1 /*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
update_cr_regs(struct task_struct * task)41 void update_cr_regs(struct task_struct *task)
42 {
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46
47 /* Take care of the enable/disable of transactional execution. */
48 if (MACHINE_HAS_TE) {
49 unsigned long cr, cr_new;
50
51 __ctl_store(cr, 0, 0);
52 /* Set or clear transaction execution TXC bit 8. */
53 cr_new = cr | (1UL << 55);
54 if (task->thread.per_flags & PER_FLAG_NO_TE)
55 cr_new &= ~(1UL << 55);
56 if (cr_new != cr)
57 __ctl_load(cr_new, 0, 0);
58 /* Set or clear transaction execution TDC bits 62 and 63. */
59 __ctl_store(cr, 2, 2);
60 cr_new = cr & ~3UL;
61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63 cr_new |= 1UL;
64 else
65 cr_new |= 2UL;
66 }
67 if (cr_new != cr)
68 __ctl_load(cr_new, 2, 2);
69 }
70 /* Copy user specified PER registers */
71 new.control = thread->per_user.control;
72 new.start = thread->per_user.start;
73 new.end = thread->per_user.end;
74
75 /* merge TIF_SINGLE_STEP into user specified PER registers. */
76 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79 new.control |= PER_EVENT_BRANCH;
80 else
81 new.control |= PER_EVENT_IFETCH;
82 new.control |= PER_CONTROL_SUSPENSION;
83 new.control |= PER_EVENT_TRANSACTION_END;
84 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85 new.control |= PER_EVENT_IFETCH;
86 new.start = 0;
87 new.end = PSW_ADDR_INSN;
88 }
89
90 /* Take care of the PER enablement bit in the PSW. */
91 if (!(new.control & PER_EVENT_MASK)) {
92 regs->psw.mask &= ~PSW_MASK_PER;
93 return;
94 }
95 regs->psw.mask |= PSW_MASK_PER;
96 __ctl_store(old, 9, 11);
97 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98 __ctl_load(new, 9, 11);
99 }
100
user_enable_single_step(struct task_struct * task)101 void user_enable_single_step(struct task_struct *task)
102 {
103 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
105 }
106
user_disable_single_step(struct task_struct * task)107 void user_disable_single_step(struct task_struct *task)
108 {
109 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
111 }
112
user_enable_block_step(struct task_struct * task)113 void user_enable_block_step(struct task_struct *task)
114 {
115 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
117 }
118
119 /*
120 * Called by kernel/ptrace.c when detaching..
121 *
122 * Clear all debugging related fields.
123 */
ptrace_disable(struct task_struct * task)124 void ptrace_disable(struct task_struct *task)
125 {
126 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130 task->thread.per_flags = 0;
131 }
132
133 #define __ADDR_MASK 7
134
__peek_user_per(struct task_struct * child,addr_t addr)135 static inline unsigned long __peek_user_per(struct task_struct *child,
136 addr_t addr)
137 {
138 struct per_struct_kernel *dummy = NULL;
139
140 if (addr == (addr_t) &dummy->cr9)
141 /* Control bits of the active per set. */
142 return test_thread_flag(TIF_SINGLE_STEP) ?
143 PER_EVENT_IFETCH : child->thread.per_user.control;
144 else if (addr == (addr_t) &dummy->cr10)
145 /* Start address of the active per set. */
146 return test_thread_flag(TIF_SINGLE_STEP) ?
147 0 : child->thread.per_user.start;
148 else if (addr == (addr_t) &dummy->cr11)
149 /* End address of the active per set. */
150 return test_thread_flag(TIF_SINGLE_STEP) ?
151 PSW_ADDR_INSN : child->thread.per_user.end;
152 else if (addr == (addr_t) &dummy->bits)
153 /* Single-step bit. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 (1UL << (BITS_PER_LONG - 1)) : 0;
156 else if (addr == (addr_t) &dummy->starting_addr)
157 /* Start address of the user specified per set. */
158 return child->thread.per_user.start;
159 else if (addr == (addr_t) &dummy->ending_addr)
160 /* End address of the user specified per set. */
161 return child->thread.per_user.end;
162 else if (addr == (addr_t) &dummy->perc_atmid)
163 /* PER code, ATMID and AI of the last PER trap */
164 return (unsigned long)
165 child->thread.per_event.cause << (BITS_PER_LONG - 16);
166 else if (addr == (addr_t) &dummy->address)
167 /* Address of the last PER trap */
168 return child->thread.per_event.address;
169 else if (addr == (addr_t) &dummy->access_id)
170 /* Access id of the last PER trap */
171 return (unsigned long)
172 child->thread.per_event.paid << (BITS_PER_LONG - 8);
173 return 0;
174 }
175
176 /*
177 * Read the word at offset addr from the user area of a process. The
178 * trouble here is that the information is littered over different
179 * locations. The process registers are found on the kernel stack,
180 * the floating point stuff and the trace settings are stored in
181 * the task structure. In addition the different structures in
182 * struct user contain pad bytes that should be read as zeroes.
183 * Lovely...
184 */
__peek_user(struct task_struct * child,addr_t addr)185 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
186 {
187 struct user *dummy = NULL;
188 addr_t offset, tmp;
189
190 if (addr < (addr_t) &dummy->regs.acrs) {
191 /*
192 * psw and gprs are stored on the stack
193 */
194 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195 if (addr == (addr_t) &dummy->regs.psw.mask) {
196 /* Return a clean psw mask. */
197 tmp &= PSW_MASK_USER | PSW_MASK_RI;
198 tmp |= PSW_USER_BITS;
199 }
200
201 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
202 /*
203 * access registers are stored in the thread structure
204 */
205 offset = addr - (addr_t) &dummy->regs.acrs;
206 /*
207 * Very special case: old & broken 64 bit gdb reading
208 * from acrs[15]. Result is a 64 bit value. Read the
209 * 32 bit acrs[15] value and shift it by 32. Sick...
210 */
211 if (addr == (addr_t) &dummy->regs.acrs[15])
212 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213 else
214 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
215
216 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
217 /*
218 * orig_gpr2 is stored on the kernel stack
219 */
220 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
221
222 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
223 /*
224 * prevent reads of padding hole between
225 * orig_gpr2 and fp_regs on s390.
226 */
227 tmp = 0;
228
229 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
230 /*
231 * floating point control reg. is in the thread structure
232 */
233 tmp = child->thread.fpu.fpc;
234 tmp <<= BITS_PER_LONG - 32;
235
236 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
237 /*
238 * floating point regs. are either in child->thread.fpu
239 * or the child->thread.fpu.vxrs array
240 */
241 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242 if (MACHINE_HAS_VX)
243 tmp = *(addr_t *)
244 ((addr_t) child->thread.fpu.vxrs + 2*offset);
245 else
246 tmp = *(addr_t *)
247 ((addr_t) child->thread.fpu.fprs + offset);
248
249 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
250 /*
251 * Handle access to the per_info structure.
252 */
253 addr -= (addr_t) &dummy->regs.per_info;
254 tmp = __peek_user_per(child, addr);
255
256 } else
257 tmp = 0;
258
259 return tmp;
260 }
261
262 static int
peek_user(struct task_struct * child,addr_t addr,addr_t data)263 peek_user(struct task_struct *child, addr_t addr, addr_t data)
264 {
265 addr_t tmp, mask;
266
267 /*
268 * Stupid gdb peeks/pokes the access registers in 64 bit with
269 * an alignment of 4. Programmers from hell...
270 */
271 mask = __ADDR_MASK;
272 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274 mask = 3;
275 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276 return -EIO;
277
278 tmp = __peek_user(child, addr);
279 return put_user(tmp, (addr_t __user *) data);
280 }
281
__poke_user_per(struct task_struct * child,addr_t addr,addr_t data)282 static inline void __poke_user_per(struct task_struct *child,
283 addr_t addr, addr_t data)
284 {
285 struct per_struct_kernel *dummy = NULL;
286
287 /*
288 * There are only three fields in the per_info struct that the
289 * debugger user can write to.
290 * 1) cr9: the debugger wants to set a new PER event mask
291 * 2) starting_addr: the debugger wants to set a new starting
292 * address to use with the PER event mask.
293 * 3) ending_addr: the debugger wants to set a new ending
294 * address to use with the PER event mask.
295 * The user specified PER event mask and the start and end
296 * addresses are used only if single stepping is not in effect.
297 * Writes to any other field in per_info are ignored.
298 */
299 if (addr == (addr_t) &dummy->cr9)
300 /* PER event mask of the user specified per set. */
301 child->thread.per_user.control =
302 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303 else if (addr == (addr_t) &dummy->starting_addr)
304 /* Starting address of the user specified per set. */
305 child->thread.per_user.start = data;
306 else if (addr == (addr_t) &dummy->ending_addr)
307 /* Ending address of the user specified per set. */
308 child->thread.per_user.end = data;
309 }
310
311 /*
312 * Write a word to the user area of a process at location addr. This
313 * operation does have an additional problem compared to peek_user.
314 * Stores to the program status word and on the floating point
315 * control register needs to get checked for validity.
316 */
__poke_user(struct task_struct * child,addr_t addr,addr_t data)317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
318 {
319 struct user *dummy = NULL;
320 addr_t offset;
321
322 if (addr < (addr_t) &dummy->regs.acrs) {
323 /*
324 * psw and gprs are stored on the stack
325 */
326 if (addr == (addr_t) &dummy->regs.psw.mask) {
327 unsigned long mask = PSW_MASK_USER;
328
329 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330 if ((data ^ PSW_USER_BITS) & ~mask)
331 /* Invalid psw mask. */
332 return -EINVAL;
333 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334 /* Invalid address-space-control bits */
335 return -EINVAL;
336 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337 /* Invalid addressing mode bits */
338 return -EINVAL;
339 }
340 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
341
342 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
343 /*
344 * access registers are stored in the thread structure
345 */
346 offset = addr - (addr_t) &dummy->regs.acrs;
347 /*
348 * Very special case: old & broken 64 bit gdb writing
349 * to acrs[15] with a 64 bit value. Ignore the lower
350 * half of the value and write the upper 32 bit to
351 * acrs[15]. Sick...
352 */
353 if (addr == (addr_t) &dummy->regs.acrs[15])
354 child->thread.acrs[15] = (unsigned int) (data >> 32);
355 else
356 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
357
358 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
359 /*
360 * orig_gpr2 is stored on the kernel stack
361 */
362 task_pt_regs(child)->orig_gpr2 = data;
363
364 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
365 /*
366 * prevent writes of padding hole between
367 * orig_gpr2 and fp_regs on s390.
368 */
369 return 0;
370
371 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
372 /*
373 * floating point control reg. is in the thread structure
374 */
375 if ((unsigned int) data != 0 ||
376 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377 return -EINVAL;
378 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
379
380 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381 /*
382 * floating point regs. are either in child->thread.fpu
383 * or the child->thread.fpu.vxrs array
384 */
385 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386 if (MACHINE_HAS_VX)
387 *(addr_t *)((addr_t)
388 child->thread.fpu.vxrs + 2*offset) = data;
389 else
390 *(addr_t *)((addr_t)
391 child->thread.fpu.fprs + offset) = data;
392
393 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
394 /*
395 * Handle access to the per_info structure.
396 */
397 addr -= (addr_t) &dummy->regs.per_info;
398 __poke_user_per(child, addr, data);
399
400 }
401
402 return 0;
403 }
404
poke_user(struct task_struct * child,addr_t addr,addr_t data)405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
406 {
407 addr_t mask;
408
409 /*
410 * Stupid gdb peeks/pokes the access registers in 64 bit with
411 * an alignment of 4. Programmers from hell indeed...
412 */
413 mask = __ADDR_MASK;
414 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416 mask = 3;
417 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418 return -EIO;
419
420 return __poke_user(child, addr, data);
421 }
422
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)423 long arch_ptrace(struct task_struct *child, long request,
424 unsigned long addr, unsigned long data)
425 {
426 ptrace_area parea;
427 int copied, ret;
428
429 switch (request) {
430 case PTRACE_PEEKUSR:
431 /* read the word at location addr in the USER area. */
432 return peek_user(child, addr, data);
433
434 case PTRACE_POKEUSR:
435 /* write the word at location addr in the USER area */
436 return poke_user(child, addr, data);
437
438 case PTRACE_PEEKUSR_AREA:
439 case PTRACE_POKEUSR_AREA:
440 if (copy_from_user(&parea, (void __force __user *) addr,
441 sizeof(parea)))
442 return -EFAULT;
443 addr = parea.kernel_addr;
444 data = parea.process_addr;
445 copied = 0;
446 while (copied < parea.len) {
447 if (request == PTRACE_PEEKUSR_AREA)
448 ret = peek_user(child, addr, data);
449 else {
450 addr_t utmp;
451 if (get_user(utmp,
452 (addr_t __force __user *) data))
453 return -EFAULT;
454 ret = poke_user(child, addr, utmp);
455 }
456 if (ret)
457 return ret;
458 addr += sizeof(unsigned long);
459 data += sizeof(unsigned long);
460 copied += sizeof(unsigned long);
461 }
462 return 0;
463 case PTRACE_GET_LAST_BREAK:
464 put_user(task_thread_info(child)->last_break,
465 (unsigned long __user *) data);
466 return 0;
467 case PTRACE_ENABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471 return 0;
472 case PTRACE_DISABLE_TE:
473 if (!MACHINE_HAS_TE)
474 return -EIO;
475 child->thread.per_flags |= PER_FLAG_NO_TE;
476 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477 return 0;
478 case PTRACE_TE_ABORT_RAND:
479 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480 return -EIO;
481 switch (data) {
482 case 0UL:
483 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484 break;
485 case 1UL:
486 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488 break;
489 case 2UL:
490 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492 break;
493 default:
494 return -EINVAL;
495 }
496 return 0;
497 default:
498 /* Removing high order bit from addr (only for 31 bit). */
499 addr &= PSW_ADDR_INSN;
500 return ptrace_request(child, request, addr, data);
501 }
502 }
503
504 #ifdef CONFIG_COMPAT
505 /*
506 * Now the fun part starts... a 31 bit program running in the
507 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
508 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
509 * to handle, the difference to the 64 bit versions of the requests
510 * is that the access is done in multiples of 4 byte instead of
511 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
512 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
513 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
514 * is a 31 bit program too, the content of struct user can be
515 * emulated. A 31 bit program peeking into the struct user of
516 * a 64 bit program is a no-no.
517 */
518
519 /*
520 * Same as peek_user_per but for a 31 bit program.
521 */
__peek_user_per_compat(struct task_struct * child,addr_t addr)522 static inline __u32 __peek_user_per_compat(struct task_struct *child,
523 addr_t addr)
524 {
525 struct compat_per_struct_kernel *dummy32 = NULL;
526
527 if (addr == (addr_t) &dummy32->cr9)
528 /* Control bits of the active per set. */
529 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
530 PER_EVENT_IFETCH : child->thread.per_user.control;
531 else if (addr == (addr_t) &dummy32->cr10)
532 /* Start address of the active per set. */
533 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
534 0 : child->thread.per_user.start;
535 else if (addr == (addr_t) &dummy32->cr11)
536 /* End address of the active per set. */
537 return test_thread_flag(TIF_SINGLE_STEP) ?
538 PSW32_ADDR_INSN : child->thread.per_user.end;
539 else if (addr == (addr_t) &dummy32->bits)
540 /* Single-step bit. */
541 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
542 0x80000000 : 0;
543 else if (addr == (addr_t) &dummy32->starting_addr)
544 /* Start address of the user specified per set. */
545 return (__u32) child->thread.per_user.start;
546 else if (addr == (addr_t) &dummy32->ending_addr)
547 /* End address of the user specified per set. */
548 return (__u32) child->thread.per_user.end;
549 else if (addr == (addr_t) &dummy32->perc_atmid)
550 /* PER code, ATMID and AI of the last PER trap */
551 return (__u32) child->thread.per_event.cause << 16;
552 else if (addr == (addr_t) &dummy32->address)
553 /* Address of the last PER trap */
554 return (__u32) child->thread.per_event.address;
555 else if (addr == (addr_t) &dummy32->access_id)
556 /* Access id of the last PER trap */
557 return (__u32) child->thread.per_event.paid << 24;
558 return 0;
559 }
560
561 /*
562 * Same as peek_user but for a 31 bit program.
563 */
__peek_user_compat(struct task_struct * child,addr_t addr)564 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
565 {
566 struct compat_user *dummy32 = NULL;
567 addr_t offset;
568 __u32 tmp;
569
570 if (addr < (addr_t) &dummy32->regs.acrs) {
571 struct pt_regs *regs = task_pt_regs(child);
572 /*
573 * psw and gprs are stored on the stack
574 */
575 if (addr == (addr_t) &dummy32->regs.psw.mask) {
576 /* Fake a 31 bit psw mask. */
577 tmp = (__u32)(regs->psw.mask >> 32);
578 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
579 tmp |= PSW32_USER_BITS;
580 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
581 /* Fake a 31 bit psw address. */
582 tmp = (__u32) regs->psw.addr |
583 (__u32)(regs->psw.mask & PSW_MASK_BA);
584 } else {
585 /* gpr 0-15 */
586 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
587 }
588 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
589 /*
590 * access registers are stored in the thread structure
591 */
592 offset = addr - (addr_t) &dummy32->regs.acrs;
593 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
594
595 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
596 /*
597 * orig_gpr2 is stored on the kernel stack
598 */
599 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
600
601 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
602 /*
603 * prevent reads of padding hole between
604 * orig_gpr2 and fp_regs on s390.
605 */
606 tmp = 0;
607
608 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
609 /*
610 * floating point control reg. is in the thread structure
611 */
612 tmp = child->thread.fpu.fpc;
613
614 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
615 /*
616 * floating point regs. are either in child->thread.fpu
617 * or the child->thread.fpu.vxrs array
618 */
619 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
620 if (MACHINE_HAS_VX)
621 tmp = *(__u32 *)
622 ((addr_t) child->thread.fpu.vxrs + 2*offset);
623 else
624 tmp = *(__u32 *)
625 ((addr_t) child->thread.fpu.fprs + offset);
626
627 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
628 /*
629 * Handle access to the per_info structure.
630 */
631 addr -= (addr_t) &dummy32->regs.per_info;
632 tmp = __peek_user_per_compat(child, addr);
633
634 } else
635 tmp = 0;
636
637 return tmp;
638 }
639
peek_user_compat(struct task_struct * child,addr_t addr,addr_t data)640 static int peek_user_compat(struct task_struct *child,
641 addr_t addr, addr_t data)
642 {
643 __u32 tmp;
644
645 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
646 return -EIO;
647
648 tmp = __peek_user_compat(child, addr);
649 return put_user(tmp, (__u32 __user *) data);
650 }
651
652 /*
653 * Same as poke_user_per but for a 31 bit program.
654 */
__poke_user_per_compat(struct task_struct * child,addr_t addr,__u32 data)655 static inline void __poke_user_per_compat(struct task_struct *child,
656 addr_t addr, __u32 data)
657 {
658 struct compat_per_struct_kernel *dummy32 = NULL;
659
660 if (addr == (addr_t) &dummy32->cr9)
661 /* PER event mask of the user specified per set. */
662 child->thread.per_user.control =
663 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
664 else if (addr == (addr_t) &dummy32->starting_addr)
665 /* Starting address of the user specified per set. */
666 child->thread.per_user.start = data;
667 else if (addr == (addr_t) &dummy32->ending_addr)
668 /* Ending address of the user specified per set. */
669 child->thread.per_user.end = data;
670 }
671
672 /*
673 * Same as poke_user but for a 31 bit program.
674 */
__poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)675 static int __poke_user_compat(struct task_struct *child,
676 addr_t addr, addr_t data)
677 {
678 struct compat_user *dummy32 = NULL;
679 __u32 tmp = (__u32) data;
680 addr_t offset;
681
682 if (addr < (addr_t) &dummy32->regs.acrs) {
683 struct pt_regs *regs = task_pt_regs(child);
684 /*
685 * psw, gprs, acrs and orig_gpr2 are stored on the stack
686 */
687 if (addr == (addr_t) &dummy32->regs.psw.mask) {
688 __u32 mask = PSW32_MASK_USER;
689
690 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
691 /* Build a 64 bit psw mask from 31 bit mask. */
692 if ((tmp ^ PSW32_USER_BITS) & ~mask)
693 /* Invalid psw mask. */
694 return -EINVAL;
695 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
696 /* Invalid address-space-control bits */
697 return -EINVAL;
698 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
699 (regs->psw.mask & PSW_MASK_BA) |
700 (__u64)(tmp & mask) << 32;
701 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
702 /* Build a 64 bit psw address from 31 bit address. */
703 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
704 /* Transfer 31 bit amode bit to psw mask. */
705 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
706 (__u64)(tmp & PSW32_ADDR_AMODE);
707 } else {
708 /* gpr 0-15 */
709 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
710 }
711 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
712 /*
713 * access registers are stored in the thread structure
714 */
715 offset = addr - (addr_t) &dummy32->regs.acrs;
716 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
717
718 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
719 /*
720 * orig_gpr2 is stored on the kernel stack
721 */
722 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
723
724 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
725 /*
726 * prevent writess of padding hole between
727 * orig_gpr2 and fp_regs on s390.
728 */
729 return 0;
730
731 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
732 /*
733 * floating point control reg. is in the thread structure
734 */
735 if (test_fp_ctl(tmp))
736 return -EINVAL;
737 child->thread.fpu.fpc = data;
738
739 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
740 /*
741 * floating point regs. are either in child->thread.fpu
742 * or the child->thread.fpu.vxrs array
743 */
744 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
745 if (MACHINE_HAS_VX)
746 *(__u32 *)((addr_t)
747 child->thread.fpu.vxrs + 2*offset) = tmp;
748 else
749 *(__u32 *)((addr_t)
750 child->thread.fpu.fprs + offset) = tmp;
751
752 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
753 /*
754 * Handle access to the per_info structure.
755 */
756 addr -= (addr_t) &dummy32->regs.per_info;
757 __poke_user_per_compat(child, addr, data);
758 }
759
760 return 0;
761 }
762
poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)763 static int poke_user_compat(struct task_struct *child,
764 addr_t addr, addr_t data)
765 {
766 if (!is_compat_task() || (addr & 3) ||
767 addr > sizeof(struct compat_user) - 3)
768 return -EIO;
769
770 return __poke_user_compat(child, addr, data);
771 }
772
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)773 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
774 compat_ulong_t caddr, compat_ulong_t cdata)
775 {
776 unsigned long addr = caddr;
777 unsigned long data = cdata;
778 compat_ptrace_area parea;
779 int copied, ret;
780
781 switch (request) {
782 case PTRACE_PEEKUSR:
783 /* read the word at location addr in the USER area. */
784 return peek_user_compat(child, addr, data);
785
786 case PTRACE_POKEUSR:
787 /* write the word at location addr in the USER area */
788 return poke_user_compat(child, addr, data);
789
790 case PTRACE_PEEKUSR_AREA:
791 case PTRACE_POKEUSR_AREA:
792 if (copy_from_user(&parea, (void __force __user *) addr,
793 sizeof(parea)))
794 return -EFAULT;
795 addr = parea.kernel_addr;
796 data = parea.process_addr;
797 copied = 0;
798 while (copied < parea.len) {
799 if (request == PTRACE_PEEKUSR_AREA)
800 ret = peek_user_compat(child, addr, data);
801 else {
802 __u32 utmp;
803 if (get_user(utmp,
804 (__u32 __force __user *) data))
805 return -EFAULT;
806 ret = poke_user_compat(child, addr, utmp);
807 }
808 if (ret)
809 return ret;
810 addr += sizeof(unsigned int);
811 data += sizeof(unsigned int);
812 copied += sizeof(unsigned int);
813 }
814 return 0;
815 case PTRACE_GET_LAST_BREAK:
816 put_user(task_thread_info(child)->last_break,
817 (unsigned int __user *) data);
818 return 0;
819 }
820 return compat_ptrace_request(child, request, addr, data);
821 }
822 #endif
823
do_syscall_trace_enter(struct pt_regs * regs)824 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
825 {
826 long ret = 0;
827
828 /* Do the secure computing check first. */
829 if (secure_computing()) {
830 /* seccomp failures shouldn't expose any additional code. */
831 ret = -1;
832 goto out;
833 }
834
835 /*
836 * The sysc_tracesys code in entry.S stored the system
837 * call number to gprs[2].
838 */
839 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
840 (tracehook_report_syscall_entry(regs) ||
841 regs->gprs[2] >= NR_syscalls)) {
842 /*
843 * Tracing decided this syscall should not happen or the
844 * debugger stored an invalid system call number. Skip
845 * the system call and the system call restart handling.
846 */
847 clear_pt_regs_flag(regs, PIF_SYSCALL);
848 ret = -1;
849 }
850
851 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
852 trace_sys_enter(regs, regs->gprs[2]);
853
854 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
855 regs->gprs[3], regs->gprs[4],
856 regs->gprs[5]);
857 out:
858 return ret ?: regs->gprs[2];
859 }
860
do_syscall_trace_exit(struct pt_regs * regs)861 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
862 {
863 audit_syscall_exit(regs);
864
865 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
866 trace_sys_exit(regs, regs->gprs[2]);
867
868 if (test_thread_flag(TIF_SYSCALL_TRACE))
869 tracehook_report_syscall_exit(regs, 0);
870 }
871
872 /*
873 * user_regset definitions.
874 */
875
s390_regs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)876 static int s390_regs_get(struct task_struct *target,
877 const struct user_regset *regset,
878 unsigned int pos, unsigned int count,
879 void *kbuf, void __user *ubuf)
880 {
881 if (target == current)
882 save_access_regs(target->thread.acrs);
883
884 if (kbuf) {
885 unsigned long *k = kbuf;
886 while (count > 0) {
887 *k++ = __peek_user(target, pos);
888 count -= sizeof(*k);
889 pos += sizeof(*k);
890 }
891 } else {
892 unsigned long __user *u = ubuf;
893 while (count > 0) {
894 if (__put_user(__peek_user(target, pos), u++))
895 return -EFAULT;
896 count -= sizeof(*u);
897 pos += sizeof(*u);
898 }
899 }
900 return 0;
901 }
902
s390_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)903 static int s390_regs_set(struct task_struct *target,
904 const struct user_regset *regset,
905 unsigned int pos, unsigned int count,
906 const void *kbuf, const void __user *ubuf)
907 {
908 int rc = 0;
909
910 if (target == current)
911 save_access_regs(target->thread.acrs);
912
913 if (kbuf) {
914 const unsigned long *k = kbuf;
915 while (count > 0 && !rc) {
916 rc = __poke_user(target, pos, *k++);
917 count -= sizeof(*k);
918 pos += sizeof(*k);
919 }
920 } else {
921 const unsigned long __user *u = ubuf;
922 while (count > 0 && !rc) {
923 unsigned long word;
924 rc = __get_user(word, u++);
925 if (rc)
926 break;
927 rc = __poke_user(target, pos, word);
928 count -= sizeof(*u);
929 pos += sizeof(*u);
930 }
931 }
932
933 if (rc == 0 && target == current)
934 restore_access_regs(target->thread.acrs);
935
936 return rc;
937 }
938
s390_fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)939 static int s390_fpregs_get(struct task_struct *target,
940 const struct user_regset *regset, unsigned int pos,
941 unsigned int count, void *kbuf, void __user *ubuf)
942 {
943 _s390_fp_regs fp_regs;
944
945 if (target == current)
946 save_fpu_regs();
947
948 fp_regs.fpc = target->thread.fpu.fpc;
949 fpregs_store(&fp_regs, &target->thread.fpu);
950
951 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
952 &fp_regs, 0, -1);
953 }
954
s390_fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)955 static int s390_fpregs_set(struct task_struct *target,
956 const struct user_regset *regset, unsigned int pos,
957 unsigned int count, const void *kbuf,
958 const void __user *ubuf)
959 {
960 int rc = 0;
961 freg_t fprs[__NUM_FPRS];
962
963 if (target == current)
964 save_fpu_regs();
965
966 /* If setting FPC, must validate it first. */
967 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
968 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
969 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
970 0, offsetof(s390_fp_regs, fprs));
971 if (rc)
972 return rc;
973 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
974 return -EINVAL;
975 target->thread.fpu.fpc = ufpc[0];
976 }
977
978 if (rc == 0 && count > 0)
979 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
980 fprs, offsetof(s390_fp_regs, fprs), -1);
981 if (rc)
982 return rc;
983
984 if (MACHINE_HAS_VX)
985 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
986 else
987 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
988
989 return rc;
990 }
991
s390_last_break_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)992 static int s390_last_break_get(struct task_struct *target,
993 const struct user_regset *regset,
994 unsigned int pos, unsigned int count,
995 void *kbuf, void __user *ubuf)
996 {
997 if (count > 0) {
998 if (kbuf) {
999 unsigned long *k = kbuf;
1000 *k = task_thread_info(target)->last_break;
1001 } else {
1002 unsigned long __user *u = ubuf;
1003 if (__put_user(task_thread_info(target)->last_break, u))
1004 return -EFAULT;
1005 }
1006 }
1007 return 0;
1008 }
1009
s390_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1010 static int s390_last_break_set(struct task_struct *target,
1011 const struct user_regset *regset,
1012 unsigned int pos, unsigned int count,
1013 const void *kbuf, const void __user *ubuf)
1014 {
1015 return 0;
1016 }
1017
s390_tdb_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1018 static int s390_tdb_get(struct task_struct *target,
1019 const struct user_regset *regset,
1020 unsigned int pos, unsigned int count,
1021 void *kbuf, void __user *ubuf)
1022 {
1023 struct pt_regs *regs = task_pt_regs(target);
1024 unsigned char *data;
1025
1026 if (!(regs->int_code & 0x200))
1027 return -ENODATA;
1028 data = target->thread.trap_tdb;
1029 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1030 }
1031
s390_tdb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1032 static int s390_tdb_set(struct task_struct *target,
1033 const struct user_regset *regset,
1034 unsigned int pos, unsigned int count,
1035 const void *kbuf, const void __user *ubuf)
1036 {
1037 return 0;
1038 }
1039
s390_vxrs_low_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1040 static int s390_vxrs_low_get(struct task_struct *target,
1041 const struct user_regset *regset,
1042 unsigned int pos, unsigned int count,
1043 void *kbuf, void __user *ubuf)
1044 {
1045 __u64 vxrs[__NUM_VXRS_LOW];
1046 int i;
1047
1048 if (!MACHINE_HAS_VX)
1049 return -ENODEV;
1050 if (target == current)
1051 save_fpu_regs();
1052 for (i = 0; i < __NUM_VXRS_LOW; i++)
1053 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1054 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1055 }
1056
s390_vxrs_low_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1057 static int s390_vxrs_low_set(struct task_struct *target,
1058 const struct user_regset *regset,
1059 unsigned int pos, unsigned int count,
1060 const void *kbuf, const void __user *ubuf)
1061 {
1062 __u64 vxrs[__NUM_VXRS_LOW];
1063 int i, rc;
1064
1065 if (!MACHINE_HAS_VX)
1066 return -ENODEV;
1067 if (target == current)
1068 save_fpu_regs();
1069
1070 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1071 if (rc == 0)
1072 for (i = 0; i < __NUM_VXRS_LOW; i++)
1073 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1074
1075 return rc;
1076 }
1077
s390_vxrs_high_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1078 static int s390_vxrs_high_get(struct task_struct *target,
1079 const struct user_regset *regset,
1080 unsigned int pos, unsigned int count,
1081 void *kbuf, void __user *ubuf)
1082 {
1083 __vector128 vxrs[__NUM_VXRS_HIGH];
1084
1085 if (!MACHINE_HAS_VX)
1086 return -ENODEV;
1087 if (target == current)
1088 save_fpu_regs();
1089 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1090
1091 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1092 }
1093
s390_vxrs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1094 static int s390_vxrs_high_set(struct task_struct *target,
1095 const struct user_regset *regset,
1096 unsigned int pos, unsigned int count,
1097 const void *kbuf, const void __user *ubuf)
1098 {
1099 int rc;
1100
1101 if (!MACHINE_HAS_VX)
1102 return -ENODEV;
1103 if (target == current)
1104 save_fpu_regs();
1105
1106 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1107 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1108 return rc;
1109 }
1110
s390_system_call_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1111 static int s390_system_call_get(struct task_struct *target,
1112 const struct user_regset *regset,
1113 unsigned int pos, unsigned int count,
1114 void *kbuf, void __user *ubuf)
1115 {
1116 unsigned int *data = &task_thread_info(target)->system_call;
1117 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1118 data, 0, sizeof(unsigned int));
1119 }
1120
s390_system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1121 static int s390_system_call_set(struct task_struct *target,
1122 const struct user_regset *regset,
1123 unsigned int pos, unsigned int count,
1124 const void *kbuf, const void __user *ubuf)
1125 {
1126 unsigned int *data = &task_thread_info(target)->system_call;
1127 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1128 data, 0, sizeof(unsigned int));
1129 }
1130
1131 static const struct user_regset s390_regsets[] = {
1132 {
1133 .core_note_type = NT_PRSTATUS,
1134 .n = sizeof(s390_regs) / sizeof(long),
1135 .size = sizeof(long),
1136 .align = sizeof(long),
1137 .get = s390_regs_get,
1138 .set = s390_regs_set,
1139 },
1140 {
1141 .core_note_type = NT_PRFPREG,
1142 .n = sizeof(s390_fp_regs) / sizeof(long),
1143 .size = sizeof(long),
1144 .align = sizeof(long),
1145 .get = s390_fpregs_get,
1146 .set = s390_fpregs_set,
1147 },
1148 {
1149 .core_note_type = NT_S390_SYSTEM_CALL,
1150 .n = 1,
1151 .size = sizeof(unsigned int),
1152 .align = sizeof(unsigned int),
1153 .get = s390_system_call_get,
1154 .set = s390_system_call_set,
1155 },
1156 {
1157 .core_note_type = NT_S390_LAST_BREAK,
1158 .n = 1,
1159 .size = sizeof(long),
1160 .align = sizeof(long),
1161 .get = s390_last_break_get,
1162 .set = s390_last_break_set,
1163 },
1164 {
1165 .core_note_type = NT_S390_TDB,
1166 .n = 1,
1167 .size = 256,
1168 .align = 1,
1169 .get = s390_tdb_get,
1170 .set = s390_tdb_set,
1171 },
1172 {
1173 .core_note_type = NT_S390_VXRS_LOW,
1174 .n = __NUM_VXRS_LOW,
1175 .size = sizeof(__u64),
1176 .align = sizeof(__u64),
1177 .get = s390_vxrs_low_get,
1178 .set = s390_vxrs_low_set,
1179 },
1180 {
1181 .core_note_type = NT_S390_VXRS_HIGH,
1182 .n = __NUM_VXRS_HIGH,
1183 .size = sizeof(__vector128),
1184 .align = sizeof(__vector128),
1185 .get = s390_vxrs_high_get,
1186 .set = s390_vxrs_high_set,
1187 },
1188 };
1189
1190 static const struct user_regset_view user_s390_view = {
1191 .name = UTS_MACHINE,
1192 .e_machine = EM_S390,
1193 .regsets = s390_regsets,
1194 .n = ARRAY_SIZE(s390_regsets)
1195 };
1196
1197 #ifdef CONFIG_COMPAT
s390_compat_regs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1198 static int s390_compat_regs_get(struct task_struct *target,
1199 const struct user_regset *regset,
1200 unsigned int pos, unsigned int count,
1201 void *kbuf, void __user *ubuf)
1202 {
1203 if (target == current)
1204 save_access_regs(target->thread.acrs);
1205
1206 if (kbuf) {
1207 compat_ulong_t *k = kbuf;
1208 while (count > 0) {
1209 *k++ = __peek_user_compat(target, pos);
1210 count -= sizeof(*k);
1211 pos += sizeof(*k);
1212 }
1213 } else {
1214 compat_ulong_t __user *u = ubuf;
1215 while (count > 0) {
1216 if (__put_user(__peek_user_compat(target, pos), u++))
1217 return -EFAULT;
1218 count -= sizeof(*u);
1219 pos += sizeof(*u);
1220 }
1221 }
1222 return 0;
1223 }
1224
s390_compat_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1225 static int s390_compat_regs_set(struct task_struct *target,
1226 const struct user_regset *regset,
1227 unsigned int pos, unsigned int count,
1228 const void *kbuf, const void __user *ubuf)
1229 {
1230 int rc = 0;
1231
1232 if (target == current)
1233 save_access_regs(target->thread.acrs);
1234
1235 if (kbuf) {
1236 const compat_ulong_t *k = kbuf;
1237 while (count > 0 && !rc) {
1238 rc = __poke_user_compat(target, pos, *k++);
1239 count -= sizeof(*k);
1240 pos += sizeof(*k);
1241 }
1242 } else {
1243 const compat_ulong_t __user *u = ubuf;
1244 while (count > 0 && !rc) {
1245 compat_ulong_t word;
1246 rc = __get_user(word, u++);
1247 if (rc)
1248 break;
1249 rc = __poke_user_compat(target, pos, word);
1250 count -= sizeof(*u);
1251 pos += sizeof(*u);
1252 }
1253 }
1254
1255 if (rc == 0 && target == current)
1256 restore_access_regs(target->thread.acrs);
1257
1258 return rc;
1259 }
1260
s390_compat_regs_high_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1261 static int s390_compat_regs_high_get(struct task_struct *target,
1262 const struct user_regset *regset,
1263 unsigned int pos, unsigned int count,
1264 void *kbuf, void __user *ubuf)
1265 {
1266 compat_ulong_t *gprs_high;
1267
1268 gprs_high = (compat_ulong_t *)
1269 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1270 if (kbuf) {
1271 compat_ulong_t *k = kbuf;
1272 while (count > 0) {
1273 *k++ = *gprs_high;
1274 gprs_high += 2;
1275 count -= sizeof(*k);
1276 }
1277 } else {
1278 compat_ulong_t __user *u = ubuf;
1279 while (count > 0) {
1280 if (__put_user(*gprs_high, u++))
1281 return -EFAULT;
1282 gprs_high += 2;
1283 count -= sizeof(*u);
1284 }
1285 }
1286 return 0;
1287 }
1288
s390_compat_regs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1289 static int s390_compat_regs_high_set(struct task_struct *target,
1290 const struct user_regset *regset,
1291 unsigned int pos, unsigned int count,
1292 const void *kbuf, const void __user *ubuf)
1293 {
1294 compat_ulong_t *gprs_high;
1295 int rc = 0;
1296
1297 gprs_high = (compat_ulong_t *)
1298 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1299 if (kbuf) {
1300 const compat_ulong_t *k = kbuf;
1301 while (count > 0) {
1302 *gprs_high = *k++;
1303 *gprs_high += 2;
1304 count -= sizeof(*k);
1305 }
1306 } else {
1307 const compat_ulong_t __user *u = ubuf;
1308 while (count > 0 && !rc) {
1309 unsigned long word;
1310 rc = __get_user(word, u++);
1311 if (rc)
1312 break;
1313 *gprs_high = word;
1314 *gprs_high += 2;
1315 count -= sizeof(*u);
1316 }
1317 }
1318
1319 return rc;
1320 }
1321
s390_compat_last_break_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1322 static int s390_compat_last_break_get(struct task_struct *target,
1323 const struct user_regset *regset,
1324 unsigned int pos, unsigned int count,
1325 void *kbuf, void __user *ubuf)
1326 {
1327 compat_ulong_t last_break;
1328
1329 if (count > 0) {
1330 last_break = task_thread_info(target)->last_break;
1331 if (kbuf) {
1332 unsigned long *k = kbuf;
1333 *k = last_break;
1334 } else {
1335 unsigned long __user *u = ubuf;
1336 if (__put_user(last_break, u))
1337 return -EFAULT;
1338 }
1339 }
1340 return 0;
1341 }
1342
s390_compat_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1343 static int s390_compat_last_break_set(struct task_struct *target,
1344 const struct user_regset *regset,
1345 unsigned int pos, unsigned int count,
1346 const void *kbuf, const void __user *ubuf)
1347 {
1348 return 0;
1349 }
1350
1351 static const struct user_regset s390_compat_regsets[] = {
1352 {
1353 .core_note_type = NT_PRSTATUS,
1354 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1355 .size = sizeof(compat_long_t),
1356 .align = sizeof(compat_long_t),
1357 .get = s390_compat_regs_get,
1358 .set = s390_compat_regs_set,
1359 },
1360 {
1361 .core_note_type = NT_PRFPREG,
1362 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1363 .size = sizeof(compat_long_t),
1364 .align = sizeof(compat_long_t),
1365 .get = s390_fpregs_get,
1366 .set = s390_fpregs_set,
1367 },
1368 {
1369 .core_note_type = NT_S390_SYSTEM_CALL,
1370 .n = 1,
1371 .size = sizeof(compat_uint_t),
1372 .align = sizeof(compat_uint_t),
1373 .get = s390_system_call_get,
1374 .set = s390_system_call_set,
1375 },
1376 {
1377 .core_note_type = NT_S390_LAST_BREAK,
1378 .n = 1,
1379 .size = sizeof(long),
1380 .align = sizeof(long),
1381 .get = s390_compat_last_break_get,
1382 .set = s390_compat_last_break_set,
1383 },
1384 {
1385 .core_note_type = NT_S390_TDB,
1386 .n = 1,
1387 .size = 256,
1388 .align = 1,
1389 .get = s390_tdb_get,
1390 .set = s390_tdb_set,
1391 },
1392 {
1393 .core_note_type = NT_S390_VXRS_LOW,
1394 .n = __NUM_VXRS_LOW,
1395 .size = sizeof(__u64),
1396 .align = sizeof(__u64),
1397 .get = s390_vxrs_low_get,
1398 .set = s390_vxrs_low_set,
1399 },
1400 {
1401 .core_note_type = NT_S390_VXRS_HIGH,
1402 .n = __NUM_VXRS_HIGH,
1403 .size = sizeof(__vector128),
1404 .align = sizeof(__vector128),
1405 .get = s390_vxrs_high_get,
1406 .set = s390_vxrs_high_set,
1407 },
1408 {
1409 .core_note_type = NT_S390_HIGH_GPRS,
1410 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1411 .size = sizeof(compat_long_t),
1412 .align = sizeof(compat_long_t),
1413 .get = s390_compat_regs_high_get,
1414 .set = s390_compat_regs_high_set,
1415 },
1416 };
1417
1418 static const struct user_regset_view user_s390_compat_view = {
1419 .name = "s390",
1420 .e_machine = EM_S390,
1421 .regsets = s390_compat_regsets,
1422 .n = ARRAY_SIZE(s390_compat_regsets)
1423 };
1424 #endif
1425
task_user_regset_view(struct task_struct * task)1426 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1427 {
1428 #ifdef CONFIG_COMPAT
1429 if (test_tsk_thread_flag(task, TIF_31BIT))
1430 return &user_s390_compat_view;
1431 #endif
1432 return &user_s390_view;
1433 }
1434
1435 static const char *gpr_names[NUM_GPRS] = {
1436 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1437 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1438 };
1439
regs_get_register(struct pt_regs * regs,unsigned int offset)1440 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1441 {
1442 if (offset >= NUM_GPRS)
1443 return 0;
1444 return regs->gprs[offset];
1445 }
1446
regs_query_register_offset(const char * name)1447 int regs_query_register_offset(const char *name)
1448 {
1449 unsigned long offset;
1450
1451 if (!name || *name != 'r')
1452 return -EINVAL;
1453 if (kstrtoul(name + 1, 10, &offset))
1454 return -EINVAL;
1455 if (offset >= NUM_GPRS)
1456 return -EINVAL;
1457 return offset;
1458 }
1459
regs_query_register_name(unsigned int offset)1460 const char *regs_query_register_name(unsigned int offset)
1461 {
1462 if (offset >= NUM_GPRS)
1463 return NULL;
1464 return gpr_names[offset];
1465 }
1466
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)1467 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1468 {
1469 unsigned long ksp = kernel_stack_pointer(regs);
1470
1471 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1472 }
1473
1474 /**
1475 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1476 * @regs:pt_regs which contains kernel stack pointer.
1477 * @n:stack entry number.
1478 *
1479 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1480 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1481 * this returns 0.
1482 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)1483 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1484 {
1485 unsigned long addr;
1486
1487 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1488 if (!regs_within_kernel_stack(regs, addr))
1489 return 0;
1490 return *(unsigned long *)addr;
1491 }
1492