8466 		 * Clear bit "block by NMI" before VM entry if a NMI
8467 		 * delivery faulted.
8468 		 */
8469 		vmx_set_nmi_mask(vcpu, false);
8470 		break;
8471 	case INTR_TYPE_SOFT_EXCEPTION:
8472 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8473 		/* fall through */
8474 	case INTR_TYPE_HARD_EXCEPTION:
8475 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8476 			u32 err = vmcs_read32(error_code_field);
8477 			kvm_requeue_exception_e(vcpu, vector, err);
8478 		} else
8479 			kvm_requeue_exception(vcpu, vector);
8480 		break;
8481 	case INTR_TYPE_SOFT_INTR:
8482 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8483 		/* fall through */
8484 	case INTR_TYPE_EXT_INTR:
8485 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8486 		break;
8487 	default:
8488 		break;
8489 	}
8490 }
8491 
vmx_complete_interrupts(struct vcpu_vmx * vmx)8492 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8493 {
8494 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8495 				  VM_EXIT_INSTRUCTION_LEN,
8496 				  IDT_VECTORING_ERROR_CODE);
8497 }
8498 
vmx_cancel_injection(struct kvm_vcpu * vcpu)8499 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8500 {
8501 	__vmx_complete_interrupts(vcpu,
8502 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8503 				  VM_ENTRY_INSTRUCTION_LEN,
8504 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
8505 
8506 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8507 }
8508 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)8509 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8510 {
8511 	int i, nr_msrs;
8512 	struct perf_guest_switch_msr *msrs;
8513 
8514 	msrs = perf_guest_get_msrs(&nr_msrs);
8515 
8516 	if (!msrs)
8517 		return;
8518 
8519 	for (i = 0; i < nr_msrs; i++)
8520 		if (msrs[i].host == msrs[i].guest)
8521 			clear_atomic_switch_msr(vmx, msrs[i].msr);
8522 		else
8523 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8524 					msrs[i].host);
8525 }
8526 
vmx_vcpu_run(struct kvm_vcpu * vcpu)8527 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8528 {
8529 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8530 	unsigned long debugctlmsr, cr4;
8531 
8532 	/* Record the guest's net vcpu time for enforced NMI injections. */
8533 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8534 		vmx->entry_time = ktime_get();
8535 
8536 	/* Don't enter VMX if guest state is invalid, let the exit handler
8537 	   start emulation until we arrive back to a valid state */
8538 	if (vmx->emulation_required)
8539 		return;
8540 
8541 	if (vmx->ple_window_dirty) {
8542 		vmx->ple_window_dirty = false;
8543 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
8544 	}
8545 
8546 	if (vmx->nested.sync_shadow_vmcs) {
8547 		copy_vmcs12_to_shadow(vmx);
8548 		vmx->nested.sync_shadow_vmcs = false;
8549 	}
8550 
8551 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8552 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8553 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8554 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8555 
8556 	cr4 = cr4_read_shadow();
8557 	if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8558 		vmcs_writel(HOST_CR4, cr4);
8559 		vmx->host_state.vmcs_host_cr4 = cr4;
8560 	}
8561 
8562 	/* When single-stepping over STI and MOV SS, we must clear the
8563 	 * corresponding interruptibility bits in the guest state. Otherwise
8564 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
8565 	 * exceptions being set, but that's not correct for the guest debugging
8566 	 * case. */
8567 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8568 		vmx_set_interrupt_shadow(vcpu, 0);
8569 
8570 	atomic_switch_perf_msrs(vmx);
8571 	debugctlmsr = get_debugctlmsr();
8572 
8573 	vmx->__launched = vmx->loaded_vmcs->launched;
8574 	asm(
8575 		/* Store host registers */
8576 		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
8577 		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8578 		"push %%" _ASM_CX " \n\t"
8579 		"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8580 		"je 1f \n\t"
8581 		"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8582 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8583 		"1: \n\t"
8584 		/* Reload cr2 if changed */
8585 		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8586 		"mov %%cr2, %%" _ASM_DX " \n\t"
8587 		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8588 		"je 2f \n\t"
8589 		"mov %%" _ASM_AX", %%cr2 \n\t"
8590 		"2: \n\t"
8591 		/* Check if vmlaunch of vmresume is needed */
8592 		"cmpl $0, %c[launched](%0) \n\t"
8593 		/* Load guest registers.  Don't clobber flags. */
8594 		"mov %c[rax](%0), %%" _ASM_AX " \n\t"
8595 		"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8596 		"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8597 		"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8598 		"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8599 		"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8600 #ifdef CONFIG_X86_64
8601 		"mov %c[r8](%0),  %%r8  \n\t"
8602 		"mov %c[r9](%0),  %%r9  \n\t"
8603 		"mov %c[r10](%0), %%r10 \n\t"
8604 		"mov %c[r11](%0), %%r11 \n\t"
8605 		"mov %c[r12](%0), %%r12 \n\t"
8606 		"mov %c[r13](%0), %%r13 \n\t"
8607 		"mov %c[r14](%0), %%r14 \n\t"
8608 		"mov %c[r15](%0), %%r15 \n\t"
8609 #endif
8610 		"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8611 
8612 		/* Enter guest mode */
8613 		"jne 1f \n\t"
8614 		__ex(ASM_VMX_VMLAUNCH) "\n\t"
8615 		"jmp 2f \n\t"
8616 		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8617 		"2: "
8618 		/* Save guest registers, load host registers, keep flags */
8619 		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8620 		"pop %0 \n\t"
8621 		"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8622 		"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8623 		__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8624 		"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8625 		"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8626 		"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8627 		"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8628 #ifdef CONFIG_X86_64
8629 		"mov %%r8,  %c[r8](%0) \n\t"
8630 		"mov %%r9,  %c[r9](%0) \n\t"
8631 		"mov %%r10, %c[r10](%0) \n\t"
8632 		"mov %%r11, %c[r11](%0) \n\t"
8633 		"mov %%r12, %c[r12](%0) \n\t"
8634 		"mov %%r13, %c[r13](%0) \n\t"
8635 		"mov %%r14, %c[r14](%0) \n\t"
8636 		"mov %%r15, %c[r15](%0) \n\t"
8637 #endif
8638 		"mov %%cr2, %%" _ASM_AX "   \n\t"
8639 		"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8640 
8641 		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8642 		"setbe %c[fail](%0) \n\t"
8643 		".pushsection .rodata \n\t"
8644 		".global vmx_return \n\t"
8645 		"vmx_return: " _ASM_PTR " 2b \n\t"
8646 		".popsection"
8647 	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8648 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8649 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
8650 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8651 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8652 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8653 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8654 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8655 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8656 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8657 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8658 #ifdef CONFIG_X86_64
8659 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8660 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8661 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8662 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8663 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8664 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8665 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8666 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8667 #endif
8668 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8669 		[wordsize]"i"(sizeof(ulong))
8670 	      : "cc", "memory"
8671 #ifdef CONFIG_X86_64
8672 		, "rax", "rbx", "rdi", "rsi"
8673 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8674 #else
8675 		, "eax", "ebx", "edi", "esi"
8676 #endif
8677 	      );
8678 
8679 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8680 	if (debugctlmsr)
8681 		update_debugctlmsr(debugctlmsr);
8682 
8683 #ifndef CONFIG_X86_64
8684 	/*
8685 	 * The sysexit path does not restore ds/es, so we must set them to
8686 	 * a reasonable value ourselves.
8687 	 *
8688 	 * We can't defer this to vmx_load_host_state() since that function
8689 	 * may be executed in interrupt context, which saves and restore segments
8690 	 * around it, nullifying its effect.
8691 	 */
8692 	loadsegment(ds, __USER_DS);
8693 	loadsegment(es, __USER_DS);
8694 #endif
8695 
8696 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8697 				  | (1 << VCPU_EXREG_RFLAGS)
8698 				  | (1 << VCPU_EXREG_PDPTR)
8699 				  | (1 << VCPU_EXREG_SEGMENTS)
8700 				  | (1 << VCPU_EXREG_CR3));
8701 	vcpu->arch.regs_dirty = 0;
8702 
8703 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8704 
8705 	vmx->loaded_vmcs->launched = 1;
8706 
8707 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8708 
8709 	/*
8710 	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8711 	 * we did not inject a still-pending event to L1 now because of
8712 	 * nested_run_pending, we need to re-enable this bit.
8713 	 */
8714 	if (vmx->nested.nested_run_pending)
8715 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8716 
8717 	vmx->nested.nested_run_pending = 0;
8718 
8719 	vmx_complete_atomic_exit(vmx);
8720 	vmx_recover_nmi_blocking(vmx);
8721 	vmx_complete_interrupts(vmx);
8722 }
8723 
vmx_load_vmcs01(struct kvm_vcpu * vcpu)8724 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8725 {
8726 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8727 	int cpu;
8728 
8729 	if (vmx->loaded_vmcs == &vmx->vmcs01)
8730 		return;
8731 
8732 	cpu = get_cpu();
8733 	vmx->loaded_vmcs = &vmx->vmcs01;
8734 	vmx_vcpu_put(vcpu);
8735 	vmx_vcpu_load(vcpu, cpu);
8736 	vcpu->cpu = cpu;
8737 	put_cpu();
8738 }
8739 
vmx_free_vcpu(struct kvm_vcpu * vcpu)8740 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8741 {
8742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8743 
8744 	if (enable_pml)
8745 		vmx_destroy_pml_buffer(vmx);
8746 	free_vpid(vmx->vpid);
8747 	leave_guest_mode(vcpu);
8748 	vmx_load_vmcs01(vcpu);
8749 	free_nested(vmx);
8750 	free_loaded_vmcs(vmx->loaded_vmcs);
8751 	kfree(vmx->guest_msrs);
8752 	kvm_vcpu_uninit(vcpu);
8753 	kmem_cache_free(kvm_vcpu_cache, vmx);
8754 }
8755 
vmx_create_vcpu(struct kvm * kvm,unsigned int id)8756 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8757 {
8758 	int err;
8759 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8760 	int cpu;
8761 
8762 	if (!vmx)
8763 		return ERR_PTR(-ENOMEM);
8764 
8765 	vmx->vpid = allocate_vpid();
8766 
8767 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8768 	if (err)
8769 		goto free_vcpu;
8770 
8771 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8772 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8773 		     > PAGE_SIZE);
8774 
8775 	err = -ENOMEM;
8776 	if (!vmx->guest_msrs) {
8777 		goto uninit_vcpu;
8778 	}
8779 
8780 	vmx->loaded_vmcs = &vmx->vmcs01;
8781 	vmx->loaded_vmcs->vmcs = alloc_vmcs();
8782 	if (!vmx->loaded_vmcs->vmcs)
8783 		goto free_msrs;
8784 	if (!vmm_exclusive)
8785 		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8786 	loaded_vmcs_init(vmx->loaded_vmcs);
8787 	if (!vmm_exclusive)
8788 		kvm_cpu_vmxoff();
8789 
8790 	cpu = get_cpu();
8791 	vmx_vcpu_load(&vmx->vcpu, cpu);
8792 	vmx->vcpu.cpu = cpu;
8793 	err = vmx_vcpu_setup(vmx);
8794 	vmx_vcpu_put(&vmx->vcpu);
8795 	put_cpu();
8796 	if (err)
8797 		goto free_vmcs;
8798 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8799 		err = alloc_apic_access_page(kvm);
8800 		if (err)
8801 			goto free_vmcs;
8802 	}
8803 
8804 	if (enable_ept) {
8805 		if (!kvm->arch.ept_identity_map_addr)
8806 			kvm->arch.ept_identity_map_addr =
8807 				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8808 		err = init_rmode_identity_map(kvm);
8809 		if (err)
8810 			goto free_vmcs;
8811 	}
8812 
8813 	if (nested) {
8814 		nested_vmx_setup_ctls_msrs(vmx);
8815 		vmx->nested.vpid02 = allocate_vpid();
8816 	}
8817 
8818 	vmx->nested.posted_intr_nv = -1;
8819 	vmx->nested.current_vmptr = -1ull;
8820 	vmx->nested.current_vmcs12 = NULL;
8821 
8822 	/*
8823 	 * If PML is turned on, failure on enabling PML just results in failure
8824 	 * of creating the vcpu, therefore we can simplify PML logic (by
8825 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
8826 	 * for the guest, etc.
8827 	 */
8828 	if (enable_pml) {
8829 		err = vmx_create_pml_buffer(vmx);
8830 		if (err)
8831 			goto free_vmcs;
8832 	}
8833 
8834 	return &vmx->vcpu;
8835 
8836 free_vmcs:
8837 	free_vpid(vmx->nested.vpid02);
8838 	free_loaded_vmcs(vmx->loaded_vmcs);
8839 free_msrs:
8840 	kfree(vmx->guest_msrs);
8841 uninit_vcpu:
8842 	kvm_vcpu_uninit(&vmx->vcpu);
8843 free_vcpu:
8844 	free_vpid(vmx->vpid);
8845 	kmem_cache_free(kvm_vcpu_cache, vmx);
8846 	return ERR_PTR(err);
8847 }
8848 
vmx_check_processor_compat(void * rtn)8849 static void __init vmx_check_processor_compat(void *rtn)
8850 {
8851 	struct vmcs_config vmcs_conf;
8852 
8853 	*(int *)rtn = 0;
8854 	if (setup_vmcs_config(&vmcs_conf) < 0)
8855 		*(int *)rtn = -EIO;
8856 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8857 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8858 				smp_processor_id());
8859 		*(int *)rtn = -EIO;
8860 	}
8861 }
8862 
get_ept_level(void)8863 static int get_ept_level(void)
8864 {
8865 	return VMX_EPT_DEFAULT_GAW + 1;
8866 }
8867 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)8868 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8869 {
8870 	u8 cache;
8871 	u64 ipat = 0;
8872 
8873 	/* For VT-d and EPT combination
8874 	 * 1. MMIO: always map as UC
8875 	 * 2. EPT with VT-d:
8876 	 *   a. VT-d without snooping control feature: can't guarantee the
8877 	 *	result, try to trust guest.
8878 	 *   b. VT-d with snooping control feature: snooping control feature of
8879 	 *	VT-d engine can guarantee the cache correctness. Just set it
8880 	 *	to WB to keep consistent with host. So the same as item 3.
8881 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8882 	 *    consistent with host MTRR
8883 	 */
8884 	if (is_mmio) {
8885 		cache = MTRR_TYPE_UNCACHABLE;
8886 		goto exit;
8887 	}
8888 
8889 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8890 		ipat = VMX_EPT_IPAT_BIT;
8891 		cache = MTRR_TYPE_WRBACK;
8892 		goto exit;
8893 	}
8894 
8895 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8896 		ipat = VMX_EPT_IPAT_BIT;
8897 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8898 			cache = MTRR_TYPE_WRBACK;
8899 		else
8900 			cache = MTRR_TYPE_UNCACHABLE;
8901 		goto exit;
8902 	}
8903 
8904 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8905 
8906 exit:
8907 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8908 }
8909 
vmx_get_lpage_level(void)8910 static int vmx_get_lpage_level(void)
8911 {
8912 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
8913 		return PT_DIRECTORY_LEVEL;
8914 	else
8915 		/* For shadow and EPT supported 1GB page */
8916 		return PT_PDPE_LEVEL;
8917 }
8918 
vmcs_set_secondary_exec_control(u32 new_ctl)8919 static void vmcs_set_secondary_exec_control(u32 new_ctl)
8920 {
8921 	/*
8922 	 * These bits in the secondary execution controls field
8923 	 * are dynamic, the others are mostly based on the hypervisor
8924 	 * architecture and the guest's CPUID.  Do not touch the
8925 	 * dynamic bits.
8926 	 */
8927 	u32 mask =
8928 		SECONDARY_EXEC_SHADOW_VMCS |
8929 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8930 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8931 
8932 	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8933 
8934 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8935 		     (new_ctl & ~mask) | (cur_ctl & mask));
8936 }
8937 
vmx_cpuid_update(struct kvm_vcpu * vcpu)8938 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8939 {
8940 	struct kvm_cpuid_entry2 *best;
8941 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8942 	u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
8943 
8944 	if (vmx_rdtscp_supported()) {
8945 		bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8946 		if (!rdtscp_enabled)
8947 			secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
8948 
8949 		if (nested) {
8950 			if (rdtscp_enabled)
8951 				vmx->nested.nested_vmx_secondary_ctls_high |=
8952 					SECONDARY_EXEC_RDTSCP;
8953 			else
8954 				vmx->nested.nested_vmx_secondary_ctls_high &=
8955 					~SECONDARY_EXEC_RDTSCP;
8956 		}
8957 	}
8958 
8959 	/* Exposing INVPCID only when PCID is exposed */
8960 	best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8961 	if (vmx_invpcid_supported() &&
8962 	    (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
8963 	    !guest_cpuid_has_pcid(vcpu))) {
8964 		secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8965 
8966 		if (best)
8967 			best->ebx &= ~bit(X86_FEATURE_INVPCID);
8968 	}
8969 
8970 	if (cpu_has_secondary_exec_ctrls())
8971 		vmcs_set_secondary_exec_control(secondary_exec_ctl);
8972 
8973 	if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
8974 		if (guest_cpuid_has_pcommit(vcpu))
8975 			vmx->nested.nested_vmx_secondary_ctls_high |=
8976 				SECONDARY_EXEC_PCOMMIT;
8977 		else
8978 			vmx->nested.nested_vmx_secondary_ctls_high &=
8979 				~SECONDARY_EXEC_PCOMMIT;
8980 	}
8981 }
8982 
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)8983 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8984 {
8985 	if (func == 1 && nested)
8986 		entry->ecx |= bit(X86_FEATURE_VMX);
8987 }
8988 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)8989 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8990 		struct x86_exception *fault)
8991 {
8992 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8993 	u32 exit_reason;
8994 
8995 	if (fault->error_code & PFERR_RSVD_MASK)
8996 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
8997 	else
8998 		exit_reason = EXIT_REASON_EPT_VIOLATION;
8999 	nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9000 	vmcs12->guest_physical_address = fault->address;
9001 }
9002 
9003 /* Callbacks for nested_ept_init_mmu_context: */
9004 
nested_ept_get_cr3(struct kvm_vcpu * vcpu)9005 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9006 {
9007 	/* return the page table to be shadowed - in our case, EPT12 */
9008 	return get_vmcs12(vcpu)->ept_pointer;
9009 }
9010 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)9011 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9012 {
9013 	WARN_ON(mmu_is_nested(vcpu));
9014 	kvm_init_shadow_ept_mmu(vcpu,
9015 			to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9016 			VMX_EPT_EXECUTE_ONLY_BIT);
9017 	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9018 	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9019 	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9020 
9021 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9022 }
9023 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)9024 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9025 {
9026 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9027 }
9028 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)9029 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9030 					    u16 error_code)
9031 {
9032 	bool inequality, bit;
9033 
9034 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9035 	inequality =
9036 		(error_code & vmcs12->page_fault_error_code_mask) !=
9037 		 vmcs12->page_fault_error_code_match;
9038 	return inequality ^ bit;
9039 }
9040 
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)9041 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9042 		struct x86_exception *fault)
9043 {
9044 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9045 
9046 	WARN_ON(!is_guest_mode(vcpu));
9047 
9048 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9049 		nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9050 				  vmcs_read32(VM_EXIT_INTR_INFO),
9051 				  vmcs_readl(EXIT_QUALIFICATION));
9052 	else
9053 		kvm_inject_page_fault(vcpu, fault);
9054 }
9055 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9056 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9057 					struct vmcs12 *vmcs12)
9058 {
9059 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9060 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
9061 
9062 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9063 		if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9064 		    vmcs12->apic_access_addr >> maxphyaddr)
9065 			return false;
9066 
9067 		/*
9068 		 * Translate L1 physical address to host physical
9069 		 * address for vmcs02. Keep the page pinned, so this
9070 		 * physical address remains valid. We keep a reference
9071 		 * to it so we can release it later.
9072 		 */
9073 		if (vmx->nested.apic_access_page) /* shouldn't happen */
9074 			nested_release_page(vmx->nested.apic_access_page);
9075 		vmx->nested.apic_access_page =
9076 			nested_get_page(vcpu, vmcs12->apic_access_addr);
9077 	}
9078 
9079 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9080 		if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9081 		    vmcs12->virtual_apic_page_addr >> maxphyaddr)
9082 			return false;
9083 
9084 		if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9085 			nested_release_page(vmx->nested.virtual_apic_page);
9086 		vmx->nested.virtual_apic_page =
9087 			nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9088 
9089 		/*
9090 		 * Failing the vm entry is _not_ what the processor does
9091 		 * but it's basically the only possibility we have.
9092 		 * We could still enter the guest if CR8 load exits are
9093 		 * enabled, CR8 store exits are enabled, and virtualize APIC
9094 		 * access is disabled; in this case the processor would never
9095 		 * use the TPR shadow and we could simply clear the bit from
9096 		 * the execution control.  But such a configuration is useless,
9097 		 * so let's keep the code simple.
9098 		 */
9099 		if (!vmx->nested.virtual_apic_page)
9100 			return false;
9101 	}
9102 
9103 	if (nested_cpu_has_posted_intr(vmcs12)) {
9104 		if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9105 		    vmcs12->posted_intr_desc_addr >> maxphyaddr)
9106 			return false;
9107 
9108 		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9109 			kunmap(vmx->nested.pi_desc_page);
9110 			nested_release_page(vmx->nested.pi_desc_page);
9111 		}
9112 		vmx->nested.pi_desc_page =
9113 			nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9114 		if (!vmx->nested.pi_desc_page)
9115 			return false;
9116 
9117 		vmx->nested.pi_desc =
9118 			(struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9119 		if (!vmx->nested.pi_desc) {
9120 			nested_release_page_clean(vmx->nested.pi_desc_page);
9121 			return false;
9122 		}
9123 		vmx->nested.pi_desc =
9124 			(struct pi_desc *)((void *)vmx->nested.pi_desc +
9125 			(unsigned long)(vmcs12->posted_intr_desc_addr &
9126 			(PAGE_SIZE - 1)));
9127 	}
9128 
9129 	return true;
9130 }
9131 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)9132 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9133 {
9134 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9135 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9136 
9137 	if (vcpu->arch.virtual_tsc_khz == 0)
9138 		return;
9139 
9140 	/* Make sure short timeouts reliably trigger an immediate vmexit.
9141 	 * hrtimer_start does not guarantee this. */
9142 	if (preemption_timeout <= 1) {
9143 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9144 		return;
9145 	}
9146 
9147 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9148 	preemption_timeout *= 1000000;
9149 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9150 	hrtimer_start(&vmx->nested.preemption_timer,
9151 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9152 }
9153 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9154 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9155 						struct vmcs12 *vmcs12)
9156 {
9157 	int maxphyaddr;
9158 	u64 addr;
9159 
9160 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9161 		return 0;
9162 
9163 	if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9164 		WARN_ON(1);
9165 		return -EINVAL;
9166 	}
9167 	maxphyaddr = cpuid_maxphyaddr(vcpu);
9168 
9169 	if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9170 	   ((addr + PAGE_SIZE) >> maxphyaddr))
9171 		return -EINVAL;
9172 
9173 	return 0;
9174 }
9175 
9176 /*
9177  * Merge L0's and L1's MSR bitmap, return false to indicate that
9178  * we do not use the hardware.
9179  */
nested_vmx_merge_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9180 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9181 					       struct vmcs12 *vmcs12)
9182 {
9183 	int msr;
9184 	struct page *page;
9185 	unsigned long *msr_bitmap;
9186 
9187 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9188 		return false;
9189 
9190 	page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9191 	if (!page) {
9192 		WARN_ON(1);
9193 		return false;
9194 	}
9195 	msr_bitmap = (unsigned long *)kmap(page);
9196 	if (!msr_bitmap) {
9197 		nested_release_page_clean(page);
9198 		WARN_ON(1);
9199 		return false;
9200 	}
9201 
9202 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9203 		if (nested_cpu_has_apic_reg_virt(vmcs12))
9204 			for (msr = 0x800; msr <= 0x8ff; msr++)
9205 				nested_vmx_disable_intercept_for_msr(
9206 					msr_bitmap,
9207 					vmx_msr_bitmap_nested,
9208 					msr, MSR_TYPE_R);
9209 		/* TPR is allowed */
9210 		nested_vmx_disable_intercept_for_msr(msr_bitmap,
9211 				vmx_msr_bitmap_nested,
9212 				APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9213 				MSR_TYPE_R | MSR_TYPE_W);
9214 		if (nested_cpu_has_vid(vmcs12)) {
9215 			/* EOI and self-IPI are allowed */
9216 			nested_vmx_disable_intercept_for_msr(
9217 				msr_bitmap,
9218 				vmx_msr_bitmap_nested,
9219 				APIC_BASE_MSR + (APIC_EOI >> 4),
9220 				MSR_TYPE_W);
9221 			nested_vmx_disable_intercept_for_msr(
9222 				msr_bitmap,
9223 				vmx_msr_bitmap_nested,
9224 				APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9225 				MSR_TYPE_W);
9226 		}
9227 	} else {
9228 		/*
9229 		 * Enable reading intercept of all the x2apic
9230 		 * MSRs. We should not rely on vmcs12 to do any
9231 		 * optimizations here, it may have been modified
9232 		 * by L1.
9233 		 */
9234 		for (msr = 0x800; msr <= 0x8ff; msr++)
9235 			__vmx_enable_intercept_for_msr(
9236 				vmx_msr_bitmap_nested,
9237 				msr,
9238 				MSR_TYPE_R);
9239 
9240 		__vmx_enable_intercept_for_msr(
9241 				vmx_msr_bitmap_nested,
9242 				APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9243 				MSR_TYPE_W);
9244 		__vmx_enable_intercept_for_msr(
9245 				vmx_msr_bitmap_nested,
9246 				APIC_BASE_MSR + (APIC_EOI >> 4),
9247 				MSR_TYPE_W);
9248 		__vmx_enable_intercept_for_msr(
9249 				vmx_msr_bitmap_nested,
9250 				APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9251 				MSR_TYPE_W);
9252 	}
9253 	kunmap(page);
9254 	nested_release_page_clean(page);
9255 
9256 	return true;
9257 }
9258 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9259 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9260 					   struct vmcs12 *vmcs12)
9261 {
9262 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9263 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
9264 	    !nested_cpu_has_vid(vmcs12) &&
9265 	    !nested_cpu_has_posted_intr(vmcs12))
9266 		return 0;
9267 
9268 	/*
9269 	 * If virtualize x2apic mode is enabled,
9270 	 * virtualize apic access must be disabled.
9271 	 */
9272 	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9273 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9274 		return -EINVAL;
9275 
9276 	/*
9277 	 * If virtual interrupt delivery is enabled,
9278 	 * we must exit on external interrupts.
9279 	 */
9280 	if (nested_cpu_has_vid(vmcs12) &&
9281 	   !nested_exit_on_intr(vcpu))
9282 		return -EINVAL;
9283 
9284 	/*
9285 	 * bits 15:8 should be zero in posted_intr_nv,
9286 	 * the descriptor address has been already checked
9287 	 * in nested_get_vmcs12_pages.
9288 	 */
9289 	if (nested_cpu_has_posted_intr(vmcs12) &&
9290 	   (!nested_cpu_has_vid(vmcs12) ||
9291 	    !nested_exit_intr_ack_set(vcpu) ||
9292 	    vmcs12->posted_intr_nv & 0xff00))
9293 		return -EINVAL;
9294 
9295 	/* tpr shadow is needed by all apicv features. */
9296 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9297 		return -EINVAL;
9298 
9299 	return 0;
9300 }
9301 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)9302 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9303 				       unsigned long count_field,
9304 				       unsigned long addr_field)
9305 {
9306 	int maxphyaddr;
9307 	u64 count, addr;
9308 
9309 	if (vmcs12_read_any(vcpu, count_field, &count) ||
9310 	    vmcs12_read_any(vcpu, addr_field, &addr)) {
9311 		WARN_ON(1);
9312 		return -EINVAL;
9313 	}
9314 	if (count == 0)
9315 		return 0;
9316 	maxphyaddr = cpuid_maxphyaddr(vcpu);
9317 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9318 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9319 		pr_warn_ratelimited(
9320 			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9321 			addr_field, maxphyaddr, count, addr);
9322 		return -EINVAL;
9323 	}
9324 	return 0;
9325 }
9326 
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9327 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9328 						struct vmcs12 *vmcs12)
9329 {
9330 	if (vmcs12->vm_exit_msr_load_count == 0 &&
9331 	    vmcs12->vm_exit_msr_store_count == 0 &&
9332 	    vmcs12->vm_entry_msr_load_count == 0)
9333 		return 0; /* Fast path */
9334 	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9335 					VM_EXIT_MSR_LOAD_ADDR) ||
9336 	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9337 					VM_EXIT_MSR_STORE_ADDR) ||
9338 	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9339 					VM_ENTRY_MSR_LOAD_ADDR))
9340 		return -EINVAL;
9341 	return 0;
9342 }
9343 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9344 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9345 				       struct vmx_msr_entry *e)
9346 {
9347 	/* x2APIC MSR accesses are not allowed */
9348 	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9349 		return -EINVAL;
9350 	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9351 	    e->index == MSR_IA32_UCODE_REV)
9352 		return -EINVAL;
9353 	if (e->reserved != 0)
9354 		return -EINVAL;
9355 	return 0;
9356 }
9357 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9358 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9359 				     struct vmx_msr_entry *e)
9360 {
9361 	if (e->index == MSR_FS_BASE ||
9362 	    e->index == MSR_GS_BASE ||
9363 	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9364 	    nested_vmx_msr_check_common(vcpu, e))
9365 		return -EINVAL;
9366 	return 0;
9367 }
9368 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9369 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9370 				      struct vmx_msr_entry *e)
9371 {
9372 	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9373 	    nested_vmx_msr_check_common(vcpu, e))
9374 		return -EINVAL;
9375 	return 0;
9376 }
9377 
9378 /*
9379  * Load guest's/host's msr at nested entry/exit.
9380  * return 0 for success, entry index for failure.
9381  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9382 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9383 {
9384 	u32 i;
9385 	struct vmx_msr_entry e;
9386 	struct msr_data msr;
9387 
9388 	msr.host_initiated = false;
9389 	for (i = 0; i < count; i++) {
9390 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9391 					&e, sizeof(e))) {
9392 			pr_warn_ratelimited(
9393 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
9394 				__func__, i, gpa + i * sizeof(e));
9395 			goto fail;
9396 		}
9397 		if (nested_vmx_load_msr_check(vcpu, &e)) {
9398 			pr_warn_ratelimited(
9399 				"%s check failed (%u, 0x%x, 0x%x)\n",
9400 				__func__, i, e.index, e.reserved);
9401 			goto fail;
9402 		}
9403 		msr.index = e.index;
9404 		msr.data = e.value;
9405 		if (kvm_set_msr(vcpu, &msr)) {
9406 			pr_warn_ratelimited(
9407 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9408 				__func__, i, e.index, e.value);
9409 			goto fail;
9410 		}
9411 	}
9412 	return 0;
9413 fail:
9414 	return i + 1;
9415 }
9416 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9417 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9418 {
9419 	u32 i;
9420 	struct vmx_msr_entry e;
9421 
9422 	for (i = 0; i < count; i++) {
9423 		struct msr_data msr_info;
9424 		if (kvm_vcpu_read_guest(vcpu,
9425 					gpa + i * sizeof(e),
9426 					&e, 2 * sizeof(u32))) {
9427 			pr_warn_ratelimited(
9428 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
9429 				__func__, i, gpa + i * sizeof(e));
9430 			return -EINVAL;
9431 		}
9432 		if (nested_vmx_store_msr_check(vcpu, &e)) {
9433 			pr_warn_ratelimited(
9434 				"%s check failed (%u, 0x%x, 0x%x)\n",
9435 				__func__, i, e.index, e.reserved);
9436 			return -EINVAL;
9437 		}
9438 		msr_info.host_initiated = false;
9439 		msr_info.index = e.index;
9440 		if (kvm_get_msr(vcpu, &msr_info)) {
9441 			pr_warn_ratelimited(
9442 				"%s cannot read MSR (%u, 0x%x)\n",
9443 				__func__, i, e.index);
9444 			return -EINVAL;
9445 		}
9446 		if (kvm_vcpu_write_guest(vcpu,
9447 					 gpa + i * sizeof(e) +
9448 					     offsetof(struct vmx_msr_entry, value),
9449 					 &msr_info.data, sizeof(msr_info.data))) {
9450 			pr_warn_ratelimited(
9451 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9452 				__func__, i, e.index, msr_info.data);
9453 			return -EINVAL;
9454 		}
9455 	}
9456 	return 0;
9457 }
9458 
9459 /*
9460  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9461  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9462  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9463  * guest in a way that will both be appropriate to L1's requests, and our
9464  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9465  * function also has additional necessary side-effects, like setting various
9466  * vcpu->arch fields.
9467  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9468 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9469 {
9470 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9471 	u32 exec_control;
9472 
9473 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9474 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9475 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9476 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9477 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9478 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9479 	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9480 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9481 	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9482 	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9483 	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9484 	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9485 	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9486 	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9487 	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9488 	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9489 	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9490 	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9491 	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9492 	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9493 	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9494 	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9495 	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9496 	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9497 	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9498 	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9499 	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9500 	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9501 	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9502 	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9503 	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9504 	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9505 	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9506 	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9507 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9508 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9509 
9510 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9511 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9512 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9513 	} else {
9514 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9515 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9516 	}
9517 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9518 		vmcs12->vm_entry_intr_info_field);
9519 	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9520 		vmcs12->vm_entry_exception_error_code);
9521 	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9522 		vmcs12->vm_entry_instruction_len);
9523 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9524 		vmcs12->guest_interruptibility_info);
9525 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9526 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9527 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9528 		vmcs12->guest_pending_dbg_exceptions);
9529 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9530 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9531 
9532 	if (nested_cpu_has_xsaves(vmcs12))
9533 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9534 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
9535 
9536 	exec_control = vmcs12->pin_based_vm_exec_control;
9537 	exec_control |= vmcs_config.pin_based_exec_ctrl;
9538 	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9539 
9540 	if (nested_cpu_has_posted_intr(vmcs12)) {
9541 		/*
9542 		 * Note that we use L0's vector here and in
9543 		 * vmx_deliver_nested_posted_interrupt.
9544 		 */
9545 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9546 		vmx->nested.pi_pending = false;
9547 		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9548 		vmcs_write64(POSTED_INTR_DESC_ADDR,
9549 			page_to_phys(vmx->nested.pi_desc_page) +
9550 			(unsigned long)(vmcs12->posted_intr_desc_addr &
9551 			(PAGE_SIZE - 1)));
9552 	} else
9553 		exec_control &= ~PIN_BASED_POSTED_INTR;
9554 
9555 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9556 
9557 	vmx->nested.preemption_timer_expired = false;
9558 	if (nested_cpu_has_preemption_timer(vmcs12))
9559 		vmx_start_preemption_timer(vcpu);
9560 
9561 	/*
9562 	 * Whether page-faults are trapped is determined by a combination of
9563 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9564 	 * If enable_ept, L0 doesn't care about page faults and we should
9565 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
9566 	 * care about (at least some) page faults, and because it is not easy
9567 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9568 	 * to exit on each and every L2 page fault. This is done by setting
9569 	 * MASK=MATCH=0 and (see below) EB.PF=1.
9570 	 * Note that below we don't need special code to set EB.PF beyond the
9571 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9572 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9573 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9574 	 *
9575 	 * A problem with this approach (when !enable_ept) is that L1 may be
9576 	 * injected with more page faults than it asked for. This could have
9577 	 * caused problems, but in practice existing hypervisors don't care.
9578 	 * To fix this, we will need to emulate the PFEC checking (on the L1
9579 	 * page tables), using walk_addr(), when injecting PFs to L1.
9580 	 */
9581 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9582 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9583 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9584 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
9585 
9586 	if (cpu_has_secondary_exec_ctrls()) {
9587 		exec_control = vmx_secondary_exec_control(vmx);
9588 
9589 		/* Take the following fields only from vmcs12 */
9590 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9591 				  SECONDARY_EXEC_RDTSCP |
9592 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9593 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
9594 				  SECONDARY_EXEC_PCOMMIT);
9595 		if (nested_cpu_has(vmcs12,
9596 				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9597 			exec_control |= vmcs12->secondary_vm_exec_control;
9598 
9599 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9600 			/*
9601 			 * If translation failed, no matter: This feature asks
9602 			 * to exit when accessing the given address, and if it
9603 			 * can never be accessed, this feature won't do
9604 			 * anything anyway.
9605 			 */
9606 			if (!vmx->nested.apic_access_page)
9607 				exec_control &=
9608 				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9609 			else
9610 				vmcs_write64(APIC_ACCESS_ADDR,
9611 				  page_to_phys(vmx->nested.apic_access_page));
9612 		} else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9613 			    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9614 			exec_control |=
9615 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9616 			kvm_vcpu_reload_apic_access_page(vcpu);
9617 		}
9618 
9619 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9620 			vmcs_write64(EOI_EXIT_BITMAP0,
9621 				vmcs12->eoi_exit_bitmap0);
9622 			vmcs_write64(EOI_EXIT_BITMAP1,
9623 				vmcs12->eoi_exit_bitmap1);
9624 			vmcs_write64(EOI_EXIT_BITMAP2,
9625 				vmcs12->eoi_exit_bitmap2);
9626 			vmcs_write64(EOI_EXIT_BITMAP3,
9627 				vmcs12->eoi_exit_bitmap3);
9628 			vmcs_write16(GUEST_INTR_STATUS,
9629 				vmcs12->guest_intr_status);
9630 		}
9631 
9632 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9633 	}
9634 
9635 
9636 	/*
9637 	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9638 	 * Some constant fields are set here by vmx_set_constant_host_state().
9639 	 * Other fields are different per CPU, and will be set later when
9640 	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9641 	 */
9642 	vmx_set_constant_host_state(vmx);
9643 
9644 	/*
9645 	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9646 	 * entry, but only if the current (host) sp changed from the value
9647 	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9648 	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9649 	 * here we just force the write to happen on entry.
9650 	 */
9651 	vmx->host_rsp = 0;
9652 
9653 	exec_control = vmx_exec_control(vmx); /* L0's desires */
9654 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9655 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9656 	exec_control &= ~CPU_BASED_TPR_SHADOW;
9657 	exec_control |= vmcs12->cpu_based_vm_exec_control;
9658 
9659 	if (exec_control & CPU_BASED_TPR_SHADOW) {
9660 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9661 				page_to_phys(vmx->nested.virtual_apic_page));
9662 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9663 	}
9664 
9665 	if (cpu_has_vmx_msr_bitmap() &&
9666 	    exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9667 		nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9668 		/* MSR_BITMAP will be set by following vmx_set_efer. */
9669 	} else
9670 		exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9671 
9672 	/*
9673 	 * Merging of IO bitmap not currently supported.
9674 	 * Rather, exit every time.
9675 	 */
9676 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9677 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9678 
9679 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9680 
9681 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9682 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
9683 	 * trap. Note that CR0.TS also needs updating - we do this later.
9684 	 */
9685 	update_exception_bitmap(vcpu);
9686 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9687 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9688 
9689 	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9690 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9691 	 * bits are further modified by vmx_set_efer() below.
9692 	 */
9693 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9694 
9695 	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9696 	 * emulated by vmx_set_efer(), below.
9697 	 */
9698 	vm_entry_controls_init(vmx,
9699 		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9700 			~VM_ENTRY_IA32E_MODE) |
9701 		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9702 
9703 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9704 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9705 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
9706 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9707 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9708 
9709 
9710 	set_cr4_guest_host_mask(vmx);
9711 
9712 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9713 		vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9714 
9715 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9716 		vmcs_write64(TSC_OFFSET,
9717 			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9718 	else
9719 		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9720 
9721 	if (enable_vpid) {
9722 		/*
9723 		 * There is no direct mapping between vpid02 and vpid12, the
9724 		 * vpid02 is per-vCPU for L0 and reused while the value of
9725 		 * vpid12 is changed w/ one invvpid during nested vmentry.
9726 		 * The vpid12 is allocated by L1 for L2, so it will not
9727 		 * influence global bitmap(for vpid01 and vpid02 allocation)
9728 		 * even if spawn a lot of nested vCPUs.
9729 		 */
9730 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9731 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9732 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9733 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9734 				__vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9735 			}
9736 		} else {
9737 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9738 			vmx_flush_tlb(vcpu);
9739 		}
9740 
9741 	}
9742 
9743 	if (nested_cpu_has_ept(vmcs12)) {
9744 		kvm_mmu_unload(vcpu);
9745 		nested_ept_init_mmu_context(vcpu);
9746 	}
9747 
9748 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9749 		vcpu->arch.efer = vmcs12->guest_ia32_efer;
9750 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9751 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9752 	else
9753 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9754 	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9755 	vmx_set_efer(vcpu, vcpu->arch.efer);
9756 
9757 	/*
9758 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9759 	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9760 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
9761 	 * the specifications by L1; It's not enough to take
9762 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9763 	 * have more bits than L1 expected.
9764 	 */
9765 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9766 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9767 
9768 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9769 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9770 
9771 	/* shadow page tables on either EPT or shadow page tables */
9772 	kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9773 	kvm_mmu_reset_context(vcpu);
9774 
9775 	if (!enable_ept)
9776 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9777 
9778 	/*
9779 	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9780 	 */
9781 	if (enable_ept) {
9782 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9783 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9784 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9785 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9786 	}
9787 
9788 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9789 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9790 }
9791 
9792 /*
9793  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9794  * for running an L2 nested guest.
9795  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)9796 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9797 {
9798 	struct vmcs12 *vmcs12;
9799 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9800 	int cpu;
9801 	struct loaded_vmcs *vmcs02;
9802 	bool ia32e;
9803 	u32 msr_entry_idx;
9804 
9805 	if (!nested_vmx_check_permission(vcpu) ||
9806 	    !nested_vmx_check_vmcs12(vcpu))
9807 		return 1;
9808 
9809 	skip_emulated_instruction(vcpu);
9810 	vmcs12 = get_vmcs12(vcpu);
9811 
9812 	if (enable_shadow_vmcs)
9813 		copy_shadow_to_vmcs12(vmx);
9814 
9815 	/*
9816 	 * The nested entry process starts with enforcing various prerequisites
9817 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
9818 	 * they fail: As the SDM explains, some conditions should cause the
9819 	 * instruction to fail, while others will cause the instruction to seem
9820 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9821 	 * To speed up the normal (success) code path, we should avoid checking
9822 	 * for misconfigurations which will anyway be caught by the processor
9823 	 * when using the merged vmcs02.
9824 	 */
9825 	if (vmcs12->launch_state == launch) {
9826 		nested_vmx_failValid(vcpu,
9827 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9828 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9829 		return 1;
9830 	}
9831 
9832 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9833 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9834 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9835 		return 1;
9836 	}
9837 
9838 	if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9839 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9840 		return 1;
9841 	}
9842 
9843 	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9844 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9845 		return 1;
9846 	}
9847 
9848 	if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9849 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9850 		return 1;
9851 	}
9852 
9853 	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9854 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9855 		return 1;
9856 	}
9857 
9858 	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9859 				vmx->nested.nested_vmx_true_procbased_ctls_low,
9860 				vmx->nested.nested_vmx_procbased_ctls_high) ||
9861 	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9862 				vmx->nested.nested_vmx_secondary_ctls_low,
9863 				vmx->nested.nested_vmx_secondary_ctls_high) ||
9864 	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9865 				vmx->nested.nested_vmx_pinbased_ctls_low,
9866 				vmx->nested.nested_vmx_pinbased_ctls_high) ||
9867 	    !vmx_control_verify(vmcs12->vm_exit_controls,
9868 				vmx->nested.nested_vmx_true_exit_ctls_low,
9869 				vmx->nested.nested_vmx_exit_ctls_high) ||
9870 	    !vmx_control_verify(vmcs12->vm_entry_controls,
9871 				vmx->nested.nested_vmx_true_entry_ctls_low,
9872 				vmx->nested.nested_vmx_entry_ctls_high))
9873 	{
9874 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9875 		return 1;
9876 	}
9877 
9878 	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9879 	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9880 		nested_vmx_failValid(vcpu,
9881 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9882 		return 1;
9883 	}
9884 
9885 	if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9886 	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9887 		nested_vmx_entry_failure(vcpu, vmcs12,
9888 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9889 		return 1;
9890 	}
9891 	if (vmcs12->vmcs_link_pointer != -1ull) {
9892 		nested_vmx_entry_failure(vcpu, vmcs12,
9893 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9894 		return 1;
9895 	}
9896 
9897 	/*
9898 	 * If the load IA32_EFER VM-entry control is 1, the following checks
9899 	 * are performed on the field for the IA32_EFER MSR:
9900 	 * - Bits reserved in the IA32_EFER MSR must be 0.
9901 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9902 	 *   the IA-32e mode guest VM-exit control. It must also be identical
9903 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9904 	 *   CR0.PG) is 1.
9905 	 */
9906 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9907 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9908 		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9909 		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9910 		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9911 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9912 			nested_vmx_entry_failure(vcpu, vmcs12,
9913 				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9914 			return 1;
9915 		}
9916 	}
9917 
9918 	/*
9919 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9920 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9921 	 * the values of the LMA and LME bits in the field must each be that of
9922 	 * the host address-space size VM-exit control.
9923 	 */
9924 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9925 		ia32e = (vmcs12->vm_exit_controls &
9926 			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9927 		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9928 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9929 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9930 			nested_vmx_entry_failure(vcpu, vmcs12,
9931 				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9932 			return 1;
9933 		}
9934 	}
9935 
9936 	/*
9937 	 * We're finally done with prerequisite checking, and can start with
9938 	 * the nested entry.
9939 	 */
9940 
9941 	vmcs02 = nested_get_current_vmcs02(vmx);
9942 	if (!vmcs02)
9943 		return -ENOMEM;
9944 
9945 	enter_guest_mode(vcpu);
9946 
9947 	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9948 
9949 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9950 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9951 
9952 	cpu = get_cpu();
9953 	vmx->loaded_vmcs = vmcs02;
9954 	vmx_vcpu_put(vcpu);
9955 	vmx_vcpu_load(vcpu, cpu);
9956 	vcpu->cpu = cpu;
9957 	put_cpu();
9958 
9959 	vmx_segment_cache_clear(vmx);
9960 
9961 	prepare_vmcs02(vcpu, vmcs12);
9962 
9963 	msr_entry_idx = nested_vmx_load_msr(vcpu,
9964 					    vmcs12->vm_entry_msr_load_addr,
9965 					    vmcs12->vm_entry_msr_load_count);
9966 	if (msr_entry_idx) {
9967 		leave_guest_mode(vcpu);
9968 		vmx_load_vmcs01(vcpu);
9969 		nested_vmx_entry_failure(vcpu, vmcs12,
9970 				EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9971 		return 1;
9972 	}
9973 
9974 	vmcs12->launch_state = 1;
9975 
9976 	if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9977 		return kvm_vcpu_halt(vcpu);
9978 
9979 	vmx->nested.nested_run_pending = 1;
9980 
9981 	/*
9982 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9983 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9984 	 * returned as far as L1 is concerned. It will only return (and set
9985 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9986 	 */
9987 	return 1;
9988 }
9989 
9990 /*
9991  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9992  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9993  * This function returns the new value we should put in vmcs12.guest_cr0.
9994  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9995  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9996  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9997  *     didn't trap the bit, because if L1 did, so would L0).
9998  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9999  *     been modified by L2, and L1 knows it. So just leave the old value of
10000  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10001  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10002  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10003  *     changed these bits, and therefore they need to be updated, but L0
10004  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10005  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10006  */
10007 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10008 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10009 {
10010 	return
10011 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10012 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10013 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10014 			vcpu->arch.cr0_guest_owned_bits));
10015 }
10016 
10017 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10018 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10019 {
10020 	return
10021 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10022 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10023 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10024 			vcpu->arch.cr4_guest_owned_bits));
10025 }
10026 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10027 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10028 				       struct vmcs12 *vmcs12)
10029 {
10030 	u32 idt_vectoring;
10031 	unsigned int nr;
10032 
10033 	if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10034 		nr = vcpu->arch.exception.nr;
10035 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10036 
10037 		if (kvm_exception_is_soft(nr)) {
10038 			vmcs12->vm_exit_instruction_len =
10039 				vcpu->arch.event_exit_inst_len;
10040 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10041 		} else
10042 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10043 
10044 		if (vcpu->arch.exception.has_error_code) {
10045 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10046 			vmcs12->idt_vectoring_error_code =
10047 				vcpu->arch.exception.error_code;
10048 		}
10049 
10050 		vmcs12->idt_vectoring_info_field = idt_vectoring;
10051 	} else if (vcpu->arch.nmi_injected) {
10052 		vmcs12->idt_vectoring_info_field =
10053 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10054 	} else if (vcpu->arch.interrupt.pending) {
10055 		nr = vcpu->arch.interrupt.nr;
10056 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10057 
10058 		if (vcpu->arch.interrupt.soft) {
10059 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
10060 			vmcs12->vm_entry_instruction_len =
10061 				vcpu->arch.event_exit_inst_len;
10062 		} else
10063 			idt_vectoring |= INTR_TYPE_EXT_INTR;
10064 
10065 		vmcs12->idt_vectoring_info_field = idt_vectoring;
10066 	}
10067 }
10068 
vmx_check_nested_events(struct kvm_vcpu * vcpu,bool external_intr)10069 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10070 {
10071 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10072 
10073 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10074 	    vmx->nested.preemption_timer_expired) {
10075 		if (vmx->nested.nested_run_pending)
10076 			return -EBUSY;
10077 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10078 		return 0;
10079 	}
10080 
10081 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10082 		if (vmx->nested.nested_run_pending ||
10083 		    vcpu->arch.interrupt.pending)
10084 			return -EBUSY;
10085 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10086 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
10087 				  INTR_INFO_VALID_MASK, 0);
10088 		/*
10089 		 * The NMI-triggered VM exit counts as injection:
10090 		 * clear this one and block further NMIs.
10091 		 */
10092 		vcpu->arch.nmi_pending = 0;
10093 		vmx_set_nmi_mask(vcpu, true);
10094 		return 0;
10095 	}
10096 
10097 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10098 	    nested_exit_on_intr(vcpu)) {
10099 		if (vmx->nested.nested_run_pending)
10100 			return -EBUSY;
10101 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10102 		return 0;
10103 	}
10104 
10105 	return vmx_complete_nested_posted_interrupt(vcpu);
10106 }
10107 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)10108 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10109 {
10110 	ktime_t remaining =
10111 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10112 	u64 value;
10113 
10114 	if (ktime_to_ns(remaining) <= 0)
10115 		return 0;
10116 
10117 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10118 	do_div(value, 1000000);
10119 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10120 }
10121 
10122 /*
10123  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10124  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10125  * and this function updates it to reflect the changes to the guest state while
10126  * L2 was running (and perhaps made some exits which were handled directly by L0
10127  * without going back to L1), and to reflect the exit reason.
10128  * Note that we do not have to copy here all VMCS fields, just those that
10129  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10130  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10131  * which already writes to vmcs12 directly.
10132  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10133 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10134 			   u32 exit_reason, u32 exit_intr_info,
10135 			   unsigned long exit_qualification)
10136 {
10137 	/* update guest state fields: */
10138 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10139 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10140 
10141 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10142 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10143 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10144 
10145 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10146 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10147 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10148 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10149 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10150 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10151 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10152 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10153 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10154 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10155 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10156 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10157 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10158 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10159 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10160 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10161 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10162 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10163 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10164 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10165 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10166 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10167 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10168 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10169 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10170 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10171 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10172 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10173 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10174 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10175 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10176 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10177 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10178 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10179 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10180 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10181 
10182 	vmcs12->guest_interruptibility_info =
10183 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10184 	vmcs12->guest_pending_dbg_exceptions =
10185 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10186 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10187 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10188 	else
10189 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10190 
10191 	if (nested_cpu_has_preemption_timer(vmcs12)) {
10192 		if (vmcs12->vm_exit_controls &
10193 		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10194 			vmcs12->vmx_preemption_timer_value =
10195 				vmx_get_preemption_timer_value(vcpu);
10196 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10197 	}
10198 
10199 	/*
10200 	 * In some cases (usually, nested EPT), L2 is allowed to change its
10201 	 * own CR3 without exiting. If it has changed it, we must keep it.
10202 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10203 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10204 	 *
10205 	 * Additionally, restore L2's PDPTR to vmcs12.
10206 	 */
10207 	if (enable_ept) {
10208 		vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
10209 		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10210 		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10211 		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10212 		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10213 	}
10214 
10215 	if (nested_cpu_has_vid(vmcs12))
10216 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10217 
10218 	vmcs12->vm_entry_controls =
10219 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10220 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10221 
10222 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10223 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10224 		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10225 	}
10226 
10227 	/* TODO: These cannot have changed unless we have MSR bitmaps and
10228 	 * the relevant bit asks not to trap the change */
10229 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10230 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10231 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10232 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
10233 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10234 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10235 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10236 	if (vmx_mpx_supported())
10237 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10238 	if (nested_cpu_has_xsaves(vmcs12))
10239 		vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10240 
10241 	/* update exit information fields: */
10242 
10243 	vmcs12->vm_exit_reason = exit_reason;
10244 	vmcs12->exit_qualification = exit_qualification;
10245 
10246 	vmcs12->vm_exit_intr_info = exit_intr_info;
10247 	if ((vmcs12->vm_exit_intr_info &
10248 	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10249 	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10250 		vmcs12->vm_exit_intr_error_code =
10251 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10252 	vmcs12->idt_vectoring_info_field = 0;
10253 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10254 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10255 
10256 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10257 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
10258 		 * instead of reading the real value. */
10259 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10260 
10261 		/*
10262 		 * Transfer the event that L0 or L1 may wanted to inject into
10263 		 * L2 to IDT_VECTORING_INFO_FIELD.
10264 		 */
10265 		vmcs12_save_pending_event(vcpu, vmcs12);
10266 	}
10267 
10268 	/*
10269 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10270 	 * preserved above and would only end up incorrectly in L1.
10271 	 */
10272 	vcpu->arch.nmi_injected = false;
10273 	kvm_clear_exception_queue(vcpu);
10274 	kvm_clear_interrupt_queue(vcpu);
10275 }
10276 
10277 /*
10278  * A part of what we need to when the nested L2 guest exits and we want to
10279  * run its L1 parent, is to reset L1's guest state to the host state specified
10280  * in vmcs12.
10281  * This function is to be called not only on normal nested exit, but also on
10282  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10283  * Failures During or After Loading Guest State").
10284  * This function should be called when the active VMCS is L1's (vmcs01).
10285  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10286 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10287 				   struct vmcs12 *vmcs12)
10288 {
10289 	struct kvm_segment seg;
10290 
10291 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10292 		vcpu->arch.efer = vmcs12->host_ia32_efer;
10293 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10294 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10295 	else
10296 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10297 	vmx_set_efer(vcpu, vcpu->arch.efer);
10298 
10299 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10300 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10301 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10302 	/*
10303 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10304 	 * actually changed, because it depends on the current state of
10305 	 * fpu_active (which may have changed).
10306 	 * Note that vmx_set_cr0 refers to efer set above.
10307 	 */
10308 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
10309 	/*
10310 	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10311 	 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10312 	 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10313 	 */
10314 	update_exception_bitmap(vcpu);
10315 	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10316 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10317 
10318 	/*
10319 	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10320 	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10321 	 */
10322 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10323 	kvm_set_cr4(vcpu, vmcs12->host_cr4);
10324 
10325 	nested_ept_uninit_mmu_context(vcpu);
10326 
10327 	kvm_set_cr3(vcpu, vmcs12->host_cr3);
10328 	kvm_mmu_reset_context(vcpu);
10329 
10330 	if (!enable_ept)
10331 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10332 
10333 	if (enable_vpid) {
10334 		/*
10335 		 * Trivially support vpid by letting L2s share their parent
10336 		 * L1's vpid. TODO: move to a more elaborate solution, giving
10337 		 * each L2 its own vpid and exposing the vpid feature to L1.
10338 		 */
10339 		vmx_flush_tlb(vcpu);
10340 	}
10341 
10342 
10343 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10344 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10345 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10346 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10347 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10348 
10349 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10350 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10351 		vmcs_write64(GUEST_BNDCFGS, 0);
10352 
10353 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10354 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10355 		vcpu->arch.pat = vmcs12->host_ia32_pat;
10356 	}
10357 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10358 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10359 			vmcs12->host_ia32_perf_global_ctrl);
10360 
10361 	/* Set L1 segment info according to Intel SDM
10362 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
10363 	seg = (struct kvm_segment) {
10364 		.base = 0,
10365 		.limit = 0xFFFFFFFF,
10366 		.selector = vmcs12->host_cs_selector,
10367 		.type = 11,
10368 		.present = 1,
10369 		.s = 1,
10370 		.g = 1
10371 	};
10372 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10373 		seg.l = 1;
10374 	else
10375 		seg.db = 1;
10376 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10377 	seg = (struct kvm_segment) {
10378 		.base = 0,
10379 		.limit = 0xFFFFFFFF,
10380 		.type = 3,
10381 		.present = 1,
10382 		.s = 1,
10383 		.db = 1,
10384 		.g = 1
10385 	};
10386 	seg.selector = vmcs12->host_ds_selector;
10387 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10388 	seg.selector = vmcs12->host_es_selector;
10389 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10390 	seg.selector = vmcs12->host_ss_selector;
10391 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10392 	seg.selector = vmcs12->host_fs_selector;
10393 	seg.base = vmcs12->host_fs_base;
10394 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10395 	seg.selector = vmcs12->host_gs_selector;
10396 	seg.base = vmcs12->host_gs_base;
10397 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10398 	seg = (struct kvm_segment) {
10399 		.base = vmcs12->host_tr_base,
10400 		.limit = 0x67,
10401 		.selector = vmcs12->host_tr_selector,
10402 		.type = 11,
10403 		.present = 1
10404 	};
10405 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10406 
10407 	kvm_set_dr(vcpu, 7, 0x400);
10408 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10409 
10410 	if (cpu_has_vmx_msr_bitmap())
10411 		vmx_set_msr_bitmap(vcpu);
10412 
10413 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10414 				vmcs12->vm_exit_msr_load_count))
10415 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10416 }
10417 
10418 /*
10419  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10420  * and modify vmcs12 to make it see what it would expect to see there if
10421  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10422  */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10423 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10424 			      u32 exit_intr_info,
10425 			      unsigned long exit_qualification)
10426 {
10427 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10428 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10429 
10430 	/* trying to cancel vmlaunch/vmresume is a bug */
10431 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
10432 
10433 	leave_guest_mode(vcpu);
10434 	prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10435 		       exit_qualification);
10436 
10437 	if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10438 				 vmcs12->vm_exit_msr_store_count))
10439 		nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10440 
10441 	vmx_load_vmcs01(vcpu);
10442 
10443 	if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10444 	    && nested_exit_intr_ack_set(vcpu)) {
10445 		int irq = kvm_cpu_get_interrupt(vcpu);
10446 		WARN_ON(irq < 0);
10447 		vmcs12->vm_exit_intr_info = irq |
10448 			INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10449 	}
10450 
10451 	trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10452 				       vmcs12->exit_qualification,
10453 				       vmcs12->idt_vectoring_info_field,
10454 				       vmcs12->vm_exit_intr_info,
10455 				       vmcs12->vm_exit_intr_error_code,
10456 				       KVM_ISA_VMX);
10457 
10458 	vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10459 	vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10460 	vmx_segment_cache_clear(vmx);
10461 
10462 	/* if no vmcs02 cache requested, remove the one we used */
10463 	if (VMCS02_POOL_SIZE == 0)
10464 		nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10465 
10466 	load_vmcs12_host_state(vcpu, vmcs12);
10467 
10468 	/* Update TSC_OFFSET if TSC was changed while L2 ran */
10469 	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10470 
10471 	/* This is needed for same reason as it was needed in prepare_vmcs02 */
10472 	vmx->host_rsp = 0;
10473 
10474 	/* Unpin physical memory we referred to in vmcs02 */
10475 	if (vmx->nested.apic_access_page) {
10476 		nested_release_page(vmx->nested.apic_access_page);
10477 		vmx->nested.apic_access_page = NULL;
10478 	}
10479 	if (vmx->nested.virtual_apic_page) {
10480 		nested_release_page(vmx->nested.virtual_apic_page);
10481 		vmx->nested.virtual_apic_page = NULL;
10482 	}
10483 	if (vmx->nested.pi_desc_page) {
10484 		kunmap(vmx->nested.pi_desc_page);
10485 		nested_release_page(vmx->nested.pi_desc_page);
10486 		vmx->nested.pi_desc_page = NULL;
10487 		vmx->nested.pi_desc = NULL;
10488 	}
10489 
10490 	/*
10491 	 * We are now running in L2, mmu_notifier will force to reload the
10492 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10493 	 */
10494 	kvm_vcpu_reload_apic_access_page(vcpu);
10495 
10496 	/*
10497 	 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10498 	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10499 	 * success or failure flag accordingly.
10500 	 */
10501 	if (unlikely(vmx->fail)) {
10502 		vmx->fail = 0;
10503 		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10504 	} else
10505 		nested_vmx_succeed(vcpu);
10506 	if (enable_shadow_vmcs)
10507 		vmx->nested.sync_shadow_vmcs = true;
10508 
10509 	/* in case we halted in L2 */
10510 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10511 }
10512 
10513 /*
10514  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10515  */
vmx_leave_nested(struct kvm_vcpu * vcpu)10516 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10517 {
10518 	if (is_guest_mode(vcpu))
10519 		nested_vmx_vmexit(vcpu, -1, 0, 0);
10520 	free_nested(to_vmx(vcpu));
10521 }
10522 
10523 /*
10524  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10525  * 23.7 "VM-entry failures during or after loading guest state" (this also
10526  * lists the acceptable exit-reason and exit-qualification parameters).
10527  * It should only be called before L2 actually succeeded to run, and when
10528  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10529  */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)10530 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10531 			struct vmcs12 *vmcs12,
10532 			u32 reason, unsigned long qualification)
10533 {
10534 	load_vmcs12_host_state(vcpu, vmcs12);
10535 	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10536 	vmcs12->exit_qualification = qualification;
10537 	nested_vmx_succeed(vcpu);
10538 	if (enable_shadow_vmcs)
10539 		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10540 }
10541 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)10542 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10543 			       struct x86_instruction_info *info,
10544 			       enum x86_intercept_stage stage)
10545 {
10546 	return X86EMUL_CONTINUE;
10547 }
10548 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)10549 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10550 {
10551 	if (ple_gap)
10552 		shrink_ple_window(vcpu);
10553 }
10554 
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10555 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10556 				     struct kvm_memory_slot *slot)
10557 {
10558 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10559 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10560 }
10561 
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10562 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10563 				       struct kvm_memory_slot *slot)
10564 {
10565 	kvm_mmu_slot_set_dirty(kvm, slot);
10566 }
10567 
vmx_flush_log_dirty(struct kvm * kvm)10568 static void vmx_flush_log_dirty(struct kvm *kvm)
10569 {
10570 	kvm_flush_pml_buffers(kvm);
10571 }
10572 
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)10573 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10574 					   struct kvm_memory_slot *memslot,
10575 					   gfn_t offset, unsigned long mask)
10576 {
10577 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10578 }
10579 
10580 /*
10581  * This routine does the following things for vCPU which is going
10582  * to be blocked if VT-d PI is enabled.
10583  * - Store the vCPU to the wakeup list, so when interrupts happen
10584  *   we can find the right vCPU to wake up.
10585  * - Change the Posted-interrupt descriptor as below:
10586  *      'NDST' <-- vcpu->pre_pcpu
10587  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10588  * - If 'ON' is set during this process, which means at least one
10589  *   interrupt is posted for this vCPU, we cannot block it, in
10590  *   this case, return 1, otherwise, return 0.
10591  *
10592  */
vmx_pre_block(struct kvm_vcpu * vcpu)10593 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10594 {
10595 	unsigned long flags;
10596 	unsigned int dest;
10597 	struct pi_desc old, new;
10598 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10599 
10600 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10601 		!irq_remapping_cap(IRQ_POSTING_CAP))
10602 		return 0;
10603 
10604 	vcpu->pre_pcpu = vcpu->cpu;
10605 	spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10606 			  vcpu->pre_pcpu), flags);
10607 	list_add_tail(&vcpu->blocked_vcpu_list,
10608 		      &per_cpu(blocked_vcpu_on_cpu,
10609 		      vcpu->pre_pcpu));
10610 	spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10611 			       vcpu->pre_pcpu), flags);
10612 
10613 	do {
10614 		old.control = new.control = pi_desc->control;
10615 
10616 		/*
10617 		 * We should not block the vCPU if
10618 		 * an interrupt is posted for it.
10619 		 */
10620 		if (pi_test_on(pi_desc) == 1) {
10621 			spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10622 					  vcpu->pre_pcpu), flags);
10623 			list_del(&vcpu->blocked_vcpu_list);
10624 			spin_unlock_irqrestore(
10625 					&per_cpu(blocked_vcpu_on_cpu_lock,
10626 					vcpu->pre_pcpu), flags);
10627 			vcpu->pre_pcpu = -1;
10628 
10629 			return 1;
10630 		}
10631 
10632 		WARN((pi_desc->sn == 1),
10633 		     "Warning: SN field of posted-interrupts "
10634 		     "is set before blocking\n");
10635 
10636 		/*
10637 		 * Since vCPU can be preempted during this process,
10638 		 * vcpu->cpu could be different with pre_pcpu, we
10639 		 * need to set pre_pcpu as the destination of wakeup
10640 		 * notification event, then we can find the right vCPU
10641 		 * to wakeup in wakeup handler if interrupts happen
10642 		 * when the vCPU is in blocked state.
10643 		 */
10644 		dest = cpu_physical_id(vcpu->pre_pcpu);
10645 
10646 		if (x2apic_enabled())
10647 			new.ndst = dest;
10648 		else
10649 			new.ndst = (dest << 8) & 0xFF00;
10650 
10651 		/* set 'NV' to 'wakeup vector' */
10652 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
10653 	} while (cmpxchg(&pi_desc->control, old.control,
10654 			new.control) != old.control);
10655 
10656 	return 0;
10657 }
10658 
vmx_post_block(struct kvm_vcpu * vcpu)10659 static void vmx_post_block(struct kvm_vcpu *vcpu)
10660 {
10661 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10662 	struct pi_desc old, new;
10663 	unsigned int dest;
10664 	unsigned long flags;
10665 
10666 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10667 		!irq_remapping_cap(IRQ_POSTING_CAP))
10668 		return;
10669 
10670 	do {
10671 		old.control = new.control = pi_desc->control;
10672 
10673 		dest = cpu_physical_id(vcpu->cpu);
10674 
10675 		if (x2apic_enabled())
10676 			new.ndst = dest;
10677 		else
10678 			new.ndst = (dest << 8) & 0xFF00;
10679 
10680 		/* Allow posting non-urgent interrupts */
10681 		new.sn = 0;
10682 
10683 		/* set 'NV' to 'notification vector' */
10684 		new.nv = POSTED_INTR_VECTOR;
10685 	} while (cmpxchg(&pi_desc->control, old.control,
10686 			new.control) != old.control);
10687 
10688 	if(vcpu->pre_pcpu != -1) {
10689 		spin_lock_irqsave(
10690 			&per_cpu(blocked_vcpu_on_cpu_lock,
10691 			vcpu->pre_pcpu), flags);
10692 		list_del(&vcpu->blocked_vcpu_list);
10693 		spin_unlock_irqrestore(
10694 			&per_cpu(blocked_vcpu_on_cpu_lock,
10695 			vcpu->pre_pcpu), flags);
10696 		vcpu->pre_pcpu = -1;
10697 	}
10698 }
10699 
10700 /*
10701  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10702  *
10703  * @kvm: kvm
10704  * @host_irq: host irq of the interrupt
10705  * @guest_irq: gsi of the interrupt
10706  * @set: set or unset PI
10707  * returns 0 on success, < 0 on failure
10708  */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)10709 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10710 			      uint32_t guest_irq, bool set)
10711 {
10712 	struct kvm_kernel_irq_routing_entry *e;
10713 	struct kvm_irq_routing_table *irq_rt;
10714 	struct kvm_lapic_irq irq;
10715 	struct kvm_vcpu *vcpu;
10716 	struct vcpu_data vcpu_info;
10717 	int idx, ret = -EINVAL;
10718 
10719 	if (!kvm_arch_has_assigned_device(kvm) ||
10720 		!irq_remapping_cap(IRQ_POSTING_CAP))
10721 		return 0;
10722 
10723 	idx = srcu_read_lock(&kvm->irq_srcu);
10724 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10725 	BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10726 
10727 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10728 		if (e->type != KVM_IRQ_ROUTING_MSI)
10729 			continue;
10730 		/*
10731 		 * VT-d PI cannot support posting multicast/broadcast
10732 		 * interrupts to a vCPU, we still use interrupt remapping
10733 		 * for these kind of interrupts.
10734 		 *
10735 		 * For lowest-priority interrupts, we only support
10736 		 * those with single CPU as the destination, e.g. user
10737 		 * configures the interrupts via /proc/irq or uses
10738 		 * irqbalance to make the interrupts single-CPU.
10739 		 *
10740 		 * We will support full lowest-priority interrupt later.
10741 		 */
10742 
10743 		kvm_set_msi_irq(e, &irq);
10744 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
10745 			continue;
10746 
10747 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10748 		vcpu_info.vector = irq.vector;
10749 
10750 		trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
10751 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10752 
10753 		if (set)
10754 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10755 		else {
10756 			/* suppress notification event before unposting */
10757 			pi_set_sn(vcpu_to_pi_desc(vcpu));
10758 			ret = irq_set_vcpu_affinity(host_irq, NULL);
10759 			pi_clear_sn(vcpu_to_pi_desc(vcpu));
10760 		}
10761 
10762 		if (ret < 0) {
10763 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
10764 					__func__);
10765 			goto out;
10766 		}
10767 	}
10768 
10769 	ret = 0;
10770 out:
10771 	srcu_read_unlock(&kvm->irq_srcu, idx);
10772 	return ret;
10773 }
10774 
10775 static struct kvm_x86_ops vmx_x86_ops = {
10776 	.cpu_has_kvm_support = cpu_has_kvm_support,
10777 	.disabled_by_bios = vmx_disabled_by_bios,
10778 	.hardware_setup = hardware_setup,
10779 	.hardware_unsetup = hardware_unsetup,
10780 	.check_processor_compatibility = vmx_check_processor_compat,
10781 	.hardware_enable = hardware_enable,
10782 	.hardware_disable = hardware_disable,
10783 	.cpu_has_accelerated_tpr = report_flexpriority,
10784 	.cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10785 
10786 	.vcpu_create = vmx_create_vcpu,
10787 	.vcpu_free = vmx_free_vcpu,
10788 	.vcpu_reset = vmx_vcpu_reset,
10789 
10790 	.prepare_guest_switch = vmx_save_host_state,
10791 	.vcpu_load = vmx_vcpu_load,
10792 	.vcpu_put = vmx_vcpu_put,
10793 
10794 	.update_bp_intercept = update_exception_bitmap,
10795 	.get_msr = vmx_get_msr,
10796 	.set_msr = vmx_set_msr,
10797 	.get_segment_base = vmx_get_segment_base,
10798 	.get_segment = vmx_get_segment,
10799 	.set_segment = vmx_set_segment,
10800 	.get_cpl = vmx_get_cpl,
10801 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10802 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10803 	.decache_cr3 = vmx_decache_cr3,
10804 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10805 	.set_cr0 = vmx_set_cr0,
10806 	.set_cr3 = vmx_set_cr3,
10807 	.set_cr4 = vmx_set_cr4,
10808 	.set_efer = vmx_set_efer,
10809 	.get_idt = vmx_get_idt,
10810 	.set_idt = vmx_set_idt,
10811 	.get_gdt = vmx_get_gdt,
10812 	.set_gdt = vmx_set_gdt,
10813 	.get_dr6 = vmx_get_dr6,
10814 	.set_dr6 = vmx_set_dr6,
10815 	.set_dr7 = vmx_set_dr7,
10816 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10817 	.cache_reg = vmx_cache_reg,
10818 	.get_rflags = vmx_get_rflags,
10819 	.set_rflags = vmx_set_rflags,
10820 	.fpu_activate = vmx_fpu_activate,
10821 	.fpu_deactivate = vmx_fpu_deactivate,
10822 
10823 	.tlb_flush = vmx_flush_tlb,
10824 
10825 	.run = vmx_vcpu_run,
10826 	.handle_exit = vmx_handle_exit,
10827 	.skip_emulated_instruction = skip_emulated_instruction,
10828 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
10829 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
10830 	.patch_hypercall = vmx_patch_hypercall,
10831 	.set_irq = vmx_inject_irq,
10832 	.set_nmi = vmx_inject_nmi,
10833 	.queue_exception = vmx_queue_exception,
10834 	.cancel_injection = vmx_cancel_injection,
10835 	.interrupt_allowed = vmx_interrupt_allowed,
10836 	.nmi_allowed = vmx_nmi_allowed,
10837 	.get_nmi_mask = vmx_get_nmi_mask,
10838 	.set_nmi_mask = vmx_set_nmi_mask,
10839 	.enable_nmi_window = enable_nmi_window,
10840 	.enable_irq_window = enable_irq_window,
10841 	.update_cr8_intercept = update_cr8_intercept,
10842 	.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10843 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10844 	.cpu_uses_apicv = vmx_cpu_uses_apicv,
10845 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
10846 	.hwapic_irr_update = vmx_hwapic_irr_update,
10847 	.hwapic_isr_update = vmx_hwapic_isr_update,
10848 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
10849 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10850 
10851 	.set_tss_addr = vmx_set_tss_addr,
10852 	.get_tdp_level = get_ept_level,
10853 	.get_mt_mask = vmx_get_mt_mask,
10854 
10855 	.get_exit_info = vmx_get_exit_info,
10856 
10857 	.get_lpage_level = vmx_get_lpage_level,
10858 
10859 	.cpuid_update = vmx_cpuid_update,
10860 
10861 	.rdtscp_supported = vmx_rdtscp_supported,
10862 	.invpcid_supported = vmx_invpcid_supported,
10863 
10864 	.set_supported_cpuid = vmx_set_supported_cpuid,
10865 
10866 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10867 
10868 	.read_tsc_offset = vmx_read_tsc_offset,
10869 	.write_tsc_offset = vmx_write_tsc_offset,
10870 	.adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
10871 	.read_l1_tsc = vmx_read_l1_tsc,
10872 
10873 	.set_tdp_cr3 = vmx_set_cr3,
10874 
10875 	.check_intercept = vmx_check_intercept,
10876 	.handle_external_intr = vmx_handle_external_intr,
10877 	.mpx_supported = vmx_mpx_supported,
10878 	.xsaves_supported = vmx_xsaves_supported,
10879 
10880 	.check_nested_events = vmx_check_nested_events,
10881 
10882 	.sched_in = vmx_sched_in,
10883 
10884 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10885 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10886 	.flush_log_dirty = vmx_flush_log_dirty,
10887 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10888 
10889 	.pre_block = vmx_pre_block,
10890 	.post_block = vmx_post_block,
10891 
10892 	.pmu_ops = &intel_pmu_ops,
10893 
10894 	.update_pi_irte = vmx_update_pi_irte,
10895 };
10896 
vmx_init(void)10897 static int __init vmx_init(void)
10898 {
10899 	int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10900                      __alignof__(struct vcpu_vmx), THIS_MODULE);
10901 	if (r)
10902 		return r;
10903 
10904 #ifdef CONFIG_KEXEC_CORE
10905 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10906 			   crash_vmclear_local_loaded_vmcss);
10907 #endif
10908 
10909 	return 0;
10910 }
10911 
vmx_exit(void)10912 static void __exit vmx_exit(void)
10913 {
10914 #ifdef CONFIG_KEXEC_CORE
10915 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10916 	synchronize_rcu();
10917 #endif
10918 
10919 	kvm_exit();
10920 }
10921 
10922 module_init(vmx_init)
10923 module_exit(vmx_exit)
10924