1#ifndef __ASM_SH_UNALIGNED_SH4A_H
2#define __ASM_SH_UNALIGNED_SH4A_H
3
4/*
5 * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only.
6 * Support for 64-bit accesses are done through shifting and masking
7 * relative to the endianness. Unaligned stores are not supported by the
8 * instruction encoding, so these continue to use the packed
9 * struct.
10 *
11 * The same note as with the movli.l/movco.l pair applies here, as long
12 * as the load is guaranteed to be inlined, nothing else will hook in to
13 * r0 and we get the return value for free.
14 *
15 * NOTE: Due to the fact we require r0 encoding, care should be taken to
16 * avoid mixing these heavily with other r0 consumers, such as the atomic
17 * ops. Failure to adhere to this can result in the compiler running out
18 * of spill registers and blowing up when building at low optimization
19 * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777.
20 */
21#include <linux/unaligned/packed_struct.h>
22#include <linux/types.h>
23#include <asm/byteorder.h>
24
25static inline u16 sh4a_get_unaligned_cpu16(const u8 *p)
26{
27#ifdef __LITTLE_ENDIAN
28	return p[0] | p[1] << 8;
29#else
30	return p[0] << 8 | p[1];
31#endif
32}
33
34static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p)
35{
36	unsigned long unaligned;
37
38	__asm__ __volatile__ (
39		"movua.l	@%1, %0\n\t"
40		 : "=z" (unaligned)
41		 : "r" (p)
42	);
43
44	return unaligned;
45}
46
47/*
48 * Even though movua.l supports auto-increment on the read side, it can
49 * only store to r0 due to instruction encoding constraints, so just let
50 * the compiler sort it out on its own.
51 */
52static inline u64 sh4a_get_unaligned_cpu64(const u8 *p)
53{
54#ifdef __LITTLE_ENDIAN
55	return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 |
56		    sh4a_get_unaligned_cpu32(p);
57#else
58	return (u64)sh4a_get_unaligned_cpu32(p) << 32 |
59		    sh4a_get_unaligned_cpu32(p + 4);
60#endif
61}
62
63static inline u16 get_unaligned_le16(const void *p)
64{
65	return le16_to_cpu(sh4a_get_unaligned_cpu16(p));
66}
67
68static inline u32 get_unaligned_le32(const void *p)
69{
70	return le32_to_cpu(sh4a_get_unaligned_cpu32(p));
71}
72
73static inline u64 get_unaligned_le64(const void *p)
74{
75	return le64_to_cpu(sh4a_get_unaligned_cpu64(p));
76}
77
78static inline u16 get_unaligned_be16(const void *p)
79{
80	return be16_to_cpu(sh4a_get_unaligned_cpu16(p));
81}
82
83static inline u32 get_unaligned_be32(const void *p)
84{
85	return be32_to_cpu(sh4a_get_unaligned_cpu32(p));
86}
87
88static inline u64 get_unaligned_be64(const void *p)
89{
90	return be64_to_cpu(sh4a_get_unaligned_cpu64(p));
91}
92
93static inline void nonnative_put_le16(u16 val, u8 *p)
94{
95	*p++ = val;
96	*p++ = val >> 8;
97}
98
99static inline void nonnative_put_le32(u32 val, u8 *p)
100{
101	nonnative_put_le16(val, p);
102	nonnative_put_le16(val >> 16, p + 2);
103}
104
105static inline void nonnative_put_le64(u64 val, u8 *p)
106{
107	nonnative_put_le32(val, p);
108	nonnative_put_le32(val >> 32, p + 4);
109}
110
111static inline void nonnative_put_be16(u16 val, u8 *p)
112{
113	*p++ = val >> 8;
114	*p++ = val;
115}
116
117static inline void nonnative_put_be32(u32 val, u8 *p)
118{
119	nonnative_put_be16(val >> 16, p);
120	nonnative_put_be16(val, p + 2);
121}
122
123static inline void nonnative_put_be64(u64 val, u8 *p)
124{
125	nonnative_put_be32(val >> 32, p);
126	nonnative_put_be32(val, p + 4);
127}
128
129static inline void put_unaligned_le16(u16 val, void *p)
130{
131#ifdef __LITTLE_ENDIAN
132	__put_unaligned_cpu16(val, p);
133#else
134	nonnative_put_le16(val, p);
135#endif
136}
137
138static inline void put_unaligned_le32(u32 val, void *p)
139{
140#ifdef __LITTLE_ENDIAN
141	__put_unaligned_cpu32(val, p);
142#else
143	nonnative_put_le32(val, p);
144#endif
145}
146
147static inline void put_unaligned_le64(u64 val, void *p)
148{
149#ifdef __LITTLE_ENDIAN
150	__put_unaligned_cpu64(val, p);
151#else
152	nonnative_put_le64(val, p);
153#endif
154}
155
156static inline void put_unaligned_be16(u16 val, void *p)
157{
158#ifdef __BIG_ENDIAN
159	__put_unaligned_cpu16(val, p);
160#else
161	nonnative_put_be16(val, p);
162#endif
163}
164
165static inline void put_unaligned_be32(u32 val, void *p)
166{
167#ifdef __BIG_ENDIAN
168	__put_unaligned_cpu32(val, p);
169#else
170	nonnative_put_be32(val, p);
171#endif
172}
173
174static inline void put_unaligned_be64(u64 val, void *p)
175{
176#ifdef __BIG_ENDIAN
177	__put_unaligned_cpu64(val, p);
178#else
179	nonnative_put_be64(val, p);
180#endif
181}
182
183/*
184 * While it's a bit non-obvious, even though the generic le/be wrappers
185 * use the __get/put_xxx prefixing, they actually wrap in to the
186 * non-prefixed get/put_xxx variants as provided above.
187 */
188#include <linux/unaligned/generic.h>
189
190#ifdef __LITTLE_ENDIAN
191# define get_unaligned __get_unaligned_le
192# define put_unaligned __put_unaligned_le
193#else
194# define get_unaligned __get_unaligned_be
195# define put_unaligned __put_unaligned_be
196#endif
197
198#endif /* __ASM_SH_UNALIGNED_SH4A_H */
199