1 /*
2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5 * Copyright 2003 PathScale, Inc.
6 * Licensed under the GPL
7 */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/seq_file.h>
21 #include <linux/tick.h>
22 #include <linux/threads.h>
23 #include <linux/tracehook.h>
24 #include <asm/current.h>
25 #include <asm/pgtable.h>
26 #include <asm/mmu_context.h>
27 #include <asm/uaccess.h>
28 #include <as-layout.h>
29 #include <kern_util.h>
30 #include <os.h>
31 #include <skas.h>
32 #include <timer-internal.h>
33
34 /*
35 * This is a per-cpu array. A processor only modifies its entry and it only
36 * cares about its entry, so it's OK if another processor is modifying its
37 * entry.
38 */
39 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
40
external_pid(void)41 static inline int external_pid(void)
42 {
43 /* FIXME: Need to look up userspace_pid by cpu */
44 return userspace_pid[0];
45 }
46
pid_to_processor_id(int pid)47 int pid_to_processor_id(int pid)
48 {
49 int i;
50
51 for (i = 0; i < ncpus; i++) {
52 if (cpu_tasks[i].pid == pid)
53 return i;
54 }
55 return -1;
56 }
57
free_stack(unsigned long stack,int order)58 void free_stack(unsigned long stack, int order)
59 {
60 free_pages(stack, order);
61 }
62
alloc_stack(int order,int atomic)63 unsigned long alloc_stack(int order, int atomic)
64 {
65 unsigned long page;
66 gfp_t flags = GFP_KERNEL;
67
68 if (atomic)
69 flags = GFP_ATOMIC;
70 page = __get_free_pages(flags, order);
71
72 return page;
73 }
74
set_current(struct task_struct * task)75 static inline void set_current(struct task_struct *task)
76 {
77 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
78 { external_pid(), task });
79 }
80
81 extern void arch_switch_to(struct task_struct *to);
82
__switch_to(struct task_struct * from,struct task_struct * to)83 void *__switch_to(struct task_struct *from, struct task_struct *to)
84 {
85 to->thread.prev_sched = from;
86 set_current(to);
87
88 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
89 arch_switch_to(current);
90
91 return current->thread.prev_sched;
92 }
93
interrupt_end(void)94 void interrupt_end(void)
95 {
96 struct pt_regs *regs = ¤t->thread.regs;
97
98 if (need_resched())
99 schedule();
100 if (test_thread_flag(TIF_SIGPENDING))
101 do_signal(regs);
102 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
103 tracehook_notify_resume(regs);
104 }
105
exit_thread(void)106 void exit_thread(void)
107 {
108 }
109
get_current_pid(void)110 int get_current_pid(void)
111 {
112 return task_pid_nr(current);
113 }
114
115 /*
116 * This is called magically, by its address being stuffed in a jmp_buf
117 * and being longjmp-d to.
118 */
new_thread_handler(void)119 void new_thread_handler(void)
120 {
121 int (*fn)(void *), n;
122 void *arg;
123
124 if (current->thread.prev_sched != NULL)
125 schedule_tail(current->thread.prev_sched);
126 current->thread.prev_sched = NULL;
127
128 fn = current->thread.request.u.thread.proc;
129 arg = current->thread.request.u.thread.arg;
130
131 /*
132 * callback returns only if the kernel thread execs a process
133 */
134 n = fn(arg);
135 userspace(¤t->thread.regs.regs);
136 }
137
138 /* Called magically, see new_thread_handler above */
fork_handler(void)139 void fork_handler(void)
140 {
141 force_flush_all();
142
143 schedule_tail(current->thread.prev_sched);
144
145 /*
146 * XXX: if interrupt_end() calls schedule, this call to
147 * arch_switch_to isn't needed. We could want to apply this to
148 * improve performance. -bb
149 */
150 arch_switch_to(current);
151
152 current->thread.prev_sched = NULL;
153
154 userspace(¤t->thread.regs.regs);
155 }
156
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p)157 int copy_thread(unsigned long clone_flags, unsigned long sp,
158 unsigned long arg, struct task_struct * p)
159 {
160 void (*handler)(void);
161 int kthread = current->flags & PF_KTHREAD;
162 int ret = 0;
163
164 p->thread = (struct thread_struct) INIT_THREAD;
165
166 if (!kthread) {
167 memcpy(&p->thread.regs.regs, current_pt_regs(),
168 sizeof(p->thread.regs.regs));
169 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
170 if (sp != 0)
171 REGS_SP(p->thread.regs.regs.gp) = sp;
172
173 handler = fork_handler;
174
175 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
176 } else {
177 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
178 p->thread.request.u.thread.proc = (int (*)(void *))sp;
179 p->thread.request.u.thread.arg = (void *)arg;
180 handler = new_thread_handler;
181 }
182
183 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
184
185 if (!kthread) {
186 clear_flushed_tls(p);
187
188 /*
189 * Set a new TLS for the child thread?
190 */
191 if (clone_flags & CLONE_SETTLS)
192 ret = arch_copy_tls(p);
193 }
194
195 return ret;
196 }
197
initial_thread_cb(void (* proc)(void *),void * arg)198 void initial_thread_cb(void (*proc)(void *), void *arg)
199 {
200 int save_kmalloc_ok = kmalloc_ok;
201
202 kmalloc_ok = 0;
203 initial_thread_cb_skas(proc, arg);
204 kmalloc_ok = save_kmalloc_ok;
205 }
206
arch_cpu_idle(void)207 void arch_cpu_idle(void)
208 {
209 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
210 os_idle_sleep(UM_NSEC_PER_SEC);
211 local_irq_enable();
212 }
213
__cant_sleep(void)214 int __cant_sleep(void) {
215 return in_atomic() || irqs_disabled() || in_interrupt();
216 /* Is in_interrupt() really needed? */
217 }
218
user_context(unsigned long sp)219 int user_context(unsigned long sp)
220 {
221 unsigned long stack;
222
223 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
224 return stack != (unsigned long) current_thread_info();
225 }
226
227 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
228
do_uml_exitcalls(void)229 void do_uml_exitcalls(void)
230 {
231 exitcall_t *call;
232
233 call = &__uml_exitcall_end;
234 while (--call >= &__uml_exitcall_begin)
235 (*call)();
236 }
237
uml_strdup(const char * string)238 char *uml_strdup(const char *string)
239 {
240 return kstrdup(string, GFP_KERNEL);
241 }
242 EXPORT_SYMBOL(uml_strdup);
243
copy_to_user_proc(void __user * to,void * from,int size)244 int copy_to_user_proc(void __user *to, void *from, int size)
245 {
246 return copy_to_user(to, from, size);
247 }
248
copy_from_user_proc(void * to,void __user * from,int size)249 int copy_from_user_proc(void *to, void __user *from, int size)
250 {
251 return copy_from_user(to, from, size);
252 }
253
clear_user_proc(void __user * buf,int size)254 int clear_user_proc(void __user *buf, int size)
255 {
256 return clear_user(buf, size);
257 }
258
strlen_user_proc(char __user * str)259 int strlen_user_proc(char __user *str)
260 {
261 return strlen_user(str);
262 }
263
cpu(void)264 int cpu(void)
265 {
266 return current_thread_info()->cpu;
267 }
268
269 static atomic_t using_sysemu = ATOMIC_INIT(0);
270 int sysemu_supported;
271
set_using_sysemu(int value)272 void set_using_sysemu(int value)
273 {
274 if (value > sysemu_supported)
275 return;
276 atomic_set(&using_sysemu, value);
277 }
278
get_using_sysemu(void)279 int get_using_sysemu(void)
280 {
281 return atomic_read(&using_sysemu);
282 }
283
sysemu_proc_show(struct seq_file * m,void * v)284 static int sysemu_proc_show(struct seq_file *m, void *v)
285 {
286 seq_printf(m, "%d\n", get_using_sysemu());
287 return 0;
288 }
289
sysemu_proc_open(struct inode * inode,struct file * file)290 static int sysemu_proc_open(struct inode *inode, struct file *file)
291 {
292 return single_open(file, sysemu_proc_show, NULL);
293 }
294
sysemu_proc_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)295 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
296 size_t count, loff_t *pos)
297 {
298 char tmp[2];
299
300 if (copy_from_user(tmp, buf, 1))
301 return -EFAULT;
302
303 if (tmp[0] >= '0' && tmp[0] <= '2')
304 set_using_sysemu(tmp[0] - '0');
305 /* We use the first char, but pretend to write everything */
306 return count;
307 }
308
309 static const struct file_operations sysemu_proc_fops = {
310 .owner = THIS_MODULE,
311 .open = sysemu_proc_open,
312 .read = seq_read,
313 .llseek = seq_lseek,
314 .release = single_release,
315 .write = sysemu_proc_write,
316 };
317
make_proc_sysemu(void)318 int __init make_proc_sysemu(void)
319 {
320 struct proc_dir_entry *ent;
321 if (!sysemu_supported)
322 return 0;
323
324 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
325
326 if (ent == NULL)
327 {
328 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
329 return 0;
330 }
331
332 return 0;
333 }
334
335 late_initcall(make_proc_sysemu);
336
singlestepping(void * t)337 int singlestepping(void * t)
338 {
339 struct task_struct *task = t ? t : current;
340
341 if (!(task->ptrace & PT_DTRACE))
342 return 0;
343
344 if (task->thread.singlestep_syscall)
345 return 1;
346
347 return 2;
348 }
349
350 /*
351 * Only x86 and x86_64 have an arch_align_stack().
352 * All other arches have "#define arch_align_stack(x) (x)"
353 * in their asm/exec.h
354 * As this is included in UML from asm-um/system-generic.h,
355 * we can use it to behave as the subarch does.
356 */
357 #ifndef arch_align_stack
arch_align_stack(unsigned long sp)358 unsigned long arch_align_stack(unsigned long sp)
359 {
360 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
361 sp -= get_random_int() % 8192;
362 return sp & ~0xf;
363 }
364 #endif
365
get_wchan(struct task_struct * p)366 unsigned long get_wchan(struct task_struct *p)
367 {
368 unsigned long stack_page, sp, ip;
369 bool seen_sched = 0;
370
371 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
372 return 0;
373
374 stack_page = (unsigned long) task_stack_page(p);
375 /* Bail if the process has no kernel stack for some reason */
376 if (stack_page == 0)
377 return 0;
378
379 sp = p->thread.switch_buf->JB_SP;
380 /*
381 * Bail if the stack pointer is below the bottom of the kernel
382 * stack for some reason
383 */
384 if (sp < stack_page)
385 return 0;
386
387 while (sp < stack_page + THREAD_SIZE) {
388 ip = *((unsigned long *) sp);
389 if (in_sched_functions(ip))
390 /* Ignore everything until we're above the scheduler */
391 seen_sched = 1;
392 else if (kernel_text_address(ip) && seen_sched)
393 return ip;
394
395 sp += sizeof(unsigned long);
396 }
397
398 return 0;
399 }
400
elf_core_copy_fpregs(struct task_struct * t,elf_fpregset_t * fpu)401 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
402 {
403 int cpu = current_thread_info()->cpu;
404
405 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
406 }
407
408