1/*    Kernel dynamically loadable module help for PARISC.
2 *
3 *    The best reference for this stuff is probably the Processor-
4 *    Specific ELF Supplement for PA-RISC:
5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
6 *
7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
10 *
11 *
12 *    This program is free software; you can redistribute it and/or modify
13 *    it under the terms of the GNU General Public License as published by
14 *    the Free Software Foundation; either version 2 of the License, or
15 *    (at your option) any later version.
16 *
17 *    This program is distributed in the hope that it will be useful,
18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 *    GNU General Public License for more details.
21 *
22 *    You should have received a copy of the GNU General Public License
23 *    along with this program; if not, write to the Free Software
24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 *
26 *
27 *    Notes:
28 *    - PLT stub handling
29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31 *      fail to reach their PLT stub if we only create one big stub array for
32 *      all sections at the beginning of the core or init section.
33 *      Instead we now insert individual PLT stub entries directly in front of
34 *      of the code sections where the stubs are actually called.
35 *      This reduces the distance between the PCREL location and the stub entry
36 *      so that the relocations can be fulfilled.
37 *      While calculating the final layout of the kernel module in memory, the
38 *      kernel module loader calls arch_mod_section_prepend() to request the
39 *      to be reserved amount of memory in front of each individual section.
40 *
41 *    - SEGREL32 handling
42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
43 *      should do a value offset, like this:
44 *			if (in_init(me, (void *)val))
45 *				val -= (uint32_t)me->module_init;
46 *			else
47 *				val -= (uint32_t)me->module_core;
48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
49 *	those entries to have an absolute address, and not just an offset.
50 *
51 *	The unwind table mechanism has the ability to specify an offset for
52 *	the unwind table; however, because we split off the init functions into
53 *	a different piece of memory, it is not possible to do this using a
54 *	single offset. Instead, we use the above hack for now.
55 */
56
57#include <linux/moduleloader.h>
58#include <linux/elf.h>
59#include <linux/vmalloc.h>
60#include <linux/fs.h>
61#include <linux/string.h>
62#include <linux/kernel.h>
63#include <linux/bug.h>
64#include <linux/mm.h>
65#include <linux/slab.h>
66
67#include <asm/pgtable.h>
68#include <asm/unwind.h>
69
70#if 0
71#define DEBUGP printk
72#else
73#define DEBUGP(fmt...)
74#endif
75
76#define RELOC_REACHABLE(val, bits) \
77	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
78	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
79	0 : 1)
80
81#define CHECK_RELOC(val, bits) \
82	if (!RELOC_REACHABLE(val, bits)) { \
83		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
84		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
85		return -ENOEXEC;			\
86	}
87
88/* Maximum number of GOT entries. We use a long displacement ldd from
89 * the bottom of the table, which has a maximum signed displacement of
90 * 0x3fff; however, since we're only going forward, this becomes
91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
92 * at most 1023 entries.
93 * To overcome this 14bit displacement with some kernel modules, we'll
94 * use instead the unusal 16bit displacement method (see reassemble_16a)
95 * which gives us a maximum positive displacement of 0x7fff, and as such
96 * allows us to allocate up to 4095 GOT entries. */
97#define MAX_GOTS	4095
98
99/* three functions to determine where in the module core
100 * or init pieces the location is */
101static inline int in_init(struct module *me, void *loc)
102{
103	return (loc >= me->module_init &&
104		loc <= (me->module_init + me->init_size));
105}
106
107static inline int in_core(struct module *me, void *loc)
108{
109	return (loc >= me->module_core &&
110		loc <= (me->module_core + me->core_size));
111}
112
113static inline int in_local(struct module *me, void *loc)
114{
115	return in_init(me, loc) || in_core(me, loc);
116}
117
118#ifndef CONFIG_64BIT
119struct got_entry {
120	Elf32_Addr addr;
121};
122
123struct stub_entry {
124	Elf32_Word insns[2]; /* each stub entry has two insns */
125};
126#else
127struct got_entry {
128	Elf64_Addr addr;
129};
130
131struct stub_entry {
132	Elf64_Word insns[4]; /* each stub entry has four insns */
133};
134#endif
135
136/* Field selection types defined by hppa */
137#define rnd(x)			(((x)+0x1000)&~0x1fff)
138/* fsel: full 32 bits */
139#define fsel(v,a)		((v)+(a))
140/* lsel: select left 21 bits */
141#define lsel(v,a)		(((v)+(a))>>11)
142/* rsel: select right 11 bits */
143#define rsel(v,a)		(((v)+(a))&0x7ff)
144/* lrsel with rounding of addend to nearest 8k */
145#define lrsel(v,a)		(((v)+rnd(a))>>11)
146/* rrsel with rounding of addend to nearest 8k */
147#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149#define mask(x,sz)		((x) & ~((1<<(sz))-1))
150
151
152/* The reassemble_* functions prepare an immediate value for
153   insertion into an opcode. pa-risc uses all sorts of weird bitfields
154   in the instruction to hold the value.  */
155static inline int sign_unext(int x, int len)
156{
157	int len_ones;
158
159	len_ones = (1 << len) - 1;
160	return x & len_ones;
161}
162
163static inline int low_sign_unext(int x, int len)
164{
165	int sign, temp;
166
167	sign = (x >> (len-1)) & 1;
168	temp = sign_unext(x, len-1);
169	return (temp << 1) | sign;
170}
171
172static inline int reassemble_14(int as14)
173{
174	return (((as14 & 0x1fff) << 1) |
175		((as14 & 0x2000) >> 13));
176}
177
178static inline int reassemble_16a(int as16)
179{
180	int s, t;
181
182	/* Unusual 16-bit encoding, for wide mode only.  */
183	t = (as16 << 1) & 0xffff;
184	s = (as16 & 0x8000);
185	return (t ^ s ^ (s >> 1)) | (s >> 15);
186}
187
188
189static inline int reassemble_17(int as17)
190{
191	return (((as17 & 0x10000) >> 16) |
192		((as17 & 0x0f800) << 5) |
193		((as17 & 0x00400) >> 8) |
194		((as17 & 0x003ff) << 3));
195}
196
197static inline int reassemble_21(int as21)
198{
199	return (((as21 & 0x100000) >> 20) |
200		((as21 & 0x0ffe00) >> 8) |
201		((as21 & 0x000180) << 7) |
202		((as21 & 0x00007c) << 14) |
203		((as21 & 0x000003) << 12));
204}
205
206static inline int reassemble_22(int as22)
207{
208	return (((as22 & 0x200000) >> 21) |
209		((as22 & 0x1f0000) << 5) |
210		((as22 & 0x00f800) << 5) |
211		((as22 & 0x000400) >> 8) |
212		((as22 & 0x0003ff) << 3));
213}
214
215void *module_alloc(unsigned long size)
216{
217	/* using RWX means less protection for modules, but it's
218	 * easier than trying to map the text, data, init_text and
219	 * init_data correctly */
220	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
221				    GFP_KERNEL | __GFP_HIGHMEM,
222				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
223				    __builtin_return_address(0));
224}
225
226#ifndef CONFIG_64BIT
227static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
228{
229	return 0;
230}
231
232static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
233{
234	return 0;
235}
236
237static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
238{
239	unsigned long cnt = 0;
240
241	for (; n > 0; n--, rela++)
242	{
243		switch (ELF32_R_TYPE(rela->r_info)) {
244			case R_PARISC_PCREL17F:
245			case R_PARISC_PCREL22F:
246				cnt++;
247		}
248	}
249
250	return cnt;
251}
252#else
253static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
254{
255	unsigned long cnt = 0;
256
257	for (; n > 0; n--, rela++)
258	{
259		switch (ELF64_R_TYPE(rela->r_info)) {
260			case R_PARISC_LTOFF21L:
261			case R_PARISC_LTOFF14R:
262			case R_PARISC_PCREL22F:
263				cnt++;
264		}
265	}
266
267	return cnt;
268}
269
270static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
271{
272	unsigned long cnt = 0;
273
274	for (; n > 0; n--, rela++)
275	{
276		switch (ELF64_R_TYPE(rela->r_info)) {
277			case R_PARISC_FPTR64:
278				cnt++;
279		}
280	}
281
282	return cnt;
283}
284
285static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
286{
287	unsigned long cnt = 0;
288
289	for (; n > 0; n--, rela++)
290	{
291		switch (ELF64_R_TYPE(rela->r_info)) {
292			case R_PARISC_PCREL22F:
293				cnt++;
294		}
295	}
296
297	return cnt;
298}
299#endif
300
301void module_arch_freeing_init(struct module *mod)
302{
303	kfree(mod->arch.section);
304	mod->arch.section = NULL;
305}
306
307/* Additional bytes needed in front of individual sections */
308unsigned int arch_mod_section_prepend(struct module *mod,
309				      unsigned int section)
310{
311	/* size needed for all stubs of this section (including
312	 * one additional for correct alignment of the stubs) */
313	return (mod->arch.section[section].stub_entries + 1)
314		* sizeof(struct stub_entry);
315}
316
317#define CONST
318int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
319			      CONST Elf_Shdr *sechdrs,
320			      CONST char *secstrings,
321			      struct module *me)
322{
323	unsigned long gots = 0, fdescs = 0, len;
324	unsigned int i;
325
326	len = hdr->e_shnum * sizeof(me->arch.section[0]);
327	me->arch.section = kzalloc(len, GFP_KERNEL);
328	if (!me->arch.section)
329		return -ENOMEM;
330
331	for (i = 1; i < hdr->e_shnum; i++) {
332		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
333		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
334		unsigned int count, s;
335
336		if (strncmp(secstrings + sechdrs[i].sh_name,
337			    ".PARISC.unwind", 14) == 0)
338			me->arch.unwind_section = i;
339
340		if (sechdrs[i].sh_type != SHT_RELA)
341			continue;
342
343		/* some of these are not relevant for 32-bit/64-bit
344		 * we leave them here to make the code common. the
345		 * compiler will do its thing and optimize out the
346		 * stuff we don't need
347		 */
348		gots += count_gots(rels, nrels);
349		fdescs += count_fdescs(rels, nrels);
350
351		/* XXX: By sorting the relocs and finding duplicate entries
352		 *  we could reduce the number of necessary stubs and save
353		 *  some memory. */
354		count = count_stubs(rels, nrels);
355		if (!count)
356			continue;
357
358		/* so we need relocation stubs. reserve necessary memory. */
359		/* sh_info gives the section for which we need to add stubs. */
360		s = sechdrs[i].sh_info;
361
362		/* each code section should only have one relocation section */
363		WARN_ON(me->arch.section[s].stub_entries);
364
365		/* store number of stubs we need for this section */
366		me->arch.section[s].stub_entries += count;
367	}
368
369	/* align things a bit */
370	me->core_size = ALIGN(me->core_size, 16);
371	me->arch.got_offset = me->core_size;
372	me->core_size += gots * sizeof(struct got_entry);
373
374	me->core_size = ALIGN(me->core_size, 16);
375	me->arch.fdesc_offset = me->core_size;
376	me->core_size += fdescs * sizeof(Elf_Fdesc);
377
378	me->arch.got_max = gots;
379	me->arch.fdesc_max = fdescs;
380
381	return 0;
382}
383
384#ifdef CONFIG_64BIT
385static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
386{
387	unsigned int i;
388	struct got_entry *got;
389
390	value += addend;
391
392	BUG_ON(value == 0);
393
394	got = me->module_core + me->arch.got_offset;
395	for (i = 0; got[i].addr; i++)
396		if (got[i].addr == value)
397			goto out;
398
399	BUG_ON(++me->arch.got_count > me->arch.got_max);
400
401	got[i].addr = value;
402 out:
403	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
404	       value);
405	return i * sizeof(struct got_entry);
406}
407#endif /* CONFIG_64BIT */
408
409#ifdef CONFIG_64BIT
410static Elf_Addr get_fdesc(struct module *me, unsigned long value)
411{
412	Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
413
414	if (!value) {
415		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
416		return 0;
417	}
418
419	/* Look for existing fdesc entry. */
420	while (fdesc->addr) {
421		if (fdesc->addr == value)
422			return (Elf_Addr)fdesc;
423		fdesc++;
424	}
425
426	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
427
428	/* Create new one */
429	fdesc->addr = value;
430	fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
431	return (Elf_Addr)fdesc;
432}
433#endif /* CONFIG_64BIT */
434
435enum elf_stub_type {
436	ELF_STUB_GOT,
437	ELF_STUB_MILLI,
438	ELF_STUB_DIRECT,
439};
440
441static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
442	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
443{
444	struct stub_entry *stub;
445	int __maybe_unused d;
446
447	/* initialize stub_offset to point in front of the section */
448	if (!me->arch.section[targetsec].stub_offset) {
449		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
450				sizeof(struct stub_entry);
451		/* get correct alignment for the stubs */
452		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
453		me->arch.section[targetsec].stub_offset = loc0;
454	}
455
456	/* get address of stub entry */
457	stub = (void *) me->arch.section[targetsec].stub_offset;
458	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
459
460	/* do not write outside available stub area */
461	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
462
463
464#ifndef CONFIG_64BIT
465/* for 32-bit the stub looks like this:
466 * 	ldil L'XXX,%r1
467 * 	be,n R'XXX(%sr4,%r1)
468 */
469	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
470
471	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
472	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
473
474	stub->insns[0] |= reassemble_21(lrsel(value, addend));
475	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
476
477#else
478/* for 64-bit we have three kinds of stubs:
479 * for normal function calls:
480 * 	ldd 0(%dp),%dp
481 * 	ldd 10(%dp), %r1
482 * 	bve (%r1)
483 * 	ldd 18(%dp), %dp
484 *
485 * for millicode:
486 * 	ldil 0, %r1
487 * 	ldo 0(%r1), %r1
488 * 	ldd 10(%r1), %r1
489 * 	bve,n (%r1)
490 *
491 * for direct branches (jumps between different section of the
492 * same module):
493 *	ldil 0, %r1
494 *	ldo 0(%r1), %r1
495 *	bve,n (%r1)
496 */
497	switch (stub_type) {
498	case ELF_STUB_GOT:
499		d = get_got(me, value, addend);
500		if (d <= 15) {
501			/* Format 5 */
502			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
503			stub->insns[0] |= low_sign_unext(d, 5) << 16;
504		} else {
505			/* Format 3 */
506			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
507			stub->insns[0] |= reassemble_16a(d);
508		}
509		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
510		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
511		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
512		break;
513	case ELF_STUB_MILLI:
514		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
515		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
516		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
517		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
518
519		stub->insns[0] |= reassemble_21(lrsel(value, addend));
520		stub->insns[1] |= reassemble_14(rrsel(value, addend));
521		break;
522	case ELF_STUB_DIRECT:
523		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
524		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
525		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
526
527		stub->insns[0] |= reassemble_21(lrsel(value, addend));
528		stub->insns[1] |= reassemble_14(rrsel(value, addend));
529		break;
530	}
531
532#endif
533
534	return (Elf_Addr)stub;
535}
536
537#ifndef CONFIG_64BIT
538int apply_relocate_add(Elf_Shdr *sechdrs,
539		       const char *strtab,
540		       unsigned int symindex,
541		       unsigned int relsec,
542		       struct module *me)
543{
544	int i;
545	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
546	Elf32_Sym *sym;
547	Elf32_Word *loc;
548	Elf32_Addr val;
549	Elf32_Sword addend;
550	Elf32_Addr dot;
551	Elf_Addr loc0;
552	unsigned int targetsec = sechdrs[relsec].sh_info;
553	//unsigned long dp = (unsigned long)$global$;
554	register unsigned long dp asm ("r27");
555
556	DEBUGP("Applying relocate section %u to %u\n", relsec,
557	       targetsec);
558	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
559		/* This is where to make the change */
560		loc = (void *)sechdrs[targetsec].sh_addr
561		      + rel[i].r_offset;
562		/* This is the start of the target section */
563		loc0 = sechdrs[targetsec].sh_addr;
564		/* This is the symbol it is referring to */
565		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
566			+ ELF32_R_SYM(rel[i].r_info);
567		if (!sym->st_value) {
568			printk(KERN_WARNING "%s: Unknown symbol %s\n",
569			       me->name, strtab + sym->st_name);
570			return -ENOENT;
571		}
572		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
573		dot =  (Elf32_Addr)loc & ~0x03;
574
575		val = sym->st_value;
576		addend = rel[i].r_addend;
577
578#if 0
579#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
580		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
581			strtab + sym->st_name,
582			(uint32_t)loc, val, addend,
583			r(R_PARISC_PLABEL32)
584			r(R_PARISC_DIR32)
585			r(R_PARISC_DIR21L)
586			r(R_PARISC_DIR14R)
587			r(R_PARISC_SEGREL32)
588			r(R_PARISC_DPREL21L)
589			r(R_PARISC_DPREL14R)
590			r(R_PARISC_PCREL17F)
591			r(R_PARISC_PCREL22F)
592			"UNKNOWN");
593#undef r
594#endif
595
596		switch (ELF32_R_TYPE(rel[i].r_info)) {
597		case R_PARISC_PLABEL32:
598			/* 32-bit function address */
599			/* no function descriptors... */
600			*loc = fsel(val, addend);
601			break;
602		case R_PARISC_DIR32:
603			/* direct 32-bit ref */
604			*loc = fsel(val, addend);
605			break;
606		case R_PARISC_DIR21L:
607			/* left 21 bits of effective address */
608			val = lrsel(val, addend);
609			*loc = mask(*loc, 21) | reassemble_21(val);
610			break;
611		case R_PARISC_DIR14R:
612			/* right 14 bits of effective address */
613			val = rrsel(val, addend);
614			*loc = mask(*loc, 14) | reassemble_14(val);
615			break;
616		case R_PARISC_SEGREL32:
617			/* 32-bit segment relative address */
618			/* See note about special handling of SEGREL32 at
619			 * the beginning of this file.
620			 */
621			*loc = fsel(val, addend);
622			break;
623		case R_PARISC_DPREL21L:
624			/* left 21 bit of relative address */
625			val = lrsel(val - dp, addend);
626			*loc = mask(*loc, 21) | reassemble_21(val);
627			break;
628		case R_PARISC_DPREL14R:
629			/* right 14 bit of relative address */
630			val = rrsel(val - dp, addend);
631			*loc = mask(*loc, 14) | reassemble_14(val);
632			break;
633		case R_PARISC_PCREL17F:
634			/* 17-bit PC relative address */
635			/* calculate direct call offset */
636			val += addend;
637			val = (val - dot - 8)/4;
638			if (!RELOC_REACHABLE(val, 17)) {
639				/* direct distance too far, create
640				 * stub entry instead */
641				val = get_stub(me, sym->st_value, addend,
642					ELF_STUB_DIRECT, loc0, targetsec);
643				val = (val - dot - 8)/4;
644				CHECK_RELOC(val, 17);
645			}
646			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
647			break;
648		case R_PARISC_PCREL22F:
649			/* 22-bit PC relative address; only defined for pa20 */
650			/* calculate direct call offset */
651			val += addend;
652			val = (val - dot - 8)/4;
653			if (!RELOC_REACHABLE(val, 22)) {
654				/* direct distance too far, create
655				 * stub entry instead */
656				val = get_stub(me, sym->st_value, addend,
657					ELF_STUB_DIRECT, loc0, targetsec);
658				val = (val - dot - 8)/4;
659				CHECK_RELOC(val, 22);
660			}
661			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
662			break;
663
664		default:
665			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
666			       me->name, ELF32_R_TYPE(rel[i].r_info));
667			return -ENOEXEC;
668		}
669	}
670
671	return 0;
672}
673
674#else
675int apply_relocate_add(Elf_Shdr *sechdrs,
676		       const char *strtab,
677		       unsigned int symindex,
678		       unsigned int relsec,
679		       struct module *me)
680{
681	int i;
682	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
683	Elf64_Sym *sym;
684	Elf64_Word *loc;
685	Elf64_Xword *loc64;
686	Elf64_Addr val;
687	Elf64_Sxword addend;
688	Elf64_Addr dot;
689	Elf_Addr loc0;
690	unsigned int targetsec = sechdrs[relsec].sh_info;
691
692	DEBUGP("Applying relocate section %u to %u\n", relsec,
693	       targetsec);
694	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
695		/* This is where to make the change */
696		loc = (void *)sechdrs[targetsec].sh_addr
697		      + rel[i].r_offset;
698		/* This is the start of the target section */
699		loc0 = sechdrs[targetsec].sh_addr;
700		/* This is the symbol it is referring to */
701		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
702			+ ELF64_R_SYM(rel[i].r_info);
703		if (!sym->st_value) {
704			printk(KERN_WARNING "%s: Unknown symbol %s\n",
705			       me->name, strtab + sym->st_name);
706			return -ENOENT;
707		}
708		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
709		dot = (Elf64_Addr)loc & ~0x03;
710		loc64 = (Elf64_Xword *)loc;
711
712		val = sym->st_value;
713		addend = rel[i].r_addend;
714
715#if 0
716#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
717		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
718			strtab + sym->st_name,
719			loc, val, addend,
720			r(R_PARISC_LTOFF14R)
721			r(R_PARISC_LTOFF21L)
722			r(R_PARISC_PCREL22F)
723			r(R_PARISC_DIR64)
724			r(R_PARISC_SEGREL32)
725			r(R_PARISC_FPTR64)
726			"UNKNOWN");
727#undef r
728#endif
729
730		switch (ELF64_R_TYPE(rel[i].r_info)) {
731		case R_PARISC_LTOFF21L:
732			/* LT-relative; left 21 bits */
733			val = get_got(me, val, addend);
734			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
735			       strtab + sym->st_name,
736			       loc, val);
737			val = lrsel(val, 0);
738			*loc = mask(*loc, 21) | reassemble_21(val);
739			break;
740		case R_PARISC_LTOFF14R:
741			/* L(ltoff(val+addend)) */
742			/* LT-relative; right 14 bits */
743			val = get_got(me, val, addend);
744			val = rrsel(val, 0);
745			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
746			       strtab + sym->st_name,
747			       loc, val);
748			*loc = mask(*loc, 14) | reassemble_14(val);
749			break;
750		case R_PARISC_PCREL22F:
751			/* PC-relative; 22 bits */
752			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
753			       strtab + sym->st_name,
754			       loc, val);
755			val += addend;
756			/* can we reach it locally? */
757			if (in_local(me, (void *)val)) {
758				/* this is the case where the symbol is local
759				 * to the module, but in a different section,
760				 * so stub the jump in case it's more than 22
761				 * bits away */
762				val = (val - dot - 8)/4;
763				if (!RELOC_REACHABLE(val, 22)) {
764					/* direct distance too far, create
765					 * stub entry instead */
766					val = get_stub(me, sym->st_value,
767						addend, ELF_STUB_DIRECT,
768						loc0, targetsec);
769				} else {
770					/* Ok, we can reach it directly. */
771					val = sym->st_value;
772					val += addend;
773				}
774			} else {
775				val = sym->st_value;
776				if (strncmp(strtab + sym->st_name, "$$", 2)
777				    == 0)
778					val = get_stub(me, val, addend, ELF_STUB_MILLI,
779						       loc0, targetsec);
780				else
781					val = get_stub(me, val, addend, ELF_STUB_GOT,
782						       loc0, targetsec);
783			}
784			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
785			       strtab + sym->st_name, loc, sym->st_value,
786			       addend, val);
787			val = (val - dot - 8)/4;
788			CHECK_RELOC(val, 22);
789			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
790			break;
791		case R_PARISC_DIR64:
792			/* 64-bit effective address */
793			*loc64 = val + addend;
794			break;
795		case R_PARISC_SEGREL32:
796			/* 32-bit segment relative address */
797			/* See note about special handling of SEGREL32 at
798			 * the beginning of this file.
799			 */
800			*loc = fsel(val, addend);
801			break;
802		case R_PARISC_FPTR64:
803			/* 64-bit function address */
804			if(in_local(me, (void *)(val + addend))) {
805				*loc64 = get_fdesc(me, val+addend);
806				DEBUGP("FDESC for %s at %p points to %lx\n",
807				       strtab + sym->st_name, *loc64,
808				       ((Elf_Fdesc *)*loc64)->addr);
809			} else {
810				/* if the symbol is not local to this
811				 * module then val+addend is a pointer
812				 * to the function descriptor */
813				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
814				       strtab + sym->st_name,
815				       loc, val);
816				*loc64 = val + addend;
817			}
818			break;
819
820		default:
821			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
822			       me->name, ELF64_R_TYPE(rel[i].r_info));
823			return -ENOEXEC;
824		}
825	}
826	return 0;
827}
828#endif
829
830static void
831register_unwind_table(struct module *me,
832		      const Elf_Shdr *sechdrs)
833{
834	unsigned char *table, *end;
835	unsigned long gp;
836
837	if (!me->arch.unwind_section)
838		return;
839
840	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
841	end = table + sechdrs[me->arch.unwind_section].sh_size;
842	gp = (Elf_Addr)me->module_core + me->arch.got_offset;
843
844	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
845	       me->arch.unwind_section, table, end, gp);
846	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
847}
848
849static void
850deregister_unwind_table(struct module *me)
851{
852	if (me->arch.unwind)
853		unwind_table_remove(me->arch.unwind);
854}
855
856int module_finalize(const Elf_Ehdr *hdr,
857		    const Elf_Shdr *sechdrs,
858		    struct module *me)
859{
860	int i;
861	unsigned long nsyms;
862	const char *strtab = NULL;
863	Elf_Sym *newptr, *oldptr;
864	Elf_Shdr *symhdr = NULL;
865#ifdef DEBUG
866	Elf_Fdesc *entry;
867	u32 *addr;
868
869	entry = (Elf_Fdesc *)me->init;
870	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
871	       entry->gp, entry->addr);
872	addr = (u32 *)entry->addr;
873	printk("INSNS: %x %x %x %x\n",
874	       addr[0], addr[1], addr[2], addr[3]);
875	printk("got entries used %ld, gots max %ld\n"
876	       "fdescs used %ld, fdescs max %ld\n",
877	       me->arch.got_count, me->arch.got_max,
878	       me->arch.fdesc_count, me->arch.fdesc_max);
879#endif
880
881	register_unwind_table(me, sechdrs);
882
883	/* haven't filled in me->symtab yet, so have to find it
884	 * ourselves */
885	for (i = 1; i < hdr->e_shnum; i++) {
886		if(sechdrs[i].sh_type == SHT_SYMTAB
887		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
888			int strindex = sechdrs[i].sh_link;
889			/* FIXME: AWFUL HACK
890			 * The cast is to drop the const from
891			 * the sechdrs pointer */
892			symhdr = (Elf_Shdr *)&sechdrs[i];
893			strtab = (char *)sechdrs[strindex].sh_addr;
894			break;
895		}
896	}
897
898	DEBUGP("module %s: strtab %p, symhdr %p\n",
899	       me->name, strtab, symhdr);
900
901	if(me->arch.got_count > MAX_GOTS) {
902		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
903				me->name, me->arch.got_count, MAX_GOTS);
904		return -EINVAL;
905	}
906
907	kfree(me->arch.section);
908	me->arch.section = NULL;
909
910	/* no symbol table */
911	if(symhdr == NULL)
912		return 0;
913
914	oldptr = (void *)symhdr->sh_addr;
915	newptr = oldptr + 1;	/* we start counting at 1 */
916	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
917	DEBUGP("OLD num_symtab %lu\n", nsyms);
918
919	for (i = 1; i < nsyms; i++) {
920		oldptr++;	/* note, count starts at 1 so preincrement */
921		if(strncmp(strtab + oldptr->st_name,
922			      ".L", 2) == 0)
923			continue;
924
925		if(newptr != oldptr)
926			*newptr++ = *oldptr;
927		else
928			newptr++;
929
930	}
931	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
932	DEBUGP("NEW num_symtab %lu\n", nsyms);
933	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
934	return 0;
935}
936
937void module_arch_cleanup(struct module *mod)
938{
939	deregister_unwind_table(mod);
940}
941