1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/kdebug.h>
15#include <linux/module.h>
16#include <linux/vmalloc.h>
17#include <linux/fs.h>
18#include <linux/bootmem.h>
19#include <asm/fpu.h>
20#include <asm/page.h>
21#include <asm/cacheflush.h>
22#include <asm/mmu_context.h>
23#include <asm/pgtable.h>
24
25#include <linux/kvm_host.h>
26
27#include "interrupt.h"
28#include "commpage.h"
29
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
33#ifndef VECTORSPACING
34#define VECTORSPACING 0x100	/* for EI/VI mode */
35#endif
36
37#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38struct kvm_stats_debugfs_item debugfs_entries[] = {
39	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
40	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
41	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
42	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
43	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
45	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
46	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
47	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
48	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
49	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
50	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
51	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
54	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
55	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
60	{NULL}
61};
62
63static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
64{
65	int i;
66
67	for_each_possible_cpu(i) {
68		vcpu->arch.guest_kernel_asid[i] = 0;
69		vcpu->arch.guest_user_asid[i] = 0;
70	}
71
72	return 0;
73}
74
75/*
76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
77 * Config7, so we are "runnable" if interrupts are pending
78 */
79int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
80{
81	return !!(vcpu->arch.pending_exceptions);
82}
83
84int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
85{
86	return 1;
87}
88
89int kvm_arch_hardware_enable(void)
90{
91	return 0;
92}
93
94int kvm_arch_hardware_setup(void)
95{
96	return 0;
97}
98
99void kvm_arch_check_processor_compat(void *rtn)
100{
101	*(int *)rtn = 0;
102}
103
104static void kvm_mips_init_tlbs(struct kvm *kvm)
105{
106	unsigned long wired;
107
108	/*
109	 * Add a wired entry to the TLB, it is used to map the commpage to
110	 * the Guest kernel
111	 */
112	wired = read_c0_wired();
113	write_c0_wired(wired + 1);
114	mtc0_tlbw_hazard();
115	kvm->arch.commpage_tlb = wired;
116
117	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118		  kvm->arch.commpage_tlb);
119}
120
121static void kvm_mips_init_vm_percpu(void *arg)
122{
123	struct kvm *kvm = (struct kvm *)arg;
124
125	kvm_mips_init_tlbs(kvm);
126	kvm_mips_callbacks->vm_init(kvm);
127
128}
129
130int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131{
132	if (atomic_inc_return(&kvm_mips_instance) == 1) {
133		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
134			  __func__);
135		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
136	}
137
138	return 0;
139}
140
141void kvm_mips_free_vcpus(struct kvm *kvm)
142{
143	unsigned int i;
144	struct kvm_vcpu *vcpu;
145
146	/* Put the pages we reserved for the guest pmap */
147	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
148		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
149			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
150	}
151	kfree(kvm->arch.guest_pmap);
152
153	kvm_for_each_vcpu(i, vcpu, kvm) {
154		kvm_arch_vcpu_free(vcpu);
155	}
156
157	mutex_lock(&kvm->lock);
158
159	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
160		kvm->vcpus[i] = NULL;
161
162	atomic_set(&kvm->online_vcpus, 0);
163
164	mutex_unlock(&kvm->lock);
165}
166
167static void kvm_mips_uninit_tlbs(void *arg)
168{
169	/* Restore wired count */
170	write_c0_wired(0);
171	mtc0_tlbw_hazard();
172	/* Clear out all the TLBs */
173	kvm_local_flush_tlb_all();
174}
175
176void kvm_arch_destroy_vm(struct kvm *kvm)
177{
178	kvm_mips_free_vcpus(kvm);
179
180	/* If this is the last instance, restore wired count */
181	if (atomic_dec_return(&kvm_mips_instance) == 0) {
182		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
183			  __func__);
184		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
185	}
186}
187
188long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
189			unsigned long arg)
190{
191	return -ENOIOCTLCMD;
192}
193
194int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
195			    unsigned long npages)
196{
197	return 0;
198}
199
200int kvm_arch_prepare_memory_region(struct kvm *kvm,
201				   struct kvm_memory_slot *memslot,
202				   const struct kvm_userspace_memory_region *mem,
203				   enum kvm_mr_change change)
204{
205	return 0;
206}
207
208void kvm_arch_commit_memory_region(struct kvm *kvm,
209				   const struct kvm_userspace_memory_region *mem,
210				   const struct kvm_memory_slot *old,
211				   const struct kvm_memory_slot *new,
212				   enum kvm_mr_change change)
213{
214	unsigned long npages = 0;
215	int i;
216
217	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
218		  __func__, kvm, mem->slot, mem->guest_phys_addr,
219		  mem->memory_size, mem->userspace_addr);
220
221	/* Setup Guest PMAP table */
222	if (!kvm->arch.guest_pmap) {
223		if (mem->slot == 0)
224			npages = mem->memory_size >> PAGE_SHIFT;
225
226		if (npages) {
227			kvm->arch.guest_pmap_npages = npages;
228			kvm->arch.guest_pmap =
229			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
230
231			if (!kvm->arch.guest_pmap) {
232				kvm_err("Failed to allocate guest PMAP");
233				return;
234			}
235
236			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
237				  npages, kvm->arch.guest_pmap);
238
239			/* Now setup the page table */
240			for (i = 0; i < npages; i++)
241				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
242		}
243	}
244}
245
246struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
247{
248	int err, size, offset;
249	void *gebase;
250	int i;
251
252	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
253
254	if (!vcpu) {
255		err = -ENOMEM;
256		goto out;
257	}
258
259	err = kvm_vcpu_init(vcpu, kvm, id);
260
261	if (err)
262		goto out_free_cpu;
263
264	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
265
266	/*
267	 * Allocate space for host mode exception handlers that handle
268	 * guest mode exits
269	 */
270	if (cpu_has_veic || cpu_has_vint)
271		size = 0x200 + VECTORSPACING * 64;
272	else
273		size = 0x4000;
274
275	/* Save Linux EBASE */
276	vcpu->arch.host_ebase = (void *)read_c0_ebase();
277
278	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
279
280	if (!gebase) {
281		err = -ENOMEM;
282		goto out_uninit_cpu;
283	}
284	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
285		  ALIGN(size, PAGE_SIZE), gebase);
286
287	/* Save new ebase */
288	vcpu->arch.guest_ebase = gebase;
289
290	/* Copy L1 Guest Exception handler to correct offset */
291
292	/* TLB Refill, EXL = 0 */
293	memcpy(gebase, mips32_exception,
294	       mips32_exceptionEnd - mips32_exception);
295
296	/* General Exception Entry point */
297	memcpy(gebase + 0x180, mips32_exception,
298	       mips32_exceptionEnd - mips32_exception);
299
300	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
301	for (i = 0; i < 8; i++) {
302		kvm_debug("L1 Vectored handler @ %p\n",
303			  gebase + 0x200 + (i * VECTORSPACING));
304		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
305		       mips32_exceptionEnd - mips32_exception);
306	}
307
308	/* General handler, relocate to unmapped space for sanity's sake */
309	offset = 0x2000;
310	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
311		  gebase + offset,
312		  mips32_GuestExceptionEnd - mips32_GuestException);
313
314	memcpy(gebase + offset, mips32_GuestException,
315	       mips32_GuestExceptionEnd - mips32_GuestException);
316
317	/* Invalidate the icache for these ranges */
318	local_flush_icache_range((unsigned long)gebase,
319				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
320
321	/*
322	 * Allocate comm page for guest kernel, a TLB will be reserved for
323	 * mapping GVA @ 0xFFFF8000 to this page
324	 */
325	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
326
327	if (!vcpu->arch.kseg0_commpage) {
328		err = -ENOMEM;
329		goto out_free_gebase;
330	}
331
332	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
333	kvm_mips_commpage_init(vcpu);
334
335	/* Init */
336	vcpu->arch.last_sched_cpu = -1;
337
338	/* Start off the timer */
339	kvm_mips_init_count(vcpu);
340
341	return vcpu;
342
343out_free_gebase:
344	kfree(gebase);
345
346out_uninit_cpu:
347	kvm_vcpu_uninit(vcpu);
348
349out_free_cpu:
350	kfree(vcpu);
351
352out:
353	return ERR_PTR(err);
354}
355
356void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
357{
358	hrtimer_cancel(&vcpu->arch.comparecount_timer);
359
360	kvm_vcpu_uninit(vcpu);
361
362	kvm_mips_dump_stats(vcpu);
363
364	kfree(vcpu->arch.guest_ebase);
365	kfree(vcpu->arch.kseg0_commpage);
366	kfree(vcpu);
367}
368
369void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
370{
371	kvm_arch_vcpu_free(vcpu);
372}
373
374int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
375					struct kvm_guest_debug *dbg)
376{
377	return -ENOIOCTLCMD;
378}
379
380int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
381{
382	int r = 0;
383	sigset_t sigsaved;
384
385	if (vcpu->sigset_active)
386		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
387
388	if (vcpu->mmio_needed) {
389		if (!vcpu->mmio_is_write)
390			kvm_mips_complete_mmio_load(vcpu, run);
391		vcpu->mmio_needed = 0;
392	}
393
394	lose_fpu(1);
395
396	local_irq_disable();
397	/* Check if we have any exceptions/interrupts pending */
398	kvm_mips_deliver_interrupts(vcpu,
399				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
400
401	__kvm_guest_enter();
402
403	/* Disable hardware page table walking while in guest */
404	htw_stop();
405
406	r = __kvm_mips_vcpu_run(run, vcpu);
407
408	/* Re-enable HTW before enabling interrupts */
409	htw_start();
410
411	__kvm_guest_exit();
412	local_irq_enable();
413
414	if (vcpu->sigset_active)
415		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
416
417	return r;
418}
419
420int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
421			     struct kvm_mips_interrupt *irq)
422{
423	int intr = (int)irq->irq;
424	struct kvm_vcpu *dvcpu = NULL;
425
426	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
427		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
428			  (int)intr);
429
430	if (irq->cpu == -1)
431		dvcpu = vcpu;
432	else
433		dvcpu = vcpu->kvm->vcpus[irq->cpu];
434
435	if (intr == 2 || intr == 3 || intr == 4) {
436		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
437
438	} else if (intr == -2 || intr == -3 || intr == -4) {
439		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
440	} else {
441		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
442			irq->cpu, irq->irq);
443		return -EINVAL;
444	}
445
446	dvcpu->arch.wait = 0;
447
448	if (waitqueue_active(&dvcpu->wq))
449		wake_up_interruptible(&dvcpu->wq);
450
451	return 0;
452}
453
454int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
455				    struct kvm_mp_state *mp_state)
456{
457	return -ENOIOCTLCMD;
458}
459
460int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
461				    struct kvm_mp_state *mp_state)
462{
463	return -ENOIOCTLCMD;
464}
465
466static u64 kvm_mips_get_one_regs[] = {
467	KVM_REG_MIPS_R0,
468	KVM_REG_MIPS_R1,
469	KVM_REG_MIPS_R2,
470	KVM_REG_MIPS_R3,
471	KVM_REG_MIPS_R4,
472	KVM_REG_MIPS_R5,
473	KVM_REG_MIPS_R6,
474	KVM_REG_MIPS_R7,
475	KVM_REG_MIPS_R8,
476	KVM_REG_MIPS_R9,
477	KVM_REG_MIPS_R10,
478	KVM_REG_MIPS_R11,
479	KVM_REG_MIPS_R12,
480	KVM_REG_MIPS_R13,
481	KVM_REG_MIPS_R14,
482	KVM_REG_MIPS_R15,
483	KVM_REG_MIPS_R16,
484	KVM_REG_MIPS_R17,
485	KVM_REG_MIPS_R18,
486	KVM_REG_MIPS_R19,
487	KVM_REG_MIPS_R20,
488	KVM_REG_MIPS_R21,
489	KVM_REG_MIPS_R22,
490	KVM_REG_MIPS_R23,
491	KVM_REG_MIPS_R24,
492	KVM_REG_MIPS_R25,
493	KVM_REG_MIPS_R26,
494	KVM_REG_MIPS_R27,
495	KVM_REG_MIPS_R28,
496	KVM_REG_MIPS_R29,
497	KVM_REG_MIPS_R30,
498	KVM_REG_MIPS_R31,
499
500	KVM_REG_MIPS_HI,
501	KVM_REG_MIPS_LO,
502	KVM_REG_MIPS_PC,
503
504	KVM_REG_MIPS_CP0_INDEX,
505	KVM_REG_MIPS_CP0_CONTEXT,
506	KVM_REG_MIPS_CP0_USERLOCAL,
507	KVM_REG_MIPS_CP0_PAGEMASK,
508	KVM_REG_MIPS_CP0_WIRED,
509	KVM_REG_MIPS_CP0_HWRENA,
510	KVM_REG_MIPS_CP0_BADVADDR,
511	KVM_REG_MIPS_CP0_COUNT,
512	KVM_REG_MIPS_CP0_ENTRYHI,
513	KVM_REG_MIPS_CP0_COMPARE,
514	KVM_REG_MIPS_CP0_STATUS,
515	KVM_REG_MIPS_CP0_CAUSE,
516	KVM_REG_MIPS_CP0_EPC,
517	KVM_REG_MIPS_CP0_PRID,
518	KVM_REG_MIPS_CP0_CONFIG,
519	KVM_REG_MIPS_CP0_CONFIG1,
520	KVM_REG_MIPS_CP0_CONFIG2,
521	KVM_REG_MIPS_CP0_CONFIG3,
522	KVM_REG_MIPS_CP0_CONFIG4,
523	KVM_REG_MIPS_CP0_CONFIG5,
524	KVM_REG_MIPS_CP0_CONFIG7,
525	KVM_REG_MIPS_CP0_ERROREPC,
526
527	KVM_REG_MIPS_COUNT_CTL,
528	KVM_REG_MIPS_COUNT_RESUME,
529	KVM_REG_MIPS_COUNT_HZ,
530};
531
532static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
533			    const struct kvm_one_reg *reg)
534{
535	struct mips_coproc *cop0 = vcpu->arch.cop0;
536	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
537	int ret;
538	s64 v;
539	s64 vs[2];
540	unsigned int idx;
541
542	switch (reg->id) {
543	/* General purpose registers */
544	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
545		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
546		break;
547	case KVM_REG_MIPS_HI:
548		v = (long)vcpu->arch.hi;
549		break;
550	case KVM_REG_MIPS_LO:
551		v = (long)vcpu->arch.lo;
552		break;
553	case KVM_REG_MIPS_PC:
554		v = (long)vcpu->arch.pc;
555		break;
556
557	/* Floating point registers */
558	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
559		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
560			return -EINVAL;
561		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
562		/* Odd singles in top of even double when FR=0 */
563		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
564			v = get_fpr32(&fpu->fpr[idx], 0);
565		else
566			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
567		break;
568	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
569		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
570			return -EINVAL;
571		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
572		/* Can't access odd doubles in FR=0 mode */
573		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
574			return -EINVAL;
575		v = get_fpr64(&fpu->fpr[idx], 0);
576		break;
577	case KVM_REG_MIPS_FCR_IR:
578		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
579			return -EINVAL;
580		v = boot_cpu_data.fpu_id;
581		break;
582	case KVM_REG_MIPS_FCR_CSR:
583		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
584			return -EINVAL;
585		v = fpu->fcr31;
586		break;
587
588	/* MIPS SIMD Architecture (MSA) registers */
589	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
590		if (!kvm_mips_guest_has_msa(&vcpu->arch))
591			return -EINVAL;
592		/* Can't access MSA registers in FR=0 mode */
593		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
594			return -EINVAL;
595		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
596#ifdef CONFIG_CPU_LITTLE_ENDIAN
597		/* least significant byte first */
598		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
599		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
600#else
601		/* most significant byte first */
602		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
603		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
604#endif
605		break;
606	case KVM_REG_MIPS_MSA_IR:
607		if (!kvm_mips_guest_has_msa(&vcpu->arch))
608			return -EINVAL;
609		v = boot_cpu_data.msa_id;
610		break;
611	case KVM_REG_MIPS_MSA_CSR:
612		if (!kvm_mips_guest_has_msa(&vcpu->arch))
613			return -EINVAL;
614		v = fpu->msacsr;
615		break;
616
617	/* Co-processor 0 registers */
618	case KVM_REG_MIPS_CP0_INDEX:
619		v = (long)kvm_read_c0_guest_index(cop0);
620		break;
621	case KVM_REG_MIPS_CP0_CONTEXT:
622		v = (long)kvm_read_c0_guest_context(cop0);
623		break;
624	case KVM_REG_MIPS_CP0_USERLOCAL:
625		v = (long)kvm_read_c0_guest_userlocal(cop0);
626		break;
627	case KVM_REG_MIPS_CP0_PAGEMASK:
628		v = (long)kvm_read_c0_guest_pagemask(cop0);
629		break;
630	case KVM_REG_MIPS_CP0_WIRED:
631		v = (long)kvm_read_c0_guest_wired(cop0);
632		break;
633	case KVM_REG_MIPS_CP0_HWRENA:
634		v = (long)kvm_read_c0_guest_hwrena(cop0);
635		break;
636	case KVM_REG_MIPS_CP0_BADVADDR:
637		v = (long)kvm_read_c0_guest_badvaddr(cop0);
638		break;
639	case KVM_REG_MIPS_CP0_ENTRYHI:
640		v = (long)kvm_read_c0_guest_entryhi(cop0);
641		break;
642	case KVM_REG_MIPS_CP0_COMPARE:
643		v = (long)kvm_read_c0_guest_compare(cop0);
644		break;
645	case KVM_REG_MIPS_CP0_STATUS:
646		v = (long)kvm_read_c0_guest_status(cop0);
647		break;
648	case KVM_REG_MIPS_CP0_CAUSE:
649		v = (long)kvm_read_c0_guest_cause(cop0);
650		break;
651	case KVM_REG_MIPS_CP0_EPC:
652		v = (long)kvm_read_c0_guest_epc(cop0);
653		break;
654	case KVM_REG_MIPS_CP0_PRID:
655		v = (long)kvm_read_c0_guest_prid(cop0);
656		break;
657	case KVM_REG_MIPS_CP0_CONFIG:
658		v = (long)kvm_read_c0_guest_config(cop0);
659		break;
660	case KVM_REG_MIPS_CP0_CONFIG1:
661		v = (long)kvm_read_c0_guest_config1(cop0);
662		break;
663	case KVM_REG_MIPS_CP0_CONFIG2:
664		v = (long)kvm_read_c0_guest_config2(cop0);
665		break;
666	case KVM_REG_MIPS_CP0_CONFIG3:
667		v = (long)kvm_read_c0_guest_config3(cop0);
668		break;
669	case KVM_REG_MIPS_CP0_CONFIG4:
670		v = (long)kvm_read_c0_guest_config4(cop0);
671		break;
672	case KVM_REG_MIPS_CP0_CONFIG5:
673		v = (long)kvm_read_c0_guest_config5(cop0);
674		break;
675	case KVM_REG_MIPS_CP0_CONFIG7:
676		v = (long)kvm_read_c0_guest_config7(cop0);
677		break;
678	case KVM_REG_MIPS_CP0_ERROREPC:
679		v = (long)kvm_read_c0_guest_errorepc(cop0);
680		break;
681	/* registers to be handled specially */
682	case KVM_REG_MIPS_CP0_COUNT:
683	case KVM_REG_MIPS_COUNT_CTL:
684	case KVM_REG_MIPS_COUNT_RESUME:
685	case KVM_REG_MIPS_COUNT_HZ:
686		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
687		if (ret)
688			return ret;
689		break;
690	default:
691		return -EINVAL;
692	}
693	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
694		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
695
696		return put_user(v, uaddr64);
697	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
698		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
699		u32 v32 = (u32)v;
700
701		return put_user(v32, uaddr32);
702	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
703		void __user *uaddr = (void __user *)(long)reg->addr;
704
705		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
706	} else {
707		return -EINVAL;
708	}
709}
710
711static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
712			    const struct kvm_one_reg *reg)
713{
714	struct mips_coproc *cop0 = vcpu->arch.cop0;
715	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
716	s64 v;
717	s64 vs[2];
718	unsigned int idx;
719
720	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
721		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
722
723		if (get_user(v, uaddr64) != 0)
724			return -EFAULT;
725	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
726		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
727		s32 v32;
728
729		if (get_user(v32, uaddr32) != 0)
730			return -EFAULT;
731		v = (s64)v32;
732	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
733		void __user *uaddr = (void __user *)(long)reg->addr;
734
735		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
736	} else {
737		return -EINVAL;
738	}
739
740	switch (reg->id) {
741	/* General purpose registers */
742	case KVM_REG_MIPS_R0:
743		/* Silently ignore requests to set $0 */
744		break;
745	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
746		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
747		break;
748	case KVM_REG_MIPS_HI:
749		vcpu->arch.hi = v;
750		break;
751	case KVM_REG_MIPS_LO:
752		vcpu->arch.lo = v;
753		break;
754	case KVM_REG_MIPS_PC:
755		vcpu->arch.pc = v;
756		break;
757
758	/* Floating point registers */
759	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
760		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
761			return -EINVAL;
762		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
763		/* Odd singles in top of even double when FR=0 */
764		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
765			set_fpr32(&fpu->fpr[idx], 0, v);
766		else
767			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
768		break;
769	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
770		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
771			return -EINVAL;
772		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
773		/* Can't access odd doubles in FR=0 mode */
774		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
775			return -EINVAL;
776		set_fpr64(&fpu->fpr[idx], 0, v);
777		break;
778	case KVM_REG_MIPS_FCR_IR:
779		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
780			return -EINVAL;
781		/* Read-only */
782		break;
783	case KVM_REG_MIPS_FCR_CSR:
784		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
785			return -EINVAL;
786		fpu->fcr31 = v;
787		break;
788
789	/* MIPS SIMD Architecture (MSA) registers */
790	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
791		if (!kvm_mips_guest_has_msa(&vcpu->arch))
792			return -EINVAL;
793		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
794#ifdef CONFIG_CPU_LITTLE_ENDIAN
795		/* least significant byte first */
796		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
797		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
798#else
799		/* most significant byte first */
800		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
801		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
802#endif
803		break;
804	case KVM_REG_MIPS_MSA_IR:
805		if (!kvm_mips_guest_has_msa(&vcpu->arch))
806			return -EINVAL;
807		/* Read-only */
808		break;
809	case KVM_REG_MIPS_MSA_CSR:
810		if (!kvm_mips_guest_has_msa(&vcpu->arch))
811			return -EINVAL;
812		fpu->msacsr = v;
813		break;
814
815	/* Co-processor 0 registers */
816	case KVM_REG_MIPS_CP0_INDEX:
817		kvm_write_c0_guest_index(cop0, v);
818		break;
819	case KVM_REG_MIPS_CP0_CONTEXT:
820		kvm_write_c0_guest_context(cop0, v);
821		break;
822	case KVM_REG_MIPS_CP0_USERLOCAL:
823		kvm_write_c0_guest_userlocal(cop0, v);
824		break;
825	case KVM_REG_MIPS_CP0_PAGEMASK:
826		kvm_write_c0_guest_pagemask(cop0, v);
827		break;
828	case KVM_REG_MIPS_CP0_WIRED:
829		kvm_write_c0_guest_wired(cop0, v);
830		break;
831	case KVM_REG_MIPS_CP0_HWRENA:
832		kvm_write_c0_guest_hwrena(cop0, v);
833		break;
834	case KVM_REG_MIPS_CP0_BADVADDR:
835		kvm_write_c0_guest_badvaddr(cop0, v);
836		break;
837	case KVM_REG_MIPS_CP0_ENTRYHI:
838		kvm_write_c0_guest_entryhi(cop0, v);
839		break;
840	case KVM_REG_MIPS_CP0_STATUS:
841		kvm_write_c0_guest_status(cop0, v);
842		break;
843	case KVM_REG_MIPS_CP0_EPC:
844		kvm_write_c0_guest_epc(cop0, v);
845		break;
846	case KVM_REG_MIPS_CP0_PRID:
847		kvm_write_c0_guest_prid(cop0, v);
848		break;
849	case KVM_REG_MIPS_CP0_ERROREPC:
850		kvm_write_c0_guest_errorepc(cop0, v);
851		break;
852	/* registers to be handled specially */
853	case KVM_REG_MIPS_CP0_COUNT:
854	case KVM_REG_MIPS_CP0_COMPARE:
855	case KVM_REG_MIPS_CP0_CAUSE:
856	case KVM_REG_MIPS_CP0_CONFIG:
857	case KVM_REG_MIPS_CP0_CONFIG1:
858	case KVM_REG_MIPS_CP0_CONFIG2:
859	case KVM_REG_MIPS_CP0_CONFIG3:
860	case KVM_REG_MIPS_CP0_CONFIG4:
861	case KVM_REG_MIPS_CP0_CONFIG5:
862	case KVM_REG_MIPS_COUNT_CTL:
863	case KVM_REG_MIPS_COUNT_RESUME:
864	case KVM_REG_MIPS_COUNT_HZ:
865		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
866	default:
867		return -EINVAL;
868	}
869	return 0;
870}
871
872static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
873				     struct kvm_enable_cap *cap)
874{
875	int r = 0;
876
877	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
878		return -EINVAL;
879	if (cap->flags)
880		return -EINVAL;
881	if (cap->args[0])
882		return -EINVAL;
883
884	switch (cap->cap) {
885	case KVM_CAP_MIPS_FPU:
886		vcpu->arch.fpu_enabled = true;
887		break;
888	case KVM_CAP_MIPS_MSA:
889		vcpu->arch.msa_enabled = true;
890		break;
891	default:
892		r = -EINVAL;
893		break;
894	}
895
896	return r;
897}
898
899long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
900			 unsigned long arg)
901{
902	struct kvm_vcpu *vcpu = filp->private_data;
903	void __user *argp = (void __user *)arg;
904	long r;
905
906	switch (ioctl) {
907	case KVM_SET_ONE_REG:
908	case KVM_GET_ONE_REG: {
909		struct kvm_one_reg reg;
910
911		if (copy_from_user(&reg, argp, sizeof(reg)))
912			return -EFAULT;
913		if (ioctl == KVM_SET_ONE_REG)
914			return kvm_mips_set_reg(vcpu, &reg);
915		else
916			return kvm_mips_get_reg(vcpu, &reg);
917	}
918	case KVM_GET_REG_LIST: {
919		struct kvm_reg_list __user *user_list = argp;
920		u64 __user *reg_dest;
921		struct kvm_reg_list reg_list;
922		unsigned n;
923
924		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
925			return -EFAULT;
926		n = reg_list.n;
927		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
928		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
929			return -EFAULT;
930		if (n < reg_list.n)
931			return -E2BIG;
932		reg_dest = user_list->reg;
933		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
934				 sizeof(kvm_mips_get_one_regs)))
935			return -EFAULT;
936		return 0;
937	}
938	case KVM_NMI:
939		/* Treat the NMI as a CPU reset */
940		r = kvm_mips_reset_vcpu(vcpu);
941		break;
942	case KVM_INTERRUPT:
943		{
944			struct kvm_mips_interrupt irq;
945
946			r = -EFAULT;
947			if (copy_from_user(&irq, argp, sizeof(irq)))
948				goto out;
949
950			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
951				  irq.irq);
952
953			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
954			break;
955		}
956	case KVM_ENABLE_CAP: {
957		struct kvm_enable_cap cap;
958
959		r = -EFAULT;
960		if (copy_from_user(&cap, argp, sizeof(cap)))
961			goto out;
962		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
963		break;
964	}
965	default:
966		r = -ENOIOCTLCMD;
967	}
968
969out:
970	return r;
971}
972
973/* Get (and clear) the dirty memory log for a memory slot. */
974int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
975{
976	struct kvm_memslots *slots;
977	struct kvm_memory_slot *memslot;
978	unsigned long ga, ga_end;
979	int is_dirty = 0;
980	int r;
981	unsigned long n;
982
983	mutex_lock(&kvm->slots_lock);
984
985	r = kvm_get_dirty_log(kvm, log, &is_dirty);
986	if (r)
987		goto out;
988
989	/* If nothing is dirty, don't bother messing with page tables. */
990	if (is_dirty) {
991		slots = kvm_memslots(kvm);
992		memslot = id_to_memslot(slots, log->slot);
993
994		ga = memslot->base_gfn << PAGE_SHIFT;
995		ga_end = ga + (memslot->npages << PAGE_SHIFT);
996
997		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
998			 ga_end);
999
1000		n = kvm_dirty_bitmap_bytes(memslot);
1001		memset(memslot->dirty_bitmap, 0, n);
1002	}
1003
1004	r = 0;
1005out:
1006	mutex_unlock(&kvm->slots_lock);
1007	return r;
1008
1009}
1010
1011long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1012{
1013	long r;
1014
1015	switch (ioctl) {
1016	default:
1017		r = -ENOIOCTLCMD;
1018	}
1019
1020	return r;
1021}
1022
1023int kvm_arch_init(void *opaque)
1024{
1025	if (kvm_mips_callbacks) {
1026		kvm_err("kvm: module already exists\n");
1027		return -EEXIST;
1028	}
1029
1030	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1031}
1032
1033void kvm_arch_exit(void)
1034{
1035	kvm_mips_callbacks = NULL;
1036}
1037
1038int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1039				  struct kvm_sregs *sregs)
1040{
1041	return -ENOIOCTLCMD;
1042}
1043
1044int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1045				  struct kvm_sregs *sregs)
1046{
1047	return -ENOIOCTLCMD;
1048}
1049
1050void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1051{
1052}
1053
1054int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056	return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1060{
1061	return -ENOIOCTLCMD;
1062}
1063
1064int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1065{
1066	return VM_FAULT_SIGBUS;
1067}
1068
1069int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1070{
1071	int r;
1072
1073	switch (ext) {
1074	case KVM_CAP_ONE_REG:
1075	case KVM_CAP_ENABLE_CAP:
1076		r = 1;
1077		break;
1078	case KVM_CAP_COALESCED_MMIO:
1079		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1080		break;
1081	case KVM_CAP_MIPS_FPU:
1082		r = !!cpu_has_fpu;
1083		break;
1084	case KVM_CAP_MIPS_MSA:
1085		/*
1086		 * We don't support MSA vector partitioning yet:
1087		 * 1) It would require explicit support which can't be tested
1088		 *    yet due to lack of support in current hardware.
1089		 * 2) It extends the state that would need to be saved/restored
1090		 *    by e.g. QEMU for migration.
1091		 *
1092		 * When vector partitioning hardware becomes available, support
1093		 * could be added by requiring a flag when enabling
1094		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1095		 * to save/restore the appropriate extra state.
1096		 */
1097		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1098		break;
1099	default:
1100		r = 0;
1101		break;
1102	}
1103	return r;
1104}
1105
1106int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1107{
1108	return kvm_mips_pending_timer(vcpu);
1109}
1110
1111int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1112{
1113	int i;
1114	struct mips_coproc *cop0;
1115
1116	if (!vcpu)
1117		return -1;
1118
1119	kvm_debug("VCPU Register Dump:\n");
1120	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1121	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1122
1123	for (i = 0; i < 32; i += 4) {
1124		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1125		       vcpu->arch.gprs[i],
1126		       vcpu->arch.gprs[i + 1],
1127		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1128	}
1129	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1130	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1131
1132	cop0 = vcpu->arch.cop0;
1133	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1134		  kvm_read_c0_guest_status(cop0),
1135		  kvm_read_c0_guest_cause(cop0));
1136
1137	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1138
1139	return 0;
1140}
1141
1142int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1143{
1144	int i;
1145
1146	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1147		vcpu->arch.gprs[i] = regs->gpr[i];
1148	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1149	vcpu->arch.hi = regs->hi;
1150	vcpu->arch.lo = regs->lo;
1151	vcpu->arch.pc = regs->pc;
1152
1153	return 0;
1154}
1155
1156int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1157{
1158	int i;
1159
1160	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1161		regs->gpr[i] = vcpu->arch.gprs[i];
1162
1163	regs->hi = vcpu->arch.hi;
1164	regs->lo = vcpu->arch.lo;
1165	regs->pc = vcpu->arch.pc;
1166
1167	return 0;
1168}
1169
1170static void kvm_mips_comparecount_func(unsigned long data)
1171{
1172	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1173
1174	kvm_mips_callbacks->queue_timer_int(vcpu);
1175
1176	vcpu->arch.wait = 0;
1177	if (waitqueue_active(&vcpu->wq))
1178		wake_up_interruptible(&vcpu->wq);
1179}
1180
1181/* low level hrtimer wake routine */
1182static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1183{
1184	struct kvm_vcpu *vcpu;
1185
1186	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1187	kvm_mips_comparecount_func((unsigned long) vcpu);
1188	return kvm_mips_count_timeout(vcpu);
1189}
1190
1191int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1192{
1193	kvm_mips_callbacks->vcpu_init(vcpu);
1194	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1195		     HRTIMER_MODE_REL);
1196	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1197	return 0;
1198}
1199
1200int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1201				  struct kvm_translation *tr)
1202{
1203	return 0;
1204}
1205
1206/* Initial guest state */
1207int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1208{
1209	return kvm_mips_callbacks->vcpu_setup(vcpu);
1210}
1211
1212static void kvm_mips_set_c0_status(void)
1213{
1214	uint32_t status = read_c0_status();
1215
1216	if (cpu_has_dsp)
1217		status |= (ST0_MX);
1218
1219	write_c0_status(status);
1220	ehb();
1221}
1222
1223/*
1224 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1225 */
1226int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1227{
1228	uint32_t cause = vcpu->arch.host_cp0_cause;
1229	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1230	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1231	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1232	enum emulation_result er = EMULATE_DONE;
1233	int ret = RESUME_GUEST;
1234
1235	/* re-enable HTW before enabling interrupts */
1236	htw_start();
1237
1238	/* Set a default exit reason */
1239	run->exit_reason = KVM_EXIT_UNKNOWN;
1240	run->ready_for_interrupt_injection = 1;
1241
1242	/*
1243	 * Set the appropriate status bits based on host CPU features,
1244	 * before we hit the scheduler
1245	 */
1246	kvm_mips_set_c0_status();
1247
1248	local_irq_enable();
1249
1250	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1251			cause, opc, run, vcpu);
1252
1253	/*
1254	 * Do a privilege check, if in UM most of these exit conditions end up
1255	 * causing an exception to be delivered to the Guest Kernel
1256	 */
1257	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1258	if (er == EMULATE_PRIV_FAIL) {
1259		goto skip_emul;
1260	} else if (er == EMULATE_FAIL) {
1261		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1262		ret = RESUME_HOST;
1263		goto skip_emul;
1264	}
1265
1266	switch (exccode) {
1267	case T_INT:
1268		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1269
1270		++vcpu->stat.int_exits;
1271		trace_kvm_exit(vcpu, INT_EXITS);
1272
1273		if (need_resched())
1274			cond_resched();
1275
1276		ret = RESUME_GUEST;
1277		break;
1278
1279	case T_COP_UNUSABLE:
1280		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1281
1282		++vcpu->stat.cop_unusable_exits;
1283		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1284		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1285		/* XXXKYMA: Might need to return to user space */
1286		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1287			ret = RESUME_HOST;
1288		break;
1289
1290	case T_TLB_MOD:
1291		++vcpu->stat.tlbmod_exits;
1292		trace_kvm_exit(vcpu, TLBMOD_EXITS);
1293		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1294		break;
1295
1296	case T_TLB_ST_MISS:
1297		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1298			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1299			  badvaddr);
1300
1301		++vcpu->stat.tlbmiss_st_exits;
1302		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1303		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1304		break;
1305
1306	case T_TLB_LD_MISS:
1307		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1308			  cause, opc, badvaddr);
1309
1310		++vcpu->stat.tlbmiss_ld_exits;
1311		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1312		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1313		break;
1314
1315	case T_ADDR_ERR_ST:
1316		++vcpu->stat.addrerr_st_exits;
1317		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1318		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1319		break;
1320
1321	case T_ADDR_ERR_LD:
1322		++vcpu->stat.addrerr_ld_exits;
1323		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1324		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1325		break;
1326
1327	case T_SYSCALL:
1328		++vcpu->stat.syscall_exits;
1329		trace_kvm_exit(vcpu, SYSCALL_EXITS);
1330		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1331		break;
1332
1333	case T_RES_INST:
1334		++vcpu->stat.resvd_inst_exits;
1335		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1336		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1337		break;
1338
1339	case T_BREAK:
1340		++vcpu->stat.break_inst_exits;
1341		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1342		ret = kvm_mips_callbacks->handle_break(vcpu);
1343		break;
1344
1345	case T_TRAP:
1346		++vcpu->stat.trap_inst_exits;
1347		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1348		ret = kvm_mips_callbacks->handle_trap(vcpu);
1349		break;
1350
1351	case T_MSAFPE:
1352		++vcpu->stat.msa_fpe_exits;
1353		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1354		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1355		break;
1356
1357	case T_FPE:
1358		++vcpu->stat.fpe_exits;
1359		trace_kvm_exit(vcpu, FPE_EXITS);
1360		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1361		break;
1362
1363	case T_MSADIS:
1364		++vcpu->stat.msa_disabled_exits;
1365		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1366		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1367		break;
1368
1369	default:
1370		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1371			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1372			kvm_read_c0_guest_status(vcpu->arch.cop0));
1373		kvm_arch_vcpu_dump_regs(vcpu);
1374		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1375		ret = RESUME_HOST;
1376		break;
1377
1378	}
1379
1380skip_emul:
1381	local_irq_disable();
1382
1383	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1384		kvm_mips_deliver_interrupts(vcpu, cause);
1385
1386	if (!(ret & RESUME_HOST)) {
1387		/* Only check for signals if not already exiting to userspace */
1388		if (signal_pending(current)) {
1389			run->exit_reason = KVM_EXIT_INTR;
1390			ret = (-EINTR << 2) | RESUME_HOST;
1391			++vcpu->stat.signal_exits;
1392			trace_kvm_exit(vcpu, SIGNAL_EXITS);
1393		}
1394	}
1395
1396	if (ret == RESUME_GUEST) {
1397		/*
1398		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1399		 * is live), restore FCR31 / MSACSR.
1400		 *
1401		 * This should be before returning to the guest exception
1402		 * vector, as it may well cause an [MSA] FP exception if there
1403		 * are pending exception bits unmasked. (see
1404		 * kvm_mips_csr_die_notifier() for how that is handled).
1405		 */
1406		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1407		    read_c0_status() & ST0_CU1)
1408			__kvm_restore_fcsr(&vcpu->arch);
1409
1410		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1411		    read_c0_config5() & MIPS_CONF5_MSAEN)
1412			__kvm_restore_msacsr(&vcpu->arch);
1413	}
1414
1415	/* Disable HTW before returning to guest or host */
1416	htw_stop();
1417
1418	return ret;
1419}
1420
1421/* Enable FPU for guest and restore context */
1422void kvm_own_fpu(struct kvm_vcpu *vcpu)
1423{
1424	struct mips_coproc *cop0 = vcpu->arch.cop0;
1425	unsigned int sr, cfg5;
1426
1427	preempt_disable();
1428
1429	sr = kvm_read_c0_guest_status(cop0);
1430
1431	/*
1432	 * If MSA state is already live, it is undefined how it interacts with
1433	 * FR=0 FPU state, and we don't want to hit reserved instruction
1434	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1435	 * play it safe and save it first.
1436	 *
1437	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1438	 * get called when guest CU1 is set, however we can't trust the guest
1439	 * not to clobber the status register directly via the commpage.
1440	 */
1441	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1442	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1443		kvm_lose_fpu(vcpu);
1444
1445	/*
1446	 * Enable FPU for guest
1447	 * We set FR and FRE according to guest context
1448	 */
1449	change_c0_status(ST0_CU1 | ST0_FR, sr);
1450	if (cpu_has_fre) {
1451		cfg5 = kvm_read_c0_guest_config5(cop0);
1452		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1453	}
1454	enable_fpu_hazard();
1455
1456	/* If guest FPU state not active, restore it now */
1457	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1458		__kvm_restore_fpu(&vcpu->arch);
1459		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1460	}
1461
1462	preempt_enable();
1463}
1464
1465#ifdef CONFIG_CPU_HAS_MSA
1466/* Enable MSA for guest and restore context */
1467void kvm_own_msa(struct kvm_vcpu *vcpu)
1468{
1469	struct mips_coproc *cop0 = vcpu->arch.cop0;
1470	unsigned int sr, cfg5;
1471
1472	preempt_disable();
1473
1474	/*
1475	 * Enable FPU if enabled in guest, since we're restoring FPU context
1476	 * anyway. We set FR and FRE according to guest context.
1477	 */
1478	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1479		sr = kvm_read_c0_guest_status(cop0);
1480
1481		/*
1482		 * If FR=0 FPU state is already live, it is undefined how it
1483		 * interacts with MSA state, so play it safe and save it first.
1484		 */
1485		if (!(sr & ST0_FR) &&
1486		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1487				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1488			kvm_lose_fpu(vcpu);
1489
1490		change_c0_status(ST0_CU1 | ST0_FR, sr);
1491		if (sr & ST0_CU1 && cpu_has_fre) {
1492			cfg5 = kvm_read_c0_guest_config5(cop0);
1493			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1494		}
1495	}
1496
1497	/* Enable MSA for guest */
1498	set_c0_config5(MIPS_CONF5_MSAEN);
1499	enable_fpu_hazard();
1500
1501	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1502	case KVM_MIPS_FPU_FPU:
1503		/*
1504		 * Guest FPU state already loaded, only restore upper MSA state
1505		 */
1506		__kvm_restore_msa_upper(&vcpu->arch);
1507		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1508		break;
1509	case 0:
1510		/* Neither FPU or MSA already active, restore full MSA state */
1511		__kvm_restore_msa(&vcpu->arch);
1512		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1513		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1514			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1515		break;
1516	default:
1517		break;
1518	}
1519
1520	preempt_enable();
1521}
1522#endif
1523
1524/* Drop FPU & MSA without saving it */
1525void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1526{
1527	preempt_disable();
1528	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1529		disable_msa();
1530		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1531	}
1532	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1533		clear_c0_status(ST0_CU1 | ST0_FR);
1534		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1535	}
1536	preempt_enable();
1537}
1538
1539/* Save and disable FPU & MSA */
1540void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1541{
1542	/*
1543	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1544	 * in guest context (software), but the register state in the hardware
1545	 * may still be in use. This is why we explicitly re-enable the hardware
1546	 * before saving.
1547	 */
1548
1549	preempt_disable();
1550	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1551		set_c0_config5(MIPS_CONF5_MSAEN);
1552		enable_fpu_hazard();
1553
1554		__kvm_save_msa(&vcpu->arch);
1555
1556		/* Disable MSA & FPU */
1557		disable_msa();
1558		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1559			clear_c0_status(ST0_CU1 | ST0_FR);
1560		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1561	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1562		set_c0_status(ST0_CU1);
1563		enable_fpu_hazard();
1564
1565		__kvm_save_fpu(&vcpu->arch);
1566		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1567
1568		/* Disable FPU */
1569		clear_c0_status(ST0_CU1 | ST0_FR);
1570	}
1571	preempt_enable();
1572}
1573
1574/*
1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1577 * exception if cause bits are set in the value being written.
1578 */
1579static int kvm_mips_csr_die_notify(struct notifier_block *self,
1580				   unsigned long cmd, void *ptr)
1581{
1582	struct die_args *args = (struct die_args *)ptr;
1583	struct pt_regs *regs = args->regs;
1584	unsigned long pc;
1585
1586	/* Only interested in FPE and MSAFPE */
1587	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1588		return NOTIFY_DONE;
1589
1590	/* Return immediately if guest context isn't active */
1591	if (!(current->flags & PF_VCPU))
1592		return NOTIFY_DONE;
1593
1594	/* Should never get here from user mode */
1595	BUG_ON(user_mode(regs));
1596
1597	pc = instruction_pointer(regs);
1598	switch (cmd) {
1599	case DIE_FP:
1600		/* match 2nd instruction in __kvm_restore_fcsr */
1601		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1602			return NOTIFY_DONE;
1603		break;
1604	case DIE_MSAFP:
1605		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1606		if (!cpu_has_msa ||
1607		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1608		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1609			return NOTIFY_DONE;
1610		break;
1611	}
1612
1613	/* Move PC forward a little and continue executing */
1614	instruction_pointer(regs) += 4;
1615
1616	return NOTIFY_STOP;
1617}
1618
1619static struct notifier_block kvm_mips_csr_die_notifier = {
1620	.notifier_call = kvm_mips_csr_die_notify,
1621};
1622
1623int __init kvm_mips_init(void)
1624{
1625	int ret;
1626
1627	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1628
1629	if (ret)
1630		return ret;
1631
1632	register_die_notifier(&kvm_mips_csr_die_notifier);
1633
1634	/*
1635	 * On MIPS, kernel modules are executed from "mapped space", which
1636	 * requires TLBs. The TLB handling code is statically linked with
1637	 * the rest of the kernel (tlb.c) to avoid the possibility of
1638	 * double faulting. The issue is that the TLB code references
1639	 * routines that are part of the the KVM module, which are only
1640	 * available once the module is loaded.
1641	 */
1642	kvm_mips_gfn_to_pfn = gfn_to_pfn;
1643	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1644	kvm_mips_is_error_pfn = is_error_pfn;
1645
1646	return 0;
1647}
1648
1649void __exit kvm_mips_exit(void)
1650{
1651	kvm_exit();
1652
1653	kvm_mips_gfn_to_pfn = NULL;
1654	kvm_mips_release_pfn_clean = NULL;
1655	kvm_mips_is_error_pfn = NULL;
1656
1657	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1658}
1659
1660module_init(kvm_mips_init);
1661module_exit(kvm_mips_exit);
1662
1663EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1664