1 #ifndef _ASM_X86_MSR_H
2 #define _ASM_X86_MSR_H
3
4 #include "msr-index.h"
5
6 #ifndef __ASSEMBLY__
7
8 #include <asm/asm.h>
9 #include <asm/errno.h>
10 #include <asm/cpumask.h>
11 #include <uapi/asm/msr.h>
12
13 struct msr {
14 union {
15 struct {
16 u32 l;
17 u32 h;
18 };
19 u64 q;
20 };
21 };
22
23 struct msr_info {
24 u32 msr_no;
25 struct msr reg;
26 struct msr *msrs;
27 int err;
28 };
29
30 struct msr_regs_info {
31 u32 *regs;
32 int err;
33 };
34
native_read_tscp(unsigned int * aux)35 static inline unsigned long long native_read_tscp(unsigned int *aux)
36 {
37 unsigned long low, high;
38 asm volatile(".byte 0x0f,0x01,0xf9"
39 : "=a" (low), "=d" (high), "=c" (*aux));
40 return low | ((u64)high << 32);
41 }
42
43 /*
44 * both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A"
45 * constraint has different meanings. For i386, "A" means exactly
46 * edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead,
47 * it means rax *or* rdx.
48 */
49 #ifdef CONFIG_X86_64
50 /* Using 64-bit values saves one instruction clearing the high half of low */
51 #define DECLARE_ARGS(val, low, high) unsigned long low, high
52 #define EAX_EDX_VAL(val, low, high) ((low) | (high) << 32)
53 #define EAX_EDX_RET(val, low, high) "=a" (low), "=d" (high)
54 #else
55 #define DECLARE_ARGS(val, low, high) unsigned long long val
56 #define EAX_EDX_VAL(val, low, high) (val)
57 #define EAX_EDX_RET(val, low, high) "=A" (val)
58 #endif
59
native_read_msr(unsigned int msr)60 static inline unsigned long long native_read_msr(unsigned int msr)
61 {
62 DECLARE_ARGS(val, low, high);
63
64 asm volatile("rdmsr" : EAX_EDX_RET(val, low, high) : "c" (msr));
65 return EAX_EDX_VAL(val, low, high);
66 }
67
native_read_msr_safe(unsigned int msr,int * err)68 static inline unsigned long long native_read_msr_safe(unsigned int msr,
69 int *err)
70 {
71 DECLARE_ARGS(val, low, high);
72
73 asm volatile("2: rdmsr ; xor %[err],%[err]\n"
74 "1:\n\t"
75 ".section .fixup,\"ax\"\n\t"
76 "3: mov %[fault],%[err] ; jmp 1b\n\t"
77 ".previous\n\t"
78 _ASM_EXTABLE(2b, 3b)
79 : [err] "=r" (*err), EAX_EDX_RET(val, low, high)
80 : "c" (msr), [fault] "i" (-EIO));
81 return EAX_EDX_VAL(val, low, high);
82 }
83
native_write_msr(unsigned int msr,unsigned low,unsigned high)84 static inline void native_write_msr(unsigned int msr,
85 unsigned low, unsigned high)
86 {
87 asm volatile("wrmsr" : : "c" (msr), "a"(low), "d" (high) : "memory");
88 }
89
90 /* Can be uninlined because referenced by paravirt */
native_write_msr_safe(unsigned int msr,unsigned low,unsigned high)91 notrace static inline int native_write_msr_safe(unsigned int msr,
92 unsigned low, unsigned high)
93 {
94 int err;
95 asm volatile("2: wrmsr ; xor %[err],%[err]\n"
96 "1:\n\t"
97 ".section .fixup,\"ax\"\n\t"
98 "3: mov %[fault],%[err] ; jmp 1b\n\t"
99 ".previous\n\t"
100 _ASM_EXTABLE(2b, 3b)
101 : [err] "=a" (err)
102 : "c" (msr), "0" (low), "d" (high),
103 [fault] "i" (-EIO)
104 : "memory");
105 return err;
106 }
107
108 extern int rdmsr_safe_regs(u32 regs[8]);
109 extern int wrmsr_safe_regs(u32 regs[8]);
110
111 /**
112 * rdtsc() - returns the current TSC without ordering constraints
113 *
114 * rdtsc() returns the result of RDTSC as a 64-bit integer. The
115 * only ordering constraint it supplies is the ordering implied by
116 * "asm volatile": it will put the RDTSC in the place you expect. The
117 * CPU can and will speculatively execute that RDTSC, though, so the
118 * results can be non-monotonic if compared on different CPUs.
119 */
rdtsc(void)120 static __always_inline unsigned long long rdtsc(void)
121 {
122 DECLARE_ARGS(val, low, high);
123
124 asm volatile("rdtsc" : EAX_EDX_RET(val, low, high));
125
126 return EAX_EDX_VAL(val, low, high);
127 }
128
129 /**
130 * rdtsc_ordered() - read the current TSC in program order
131 *
132 * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer.
133 * It is ordered like a load to a global in-memory counter. It should
134 * be impossible to observe non-monotonic rdtsc_unordered() behavior
135 * across multiple CPUs as long as the TSC is synced.
136 */
rdtsc_ordered(void)137 static __always_inline unsigned long long rdtsc_ordered(void)
138 {
139 /*
140 * The RDTSC instruction is not ordered relative to memory
141 * access. The Intel SDM and the AMD APM are both vague on this
142 * point, but empirically an RDTSC instruction can be
143 * speculatively executed before prior loads. An RDTSC
144 * immediately after an appropriate barrier appears to be
145 * ordered as a normal load, that is, it provides the same
146 * ordering guarantees as reading from a global memory location
147 * that some other imaginary CPU is updating continuously with a
148 * time stamp.
149 */
150 alternative_2("", "mfence", X86_FEATURE_MFENCE_RDTSC,
151 "lfence", X86_FEATURE_LFENCE_RDTSC);
152 return rdtsc();
153 }
154
155 /* Deprecated, keep it for a cycle for easier merging: */
156 #define rdtscll(now) do { (now) = rdtsc_ordered(); } while (0)
157
native_read_pmc(int counter)158 static inline unsigned long long native_read_pmc(int counter)
159 {
160 DECLARE_ARGS(val, low, high);
161
162 asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter));
163 return EAX_EDX_VAL(val, low, high);
164 }
165
166 #ifdef CONFIG_PARAVIRT
167 #include <asm/paravirt.h>
168 #else
169 #include <linux/errno.h>
170 /*
171 * Access to machine-specific registers (available on 586 and better only)
172 * Note: the rd* operations modify the parameters directly (without using
173 * pointer indirection), this allows gcc to optimize better
174 */
175
176 #define rdmsr(msr, low, high) \
177 do { \
178 u64 __val = native_read_msr((msr)); \
179 (void)((low) = (u32)__val); \
180 (void)((high) = (u32)(__val >> 32)); \
181 } while (0)
182
wrmsr(unsigned msr,unsigned low,unsigned high)183 static inline void wrmsr(unsigned msr, unsigned low, unsigned high)
184 {
185 native_write_msr(msr, low, high);
186 }
187
188 #define rdmsrl(msr, val) \
189 ((val) = native_read_msr((msr)))
190
wrmsrl(unsigned msr,u64 val)191 static inline void wrmsrl(unsigned msr, u64 val)
192 {
193 native_write_msr(msr, (u32)val, (u32)(val >> 32));
194 }
195
196 /* wrmsr with exception handling */
wrmsr_safe(unsigned msr,unsigned low,unsigned high)197 static inline int wrmsr_safe(unsigned msr, unsigned low, unsigned high)
198 {
199 return native_write_msr_safe(msr, low, high);
200 }
201
202 /* rdmsr with exception handling */
203 #define rdmsr_safe(msr, low, high) \
204 ({ \
205 int __err; \
206 u64 __val = native_read_msr_safe((msr), &__err); \
207 (*low) = (u32)__val; \
208 (*high) = (u32)(__val >> 32); \
209 __err; \
210 })
211
rdmsrl_safe(unsigned msr,unsigned long long * p)212 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
213 {
214 int err;
215
216 *p = native_read_msr_safe(msr, &err);
217 return err;
218 }
219
220 #define rdpmc(counter, low, high) \
221 do { \
222 u64 _l = native_read_pmc((counter)); \
223 (low) = (u32)_l; \
224 (high) = (u32)(_l >> 32); \
225 } while (0)
226
227 #define rdpmcl(counter, val) ((val) = native_read_pmc(counter))
228
229 #endif /* !CONFIG_PARAVIRT */
230
231 /*
232 * 64-bit version of wrmsr_safe():
233 */
wrmsrl_safe(u32 msr,u64 val)234 static inline int wrmsrl_safe(u32 msr, u64 val)
235 {
236 return wrmsr_safe(msr, (u32)val, (u32)(val >> 32));
237 }
238
239 #define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high))
240
241 #define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0)
242
243 struct msr *msrs_alloc(void);
244 void msrs_free(struct msr *msrs);
245 int msr_set_bit(u32 msr, u8 bit);
246 int msr_clear_bit(u32 msr, u8 bit);
247
248 #ifdef CONFIG_SMP
249 int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
250 int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
251 int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
252 int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
253 void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
254 void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
255 int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
256 int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
257 int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
258 int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
259 int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
260 int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
261 #else /* CONFIG_SMP */
rdmsr_on_cpu(unsigned int cpu,u32 msr_no,u32 * l,u32 * h)262 static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
263 {
264 rdmsr(msr_no, *l, *h);
265 return 0;
266 }
wrmsr_on_cpu(unsigned int cpu,u32 msr_no,u32 l,u32 h)267 static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
268 {
269 wrmsr(msr_no, l, h);
270 return 0;
271 }
rdmsrl_on_cpu(unsigned int cpu,u32 msr_no,u64 * q)272 static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
273 {
274 rdmsrl(msr_no, *q);
275 return 0;
276 }
wrmsrl_on_cpu(unsigned int cpu,u32 msr_no,u64 q)277 static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
278 {
279 wrmsrl(msr_no, q);
280 return 0;
281 }
rdmsr_on_cpus(const struct cpumask * m,u32 msr_no,struct msr * msrs)282 static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no,
283 struct msr *msrs)
284 {
285 rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
286 }
wrmsr_on_cpus(const struct cpumask * m,u32 msr_no,struct msr * msrs)287 static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no,
288 struct msr *msrs)
289 {
290 wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
291 }
rdmsr_safe_on_cpu(unsigned int cpu,u32 msr_no,u32 * l,u32 * h)292 static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
293 u32 *l, u32 *h)
294 {
295 return rdmsr_safe(msr_no, l, h);
296 }
wrmsr_safe_on_cpu(unsigned int cpu,u32 msr_no,u32 l,u32 h)297 static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
298 {
299 return wrmsr_safe(msr_no, l, h);
300 }
rdmsrl_safe_on_cpu(unsigned int cpu,u32 msr_no,u64 * q)301 static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
302 {
303 return rdmsrl_safe(msr_no, q);
304 }
wrmsrl_safe_on_cpu(unsigned int cpu,u32 msr_no,u64 q)305 static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
306 {
307 return wrmsrl_safe(msr_no, q);
308 }
rdmsr_safe_regs_on_cpu(unsigned int cpu,u32 regs[8])309 static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
310 {
311 return rdmsr_safe_regs(regs);
312 }
wrmsr_safe_regs_on_cpu(unsigned int cpu,u32 regs[8])313 static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
314 {
315 return wrmsr_safe_regs(regs);
316 }
317 #endif /* CONFIG_SMP */
318 #endif /* __ASSEMBLY__ */
319 #endif /* _ASM_X86_MSR_H */
320