1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/addrspace.h>
41 #include <asm/bootinfo.h>
42 #include <asm/branch.h>
43 #include <asm/break.h>
44 #include <asm/cop2.h>
45 #include <asm/cpu.h>
46 #include <asm/cpu-type.h>
47 #include <asm/dsp.h>
48 #include <asm/fpu.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/idle.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 #include <asm/mipsregs.h>
53 #include <asm/mipsmtregs.h>
54 #include <asm/module.h>
55 #include <asm/msa.h>
56 #include <asm/pgtable.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/tlbdebug.h>
60 #include <asm/traps.h>
61 #include <asm/uaccess.h>
62 #include <asm/watch.h>
63 #include <asm/mmu_context.h>
64 #include <asm/types.h>
65 #include <asm/stacktrace.h>
66 #include <asm/uasm.h>
67
68 extern void check_wait(void);
69 extern asmlinkage void rollback_handle_int(void);
70 extern asmlinkage void handle_int(void);
71 extern u32 handle_tlbl[];
72 extern u32 handle_tlbs[];
73 extern u32 handle_tlbm[];
74 extern asmlinkage void handle_adel(void);
75 extern asmlinkage void handle_ades(void);
76 extern asmlinkage void handle_ibe(void);
77 extern asmlinkage void handle_dbe(void);
78 extern asmlinkage void handle_sys(void);
79 extern asmlinkage void handle_bp(void);
80 extern asmlinkage void handle_ri(void);
81 extern asmlinkage void handle_ri_rdhwr_vivt(void);
82 extern asmlinkage void handle_ri_rdhwr(void);
83 extern asmlinkage void handle_cpu(void);
84 extern asmlinkage void handle_ov(void);
85 extern asmlinkage void handle_tr(void);
86 extern asmlinkage void handle_msa_fpe(void);
87 extern asmlinkage void handle_fpe(void);
88 extern asmlinkage void handle_ftlb(void);
89 extern asmlinkage void handle_msa(void);
90 extern asmlinkage void handle_mdmx(void);
91 extern asmlinkage void handle_watch(void);
92 extern asmlinkage void handle_mt(void);
93 extern asmlinkage void handle_dsp(void);
94 extern asmlinkage void handle_mcheck(void);
95 extern asmlinkage void handle_reserved(void);
96 extern void tlb_do_page_fault_0(void);
97
98 void (*board_be_init)(void);
99 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
100 void (*board_nmi_handler_setup)(void);
101 void (*board_ejtag_handler_setup)(void);
102 void (*board_bind_eic_interrupt)(int irq, int regset);
103 void (*board_ebase_setup)(void);
104 void(*board_cache_error_setup)(void);
105
show_raw_backtrace(unsigned long reg29)106 static void show_raw_backtrace(unsigned long reg29)
107 {
108 unsigned long *sp = (unsigned long *)(reg29 & ~3);
109 unsigned long addr;
110
111 printk("Call Trace:");
112 #ifdef CONFIG_KALLSYMS
113 printk("\n");
114 #endif
115 while (!kstack_end(sp)) {
116 unsigned long __user *p =
117 (unsigned long __user *)(unsigned long)sp++;
118 if (__get_user(addr, p)) {
119 printk(" (Bad stack address)");
120 break;
121 }
122 if (__kernel_text_address(addr))
123 print_ip_sym(addr);
124 }
125 printk("\n");
126 }
127
128 #ifdef CONFIG_KALLSYMS
129 int raw_show_trace;
set_raw_show_trace(char * str)130 static int __init set_raw_show_trace(char *str)
131 {
132 raw_show_trace = 1;
133 return 1;
134 }
135 __setup("raw_show_trace", set_raw_show_trace);
136 #endif
137
show_backtrace(struct task_struct * task,const struct pt_regs * regs)138 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
139 {
140 unsigned long sp = regs->regs[29];
141 unsigned long ra = regs->regs[31];
142 unsigned long pc = regs->cp0_epc;
143
144 if (!task)
145 task = current;
146
147 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
148 show_raw_backtrace(sp);
149 return;
150 }
151 printk("Call Trace:\n");
152 do {
153 print_ip_sym(pc);
154 pc = unwind_stack(task, &sp, pc, &ra);
155 } while (pc);
156 printk("\n");
157 }
158
159 /*
160 * This routine abuses get_user()/put_user() to reference pointers
161 * with at least a bit of error checking ...
162 */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)163 static void show_stacktrace(struct task_struct *task,
164 const struct pt_regs *regs)
165 {
166 const int field = 2 * sizeof(unsigned long);
167 long stackdata;
168 int i;
169 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
170
171 printk("Stack :");
172 i = 0;
173 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
174 if (i && ((i % (64 / field)) == 0))
175 printk("\n ");
176 if (i > 39) {
177 printk(" ...");
178 break;
179 }
180
181 if (__get_user(stackdata, sp++)) {
182 printk(" (Bad stack address)");
183 break;
184 }
185
186 printk(" %0*lx", field, stackdata);
187 i++;
188 }
189 printk("\n");
190 show_backtrace(task, regs);
191 }
192
show_stack(struct task_struct * task,unsigned long * sp)193 void show_stack(struct task_struct *task, unsigned long *sp)
194 {
195 struct pt_regs regs;
196 mm_segment_t old_fs = get_fs();
197 if (sp) {
198 regs.regs[29] = (unsigned long)sp;
199 regs.regs[31] = 0;
200 regs.cp0_epc = 0;
201 } else {
202 if (task && task != current) {
203 regs.regs[29] = task->thread.reg29;
204 regs.regs[31] = 0;
205 regs.cp0_epc = task->thread.reg31;
206 #ifdef CONFIG_KGDB_KDB
207 } else if (atomic_read(&kgdb_active) != -1 &&
208 kdb_current_regs) {
209 memcpy(®s, kdb_current_regs, sizeof(regs));
210 #endif /* CONFIG_KGDB_KDB */
211 } else {
212 prepare_frametrace(®s);
213 }
214 }
215 /*
216 * show_stack() deals exclusively with kernel mode, so be sure to access
217 * the stack in the kernel (not user) address space.
218 */
219 set_fs(KERNEL_DS);
220 show_stacktrace(task, ®s);
221 set_fs(old_fs);
222 }
223
show_code(unsigned int __user * pc)224 static void show_code(unsigned int __user *pc)
225 {
226 long i;
227 unsigned short __user *pc16 = NULL;
228
229 printk("\nCode:");
230
231 if ((unsigned long)pc & 1)
232 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
233 for(i = -3 ; i < 6 ; i++) {
234 unsigned int insn;
235 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
236 printk(" (Bad address in epc)\n");
237 break;
238 }
239 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
240 }
241 }
242
__show_regs(const struct pt_regs * regs)243 static void __show_regs(const struct pt_regs *regs)
244 {
245 const int field = 2 * sizeof(unsigned long);
246 unsigned int cause = regs->cp0_cause;
247 unsigned int exccode;
248 int i;
249
250 show_regs_print_info(KERN_DEFAULT);
251
252 /*
253 * Saved main processor registers
254 */
255 for (i = 0; i < 32; ) {
256 if ((i % 4) == 0)
257 printk("$%2d :", i);
258 if (i == 0)
259 printk(" %0*lx", field, 0UL);
260 else if (i == 26 || i == 27)
261 printk(" %*s", field, "");
262 else
263 printk(" %0*lx", field, regs->regs[i]);
264
265 i++;
266 if ((i % 4) == 0)
267 printk("\n");
268 }
269
270 #ifdef CONFIG_CPU_HAS_SMARTMIPS
271 printk("Acx : %0*lx\n", field, regs->acx);
272 #endif
273 printk("Hi : %0*lx\n", field, regs->hi);
274 printk("Lo : %0*lx\n", field, regs->lo);
275
276 /*
277 * Saved cp0 registers
278 */
279 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
280 (void *) regs->cp0_epc);
281 printk("ra : %0*lx %pS\n", field, regs->regs[31],
282 (void *) regs->regs[31]);
283
284 printk("Status: %08x ", (uint32_t) regs->cp0_status);
285
286 if (cpu_has_3kex) {
287 if (regs->cp0_status & ST0_KUO)
288 printk("KUo ");
289 if (regs->cp0_status & ST0_IEO)
290 printk("IEo ");
291 if (regs->cp0_status & ST0_KUP)
292 printk("KUp ");
293 if (regs->cp0_status & ST0_IEP)
294 printk("IEp ");
295 if (regs->cp0_status & ST0_KUC)
296 printk("KUc ");
297 if (regs->cp0_status & ST0_IEC)
298 printk("IEc ");
299 } else if (cpu_has_4kex) {
300 if (regs->cp0_status & ST0_KX)
301 printk("KX ");
302 if (regs->cp0_status & ST0_SX)
303 printk("SX ");
304 if (regs->cp0_status & ST0_UX)
305 printk("UX ");
306 switch (regs->cp0_status & ST0_KSU) {
307 case KSU_USER:
308 printk("USER ");
309 break;
310 case KSU_SUPERVISOR:
311 printk("SUPERVISOR ");
312 break;
313 case KSU_KERNEL:
314 printk("KERNEL ");
315 break;
316 default:
317 printk("BAD_MODE ");
318 break;
319 }
320 if (regs->cp0_status & ST0_ERL)
321 printk("ERL ");
322 if (regs->cp0_status & ST0_EXL)
323 printk("EXL ");
324 if (regs->cp0_status & ST0_IE)
325 printk("IE ");
326 }
327 printk("\n");
328
329 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
330 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
331
332 if (1 <= exccode && exccode <= 5)
333 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
334
335 printk("PrId : %08x (%s)\n", read_c0_prid(),
336 cpu_name_string());
337 }
338
339 /*
340 * FIXME: really the generic show_regs should take a const pointer argument.
341 */
show_regs(struct pt_regs * regs)342 void show_regs(struct pt_regs *regs)
343 {
344 __show_regs((struct pt_regs *)regs);
345 }
346
show_registers(struct pt_regs * regs)347 void show_registers(struct pt_regs *regs)
348 {
349 const int field = 2 * sizeof(unsigned long);
350 mm_segment_t old_fs = get_fs();
351
352 __show_regs(regs);
353 print_modules();
354 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
355 current->comm, current->pid, current_thread_info(), current,
356 field, current_thread_info()->tp_value);
357 if (cpu_has_userlocal) {
358 unsigned long tls;
359
360 tls = read_c0_userlocal();
361 if (tls != current_thread_info()->tp_value)
362 printk("*HwTLS: %0*lx\n", field, tls);
363 }
364
365 if (!user_mode(regs))
366 /* Necessary for getting the correct stack content */
367 set_fs(KERNEL_DS);
368 show_stacktrace(current, regs);
369 show_code((unsigned int __user *) regs->cp0_epc);
370 printk("\n");
371 set_fs(old_fs);
372 }
373
374 static DEFINE_RAW_SPINLOCK(die_lock);
375
die(const char * str,struct pt_regs * regs)376 void __noreturn die(const char *str, struct pt_regs *regs)
377 {
378 static int die_counter;
379 int sig = SIGSEGV;
380
381 oops_enter();
382
383 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
384 SIGSEGV) == NOTIFY_STOP)
385 sig = 0;
386
387 console_verbose();
388 raw_spin_lock_irq(&die_lock);
389 bust_spinlocks(1);
390
391 printk("%s[#%d]:\n", str, ++die_counter);
392 show_registers(regs);
393 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
394 raw_spin_unlock_irq(&die_lock);
395
396 oops_exit();
397
398 if (in_interrupt())
399 panic("Fatal exception in interrupt");
400
401 if (panic_on_oops) {
402 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
403 ssleep(5);
404 panic("Fatal exception");
405 }
406
407 if (regs && kexec_should_crash(current))
408 crash_kexec(regs);
409
410 do_exit(sig);
411 }
412
413 extern struct exception_table_entry __start___dbe_table[];
414 extern struct exception_table_entry __stop___dbe_table[];
415
416 __asm__(
417 " .section __dbe_table, \"a\"\n"
418 " .previous \n");
419
420 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)421 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
422 {
423 const struct exception_table_entry *e;
424
425 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
426 if (!e)
427 e = search_module_dbetables(addr);
428 return e;
429 }
430
do_be(struct pt_regs * regs)431 asmlinkage void do_be(struct pt_regs *regs)
432 {
433 const int field = 2 * sizeof(unsigned long);
434 const struct exception_table_entry *fixup = NULL;
435 int data = regs->cp0_cause & 4;
436 int action = MIPS_BE_FATAL;
437 enum ctx_state prev_state;
438
439 prev_state = exception_enter();
440 /* XXX For now. Fixme, this searches the wrong table ... */
441 if (data && !user_mode(regs))
442 fixup = search_dbe_tables(exception_epc(regs));
443
444 if (fixup)
445 action = MIPS_BE_FIXUP;
446
447 if (board_be_handler)
448 action = board_be_handler(regs, fixup != NULL);
449
450 switch (action) {
451 case MIPS_BE_DISCARD:
452 goto out;
453 case MIPS_BE_FIXUP:
454 if (fixup) {
455 regs->cp0_epc = fixup->nextinsn;
456 goto out;
457 }
458 break;
459 default:
460 break;
461 }
462
463 /*
464 * Assume it would be too dangerous to continue ...
465 */
466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
467 data ? "Data" : "Instruction",
468 field, regs->cp0_epc, field, regs->regs[31]);
469 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
470 SIGBUS) == NOTIFY_STOP)
471 goto out;
472
473 die_if_kernel("Oops", regs);
474 force_sig(SIGBUS, current);
475
476 out:
477 exception_exit(prev_state);
478 }
479
480 /*
481 * ll/sc, rdhwr, sync emulation
482 */
483
484 #define OPCODE 0xfc000000
485 #define BASE 0x03e00000
486 #define RT 0x001f0000
487 #define OFFSET 0x0000ffff
488 #define LL 0xc0000000
489 #define SC 0xe0000000
490 #define SPEC0 0x00000000
491 #define SPEC3 0x7c000000
492 #define RD 0x0000f800
493 #define FUNC 0x0000003f
494 #define SYNC 0x0000000f
495 #define RDHWR 0x0000003b
496
497 /* microMIPS definitions */
498 #define MM_POOL32A_FUNC 0xfc00ffff
499 #define MM_RDHWR 0x00006b3c
500 #define MM_RS 0x001f0000
501 #define MM_RT 0x03e00000
502
503 /*
504 * The ll_bit is cleared by r*_switch.S
505 */
506
507 unsigned int ll_bit;
508 struct task_struct *ll_task;
509
simulate_ll(struct pt_regs * regs,unsigned int opcode)510 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
511 {
512 unsigned long value, __user *vaddr;
513 long offset;
514
515 /*
516 * analyse the ll instruction that just caused a ri exception
517 * and put the referenced address to addr.
518 */
519
520 /* sign extend offset */
521 offset = opcode & OFFSET;
522 offset <<= 16;
523 offset >>= 16;
524
525 vaddr = (unsigned long __user *)
526 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
527
528 if ((unsigned long)vaddr & 3)
529 return SIGBUS;
530 if (get_user(value, vaddr))
531 return SIGSEGV;
532
533 preempt_disable();
534
535 if (ll_task == NULL || ll_task == current) {
536 ll_bit = 1;
537 } else {
538 ll_bit = 0;
539 }
540 ll_task = current;
541
542 preempt_enable();
543
544 regs->regs[(opcode & RT) >> 16] = value;
545
546 return 0;
547 }
548
simulate_sc(struct pt_regs * regs,unsigned int opcode)549 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
550 {
551 unsigned long __user *vaddr;
552 unsigned long reg;
553 long offset;
554
555 /*
556 * analyse the sc instruction that just caused a ri exception
557 * and put the referenced address to addr.
558 */
559
560 /* sign extend offset */
561 offset = opcode & OFFSET;
562 offset <<= 16;
563 offset >>= 16;
564
565 vaddr = (unsigned long __user *)
566 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
567 reg = (opcode & RT) >> 16;
568
569 if ((unsigned long)vaddr & 3)
570 return SIGBUS;
571
572 preempt_disable();
573
574 if (ll_bit == 0 || ll_task != current) {
575 regs->regs[reg] = 0;
576 preempt_enable();
577 return 0;
578 }
579
580 preempt_enable();
581
582 if (put_user(regs->regs[reg], vaddr))
583 return SIGSEGV;
584
585 regs->regs[reg] = 1;
586
587 return 0;
588 }
589
590 /*
591 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
592 * opcodes are supposed to result in coprocessor unusable exceptions if
593 * executed on ll/sc-less processors. That's the theory. In practice a
594 * few processors such as NEC's VR4100 throw reserved instruction exceptions
595 * instead, so we're doing the emulation thing in both exception handlers.
596 */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)597 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
598 {
599 if ((opcode & OPCODE) == LL) {
600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
601 1, regs, 0);
602 return simulate_ll(regs, opcode);
603 }
604 if ((opcode & OPCODE) == SC) {
605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 1, regs, 0);
607 return simulate_sc(regs, opcode);
608 }
609
610 return -1; /* Must be something else ... */
611 }
612
613 /*
614 * Simulate trapping 'rdhwr' instructions to provide user accessible
615 * registers not implemented in hardware.
616 */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)617 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
618 {
619 struct thread_info *ti = task_thread_info(current);
620
621 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
622 1, regs, 0);
623 switch (rd) {
624 case 0: /* CPU number */
625 regs->regs[rt] = smp_processor_id();
626 return 0;
627 case 1: /* SYNCI length */
628 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
629 current_cpu_data.icache.linesz);
630 return 0;
631 case 2: /* Read count register */
632 regs->regs[rt] = read_c0_count();
633 return 0;
634 case 3: /* Count register resolution */
635 switch (current_cpu_type()) {
636 case CPU_20KC:
637 case CPU_25KF:
638 regs->regs[rt] = 1;
639 break;
640 default:
641 regs->regs[rt] = 2;
642 }
643 return 0;
644 case 29:
645 regs->regs[rt] = ti->tp_value;
646 return 0;
647 default:
648 return -1;
649 }
650 }
651
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)652 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
653 {
654 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
655 int rd = (opcode & RD) >> 11;
656 int rt = (opcode & RT) >> 16;
657
658 simulate_rdhwr(regs, rd, rt);
659 return 0;
660 }
661
662 /* Not ours. */
663 return -1;
664 }
665
simulate_rdhwr_mm(struct pt_regs * regs,unsigned short opcode)666 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
667 {
668 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
669 int rd = (opcode & MM_RS) >> 16;
670 int rt = (opcode & MM_RT) >> 21;
671 simulate_rdhwr(regs, rd, rt);
672 return 0;
673 }
674
675 /* Not ours. */
676 return -1;
677 }
678
simulate_sync(struct pt_regs * regs,unsigned int opcode)679 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
680 {
681 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
682 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
683 1, regs, 0);
684 return 0;
685 }
686
687 return -1; /* Must be something else ... */
688 }
689
do_ov(struct pt_regs * regs)690 asmlinkage void do_ov(struct pt_regs *regs)
691 {
692 enum ctx_state prev_state;
693 siginfo_t info = {
694 .si_signo = SIGFPE,
695 .si_code = FPE_INTOVF,
696 .si_addr = (void __user *)regs->cp0_epc,
697 };
698
699 prev_state = exception_enter();
700 die_if_kernel("Integer overflow", regs);
701
702 force_sig_info(SIGFPE, &info, current);
703 exception_exit(prev_state);
704 }
705
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)706 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
707 {
708 struct siginfo si = { 0 };
709
710 switch (sig) {
711 case 0:
712 return 0;
713
714 case SIGFPE:
715 si.si_addr = fault_addr;
716 si.si_signo = sig;
717 /*
718 * Inexact can happen together with Overflow or Underflow.
719 * Respect the mask to deliver the correct exception.
720 */
721 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
722 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
723 if (fcr31 & FPU_CSR_INV_X)
724 si.si_code = FPE_FLTINV;
725 else if (fcr31 & FPU_CSR_DIV_X)
726 si.si_code = FPE_FLTDIV;
727 else if (fcr31 & FPU_CSR_OVF_X)
728 si.si_code = FPE_FLTOVF;
729 else if (fcr31 & FPU_CSR_UDF_X)
730 si.si_code = FPE_FLTUND;
731 else if (fcr31 & FPU_CSR_INE_X)
732 si.si_code = FPE_FLTRES;
733 else
734 si.si_code = __SI_FAULT;
735 force_sig_info(sig, &si, current);
736 return 1;
737
738 case SIGBUS:
739 si.si_addr = fault_addr;
740 si.si_signo = sig;
741 si.si_code = BUS_ADRERR;
742 force_sig_info(sig, &si, current);
743 return 1;
744
745 case SIGSEGV:
746 si.si_addr = fault_addr;
747 si.si_signo = sig;
748 down_read(¤t->mm->mmap_sem);
749 if (find_vma(current->mm, (unsigned long)fault_addr))
750 si.si_code = SEGV_ACCERR;
751 else
752 si.si_code = SEGV_MAPERR;
753 up_read(¤t->mm->mmap_sem);
754 force_sig_info(sig, &si, current);
755 return 1;
756
757 default:
758 force_sig(sig, current);
759 return 1;
760 }
761 }
762
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)763 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
764 unsigned long old_epc, unsigned long old_ra)
765 {
766 union mips_instruction inst = { .word = opcode };
767 void __user *fault_addr;
768 unsigned long fcr31;
769 int sig;
770
771 /* If it's obviously not an FP instruction, skip it */
772 switch (inst.i_format.opcode) {
773 case cop1_op:
774 case cop1x_op:
775 case lwc1_op:
776 case ldc1_op:
777 case swc1_op:
778 case sdc1_op:
779 break;
780
781 default:
782 return -1;
783 }
784
785 /*
786 * do_ri skipped over the instruction via compute_return_epc, undo
787 * that for the FPU emulator.
788 */
789 regs->cp0_epc = old_epc;
790 regs->regs[31] = old_ra;
791
792 /* Save the FP context to struct thread_struct */
793 lose_fpu(1);
794
795 /* Run the emulator */
796 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
797 &fault_addr);
798 fcr31 = current->thread.fpu.fcr31;
799
800 /*
801 * We can't allow the emulated instruction to leave any of
802 * the cause bits set in $fcr31.
803 */
804 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
805
806 /* Restore the hardware register state */
807 own_fpu(1);
808
809 /* Send a signal if required. */
810 process_fpemu_return(sig, fault_addr, fcr31);
811
812 return 0;
813 }
814
815 /*
816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
817 */
do_fpe(struct pt_regs * regs,unsigned long fcr31)818 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
819 {
820 enum ctx_state prev_state;
821 void __user *fault_addr;
822 int sig;
823
824 prev_state = exception_enter();
825 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
826 SIGFPE) == NOTIFY_STOP)
827 goto out;
828
829 /* Clear FCSR.Cause before enabling interrupts */
830 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
831 local_irq_enable();
832
833 die_if_kernel("FP exception in kernel code", regs);
834
835 if (fcr31 & FPU_CSR_UNI_X) {
836 /*
837 * Unimplemented operation exception. If we've got the full
838 * software emulator on-board, let's use it...
839 *
840 * Force FPU to dump state into task/thread context. We're
841 * moving a lot of data here for what is probably a single
842 * instruction, but the alternative is to pre-decode the FP
843 * register operands before invoking the emulator, which seems
844 * a bit extreme for what should be an infrequent event.
845 */
846 /* Ensure 'resume' not overwrite saved fp context again. */
847 lose_fpu(1);
848
849 /* Run the emulator */
850 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
851 &fault_addr);
852 fcr31 = current->thread.fpu.fcr31;
853
854 /*
855 * We can't allow the emulated instruction to leave any of
856 * the cause bits set in $fcr31.
857 */
858 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
859
860 /* Restore the hardware register state */
861 own_fpu(1); /* Using the FPU again. */
862 } else {
863 sig = SIGFPE;
864 fault_addr = (void __user *) regs->cp0_epc;
865 }
866
867 /* Send a signal if required. */
868 process_fpemu_return(sig, fault_addr, fcr31);
869
870 out:
871 exception_exit(prev_state);
872 }
873
do_trap_or_bp(struct pt_regs * regs,unsigned int code,const char * str)874 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
875 const char *str)
876 {
877 siginfo_t info = { 0 };
878 char b[40];
879
880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
881 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
882 SIGTRAP) == NOTIFY_STOP)
883 return;
884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
885
886 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
887 SIGTRAP) == NOTIFY_STOP)
888 return;
889
890 /*
891 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
892 * insns, even for trap and break codes that indicate arithmetic
893 * failures. Weird ...
894 * But should we continue the brokenness??? --macro
895 */
896 switch (code) {
897 case BRK_OVERFLOW:
898 case BRK_DIVZERO:
899 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
900 die_if_kernel(b, regs);
901 if (code == BRK_DIVZERO)
902 info.si_code = FPE_INTDIV;
903 else
904 info.si_code = FPE_INTOVF;
905 info.si_signo = SIGFPE;
906 info.si_addr = (void __user *) regs->cp0_epc;
907 force_sig_info(SIGFPE, &info, current);
908 break;
909 case BRK_BUG:
910 die_if_kernel("Kernel bug detected", regs);
911 force_sig(SIGTRAP, current);
912 break;
913 case BRK_MEMU:
914 /*
915 * This breakpoint code is used by the FPU emulator to retake
916 * control of the CPU after executing the instruction from the
917 * delay slot of an emulated branch.
918 *
919 * Terminate if exception was recognized as a delay slot return
920 * otherwise handle as normal.
921 */
922 if (do_dsemulret(regs))
923 return;
924
925 die_if_kernel("Math emu break/trap", regs);
926 force_sig(SIGTRAP, current);
927 break;
928 default:
929 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
930 die_if_kernel(b, regs);
931 force_sig(SIGTRAP, current);
932 }
933 }
934
do_bp(struct pt_regs * regs)935 asmlinkage void do_bp(struct pt_regs *regs)
936 {
937 unsigned long epc = msk_isa16_mode(exception_epc(regs));
938 unsigned int opcode, bcode;
939 enum ctx_state prev_state;
940 mm_segment_t seg;
941
942 seg = get_fs();
943 if (!user_mode(regs))
944 set_fs(KERNEL_DS);
945
946 prev_state = exception_enter();
947 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
948 if (get_isa16_mode(regs->cp0_epc)) {
949 u16 instr[2];
950
951 if (__get_user(instr[0], (u16 __user *)epc))
952 goto out_sigsegv;
953
954 if (!cpu_has_mmips) {
955 /* MIPS16e mode */
956 bcode = (instr[0] >> 5) & 0x3f;
957 } else if (mm_insn_16bit(instr[0])) {
958 /* 16-bit microMIPS BREAK */
959 bcode = instr[0] & 0xf;
960 } else {
961 /* 32-bit microMIPS BREAK */
962 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
963 goto out_sigsegv;
964 opcode = (instr[0] << 16) | instr[1];
965 bcode = (opcode >> 6) & ((1 << 20) - 1);
966 }
967 } else {
968 if (__get_user(opcode, (unsigned int __user *)epc))
969 goto out_sigsegv;
970 bcode = (opcode >> 6) & ((1 << 20) - 1);
971 }
972
973 /*
974 * There is the ancient bug in the MIPS assemblers that the break
975 * code starts left to bit 16 instead to bit 6 in the opcode.
976 * Gas is bug-compatible, but not always, grrr...
977 * We handle both cases with a simple heuristics. --macro
978 */
979 if (bcode >= (1 << 10))
980 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
981
982 /*
983 * notify the kprobe handlers, if instruction is likely to
984 * pertain to them.
985 */
986 switch (bcode) {
987 case BRK_UPROBE:
988 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
989 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
990 goto out;
991 else
992 break;
993 case BRK_UPROBE_XOL:
994 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
995 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
996 goto out;
997 else
998 break;
999 case BRK_KPROBE_BP:
1000 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1001 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1002 goto out;
1003 else
1004 break;
1005 case BRK_KPROBE_SSTEPBP:
1006 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1007 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1008 goto out;
1009 else
1010 break;
1011 default:
1012 break;
1013 }
1014
1015 do_trap_or_bp(regs, bcode, "Break");
1016
1017 out:
1018 set_fs(seg);
1019 exception_exit(prev_state);
1020 return;
1021
1022 out_sigsegv:
1023 force_sig(SIGSEGV, current);
1024 goto out;
1025 }
1026
do_tr(struct pt_regs * regs)1027 asmlinkage void do_tr(struct pt_regs *regs)
1028 {
1029 u32 opcode, tcode = 0;
1030 enum ctx_state prev_state;
1031 u16 instr[2];
1032 mm_segment_t seg;
1033 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1034
1035 seg = get_fs();
1036 if (!user_mode(regs))
1037 set_fs(get_ds());
1038
1039 prev_state = exception_enter();
1040 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1041 if (get_isa16_mode(regs->cp0_epc)) {
1042 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1043 __get_user(instr[1], (u16 __user *)(epc + 2)))
1044 goto out_sigsegv;
1045 opcode = (instr[0] << 16) | instr[1];
1046 /* Immediate versions don't provide a code. */
1047 if (!(opcode & OPCODE))
1048 tcode = (opcode >> 12) & ((1 << 4) - 1);
1049 } else {
1050 if (__get_user(opcode, (u32 __user *)epc))
1051 goto out_sigsegv;
1052 /* Immediate versions don't provide a code. */
1053 if (!(opcode & OPCODE))
1054 tcode = (opcode >> 6) & ((1 << 10) - 1);
1055 }
1056
1057 do_trap_or_bp(regs, tcode, "Trap");
1058
1059 out:
1060 set_fs(seg);
1061 exception_exit(prev_state);
1062 return;
1063
1064 out_sigsegv:
1065 force_sig(SIGSEGV, current);
1066 goto out;
1067 }
1068
do_ri(struct pt_regs * regs)1069 asmlinkage void do_ri(struct pt_regs *regs)
1070 {
1071 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1072 unsigned long old_epc = regs->cp0_epc;
1073 unsigned long old31 = regs->regs[31];
1074 enum ctx_state prev_state;
1075 unsigned int opcode = 0;
1076 int status = -1;
1077
1078 /*
1079 * Avoid any kernel code. Just emulate the R2 instruction
1080 * as quickly as possible.
1081 */
1082 if (mipsr2_emulation && cpu_has_mips_r6 &&
1083 likely(user_mode(regs)) &&
1084 likely(get_user(opcode, epc) >= 0)) {
1085 unsigned long fcr31 = 0;
1086
1087 status = mipsr2_decoder(regs, opcode, &fcr31);
1088 switch (status) {
1089 case 0:
1090 case SIGEMT:
1091 task_thread_info(current)->r2_emul_return = 1;
1092 return;
1093 case SIGILL:
1094 goto no_r2_instr;
1095 default:
1096 process_fpemu_return(status,
1097 ¤t->thread.cp0_baduaddr,
1098 fcr31);
1099 task_thread_info(current)->r2_emul_return = 1;
1100 return;
1101 }
1102 }
1103
1104 no_r2_instr:
1105
1106 prev_state = exception_enter();
1107 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1108
1109 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1110 SIGILL) == NOTIFY_STOP)
1111 goto out;
1112
1113 die_if_kernel("Reserved instruction in kernel code", regs);
1114
1115 if (unlikely(compute_return_epc(regs) < 0))
1116 goto out;
1117
1118 if (get_isa16_mode(regs->cp0_epc)) {
1119 unsigned short mmop[2] = { 0 };
1120
1121 if (unlikely(get_user(mmop[0], epc) < 0))
1122 status = SIGSEGV;
1123 if (unlikely(get_user(mmop[1], epc) < 0))
1124 status = SIGSEGV;
1125 opcode = (mmop[0] << 16) | mmop[1];
1126
1127 if (status < 0)
1128 status = simulate_rdhwr_mm(regs, opcode);
1129 } else {
1130 if (unlikely(get_user(opcode, epc) < 0))
1131 status = SIGSEGV;
1132
1133 if (!cpu_has_llsc && status < 0)
1134 status = simulate_llsc(regs, opcode);
1135
1136 if (status < 0)
1137 status = simulate_rdhwr_normal(regs, opcode);
1138
1139 if (status < 0)
1140 status = simulate_sync(regs, opcode);
1141
1142 if (status < 0)
1143 status = simulate_fp(regs, opcode, old_epc, old31);
1144 }
1145
1146 if (status < 0)
1147 status = SIGILL;
1148
1149 if (unlikely(status > 0)) {
1150 regs->cp0_epc = old_epc; /* Undo skip-over. */
1151 regs->regs[31] = old31;
1152 force_sig(status, current);
1153 }
1154
1155 out:
1156 exception_exit(prev_state);
1157 }
1158
1159 /*
1160 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1161 * emulated more than some threshold number of instructions, force migration to
1162 * a "CPU" that has FP support.
1163 */
mt_ase_fp_affinity(void)1164 static void mt_ase_fp_affinity(void)
1165 {
1166 #ifdef CONFIG_MIPS_MT_FPAFF
1167 if (mt_fpemul_threshold > 0 &&
1168 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1169 /*
1170 * If there's no FPU present, or if the application has already
1171 * restricted the allowed set to exclude any CPUs with FPUs,
1172 * we'll skip the procedure.
1173 */
1174 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
1175 cpumask_t tmask;
1176
1177 current->thread.user_cpus_allowed
1178 = current->cpus_allowed;
1179 cpumask_and(&tmask, ¤t->cpus_allowed,
1180 &mt_fpu_cpumask);
1181 set_cpus_allowed_ptr(current, &tmask);
1182 set_thread_flag(TIF_FPUBOUND);
1183 }
1184 }
1185 #endif /* CONFIG_MIPS_MT_FPAFF */
1186 }
1187
1188 /*
1189 * No lock; only written during early bootup by CPU 0.
1190 */
1191 static RAW_NOTIFIER_HEAD(cu2_chain);
1192
register_cu2_notifier(struct notifier_block * nb)1193 int __ref register_cu2_notifier(struct notifier_block *nb)
1194 {
1195 return raw_notifier_chain_register(&cu2_chain, nb);
1196 }
1197
cu2_notifier_call_chain(unsigned long val,void * v)1198 int cu2_notifier_call_chain(unsigned long val, void *v)
1199 {
1200 return raw_notifier_call_chain(&cu2_chain, val, v);
1201 }
1202
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1203 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1204 void *data)
1205 {
1206 struct pt_regs *regs = data;
1207
1208 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1209 "instruction", regs);
1210 force_sig(SIGILL, current);
1211
1212 return NOTIFY_OK;
1213 }
1214
wait_on_fp_mode_switch(atomic_t * p)1215 static int wait_on_fp_mode_switch(atomic_t *p)
1216 {
1217 /*
1218 * The FP mode for this task is currently being switched. That may
1219 * involve modifications to the format of this tasks FP context which
1220 * make it unsafe to proceed with execution for the moment. Instead,
1221 * schedule some other task.
1222 */
1223 schedule();
1224 return 0;
1225 }
1226
enable_restore_fp_context(int msa)1227 static int enable_restore_fp_context(int msa)
1228 {
1229 int err, was_fpu_owner, prior_msa;
1230
1231 /*
1232 * If an FP mode switch is currently underway, wait for it to
1233 * complete before proceeding.
1234 */
1235 wait_on_atomic_t(¤t->mm->context.fp_mode_switching,
1236 wait_on_fp_mode_switch, TASK_KILLABLE);
1237
1238 if (!used_math()) {
1239 /* First time FP context user. */
1240 preempt_disable();
1241 err = init_fpu();
1242 if (msa && !err) {
1243 enable_msa();
1244 init_msa_upper();
1245 set_thread_flag(TIF_USEDMSA);
1246 set_thread_flag(TIF_MSA_CTX_LIVE);
1247 }
1248 preempt_enable();
1249 if (!err)
1250 set_used_math();
1251 return err;
1252 }
1253
1254 /*
1255 * This task has formerly used the FP context.
1256 *
1257 * If this thread has no live MSA vector context then we can simply
1258 * restore the scalar FP context. If it has live MSA vector context
1259 * (that is, it has or may have used MSA since last performing a
1260 * function call) then we'll need to restore the vector context. This
1261 * applies even if we're currently only executing a scalar FP
1262 * instruction. This is because if we were to later execute an MSA
1263 * instruction then we'd either have to:
1264 *
1265 * - Restore the vector context & clobber any registers modified by
1266 * scalar FP instructions between now & then.
1267 *
1268 * or
1269 *
1270 * - Not restore the vector context & lose the most significant bits
1271 * of all vector registers.
1272 *
1273 * Neither of those options is acceptable. We cannot restore the least
1274 * significant bits of the registers now & only restore the most
1275 * significant bits later because the most significant bits of any
1276 * vector registers whose aliased FP register is modified now will have
1277 * been zeroed. We'd have no way to know that when restoring the vector
1278 * context & thus may load an outdated value for the most significant
1279 * bits of a vector register.
1280 */
1281 if (!msa && !thread_msa_context_live())
1282 return own_fpu(1);
1283
1284 /*
1285 * This task is using or has previously used MSA. Thus we require
1286 * that Status.FR == 1.
1287 */
1288 preempt_disable();
1289 was_fpu_owner = is_fpu_owner();
1290 err = own_fpu_inatomic(0);
1291 if (err)
1292 goto out;
1293
1294 enable_msa();
1295 write_msa_csr(current->thread.fpu.msacsr);
1296 set_thread_flag(TIF_USEDMSA);
1297
1298 /*
1299 * If this is the first time that the task is using MSA and it has
1300 * previously used scalar FP in this time slice then we already nave
1301 * FP context which we shouldn't clobber. We do however need to clear
1302 * the upper 64b of each vector register so that this task has no
1303 * opportunity to see data left behind by another.
1304 */
1305 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1306 if (!prior_msa && was_fpu_owner) {
1307 init_msa_upper();
1308
1309 goto out;
1310 }
1311
1312 if (!prior_msa) {
1313 /*
1314 * Restore the least significant 64b of each vector register
1315 * from the existing scalar FP context.
1316 */
1317 _restore_fp(current);
1318
1319 /*
1320 * The task has not formerly used MSA, so clear the upper 64b
1321 * of each vector register such that it cannot see data left
1322 * behind by another task.
1323 */
1324 init_msa_upper();
1325 } else {
1326 /* We need to restore the vector context. */
1327 restore_msa(current);
1328
1329 /* Restore the scalar FP control & status register */
1330 if (!was_fpu_owner)
1331 write_32bit_cp1_register(CP1_STATUS,
1332 current->thread.fpu.fcr31);
1333 }
1334
1335 out:
1336 preempt_enable();
1337
1338 return 0;
1339 }
1340
do_cpu(struct pt_regs * regs)1341 asmlinkage void do_cpu(struct pt_regs *regs)
1342 {
1343 enum ctx_state prev_state;
1344 unsigned int __user *epc;
1345 unsigned long old_epc, old31;
1346 void __user *fault_addr;
1347 unsigned int opcode;
1348 unsigned long fcr31;
1349 unsigned int cpid;
1350 int status, err;
1351 unsigned long __maybe_unused flags;
1352 int sig;
1353
1354 prev_state = exception_enter();
1355 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1356
1357 if (cpid != 2)
1358 die_if_kernel("do_cpu invoked from kernel context!", regs);
1359
1360 switch (cpid) {
1361 case 0:
1362 epc = (unsigned int __user *)exception_epc(regs);
1363 old_epc = regs->cp0_epc;
1364 old31 = regs->regs[31];
1365 opcode = 0;
1366 status = -1;
1367
1368 if (unlikely(compute_return_epc(regs) < 0))
1369 break;
1370
1371 if (get_isa16_mode(regs->cp0_epc)) {
1372 unsigned short mmop[2] = { 0 };
1373
1374 if (unlikely(get_user(mmop[0], epc) < 0))
1375 status = SIGSEGV;
1376 if (unlikely(get_user(mmop[1], epc) < 0))
1377 status = SIGSEGV;
1378 opcode = (mmop[0] << 16) | mmop[1];
1379
1380 if (status < 0)
1381 status = simulate_rdhwr_mm(regs, opcode);
1382 } else {
1383 if (unlikely(get_user(opcode, epc) < 0))
1384 status = SIGSEGV;
1385
1386 if (!cpu_has_llsc && status < 0)
1387 status = simulate_llsc(regs, opcode);
1388
1389 if (status < 0)
1390 status = simulate_rdhwr_normal(regs, opcode);
1391 }
1392
1393 if (status < 0)
1394 status = SIGILL;
1395
1396 if (unlikely(status > 0)) {
1397 regs->cp0_epc = old_epc; /* Undo skip-over. */
1398 regs->regs[31] = old31;
1399 force_sig(status, current);
1400 }
1401
1402 break;
1403
1404 case 3:
1405 /*
1406 * The COP3 opcode space and consequently the CP0.Status.CU3
1407 * bit and the CP0.Cause.CE=3 encoding have been removed as
1408 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1409 * up the space has been reused for COP1X instructions, that
1410 * are enabled by the CP0.Status.CU1 bit and consequently
1411 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1412 * exceptions. Some FPU-less processors that implement one
1413 * of these ISAs however use this code erroneously for COP1X
1414 * instructions. Therefore we redirect this trap to the FP
1415 * emulator too.
1416 */
1417 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1418 force_sig(SIGILL, current);
1419 break;
1420 }
1421 /* Fall through. */
1422
1423 case 1:
1424 err = enable_restore_fp_context(0);
1425
1426 if (raw_cpu_has_fpu && !err)
1427 break;
1428
1429 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1430 &fault_addr);
1431 fcr31 = current->thread.fpu.fcr31;
1432
1433 /*
1434 * We can't allow the emulated instruction to leave
1435 * any of the cause bits set in $fcr31.
1436 */
1437 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1438
1439 /* Send a signal if required. */
1440 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1441 mt_ase_fp_affinity();
1442
1443 break;
1444
1445 case 2:
1446 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1447 break;
1448 }
1449
1450 exception_exit(prev_state);
1451 }
1452
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1453 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1454 {
1455 enum ctx_state prev_state;
1456
1457 prev_state = exception_enter();
1458 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1459 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1460 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1461 goto out;
1462
1463 /* Clear MSACSR.Cause before enabling interrupts */
1464 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1465 local_irq_enable();
1466
1467 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1468 force_sig(SIGFPE, current);
1469 out:
1470 exception_exit(prev_state);
1471 }
1472
do_msa(struct pt_regs * regs)1473 asmlinkage void do_msa(struct pt_regs *regs)
1474 {
1475 enum ctx_state prev_state;
1476 int err;
1477
1478 prev_state = exception_enter();
1479
1480 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1481 force_sig(SIGILL, current);
1482 goto out;
1483 }
1484
1485 die_if_kernel("do_msa invoked from kernel context!", regs);
1486
1487 err = enable_restore_fp_context(1);
1488 if (err)
1489 force_sig(SIGILL, current);
1490 out:
1491 exception_exit(prev_state);
1492 }
1493
do_mdmx(struct pt_regs * regs)1494 asmlinkage void do_mdmx(struct pt_regs *regs)
1495 {
1496 enum ctx_state prev_state;
1497
1498 prev_state = exception_enter();
1499 force_sig(SIGILL, current);
1500 exception_exit(prev_state);
1501 }
1502
1503 /*
1504 * Called with interrupts disabled.
1505 */
do_watch(struct pt_regs * regs)1506 asmlinkage void do_watch(struct pt_regs *regs)
1507 {
1508 enum ctx_state prev_state;
1509 u32 cause;
1510
1511 prev_state = exception_enter();
1512 /*
1513 * Clear WP (bit 22) bit of cause register so we don't loop
1514 * forever.
1515 */
1516 cause = read_c0_cause();
1517 cause &= ~(1 << 22);
1518 write_c0_cause(cause);
1519
1520 /*
1521 * If the current thread has the watch registers loaded, save
1522 * their values and send SIGTRAP. Otherwise another thread
1523 * left the registers set, clear them and continue.
1524 */
1525 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1526 mips_read_watch_registers();
1527 local_irq_enable();
1528 force_sig(SIGTRAP, current);
1529 } else {
1530 mips_clear_watch_registers();
1531 local_irq_enable();
1532 }
1533 exception_exit(prev_state);
1534 }
1535
do_mcheck(struct pt_regs * regs)1536 asmlinkage void do_mcheck(struct pt_regs *regs)
1537 {
1538 int multi_match = regs->cp0_status & ST0_TS;
1539 enum ctx_state prev_state;
1540 mm_segment_t old_fs = get_fs();
1541
1542 prev_state = exception_enter();
1543 show_regs(regs);
1544
1545 if (multi_match) {
1546 dump_tlb_regs();
1547 pr_info("\n");
1548 dump_tlb_all();
1549 }
1550
1551 if (!user_mode(regs))
1552 set_fs(KERNEL_DS);
1553
1554 show_code((unsigned int __user *) regs->cp0_epc);
1555
1556 set_fs(old_fs);
1557
1558 /*
1559 * Some chips may have other causes of machine check (e.g. SB1
1560 * graduation timer)
1561 */
1562 panic("Caught Machine Check exception - %scaused by multiple "
1563 "matching entries in the TLB.",
1564 (multi_match) ? "" : "not ");
1565 }
1566
do_mt(struct pt_regs * regs)1567 asmlinkage void do_mt(struct pt_regs *regs)
1568 {
1569 int subcode;
1570
1571 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1572 >> VPECONTROL_EXCPT_SHIFT;
1573 switch (subcode) {
1574 case 0:
1575 printk(KERN_DEBUG "Thread Underflow\n");
1576 break;
1577 case 1:
1578 printk(KERN_DEBUG "Thread Overflow\n");
1579 break;
1580 case 2:
1581 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1582 break;
1583 case 3:
1584 printk(KERN_DEBUG "Gating Storage Exception\n");
1585 break;
1586 case 4:
1587 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1588 break;
1589 case 5:
1590 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1591 break;
1592 default:
1593 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1594 subcode);
1595 break;
1596 }
1597 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1598
1599 force_sig(SIGILL, current);
1600 }
1601
1602
do_dsp(struct pt_regs * regs)1603 asmlinkage void do_dsp(struct pt_regs *regs)
1604 {
1605 if (cpu_has_dsp)
1606 panic("Unexpected DSP exception");
1607
1608 force_sig(SIGILL, current);
1609 }
1610
do_reserved(struct pt_regs * regs)1611 asmlinkage void do_reserved(struct pt_regs *regs)
1612 {
1613 /*
1614 * Game over - no way to handle this if it ever occurs. Most probably
1615 * caused by a new unknown cpu type or after another deadly
1616 * hard/software error.
1617 */
1618 show_regs(regs);
1619 panic("Caught reserved exception %ld - should not happen.",
1620 (regs->cp0_cause & 0x7f) >> 2);
1621 }
1622
1623 static int __initdata l1parity = 1;
nol1parity(char * s)1624 static int __init nol1parity(char *s)
1625 {
1626 l1parity = 0;
1627 return 1;
1628 }
1629 __setup("nol1par", nol1parity);
1630 static int __initdata l2parity = 1;
nol2parity(char * s)1631 static int __init nol2parity(char *s)
1632 {
1633 l2parity = 0;
1634 return 1;
1635 }
1636 __setup("nol2par", nol2parity);
1637
1638 /*
1639 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1640 * it different ways.
1641 */
parity_protection_init(void)1642 static inline void parity_protection_init(void)
1643 {
1644 switch (current_cpu_type()) {
1645 case CPU_24K:
1646 case CPU_34K:
1647 case CPU_74K:
1648 case CPU_1004K:
1649 case CPU_1074K:
1650 case CPU_INTERAPTIV:
1651 case CPU_PROAPTIV:
1652 case CPU_P5600:
1653 case CPU_QEMU_GENERIC:
1654 case CPU_I6400:
1655 {
1656 #define ERRCTL_PE 0x80000000
1657 #define ERRCTL_L2P 0x00800000
1658 unsigned long errctl;
1659 unsigned int l1parity_present, l2parity_present;
1660
1661 errctl = read_c0_ecc();
1662 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1663
1664 /* probe L1 parity support */
1665 write_c0_ecc(errctl | ERRCTL_PE);
1666 back_to_back_c0_hazard();
1667 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1668
1669 /* probe L2 parity support */
1670 write_c0_ecc(errctl|ERRCTL_L2P);
1671 back_to_back_c0_hazard();
1672 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1673
1674 if (l1parity_present && l2parity_present) {
1675 if (l1parity)
1676 errctl |= ERRCTL_PE;
1677 if (l1parity ^ l2parity)
1678 errctl |= ERRCTL_L2P;
1679 } else if (l1parity_present) {
1680 if (l1parity)
1681 errctl |= ERRCTL_PE;
1682 } else if (l2parity_present) {
1683 if (l2parity)
1684 errctl |= ERRCTL_L2P;
1685 } else {
1686 /* No parity available */
1687 }
1688
1689 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1690
1691 write_c0_ecc(errctl);
1692 back_to_back_c0_hazard();
1693 errctl = read_c0_ecc();
1694 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1695
1696 if (l1parity_present)
1697 printk(KERN_INFO "Cache parity protection %sabled\n",
1698 (errctl & ERRCTL_PE) ? "en" : "dis");
1699
1700 if (l2parity_present) {
1701 if (l1parity_present && l1parity)
1702 errctl ^= ERRCTL_L2P;
1703 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1704 (errctl & ERRCTL_L2P) ? "en" : "dis");
1705 }
1706 }
1707 break;
1708
1709 case CPU_5KC:
1710 case CPU_5KE:
1711 case CPU_LOONGSON1:
1712 write_c0_ecc(0x80000000);
1713 back_to_back_c0_hazard();
1714 /* Set the PE bit (bit 31) in the c0_errctl register. */
1715 printk(KERN_INFO "Cache parity protection %sabled\n",
1716 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1717 break;
1718 case CPU_20KC:
1719 case CPU_25KF:
1720 /* Clear the DE bit (bit 16) in the c0_status register. */
1721 printk(KERN_INFO "Enable cache parity protection for "
1722 "MIPS 20KC/25KF CPUs.\n");
1723 clear_c0_status(ST0_DE);
1724 break;
1725 default:
1726 break;
1727 }
1728 }
1729
cache_parity_error(void)1730 asmlinkage void cache_parity_error(void)
1731 {
1732 const int field = 2 * sizeof(unsigned long);
1733 unsigned int reg_val;
1734
1735 /* For the moment, report the problem and hang. */
1736 printk("Cache error exception:\n");
1737 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1738 reg_val = read_c0_cacheerr();
1739 printk("c0_cacheerr == %08x\n", reg_val);
1740
1741 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1742 reg_val & (1<<30) ? "secondary" : "primary",
1743 reg_val & (1<<31) ? "data" : "insn");
1744 if ((cpu_has_mips_r2_r6) &&
1745 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1746 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1747 reg_val & (1<<29) ? "ED " : "",
1748 reg_val & (1<<28) ? "ET " : "",
1749 reg_val & (1<<27) ? "ES " : "",
1750 reg_val & (1<<26) ? "EE " : "",
1751 reg_val & (1<<25) ? "EB " : "",
1752 reg_val & (1<<24) ? "EI " : "",
1753 reg_val & (1<<23) ? "E1 " : "",
1754 reg_val & (1<<22) ? "E0 " : "");
1755 } else {
1756 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1757 reg_val & (1<<29) ? "ED " : "",
1758 reg_val & (1<<28) ? "ET " : "",
1759 reg_val & (1<<26) ? "EE " : "",
1760 reg_val & (1<<25) ? "EB " : "",
1761 reg_val & (1<<24) ? "EI " : "",
1762 reg_val & (1<<23) ? "E1 " : "",
1763 reg_val & (1<<22) ? "E0 " : "");
1764 }
1765 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1766
1767 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1768 if (reg_val & (1<<22))
1769 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1770
1771 if (reg_val & (1<<23))
1772 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1773 #endif
1774
1775 panic("Can't handle the cache error!");
1776 }
1777
do_ftlb(void)1778 asmlinkage void do_ftlb(void)
1779 {
1780 const int field = 2 * sizeof(unsigned long);
1781 unsigned int reg_val;
1782
1783 /* For the moment, report the problem and hang. */
1784 if ((cpu_has_mips_r2_r6) &&
1785 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1786 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1787 read_c0_ecc());
1788 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1789 reg_val = read_c0_cacheerr();
1790 pr_err("c0_cacheerr == %08x\n", reg_val);
1791
1792 if ((reg_val & 0xc0000000) == 0xc0000000) {
1793 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1794 } else {
1795 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1796 reg_val & (1<<30) ? "secondary" : "primary",
1797 reg_val & (1<<31) ? "data" : "insn");
1798 }
1799 } else {
1800 pr_err("FTLB error exception\n");
1801 }
1802 /* Just print the cacheerr bits for now */
1803 cache_parity_error();
1804 }
1805
1806 /*
1807 * SDBBP EJTAG debug exception handler.
1808 * We skip the instruction and return to the next instruction.
1809 */
ejtag_exception_handler(struct pt_regs * regs)1810 void ejtag_exception_handler(struct pt_regs *regs)
1811 {
1812 const int field = 2 * sizeof(unsigned long);
1813 unsigned long depc, old_epc, old_ra;
1814 unsigned int debug;
1815
1816 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1817 depc = read_c0_depc();
1818 debug = read_c0_debug();
1819 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1820 if (debug & 0x80000000) {
1821 /*
1822 * In branch delay slot.
1823 * We cheat a little bit here and use EPC to calculate the
1824 * debug return address (DEPC). EPC is restored after the
1825 * calculation.
1826 */
1827 old_epc = regs->cp0_epc;
1828 old_ra = regs->regs[31];
1829 regs->cp0_epc = depc;
1830 compute_return_epc(regs);
1831 depc = regs->cp0_epc;
1832 regs->cp0_epc = old_epc;
1833 regs->regs[31] = old_ra;
1834 } else
1835 depc += 4;
1836 write_c0_depc(depc);
1837
1838 #if 0
1839 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1840 write_c0_debug(debug | 0x100);
1841 #endif
1842 }
1843
1844 /*
1845 * NMI exception handler.
1846 * No lock; only written during early bootup by CPU 0.
1847 */
1848 static RAW_NOTIFIER_HEAD(nmi_chain);
1849
register_nmi_notifier(struct notifier_block * nb)1850 int register_nmi_notifier(struct notifier_block *nb)
1851 {
1852 return raw_notifier_chain_register(&nmi_chain, nb);
1853 }
1854
nmi_exception_handler(struct pt_regs * regs)1855 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1856 {
1857 char str[100];
1858
1859 nmi_enter();
1860 raw_notifier_call_chain(&nmi_chain, 0, regs);
1861 bust_spinlocks(1);
1862 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1863 smp_processor_id(), regs->cp0_epc);
1864 regs->cp0_epc = read_c0_errorepc();
1865 die(str, regs);
1866 nmi_exit();
1867 }
1868
1869 #define VECTORSPACING 0x100 /* for EI/VI mode */
1870
1871 unsigned long ebase;
1872 unsigned long exception_handlers[32];
1873 unsigned long vi_handlers[64];
1874
set_except_vector(int n,void * addr)1875 void __init *set_except_vector(int n, void *addr)
1876 {
1877 unsigned long handler = (unsigned long) addr;
1878 unsigned long old_handler;
1879
1880 #ifdef CONFIG_CPU_MICROMIPS
1881 /*
1882 * Only the TLB handlers are cache aligned with an even
1883 * address. All other handlers are on an odd address and
1884 * require no modification. Otherwise, MIPS32 mode will
1885 * be entered when handling any TLB exceptions. That
1886 * would be bad...since we must stay in microMIPS mode.
1887 */
1888 if (!(handler & 0x1))
1889 handler |= 1;
1890 #endif
1891 old_handler = xchg(&exception_handlers[n], handler);
1892
1893 if (n == 0 && cpu_has_divec) {
1894 #ifdef CONFIG_CPU_MICROMIPS
1895 unsigned long jump_mask = ~((1 << 27) - 1);
1896 #else
1897 unsigned long jump_mask = ~((1 << 28) - 1);
1898 #endif
1899 u32 *buf = (u32 *)(ebase + 0x200);
1900 unsigned int k0 = 26;
1901 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1902 uasm_i_j(&buf, handler & ~jump_mask);
1903 uasm_i_nop(&buf);
1904 } else {
1905 UASM_i_LA(&buf, k0, handler);
1906 uasm_i_jr(&buf, k0);
1907 uasm_i_nop(&buf);
1908 }
1909 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1910 }
1911 return (void *)old_handler;
1912 }
1913
do_default_vi(void)1914 static void do_default_vi(void)
1915 {
1916 show_regs(get_irq_regs());
1917 panic("Caught unexpected vectored interrupt.");
1918 }
1919
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1920 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1921 {
1922 unsigned long handler;
1923 unsigned long old_handler = vi_handlers[n];
1924 int srssets = current_cpu_data.srsets;
1925 u16 *h;
1926 unsigned char *b;
1927
1928 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1929
1930 if (addr == NULL) {
1931 handler = (unsigned long) do_default_vi;
1932 srs = 0;
1933 } else
1934 handler = (unsigned long) addr;
1935 vi_handlers[n] = handler;
1936
1937 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1938
1939 if (srs >= srssets)
1940 panic("Shadow register set %d not supported", srs);
1941
1942 if (cpu_has_veic) {
1943 if (board_bind_eic_interrupt)
1944 board_bind_eic_interrupt(n, srs);
1945 } else if (cpu_has_vint) {
1946 /* SRSMap is only defined if shadow sets are implemented */
1947 if (srssets > 1)
1948 change_c0_srsmap(0xf << n*4, srs << n*4);
1949 }
1950
1951 if (srs == 0) {
1952 /*
1953 * If no shadow set is selected then use the default handler
1954 * that does normal register saving and standard interrupt exit
1955 */
1956 extern char except_vec_vi, except_vec_vi_lui;
1957 extern char except_vec_vi_ori, except_vec_vi_end;
1958 extern char rollback_except_vec_vi;
1959 char *vec_start = using_rollback_handler() ?
1960 &rollback_except_vec_vi : &except_vec_vi;
1961 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1962 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1963 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1964 #else
1965 const int lui_offset = &except_vec_vi_lui - vec_start;
1966 const int ori_offset = &except_vec_vi_ori - vec_start;
1967 #endif
1968 const int handler_len = &except_vec_vi_end - vec_start;
1969
1970 if (handler_len > VECTORSPACING) {
1971 /*
1972 * Sigh... panicing won't help as the console
1973 * is probably not configured :(
1974 */
1975 panic("VECTORSPACING too small");
1976 }
1977
1978 set_handler(((unsigned long)b - ebase), vec_start,
1979 #ifdef CONFIG_CPU_MICROMIPS
1980 (handler_len - 1));
1981 #else
1982 handler_len);
1983 #endif
1984 h = (u16 *)(b + lui_offset);
1985 *h = (handler >> 16) & 0xffff;
1986 h = (u16 *)(b + ori_offset);
1987 *h = (handler & 0xffff);
1988 local_flush_icache_range((unsigned long)b,
1989 (unsigned long)(b+handler_len));
1990 }
1991 else {
1992 /*
1993 * In other cases jump directly to the interrupt handler. It
1994 * is the handler's responsibility to save registers if required
1995 * (eg hi/lo) and return from the exception using "eret".
1996 */
1997 u32 insn;
1998
1999 h = (u16 *)b;
2000 /* j handler */
2001 #ifdef CONFIG_CPU_MICROMIPS
2002 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2003 #else
2004 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2005 #endif
2006 h[0] = (insn >> 16) & 0xffff;
2007 h[1] = insn & 0xffff;
2008 h[2] = 0;
2009 h[3] = 0;
2010 local_flush_icache_range((unsigned long)b,
2011 (unsigned long)(b+8));
2012 }
2013
2014 return (void *)old_handler;
2015 }
2016
set_vi_handler(int n,vi_handler_t addr)2017 void *set_vi_handler(int n, vi_handler_t addr)
2018 {
2019 return set_vi_srs_handler(n, addr, 0);
2020 }
2021
2022 extern void tlb_init(void);
2023
2024 /*
2025 * Timer interrupt
2026 */
2027 int cp0_compare_irq;
2028 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2029 int cp0_compare_irq_shift;
2030
2031 /*
2032 * Performance counter IRQ or -1 if shared with timer
2033 */
2034 int cp0_perfcount_irq;
2035 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2036
2037 /*
2038 * Fast debug channel IRQ or -1 if not present
2039 */
2040 int cp0_fdc_irq;
2041 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2042
2043 static int noulri;
2044
ulri_disable(char * s)2045 static int __init ulri_disable(char *s)
2046 {
2047 pr_info("Disabling ulri\n");
2048 noulri = 1;
2049
2050 return 1;
2051 }
2052 __setup("noulri", ulri_disable);
2053
2054 /* configure STATUS register */
configure_status(void)2055 static void configure_status(void)
2056 {
2057 /*
2058 * Disable coprocessors and select 32-bit or 64-bit addressing
2059 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2060 * flag that some firmware may have left set and the TS bit (for
2061 * IP27). Set XX for ISA IV code to work.
2062 */
2063 unsigned int status_set = ST0_CU0;
2064 #ifdef CONFIG_64BIT
2065 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2066 #endif
2067 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2068 status_set |= ST0_XX;
2069 if (cpu_has_dsp)
2070 status_set |= ST0_MX;
2071
2072 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2073 status_set);
2074 }
2075
2076 /* configure HWRENA register */
configure_hwrena(void)2077 static void configure_hwrena(void)
2078 {
2079 unsigned int hwrena = cpu_hwrena_impl_bits;
2080
2081 if (cpu_has_mips_r2_r6)
2082 hwrena |= 0x0000000f;
2083
2084 if (!noulri && cpu_has_userlocal)
2085 hwrena |= (1 << 29);
2086
2087 if (hwrena)
2088 write_c0_hwrena(hwrena);
2089 }
2090
configure_exception_vector(void)2091 static void configure_exception_vector(void)
2092 {
2093 if (cpu_has_veic || cpu_has_vint) {
2094 unsigned long sr = set_c0_status(ST0_BEV);
2095 write_c0_ebase(ebase);
2096 write_c0_status(sr);
2097 /* Setting vector spacing enables EI/VI mode */
2098 change_c0_intctl(0x3e0, VECTORSPACING);
2099 }
2100 if (cpu_has_divec) {
2101 if (cpu_has_mipsmt) {
2102 unsigned int vpflags = dvpe();
2103 set_c0_cause(CAUSEF_IV);
2104 evpe(vpflags);
2105 } else
2106 set_c0_cause(CAUSEF_IV);
2107 }
2108 }
2109
per_cpu_trap_init(bool is_boot_cpu)2110 void per_cpu_trap_init(bool is_boot_cpu)
2111 {
2112 unsigned int cpu = smp_processor_id();
2113
2114 configure_status();
2115 configure_hwrena();
2116
2117 configure_exception_vector();
2118
2119 /*
2120 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2121 *
2122 * o read IntCtl.IPTI to determine the timer interrupt
2123 * o read IntCtl.IPPCI to determine the performance counter interrupt
2124 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2125 */
2126 if (cpu_has_mips_r2_r6) {
2127 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2128 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2129 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2130 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2131 if (!cp0_fdc_irq)
2132 cp0_fdc_irq = -1;
2133
2134 } else {
2135 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2136 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2137 cp0_perfcount_irq = -1;
2138 cp0_fdc_irq = -1;
2139 }
2140
2141 if (!cpu_data[cpu].asid_cache)
2142 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2143
2144 atomic_inc(&init_mm.mm_count);
2145 current->active_mm = &init_mm;
2146 BUG_ON(current->mm);
2147 enter_lazy_tlb(&init_mm, current);
2148
2149 /* Boot CPU's cache setup in setup_arch(). */
2150 if (!is_boot_cpu)
2151 cpu_cache_init();
2152 tlb_init();
2153 TLBMISS_HANDLER_SETUP();
2154 }
2155
2156 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)2157 void set_handler(unsigned long offset, void *addr, unsigned long size)
2158 {
2159 #ifdef CONFIG_CPU_MICROMIPS
2160 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2161 #else
2162 memcpy((void *)(ebase + offset), addr, size);
2163 #endif
2164 local_flush_icache_range(ebase + offset, ebase + offset + size);
2165 }
2166
2167 static char panic_null_cerr[] =
2168 "Trying to set NULL cache error exception handler";
2169
2170 /*
2171 * Install uncached CPU exception handler.
2172 * This is suitable only for the cache error exception which is the only
2173 * exception handler that is being run uncached.
2174 */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2175 void set_uncached_handler(unsigned long offset, void *addr,
2176 unsigned long size)
2177 {
2178 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2179
2180 if (!addr)
2181 panic(panic_null_cerr);
2182
2183 memcpy((void *)(uncached_ebase + offset), addr, size);
2184 }
2185
2186 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2187 static int __init set_rdhwr_noopt(char *str)
2188 {
2189 rdhwr_noopt = 1;
2190 return 1;
2191 }
2192
2193 __setup("rdhwr_noopt", set_rdhwr_noopt);
2194
trap_init(void)2195 void __init trap_init(void)
2196 {
2197 extern char except_vec3_generic;
2198 extern char except_vec4;
2199 extern char except_vec3_r4000;
2200 unsigned long i;
2201
2202 check_wait();
2203
2204 if (cpu_has_veic || cpu_has_vint) {
2205 unsigned long size = 0x200 + VECTORSPACING*64;
2206 ebase = (unsigned long)
2207 __alloc_bootmem(size, 1 << fls(size), 0);
2208 } else {
2209 ebase = CAC_BASE;
2210
2211 if (cpu_has_mips_r2_r6)
2212 ebase += (read_c0_ebase() & 0x3ffff000);
2213 }
2214
2215 if (cpu_has_mmips) {
2216 unsigned int config3 = read_c0_config3();
2217
2218 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2219 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2220 else
2221 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2222 }
2223
2224 if (board_ebase_setup)
2225 board_ebase_setup();
2226 per_cpu_trap_init(true);
2227
2228 /*
2229 * Copy the generic exception handlers to their final destination.
2230 * This will be overriden later as suitable for a particular
2231 * configuration.
2232 */
2233 set_handler(0x180, &except_vec3_generic, 0x80);
2234
2235 /*
2236 * Setup default vectors
2237 */
2238 for (i = 0; i <= 31; i++)
2239 set_except_vector(i, handle_reserved);
2240
2241 /*
2242 * Copy the EJTAG debug exception vector handler code to it's final
2243 * destination.
2244 */
2245 if (cpu_has_ejtag && board_ejtag_handler_setup)
2246 board_ejtag_handler_setup();
2247
2248 /*
2249 * Only some CPUs have the watch exceptions.
2250 */
2251 if (cpu_has_watch)
2252 set_except_vector(23, handle_watch);
2253
2254 /*
2255 * Initialise interrupt handlers
2256 */
2257 if (cpu_has_veic || cpu_has_vint) {
2258 int nvec = cpu_has_veic ? 64 : 8;
2259 for (i = 0; i < nvec; i++)
2260 set_vi_handler(i, NULL);
2261 }
2262 else if (cpu_has_divec)
2263 set_handler(0x200, &except_vec4, 0x8);
2264
2265 /*
2266 * Some CPUs can enable/disable for cache parity detection, but does
2267 * it different ways.
2268 */
2269 parity_protection_init();
2270
2271 /*
2272 * The Data Bus Errors / Instruction Bus Errors are signaled
2273 * by external hardware. Therefore these two exceptions
2274 * may have board specific handlers.
2275 */
2276 if (board_be_init)
2277 board_be_init();
2278
2279 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2280 : handle_int);
2281 set_except_vector(1, handle_tlbm);
2282 set_except_vector(2, handle_tlbl);
2283 set_except_vector(3, handle_tlbs);
2284
2285 set_except_vector(4, handle_adel);
2286 set_except_vector(5, handle_ades);
2287
2288 set_except_vector(6, handle_ibe);
2289 set_except_vector(7, handle_dbe);
2290
2291 set_except_vector(8, handle_sys);
2292 set_except_vector(9, handle_bp);
2293 set_except_vector(10, rdhwr_noopt ? handle_ri :
2294 (cpu_has_vtag_icache ?
2295 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2296 set_except_vector(11, handle_cpu);
2297 set_except_vector(12, handle_ov);
2298 set_except_vector(13, handle_tr);
2299 set_except_vector(14, handle_msa_fpe);
2300
2301 if (current_cpu_type() == CPU_R6000 ||
2302 current_cpu_type() == CPU_R6000A) {
2303 /*
2304 * The R6000 is the only R-series CPU that features a machine
2305 * check exception (similar to the R4000 cache error) and
2306 * unaligned ldc1/sdc1 exception. The handlers have not been
2307 * written yet. Well, anyway there is no R6000 machine on the
2308 * current list of targets for Linux/MIPS.
2309 * (Duh, crap, there is someone with a triple R6k machine)
2310 */
2311 //set_except_vector(14, handle_mc);
2312 //set_except_vector(15, handle_ndc);
2313 }
2314
2315
2316 if (board_nmi_handler_setup)
2317 board_nmi_handler_setup();
2318
2319 if (cpu_has_fpu && !cpu_has_nofpuex)
2320 set_except_vector(15, handle_fpe);
2321
2322 set_except_vector(16, handle_ftlb);
2323
2324 if (cpu_has_rixiex) {
2325 set_except_vector(19, tlb_do_page_fault_0);
2326 set_except_vector(20, tlb_do_page_fault_0);
2327 }
2328
2329 set_except_vector(21, handle_msa);
2330 set_except_vector(22, handle_mdmx);
2331
2332 if (cpu_has_mcheck)
2333 set_except_vector(24, handle_mcheck);
2334
2335 if (cpu_has_mipsmt)
2336 set_except_vector(25, handle_mt);
2337
2338 set_except_vector(26, handle_dsp);
2339
2340 if (board_cache_error_setup)
2341 board_cache_error_setup();
2342
2343 if (cpu_has_vce)
2344 /* Special exception: R4[04]00 uses also the divec space. */
2345 set_handler(0x180, &except_vec3_r4000, 0x100);
2346 else if (cpu_has_4kex)
2347 set_handler(0x180, &except_vec3_generic, 0x80);
2348 else
2349 set_handler(0x080, &except_vec3_generic, 0x80);
2350
2351 local_flush_icache_range(ebase, ebase + 0x400);
2352
2353 sort_extable(__start___dbe_table, __stop___dbe_table);
2354
2355 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2356 }
2357
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2358 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2359 void *v)
2360 {
2361 switch (cmd) {
2362 case CPU_PM_ENTER_FAILED:
2363 case CPU_PM_EXIT:
2364 configure_status();
2365 configure_hwrena();
2366 configure_exception_vector();
2367
2368 /* Restore register with CPU number for TLB handlers */
2369 TLBMISS_HANDLER_RESTORE();
2370
2371 break;
2372 }
2373
2374 return NOTIFY_OK;
2375 }
2376
2377 static struct notifier_block trap_pm_notifier_block = {
2378 .notifier_call = trap_pm_notifier,
2379 };
2380
trap_pm_init(void)2381 static int __init trap_pm_init(void)
2382 {
2383 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2384 }
2385 arch_initcall(trap_pm_init);
2386