1#ifndef _ASM_POWERPC_MMU_8XX_H_
2#define _ASM_POWERPC_MMU_8XX_H_
3/*
4 * PPC8xx support
5 */
6
7/* Control/status registers for the MPC8xx.
8 * A write operation to these registers causes serialized access.
9 * During software tablewalk, the registers used perform mask/shift-add
10 * operations when written/read.  A TLB entry is created when the Mx_RPN
11 * is written, and the contents of several registers are used to
12 * create the entry.
13 */
14#define SPRN_MI_CTR	784	/* Instruction TLB control register */
15#define MI_GPM		0x80000000	/* Set domain manager mode */
16#define MI_PPM		0x40000000	/* Set subpage protection */
17#define MI_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
18#define MI_RSV4I	0x08000000	/* Reserve 4 TLB entries */
19#define MI_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
20#define MI_IDXMASK	0x00001f00	/* TLB index to be loaded */
21#define MI_RESETVAL	0x00000000	/* Value of register at reset */
22
23/* These are the Ks and Kp from the PowerPC books.  For proper operation,
24 * Ks = 0, Kp = 1.
25 */
26#define SPRN_MI_AP	786
27#define MI_Ks		0x80000000	/* Should not be set */
28#define MI_Kp		0x40000000	/* Should always be set */
29
30/*
31 * All pages' PP exec bits are set to 000, which means Execute for Supervisor
32 * and no Execute for User.
33 * Then we use the APG to say whether accesses are according to Page rules,
34 * "all Supervisor" rules (Exec for all) and "all User" rules (Exec for noone)
35 * Therefore, we define 4 APG groups. msb is _PAGE_EXEC, lsb is _PAGE_USER
36 * 0 (00) => Not User, no exec => 11 (all accesses performed as user)
37 * 1 (01) => User but no exec => 11 (all accesses performed as user)
38 * 2 (10) => Not User, exec => 01 (rights according to page definition)
39 * 3 (11) => User, exec => 00 (all accesses performed as supervisor)
40 */
41#define MI_APG_INIT	0xf4ffffff
42
43/* The effective page number register.  When read, contains the information
44 * about the last instruction TLB miss.  When MI_RPN is written, bits in
45 * this register are used to create the TLB entry.
46 */
47#define SPRN_MI_EPN	787
48#define MI_EPNMASK	0xfffff000	/* Effective page number for entry */
49#define MI_EVALID	0x00000200	/* Entry is valid */
50#define MI_ASIDMASK	0x0000000f	/* ASID match value */
51					/* Reset value is undefined */
52
53/* A "level 1" or "segment" or whatever you want to call it register.
54 * For the instruction TLB, it contains bits that get loaded into the
55 * TLB entry when the MI_RPN is written.
56 */
57#define SPRN_MI_TWC	789
58#define MI_APG		0x000001e0	/* Access protection group (0) */
59#define MI_GUARDED	0x00000010	/* Guarded storage */
60#define MI_PSMASK	0x0000000c	/* Mask of page size bits */
61#define MI_PS8MEG	0x0000000c	/* 8M page size */
62#define MI_PS512K	0x00000004	/* 512K page size */
63#define MI_PS4K_16K	0x00000000	/* 4K or 16K page size */
64#define MI_SVALID	0x00000001	/* Segment entry is valid */
65					/* Reset value is undefined */
66
67/* Real page number.  Defined by the pte.  Writing this register
68 * causes a TLB entry to be created for the instruction TLB, using
69 * additional information from the MI_EPN, and MI_TWC registers.
70 */
71#define SPRN_MI_RPN	790
72#define MI_SPS16K	0x00000008	/* Small page size (0 = 4k, 1 = 16k) */
73
74/* Define an RPN value for mapping kernel memory to large virtual
75 * pages for boot initialization.  This has real page number of 0,
76 * large page size, shared page, cache enabled, and valid.
77 * Also mark all subpages valid and write access.
78 */
79#define MI_BOOTINIT	0x000001fd
80
81#define SPRN_MD_CTR	792	/* Data TLB control register */
82#define MD_GPM		0x80000000	/* Set domain manager mode */
83#define MD_PPM		0x40000000	/* Set subpage protection */
84#define MD_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
85#define MD_WTDEF	0x10000000	/* Set writethrough when MMU dis */
86#define MD_RSV4I	0x08000000	/* Reserve 4 TLB entries */
87#define MD_TWAM		0x04000000	/* Use 4K page hardware assist */
88#define MD_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
89#define MD_IDXMASK	0x00001f00	/* TLB index to be loaded */
90#define MD_RESETVAL	0x04000000	/* Value of register at reset */
91
92#define SPRN_M_CASID	793	/* Address space ID (context) to match */
93#define MC_ASIDMASK	0x0000000f	/* Bits used for ASID value */
94
95
96/* These are the Ks and Kp from the PowerPC books.  For proper operation,
97 * Ks = 0, Kp = 1.
98 */
99#define SPRN_MD_AP	794
100#define MD_Ks		0x80000000	/* Should not be set */
101#define MD_Kp		0x40000000	/* Should always be set */
102
103/*
104 * All pages' PP data bits are set to either 000 or 011, which means
105 * respectively RW for Supervisor and no access for User, or RO for
106 * Supervisor and no access for user.
107 * Then we use the APG to say whether accesses are according to Page rules or
108 * "all Supervisor" rules (Access to all)
109 * Therefore, we define 2 APG groups. lsb is _PAGE_USER
110 * 0 => No user => 01 (all accesses performed according to page definition)
111 * 1 => User => 00 (all accesses performed as supervisor
112 *                                 according to page definition)
113 */
114#define MD_APG_INIT	0x4fffffff
115
116/* The effective page number register.  When read, contains the information
117 * about the last instruction TLB miss.  When MD_RPN is written, bits in
118 * this register are used to create the TLB entry.
119 */
120#define SPRN_MD_EPN	795
121#define MD_EPNMASK	0xfffff000	/* Effective page number for entry */
122#define MD_EVALID	0x00000200	/* Entry is valid */
123#define MD_ASIDMASK	0x0000000f	/* ASID match value */
124					/* Reset value is undefined */
125
126/* The pointer to the base address of the first level page table.
127 * During a software tablewalk, reading this register provides the address
128 * of the entry associated with MD_EPN.
129 */
130#define SPRN_M_TWB	796
131#define	M_L1TB		0xfffff000	/* Level 1 table base address */
132#define M_L1INDX	0x00000ffc	/* Level 1 index, when read */
133					/* Reset value is undefined */
134
135/* A "level 1" or "segment" or whatever you want to call it register.
136 * For the data TLB, it contains bits that get loaded into the TLB entry
137 * when the MD_RPN is written.  It is also provides the hardware assist
138 * for finding the PTE address during software tablewalk.
139 */
140#define SPRN_MD_TWC	797
141#define MD_L2TB		0xfffff000	/* Level 2 table base address */
142#define MD_L2INDX	0xfffffe00	/* Level 2 index (*pte), when read */
143#define MD_APG		0x000001e0	/* Access protection group (0) */
144#define MD_GUARDED	0x00000010	/* Guarded storage */
145#define MD_PSMASK	0x0000000c	/* Mask of page size bits */
146#define MD_PS8MEG	0x0000000c	/* 8M page size */
147#define MD_PS512K	0x00000004	/* 512K page size */
148#define MD_PS4K_16K	0x00000000	/* 4K or 16K page size */
149#define MD_WT		0x00000002	/* Use writethrough page attribute */
150#define MD_SVALID	0x00000001	/* Segment entry is valid */
151					/* Reset value is undefined */
152
153
154/* Real page number.  Defined by the pte.  Writing this register
155 * causes a TLB entry to be created for the data TLB, using
156 * additional information from the MD_EPN, and MD_TWC registers.
157 */
158#define SPRN_MD_RPN	798
159#define MD_SPS16K	0x00000008	/* Small page size (0 = 4k, 1 = 16k) */
160
161/* This is a temporary storage register that could be used to save
162 * a processor working register during a tablewalk.
163 */
164#define SPRN_M_TW	799
165
166#ifndef __ASSEMBLY__
167typedef struct {
168	unsigned int id;
169	unsigned int active;
170	unsigned long vdso_base;
171} mm_context_t;
172#endif /* !__ASSEMBLY__ */
173
174#if (PAGE_SHIFT == 12)
175#define mmu_virtual_psize	MMU_PAGE_4K
176#elif (PAGE_SHIFT == 14)
177#define mmu_virtual_psize	MMU_PAGE_16K
178#else
179#error "Unsupported PAGE_SIZE"
180#endif
181
182#define mmu_linear_psize	MMU_PAGE_8M
183
184#endif /* _ASM_POWERPC_MMU_8XX_H_ */
185