1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
45 #include <asm/maar.h>
46 
47 cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
48 
49 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
50 EXPORT_SYMBOL(__cpu_number_map);
51 
52 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
53 EXPORT_SYMBOL(__cpu_logical_map);
54 
55 /* Number of TCs (or siblings in Intel speak) per CPU core */
56 int smp_num_siblings = 1;
57 EXPORT_SYMBOL(smp_num_siblings);
58 
59 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
60 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
61 EXPORT_SYMBOL(cpu_sibling_map);
62 
63 /* representing the core map of multi-core chips of each logical CPU */
64 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_core_map);
66 
67 /*
68  * A logcal cpu mask containing only one VPE per core to
69  * reduce the number of IPIs on large MT systems.
70  */
71 cpumask_t cpu_foreign_map __read_mostly;
72 EXPORT_SYMBOL(cpu_foreign_map);
73 
74 /* representing cpus for which sibling maps can be computed */
75 static cpumask_t cpu_sibling_setup_map;
76 
77 /* representing cpus for which core maps can be computed */
78 static cpumask_t cpu_core_setup_map;
79 
80 cpumask_t cpu_coherent_mask;
81 
set_cpu_sibling_map(int cpu)82 static inline void set_cpu_sibling_map(int cpu)
83 {
84 	int i;
85 
86 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
87 
88 	if (smp_num_siblings > 1) {
89 		for_each_cpu(i, &cpu_sibling_setup_map) {
90 			if (cpu_data[cpu].package == cpu_data[i].package &&
91 				    cpu_data[cpu].core == cpu_data[i].core) {
92 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
93 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
94 			}
95 		}
96 	} else
97 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
98 }
99 
set_cpu_core_map(int cpu)100 static inline void set_cpu_core_map(int cpu)
101 {
102 	int i;
103 
104 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
105 
106 	for_each_cpu(i, &cpu_core_setup_map) {
107 		if (cpu_data[cpu].package == cpu_data[i].package) {
108 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
109 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
110 		}
111 	}
112 }
113 
114 /*
115  * Calculate a new cpu_foreign_map mask whenever a
116  * new cpu appears or disappears.
117  */
calculate_cpu_foreign_map(void)118 static inline void calculate_cpu_foreign_map(void)
119 {
120 	int i, k, core_present;
121 	cpumask_t temp_foreign_map;
122 
123 	/* Re-calculate the mask */
124 	cpumask_clear(&temp_foreign_map);
125 	for_each_online_cpu(i) {
126 		core_present = 0;
127 		for_each_cpu(k, &temp_foreign_map)
128 			if (cpu_data[i].package == cpu_data[k].package &&
129 			    cpu_data[i].core == cpu_data[k].core)
130 				core_present = 1;
131 		if (!core_present)
132 			cpumask_set_cpu(i, &temp_foreign_map);
133 	}
134 
135 	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
136 }
137 
138 struct plat_smp_ops *mp_ops;
139 EXPORT_SYMBOL(mp_ops);
140 
register_smp_ops(struct plat_smp_ops * ops)141 void register_smp_ops(struct plat_smp_ops *ops)
142 {
143 	if (mp_ops)
144 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
145 
146 	mp_ops = ops;
147 }
148 
149 /*
150  * First C code run on the secondary CPUs after being started up by
151  * the master.
152  */
start_secondary(void)153 asmlinkage void start_secondary(void)
154 {
155 	unsigned int cpu;
156 
157 	cpu_probe();
158 	per_cpu_trap_init(false);
159 	mips_clockevent_init();
160 	mp_ops->init_secondary();
161 	cpu_report();
162 	maar_init();
163 
164 	/*
165 	 * XXX parity protection should be folded in here when it's converted
166 	 * to an option instead of something based on .cputype
167 	 */
168 
169 	calibrate_delay();
170 	preempt_disable();
171 	cpu = smp_processor_id();
172 	cpu_data[cpu].udelay_val = loops_per_jiffy;
173 
174 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
175 	notify_cpu_starting(cpu);
176 
177 	set_cpu_online(cpu, true);
178 
179 	set_cpu_sibling_map(cpu);
180 	set_cpu_core_map(cpu);
181 
182 	calculate_cpu_foreign_map();
183 
184 	cpumask_set_cpu(cpu, &cpu_callin_map);
185 
186 	synchronise_count_slave(cpu);
187 
188 	/*
189 	 * irq will be enabled in ->smp_finish(), enabling it too early
190 	 * is dangerous.
191 	 */
192 	WARN_ON_ONCE(!irqs_disabled());
193 	mp_ops->smp_finish();
194 
195 	cpu_startup_entry(CPUHP_ONLINE);
196 }
197 
stop_this_cpu(void * dummy)198 static void stop_this_cpu(void *dummy)
199 {
200 	/*
201 	 * Remove this CPU. Be a bit slow here and
202 	 * set the bits for every online CPU so we don't miss
203 	 * any IPI whilst taking this VPE down.
204 	 */
205 
206 	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
207 
208 	/* Make it visible to every other CPU */
209 	smp_mb();
210 
211 	set_cpu_online(smp_processor_id(), false);
212 	calculate_cpu_foreign_map();
213 	local_irq_disable();
214 	while (1);
215 }
216 
smp_send_stop(void)217 void smp_send_stop(void)
218 {
219 	smp_call_function(stop_this_cpu, NULL, 0);
220 }
221 
smp_cpus_done(unsigned int max_cpus)222 void __init smp_cpus_done(unsigned int max_cpus)
223 {
224 }
225 
226 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)227 void __init smp_prepare_cpus(unsigned int max_cpus)
228 {
229 	init_new_context(current, &init_mm);
230 	current_thread_info()->cpu = 0;
231 	mp_ops->prepare_cpus(max_cpus);
232 	set_cpu_sibling_map(0);
233 	set_cpu_core_map(0);
234 	calculate_cpu_foreign_map();
235 #ifndef CONFIG_HOTPLUG_CPU
236 	init_cpu_present(cpu_possible_mask);
237 #endif
238 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
239 }
240 
241 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)242 void smp_prepare_boot_cpu(void)
243 {
244 	set_cpu_possible(0, true);
245 	set_cpu_online(0, true);
246 	cpumask_set_cpu(0, &cpu_callin_map);
247 }
248 
__cpu_up(unsigned int cpu,struct task_struct * tidle)249 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
250 {
251 	mp_ops->boot_secondary(cpu, tidle);
252 
253 	/*
254 	 * Trust is futile.  We should really have timeouts ...
255 	 */
256 	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
257 		udelay(100);
258 		schedule();
259 	}
260 
261 	synchronise_count_master(cpu);
262 	return 0;
263 }
264 
265 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)266 int setup_profiling_timer(unsigned int multiplier)
267 {
268 	return 0;
269 }
270 
flush_tlb_all_ipi(void * info)271 static void flush_tlb_all_ipi(void *info)
272 {
273 	local_flush_tlb_all();
274 }
275 
flush_tlb_all(void)276 void flush_tlb_all(void)
277 {
278 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
279 }
280 
flush_tlb_mm_ipi(void * mm)281 static void flush_tlb_mm_ipi(void *mm)
282 {
283 	local_flush_tlb_mm((struct mm_struct *)mm);
284 }
285 
286 /*
287  * Special Variant of smp_call_function for use by TLB functions:
288  *
289  *  o No return value
290  *  o collapses to normal function call on UP kernels
291  *  o collapses to normal function call on systems with a single shared
292  *    primary cache.
293  */
smp_on_other_tlbs(void (* func)(void * info),void * info)294 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
295 {
296 	smp_call_function(func, info, 1);
297 }
298 
smp_on_each_tlb(void (* func)(void * info),void * info)299 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
300 {
301 	preempt_disable();
302 
303 	smp_on_other_tlbs(func, info);
304 	func(info);
305 
306 	preempt_enable();
307 }
308 
309 /*
310  * The following tlb flush calls are invoked when old translations are
311  * being torn down, or pte attributes are changing. For single threaded
312  * address spaces, a new context is obtained on the current cpu, and tlb
313  * context on other cpus are invalidated to force a new context allocation
314  * at switch_mm time, should the mm ever be used on other cpus. For
315  * multithreaded address spaces, intercpu interrupts have to be sent.
316  * Another case where intercpu interrupts are required is when the target
317  * mm might be active on another cpu (eg debuggers doing the flushes on
318  * behalf of debugees, kswapd stealing pages from another process etc).
319  * Kanoj 07/00.
320  */
321 
flush_tlb_mm(struct mm_struct * mm)322 void flush_tlb_mm(struct mm_struct *mm)
323 {
324 	preempt_disable();
325 
326 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
327 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
328 	} else {
329 		unsigned int cpu;
330 
331 		for_each_online_cpu(cpu) {
332 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
333 				cpu_context(cpu, mm) = 0;
334 		}
335 	}
336 	local_flush_tlb_mm(mm);
337 
338 	preempt_enable();
339 }
340 
341 struct flush_tlb_data {
342 	struct vm_area_struct *vma;
343 	unsigned long addr1;
344 	unsigned long addr2;
345 };
346 
flush_tlb_range_ipi(void * info)347 static void flush_tlb_range_ipi(void *info)
348 {
349 	struct flush_tlb_data *fd = info;
350 
351 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
352 }
353 
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)354 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
355 {
356 	struct mm_struct *mm = vma->vm_mm;
357 
358 	preempt_disable();
359 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
360 		struct flush_tlb_data fd = {
361 			.vma = vma,
362 			.addr1 = start,
363 			.addr2 = end,
364 		};
365 
366 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
367 	} else {
368 		unsigned int cpu;
369 
370 		for_each_online_cpu(cpu) {
371 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
372 				cpu_context(cpu, mm) = 0;
373 		}
374 	}
375 	local_flush_tlb_range(vma, start, end);
376 	preempt_enable();
377 }
378 
flush_tlb_kernel_range_ipi(void * info)379 static void flush_tlb_kernel_range_ipi(void *info)
380 {
381 	struct flush_tlb_data *fd = info;
382 
383 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
384 }
385 
flush_tlb_kernel_range(unsigned long start,unsigned long end)386 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
387 {
388 	struct flush_tlb_data fd = {
389 		.addr1 = start,
390 		.addr2 = end,
391 	};
392 
393 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
394 }
395 
flush_tlb_page_ipi(void * info)396 static void flush_tlb_page_ipi(void *info)
397 {
398 	struct flush_tlb_data *fd = info;
399 
400 	local_flush_tlb_page(fd->vma, fd->addr1);
401 }
402 
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)403 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
404 {
405 	preempt_disable();
406 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
407 		struct flush_tlb_data fd = {
408 			.vma = vma,
409 			.addr1 = page,
410 		};
411 
412 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
413 	} else {
414 		unsigned int cpu;
415 
416 		for_each_online_cpu(cpu) {
417 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
418 				cpu_context(cpu, vma->vm_mm) = 0;
419 		}
420 	}
421 	local_flush_tlb_page(vma, page);
422 	preempt_enable();
423 }
424 
flush_tlb_one_ipi(void * info)425 static void flush_tlb_one_ipi(void *info)
426 {
427 	unsigned long vaddr = (unsigned long) info;
428 
429 	local_flush_tlb_one(vaddr);
430 }
431 
flush_tlb_one(unsigned long vaddr)432 void flush_tlb_one(unsigned long vaddr)
433 {
434 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
435 }
436 
437 EXPORT_SYMBOL(flush_tlb_page);
438 EXPORT_SYMBOL(flush_tlb_one);
439 
440 #if defined(CONFIG_KEXEC)
441 void (*dump_ipi_function_ptr)(void *) = NULL;
dump_send_ipi(void (* dump_ipi_callback)(void *))442 void dump_send_ipi(void (*dump_ipi_callback)(void *))
443 {
444 	int i;
445 	int cpu = smp_processor_id();
446 
447 	dump_ipi_function_ptr = dump_ipi_callback;
448 	smp_mb();
449 	for_each_online_cpu(i)
450 		if (i != cpu)
451 			mp_ops->send_ipi_single(i, SMP_DUMP);
452 
453 }
454 EXPORT_SYMBOL(dump_send_ipi);
455 #endif
456 
457 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
458 
459 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
460 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
461 
tick_broadcast(const struct cpumask * mask)462 void tick_broadcast(const struct cpumask *mask)
463 {
464 	atomic_t *count;
465 	struct call_single_data *csd;
466 	int cpu;
467 
468 	for_each_cpu(cpu, mask) {
469 		count = &per_cpu(tick_broadcast_count, cpu);
470 		csd = &per_cpu(tick_broadcast_csd, cpu);
471 
472 		if (atomic_inc_return(count) == 1)
473 			smp_call_function_single_async(cpu, csd);
474 	}
475 }
476 
tick_broadcast_callee(void * info)477 static void tick_broadcast_callee(void *info)
478 {
479 	int cpu = smp_processor_id();
480 	tick_receive_broadcast();
481 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
482 }
483 
tick_broadcast_init(void)484 static int __init tick_broadcast_init(void)
485 {
486 	struct call_single_data *csd;
487 	int cpu;
488 
489 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
490 		csd = &per_cpu(tick_broadcast_csd, cpu);
491 		csd->func = tick_broadcast_callee;
492 	}
493 
494 	return 0;
495 }
496 early_initcall(tick_broadcast_init);
497 
498 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
499