1#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2#define _ASM_POWERPC_PGTABLE_PPC64_H_
3/*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8#ifdef CONFIG_PPC_64K_PAGES
9#include <asm/pgtable-ppc64-64k.h>
10#else
11#include <asm/pgtable-ppc64-4k.h>
12#endif
13#include <asm/barrier.h>
14
15#define FIRST_USER_ADDRESS	0UL
16
17/*
18 * Size of EA range mapped by our pagetables.
19 */
20#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
21                	    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
22#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
23
24#ifdef CONFIG_TRANSPARENT_HUGEPAGE
25#define PMD_CACHE_INDEX	(PMD_INDEX_SIZE + 1)
26#else
27#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
28#endif
29/*
30 * Define the address range of the kernel non-linear virtual area
31 */
32
33#ifdef CONFIG_PPC_BOOK3E
34#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
35#else
36#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
37#endif
38#define KERN_VIRT_SIZE	ASM_CONST(0x0000100000000000)
39
40/*
41 * The vmalloc space starts at the beginning of that region, and
42 * occupies half of it on hash CPUs and a quarter of it on Book3E
43 * (we keep a quarter for the virtual memmap)
44 */
45#define VMALLOC_START	KERN_VIRT_START
46#ifdef CONFIG_PPC_BOOK3E
47#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 2)
48#else
49#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 1)
50#endif
51#define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)
52
53/*
54 * The second half of the kernel virtual space is used for IO mappings,
55 * it's itself carved into the PIO region (ISA and PHB IO space) and
56 * the ioremap space
57 *
58 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
59 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
60 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
61 */
62#define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
63#define FULL_IO_SIZE	0x80000000ul
64#define  ISA_IO_BASE	(KERN_IO_START)
65#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
66#define  PHB_IO_BASE	(ISA_IO_END)
67#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
68#define IOREMAP_BASE	(PHB_IO_END)
69#define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
70
71
72/*
73 * Region IDs
74 */
75#define REGION_SHIFT		60UL
76#define REGION_MASK		(0xfUL << REGION_SHIFT)
77#define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT)
78
79#define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START))
80#define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET))
81#define VMEMMAP_REGION_ID	(0xfUL)	/* Server only */
82#define USER_REGION_ID		(0UL)
83
84/*
85 * Defines the address of the vmemap area, in its own region on
86 * hash table CPUs and after the vmalloc space on Book3E
87 */
88#ifdef CONFIG_PPC_BOOK3E
89#define VMEMMAP_BASE		VMALLOC_END
90#define VMEMMAP_END		KERN_IO_START
91#else
92#define VMEMMAP_BASE		(VMEMMAP_REGION_ID << REGION_SHIFT)
93#endif
94#define vmemmap			((struct page *)VMEMMAP_BASE)
95
96
97/*
98 * Include the PTE bits definitions
99 */
100#ifdef CONFIG_PPC_BOOK3S
101#include <asm/pte-hash64.h>
102#else
103#include <asm/pte-book3e.h>
104#endif
105#include <asm/pte-common.h>
106
107#ifdef CONFIG_PPC_MM_SLICES
108#define HAVE_ARCH_UNMAPPED_AREA
109#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
110#endif /* CONFIG_PPC_MM_SLICES */
111
112#ifndef __ASSEMBLY__
113
114/*
115 * This is the default implementation of various PTE accessors, it's
116 * used in all cases except Book3S with 64K pages where we have a
117 * concept of sub-pages
118 */
119#ifndef __real_pte
120
121#ifdef CONFIG_STRICT_MM_TYPECHECKS
122#define __real_pte(e,p)		((real_pte_t){(e)})
123#define __rpte_to_pte(r)	((r).pte)
124#else
125#define __real_pte(e,p)		(e)
126#define __rpte_to_pte(r)	(__pte(r))
127#endif
128#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> 12)
129
130#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
131	do {							         \
132		index = 0;					         \
133		shift = mmu_psize_defs[psize].shift;		         \
134
135#define pte_iterate_hashed_end() } while(0)
136
137/*
138 * We expect this to be called only for user addresses or kernel virtual
139 * addresses other than the linear mapping.
140 */
141#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
142
143#endif /* __real_pte */
144
145
146/* pte_clear moved to later in this file */
147
148#define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
149#define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)
150
151#define pmd_set(pmdp, pmdval) 	(pmd_val(*(pmdp)) = (pmdval))
152#define pmd_none(pmd)		(!pmd_val(pmd))
153#define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
154				 || (pmd_val(pmd) & PMD_BAD_BITS))
155#define	pmd_present(pmd)	(!pmd_none(pmd))
156#define	pmd_clear(pmdp)		(pmd_val(*(pmdp)) = 0)
157#define pmd_page_vaddr(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS)
158extern struct page *pmd_page(pmd_t pmd);
159
160#define pud_set(pudp, pudval)	(pud_val(*(pudp)) = (pudval))
161#define pud_none(pud)		(!pud_val(pud))
162#define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
163				 || (pud_val(pud) & PUD_BAD_BITS))
164#define pud_present(pud)	(pud_val(pud) != 0)
165#define pud_clear(pudp)		(pud_val(*(pudp)) = 0)
166#define pud_page_vaddr(pud)	(pud_val(pud) & ~PUD_MASKED_BITS)
167
168extern struct page *pud_page(pud_t pud);
169
170static inline pte_t pud_pte(pud_t pud)
171{
172	return __pte(pud_val(pud));
173}
174
175static inline pud_t pte_pud(pte_t pte)
176{
177	return __pud(pte_val(pte));
178}
179#define pud_write(pud)		pte_write(pud_pte(pud))
180#define pgd_set(pgdp, pudp)	({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
181#define pgd_write(pgd)		pte_write(pgd_pte(pgd))
182
183/*
184 * Find an entry in a page-table-directory.  We combine the address region
185 * (the high order N bits) and the pgd portion of the address.
186 */
187#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
188
189#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
190
191#define pmd_offset(pudp,addr) \
192  (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
193
194#define pte_offset_kernel(dir,addr) \
195  (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
196
197#define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
198#define pte_unmap(pte)			do { } while(0)
199
200/* to find an entry in a kernel page-table-directory */
201/* This now only contains the vmalloc pages */
202#define pgd_offset_k(address) pgd_offset(&init_mm, address)
203extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
204			    pte_t *ptep, unsigned long pte, int huge);
205
206/* Atomic PTE updates */
207static inline unsigned long pte_update(struct mm_struct *mm,
208				       unsigned long addr,
209				       pte_t *ptep, unsigned long clr,
210				       unsigned long set,
211				       int huge)
212{
213#ifdef PTE_ATOMIC_UPDATES
214	unsigned long old, tmp;
215
216	__asm__ __volatile__(
217	"1:	ldarx	%0,0,%3		# pte_update\n\
218	andi.	%1,%0,%6\n\
219	bne-	1b \n\
220	andc	%1,%0,%4 \n\
221	or	%1,%1,%7\n\
222	stdcx.	%1,0,%3 \n\
223	bne-	1b"
224	: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
225	: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
226	: "cc" );
227#else
228	unsigned long old = pte_val(*ptep);
229	*ptep = __pte((old & ~clr) | set);
230#endif
231	/* huge pages use the old page table lock */
232	if (!huge)
233		assert_pte_locked(mm, addr);
234
235#ifdef CONFIG_PPC_STD_MMU_64
236	if (old & _PAGE_HASHPTE)
237		hpte_need_flush(mm, addr, ptep, old, huge);
238#endif
239
240	return old;
241}
242
243static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
244					      unsigned long addr, pte_t *ptep)
245{
246	unsigned long old;
247
248	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
249		return 0;
250	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
251	return (old & _PAGE_ACCESSED) != 0;
252}
253#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
254#define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
255({									   \
256	int __r;							   \
257	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
258	__r;								   \
259})
260
261#define __HAVE_ARCH_PTEP_SET_WRPROTECT
262static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
263				      pte_t *ptep)
264{
265
266	if ((pte_val(*ptep) & _PAGE_RW) == 0)
267		return;
268
269	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
270}
271
272static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
273					   unsigned long addr, pte_t *ptep)
274{
275	if ((pte_val(*ptep) & _PAGE_RW) == 0)
276		return;
277
278	pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
279}
280
281/*
282 * We currently remove entries from the hashtable regardless of whether
283 * the entry was young or dirty. The generic routines only flush if the
284 * entry was young or dirty which is not good enough.
285 *
286 * We should be more intelligent about this but for the moment we override
287 * these functions and force a tlb flush unconditionally
288 */
289#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
290#define ptep_clear_flush_young(__vma, __address, __ptep)		\
291({									\
292	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
293						  __ptep);		\
294	__young;							\
295})
296
297#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
298static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
299				       unsigned long addr, pte_t *ptep)
300{
301	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
302	return __pte(old);
303}
304
305static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
306			     pte_t * ptep)
307{
308	pte_update(mm, addr, ptep, ~0UL, 0, 0);
309}
310
311
312/* Set the dirty and/or accessed bits atomically in a linux PTE, this
313 * function doesn't need to flush the hash entry
314 */
315static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
316{
317	unsigned long bits = pte_val(entry) &
318		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
319
320#ifdef PTE_ATOMIC_UPDATES
321	unsigned long old, tmp;
322
323	__asm__ __volatile__(
324	"1:	ldarx	%0,0,%4\n\
325		andi.	%1,%0,%6\n\
326		bne-	1b \n\
327		or	%0,%3,%0\n\
328		stdcx.	%0,0,%4\n\
329		bne-	1b"
330	:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
331	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
332	:"cc");
333#else
334	unsigned long old = pte_val(*ptep);
335	*ptep = __pte(old | bits);
336#endif
337}
338
339#define __HAVE_ARCH_PTE_SAME
340#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
341
342#define pte_ERROR(e) \
343	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
344#define pmd_ERROR(e) \
345	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
346#define pgd_ERROR(e) \
347	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
348
349/* Encode and de-code a swap entry */
350#define MAX_SWAPFILES_CHECK() do { \
351	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
352	/*							\
353	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
354	 * We filter HPTEFLAGS on set_pte.			\
355	 */							\
356	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
357	} while (0)
358/*
359 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
360 */
361#define SWP_TYPE_BITS 5
362#define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
363				& ((1UL << SWP_TYPE_BITS) - 1))
364#define __swp_offset(x)		((x).val >> PTE_RPN_SHIFT)
365#define __swp_entry(type, offset)	((swp_entry_t) { \
366					((type) << _PAGE_BIT_SWAP_TYPE) \
367					| ((offset) << PTE_RPN_SHIFT) })
368
369#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val((pte)) })
370#define __swp_entry_to_pte(x)		__pte((x).val)
371
372void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
373void pgtable_cache_init(void);
374#endif /* __ASSEMBLY__ */
375
376/*
377 * THP pages can't be special. So use the _PAGE_SPECIAL
378 */
379#define _PAGE_SPLITTING _PAGE_SPECIAL
380
381/*
382 * We need to differentiate between explicit huge page and THP huge
383 * page, since THP huge page also need to track real subpage details
384 */
385#define _PAGE_THP_HUGE  _PAGE_4K_PFN
386
387/*
388 * set of bits not changed in pmd_modify.
389 */
390#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS |		\
391			 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
392			 _PAGE_THP_HUGE)
393
394#ifndef __ASSEMBLY__
395/*
396 * The linux hugepage PMD now include the pmd entries followed by the address
397 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
398 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
399 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
400 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
401 *
402 * The last three bits are intentionally left to zero. This memory location
403 * are also used as normal page PTE pointers. So if we have any pointers
404 * left around while we collapse a hugepage, we need to make sure
405 * _PAGE_PRESENT bit of that is zero when we look at them
406 */
407static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
408{
409	return (hpte_slot_array[index] >> 3) & 0x1;
410}
411
412static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
413					   int index)
414{
415	return hpte_slot_array[index] >> 4;
416}
417
418static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
419					unsigned int index, unsigned int hidx)
420{
421	hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
422}
423
424struct page *realmode_pfn_to_page(unsigned long pfn);
425
426static inline char *get_hpte_slot_array(pmd_t *pmdp)
427{
428	/*
429	 * The hpte hindex is stored in the pgtable whose address is in the
430	 * second half of the PMD
431	 *
432	 * Order this load with the test for pmd_trans_huge in the caller
433	 */
434	smp_rmb();
435	return *(char **)(pmdp + PTRS_PER_PMD);
436
437
438}
439
440#ifdef CONFIG_TRANSPARENT_HUGEPAGE
441extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
442				   pmd_t *pmdp, unsigned long old_pmd);
443extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
444extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
445extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
446extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
447		       pmd_t *pmdp, pmd_t pmd);
448extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
449				 pmd_t *pmd);
450/*
451 *
452 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
453 * page. The hugetlbfs page table walking and mangling paths are totally
454 * separated form the core VM paths and they're differentiated by
455 *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
456 *
457 * pmd_trans_huge() is defined as false at build time if
458 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
459 * time in such case.
460 *
461 * For ppc64 we need to differntiate from explicit hugepages from THP, because
462 * for THP we also track the subpage details at the pmd level. We don't do
463 * that for explicit huge pages.
464 *
465 */
466static inline int pmd_trans_huge(pmd_t pmd)
467{
468	/*
469	 * leaf pte for huge page, bottom two bits != 00
470	 */
471	return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
472}
473
474static inline int pmd_trans_splitting(pmd_t pmd)
475{
476	if (pmd_trans_huge(pmd))
477		return pmd_val(pmd) & _PAGE_SPLITTING;
478	return 0;
479}
480
481extern int has_transparent_hugepage(void);
482#else
483static inline void hpte_do_hugepage_flush(struct mm_struct *mm,
484					  unsigned long addr, pmd_t *pmdp,
485					  unsigned long old_pmd)
486{
487
488	WARN(1, "%s called with THP disabled\n", __func__);
489}
490#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
491
492static inline int pmd_large(pmd_t pmd)
493{
494	/*
495	 * leaf pte for huge page, bottom two bits != 00
496	 */
497	return ((pmd_val(pmd) & 0x3) != 0x0);
498}
499
500static inline pte_t pmd_pte(pmd_t pmd)
501{
502	return __pte(pmd_val(pmd));
503}
504
505static inline pmd_t pte_pmd(pte_t pte)
506{
507	return __pmd(pte_val(pte));
508}
509
510static inline pte_t *pmdp_ptep(pmd_t *pmd)
511{
512	return (pte_t *)pmd;
513}
514
515#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
516#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
517#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
518#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
519#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
520#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
521#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
522#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
523
524#define __HAVE_ARCH_PMD_WRITE
525#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
526
527static inline pmd_t pmd_mkhuge(pmd_t pmd)
528{
529	/* Do nothing, mk_pmd() does this part.  */
530	return pmd;
531}
532
533static inline pmd_t pmd_mknotpresent(pmd_t pmd)
534{
535	pmd_val(pmd) &= ~_PAGE_PRESENT;
536	return pmd;
537}
538
539static inline pmd_t pmd_mksplitting(pmd_t pmd)
540{
541	pmd_val(pmd) |= _PAGE_SPLITTING;
542	return pmd;
543}
544
545#define __HAVE_ARCH_PMD_SAME
546static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
547{
548	return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
549}
550
551#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
552extern int pmdp_set_access_flags(struct vm_area_struct *vma,
553				 unsigned long address, pmd_t *pmdp,
554				 pmd_t entry, int dirty);
555
556extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
557					 unsigned long addr,
558					 pmd_t *pmdp,
559					 unsigned long clr,
560					 unsigned long set);
561
562static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
563					      unsigned long addr, pmd_t *pmdp)
564{
565	unsigned long old;
566
567	if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
568		return 0;
569	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
570	return ((old & _PAGE_ACCESSED) != 0);
571}
572
573#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
574extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
575				     unsigned long address, pmd_t *pmdp);
576#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
577extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
578				  unsigned long address, pmd_t *pmdp);
579
580#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
581extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
582				     unsigned long addr, pmd_t *pmdp);
583
584#define __HAVE_ARCH_PMDP_SET_WRPROTECT
585static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
586				      pmd_t *pmdp)
587{
588
589	if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
590		return;
591
592	pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
593}
594
595#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
596extern void pmdp_splitting_flush(struct vm_area_struct *vma,
597				 unsigned long address, pmd_t *pmdp);
598
599extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
600				 unsigned long address, pmd_t *pmdp);
601#define pmdp_collapse_flush pmdp_collapse_flush
602
603#define __HAVE_ARCH_PGTABLE_DEPOSIT
604extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
605				       pgtable_t pgtable);
606#define __HAVE_ARCH_PGTABLE_WITHDRAW
607extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
608
609#define __HAVE_ARCH_PMDP_INVALIDATE
610extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
611			    pmd_t *pmdp);
612
613#define pmd_move_must_withdraw pmd_move_must_withdraw
614struct spinlock;
615static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
616					 struct spinlock *old_pmd_ptl)
617{
618	/*
619	 * Archs like ppc64 use pgtable to store per pmd
620	 * specific information. So when we switch the pmd,
621	 * we should also withdraw and deposit the pgtable
622	 */
623	return true;
624}
625#endif /* __ASSEMBLY__ */
626#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
627