1/*
2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
3 * Copyright (C) 2008-2009 PetaLogix
4 * Copyright (C) 2006 Atmark Techno, Inc.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10
11#ifndef _ASM_MICROBLAZE_PGTABLE_H
12#define _ASM_MICROBLAZE_PGTABLE_H
13
14#include <asm/setup.h>
15
16#ifndef __ASSEMBLY__
17extern int mem_init_done;
18#endif
19
20#ifndef CONFIG_MMU
21
22#define pgd_present(pgd)	(1) /* pages are always present on non MMU */
23#define pgd_none(pgd)		(0)
24#define pgd_bad(pgd)		(0)
25#define pgd_clear(pgdp)
26#define kern_addr_valid(addr)	(1)
27#define	pmd_offset(a, b)	((void *) 0)
28
29#define PAGE_NONE		__pgprot(0) /* these mean nothing to non MMU */
30#define PAGE_SHARED		__pgprot(0) /* these mean nothing to non MMU */
31#define PAGE_COPY		__pgprot(0) /* these mean nothing to non MMU */
32#define PAGE_READONLY		__pgprot(0) /* these mean nothing to non MMU */
33#define PAGE_KERNEL		__pgprot(0) /* these mean nothing to non MMU */
34
35#define pgprot_noncached(x)	(x)
36
37#define __swp_type(x)		(0)
38#define __swp_offset(x)		(0)
39#define __swp_entry(typ, off)	((swp_entry_t) { ((typ) | ((off) << 7)) })
40#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
41#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
42
43#define ZERO_PAGE(vaddr)	({ BUG(); NULL; })
44
45#define swapper_pg_dir ((pgd_t *) NULL)
46
47#define pgtable_cache_init()	do {} while (0)
48
49#define arch_enter_lazy_cpu_mode()	do {} while (0)
50
51#define pgprot_noncached_wc(prot)	prot
52
53/*
54 * All 32bit addresses are effectively valid for vmalloc...
55 * Sort of meaningless for non-VM targets.
56 */
57#define	VMALLOC_START	0
58#define	VMALLOC_END	0xffffffff
59
60#else /* CONFIG_MMU */
61
62#include <asm-generic/4level-fixup.h>
63
64#define __PAGETABLE_PMD_FOLDED
65
66#ifdef __KERNEL__
67#ifndef __ASSEMBLY__
68
69#include <linux/sched.h>
70#include <linux/threads.h>
71#include <asm/processor.h>		/* For TASK_SIZE */
72#include <asm/mmu.h>
73#include <asm/page.h>
74
75#define FIRST_USER_ADDRESS	0UL
76
77extern unsigned long va_to_phys(unsigned long address);
78extern pte_t *va_to_pte(unsigned long address);
79
80/*
81 * The following only work if pte_present() is true.
82 * Undefined behaviour if not..
83 */
84
85static inline int pte_special(pte_t pte)	{ return 0; }
86
87static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
88
89/* Start and end of the vmalloc area. */
90/* Make sure to map the vmalloc area above the pinned kernel memory area
91   of 32Mb.  */
92#define VMALLOC_START	(CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
93#define VMALLOC_END	ioremap_bot
94
95#endif /* __ASSEMBLY__ */
96
97/*
98 * Macro to mark a page protection value as "uncacheable".
99 */
100
101#define _PAGE_CACHE_CTL	(_PAGE_GUARDED | _PAGE_NO_CACHE | \
102							_PAGE_WRITETHRU)
103
104#define pgprot_noncached(prot) \
105			(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
106					_PAGE_NO_CACHE | _PAGE_GUARDED))
107
108#define pgprot_noncached_wc(prot) \
109			 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
110							_PAGE_NO_CACHE))
111
112/*
113 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
114 * table containing PTEs, together with a set of 16 segment registers, to
115 * define the virtual to physical address mapping.
116 *
117 * We use the hash table as an extended TLB, i.e. a cache of currently
118 * active mappings.  We maintain a two-level page table tree, much
119 * like that used by the i386, for the sake of the Linux memory
120 * management code.  Low-level assembler code in hashtable.S
121 * (procedure hash_page) is responsible for extracting ptes from the
122 * tree and putting them into the hash table when necessary, and
123 * updating the accessed and modified bits in the page table tree.
124 */
125
126/*
127 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
128 * instruction and data sides share a unified, 64-entry, semi-associative
129 * TLB which is maintained totally under software control. In addition, the
130 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
131 * TLB which serves as a first level to the shared TLB. These two TLBs are
132 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
133 */
134
135/*
136 * The normal case is that PTEs are 32-bits and we have a 1-page
137 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
138 *
139 */
140
141/* PMD_SHIFT determines the size of the area mapped by the PTE pages */
142#define PMD_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
143#define PMD_SIZE	(1UL << PMD_SHIFT)
144#define PMD_MASK	(~(PMD_SIZE-1))
145
146/* PGDIR_SHIFT determines what a top-level page table entry can map */
147#define PGDIR_SHIFT	PMD_SHIFT
148#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
149#define PGDIR_MASK	(~(PGDIR_SIZE-1))
150
151/*
152 * entries per page directory level: our page-table tree is two-level, so
153 * we don't really have any PMD directory.
154 */
155#define PTRS_PER_PTE	(1 << PTE_SHIFT)
156#define PTRS_PER_PMD	1
157#define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
158
159#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
160#define FIRST_USER_PGD_NR	0
161
162#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
163#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
164
165#define pte_ERROR(e) \
166	printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
167		__FILE__, __LINE__, pte_val(e))
168#define pmd_ERROR(e) \
169	printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \
170		__FILE__, __LINE__, pmd_val(e))
171#define pgd_ERROR(e) \
172	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
173		__FILE__, __LINE__, pgd_val(e))
174
175/*
176 * Bits in a linux-style PTE.  These match the bits in the
177 * (hardware-defined) PTE as closely as possible.
178 */
179
180/* There are several potential gotchas here.  The hardware TLBLO
181 * field looks like this:
182 *
183 * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
184 * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
185 *
186 * Where possible we make the Linux PTE bits match up with this
187 *
188 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
189 * support down to 1k pages), this is done in the TLBMiss exception
190 * handler.
191 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
192 * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
193 * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
194 * zone.
195 * - PRESENT *must* be in the bottom two bits because swap cache
196 * entries use the top 30 bits.  Because 4xx doesn't support SMP
197 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
198 * is cleared in the TLB miss handler before the TLB entry is loaded.
199 * - All other bits of the PTE are loaded into TLBLO without
200 *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
201 * software PTE bits.  We actually use use bits 21, 24, 25, and
202 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
203 * PRESENT.
204 */
205
206/* Definitions for MicroBlaze. */
207#define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
208#define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
209#define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
210#define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
211#define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
212#define	_PAGE_RW	0x040	/* software: Writes permitted */
213#define	_PAGE_DIRTY	0x080	/* software: dirty page */
214#define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
215#define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
216#define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
217#define _PMD_PRESENT	PAGE_MASK
218
219/*
220 * Some bits are unused...
221 */
222#ifndef _PAGE_HASHPTE
223#define _PAGE_HASHPTE	0
224#endif
225#ifndef _PTE_NONE_MASK
226#define _PTE_NONE_MASK	0
227#endif
228#ifndef _PAGE_SHARED
229#define _PAGE_SHARED	0
230#endif
231#ifndef _PAGE_EXEC
232#define _PAGE_EXEC	0
233#endif
234
235#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
236
237/*
238 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
239 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
240 * to have it in the Linux PTE, and in fact the bit could be reused for
241 * another purpose.  -- paulus.
242 */
243#define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
244#define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
245
246#define _PAGE_KERNEL \
247	(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
248
249#define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
250
251#define PAGE_NONE	__pgprot(_PAGE_BASE)
252#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
253#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
254#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
255#define PAGE_SHARED_X \
256		__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
257#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
258#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
259
260#define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
261#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
262#define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
263
264/*
265 * We consider execute permission the same as read.
266 * Also, write permissions imply read permissions.
267 */
268#define __P000	PAGE_NONE
269#define __P001	PAGE_READONLY_X
270#define __P010	PAGE_COPY
271#define __P011	PAGE_COPY_X
272#define __P100	PAGE_READONLY
273#define __P101	PAGE_READONLY_X
274#define __P110	PAGE_COPY
275#define __P111	PAGE_COPY_X
276
277#define __S000	PAGE_NONE
278#define __S001	PAGE_READONLY_X
279#define __S010	PAGE_SHARED
280#define __S011	PAGE_SHARED_X
281#define __S100	PAGE_READONLY
282#define __S101	PAGE_READONLY_X
283#define __S110	PAGE_SHARED
284#define __S111	PAGE_SHARED_X
285
286#ifndef __ASSEMBLY__
287/*
288 * ZERO_PAGE is a global shared page that is always zero: used
289 * for zero-mapped memory areas etc..
290 */
291extern unsigned long empty_zero_page[1024];
292#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
293
294#endif /* __ASSEMBLY__ */
295
296#define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
297#define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
298#define pte_clear(mm, addr, ptep) \
299	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
300
301#define pmd_none(pmd)		(!pmd_val(pmd))
302#define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
303#define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
304#define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
305
306#define pte_page(x)		(mem_map + (unsigned long) \
307				((pte_val(x) - memory_start) >> PAGE_SHIFT))
308#define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
309
310#define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
311
312#define pfn_pte(pfn, prot) \
313	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
314
315#ifndef __ASSEMBLY__
316/*
317 * The "pgd_xxx()" functions here are trivial for a folded two-level
318 * setup: the pgd is never bad, and a pmd always exists (as it's folded
319 * into the pgd entry)
320 */
321static inline int pgd_none(pgd_t pgd)		{ return 0; }
322static inline int pgd_bad(pgd_t pgd)		{ return 0; }
323static inline int pgd_present(pgd_t pgd)	{ return 1; }
324#define pgd_clear(xp)				do { } while (0)
325#define pgd_page(pgd) \
326	((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
327
328/*
329 * The following only work if pte_present() is true.
330 * Undefined behaviour if not..
331 */
332static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
333static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
334static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
335static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
336static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
337
338static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
339static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
340
341static inline pte_t pte_rdprotect(pte_t pte) \
342		{ pte_val(pte) &= ~_PAGE_USER; return pte; }
343static inline pte_t pte_wrprotect(pte_t pte) \
344	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
345static inline pte_t pte_exprotect(pte_t pte) \
346	{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
347static inline pte_t pte_mkclean(pte_t pte) \
348	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
349static inline pte_t pte_mkold(pte_t pte) \
350	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
351
352static inline pte_t pte_mkread(pte_t pte) \
353	{ pte_val(pte) |= _PAGE_USER; return pte; }
354static inline pte_t pte_mkexec(pte_t pte) \
355	{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
356static inline pte_t pte_mkwrite(pte_t pte) \
357	{ pte_val(pte) |= _PAGE_RW; return pte; }
358static inline pte_t pte_mkdirty(pte_t pte) \
359	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
360static inline pte_t pte_mkyoung(pte_t pte) \
361	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
362
363/*
364 * Conversion functions: convert a page and protection to a page entry,
365 * and a page entry and page directory to the page they refer to.
366 */
367
368static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
369{
370	pte_t pte;
371	pte_val(pte) = physpage | pgprot_val(pgprot);
372	return pte;
373}
374
375#define mk_pte(page, pgprot) \
376({									   \
377	pte_t pte;							   \
378	pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
379			pgprot_val(pgprot);				   \
380	pte;								   \
381})
382
383static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
384{
385	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
386	return pte;
387}
388
389/*
390 * Atomic PTE updates.
391 *
392 * pte_update clears and sets bit atomically, and returns
393 * the old pte value.
394 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
395 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
396 */
397static inline unsigned long pte_update(pte_t *p, unsigned long clr,
398				unsigned long set)
399{
400	unsigned long flags, old, tmp;
401
402	raw_local_irq_save(flags);
403
404	__asm__ __volatile__(	"lw	%0, %2, r0	\n"
405				"andn	%1, %0, %3	\n"
406				"or	%1, %1, %4	\n"
407				"sw	%1, %2, r0	\n"
408			: "=&r" (old), "=&r" (tmp)
409			: "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
410			: "cc");
411
412	raw_local_irq_restore(flags);
413
414	return old;
415}
416
417/*
418 * set_pte stores a linux PTE into the linux page table.
419 */
420static inline void set_pte(struct mm_struct *mm, unsigned long addr,
421		pte_t *ptep, pte_t pte)
422{
423	*ptep = pte;
424}
425
426static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
427		pte_t *ptep, pte_t pte)
428{
429	*ptep = pte;
430}
431
432#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
433static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
434		unsigned long address, pte_t *ptep)
435{
436	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
437}
438
439static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
440		unsigned long addr, pte_t *ptep)
441{
442	return (pte_update(ptep, \
443		(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
444}
445
446#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
447static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
448		unsigned long addr, pte_t *ptep)
449{
450	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
451}
452
453/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
454		unsigned long addr, pte_t *ptep)
455{
456	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
457}*/
458
459static inline void ptep_mkdirty(struct mm_struct *mm,
460		unsigned long addr, pte_t *ptep)
461{
462	pte_update(ptep, 0, _PAGE_DIRTY);
463}
464
465/*#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
466
467/* Convert pmd entry to page */
468/* our pmd entry is an effective address of pte table*/
469/* returns effective address of the pmd entry*/
470#define pmd_page_kernel(pmd)	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
471
472/* returns struct *page of the pmd entry*/
473#define pmd_page(pmd)	(pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
474
475/* to find an entry in a kernel page-table-directory */
476#define pgd_offset_k(address) pgd_offset(&init_mm, address)
477
478/* to find an entry in a page-table-directory */
479#define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
480#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
481
482/* Find an entry in the second-level page table.. */
483static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address)
484{
485	return (pmd_t *) dir;
486}
487
488/* Find an entry in the third-level page table.. */
489#define pte_index(address)		\
490	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
491#define pte_offset_kernel(dir, addr)	\
492	((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
493#define pte_offset_map(dir, addr)		\
494	((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
495
496#define pte_unmap(pte)		kunmap_atomic(pte)
497
498extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
499
500/*
501 * Encode and decode a swap entry.
502 * Note that the bits we use in a PTE for representing a swap entry
503 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
504 * (if used).  -- paulus
505 */
506#define __swp_type(entry)		((entry).val & 0x3f)
507#define __swp_offset(entry)	((entry).val >> 6)
508#define __swp_entry(type, offset) \
509		((swp_entry_t) { (type) | ((offset) << 6) })
510#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) >> 2 })
511#define __swp_entry_to_pte(x)	((pte_t) { (x).val << 2 })
512
513extern unsigned long iopa(unsigned long addr);
514
515/* Values for nocacheflag and cmode */
516/* These are not used by the APUS kernel_map, but prevents
517 * compilation errors.
518 */
519#define	IOMAP_FULL_CACHING	0
520#define	IOMAP_NOCACHE_SER	1
521#define	IOMAP_NOCACHE_NONSER	2
522#define	IOMAP_NO_COPYBACK	3
523
524/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
525#define kern_addr_valid(addr)	(1)
526
527/*
528 * No page table caches to initialise
529 */
530#define pgtable_cache_init()	do { } while (0)
531
532void do_page_fault(struct pt_regs *regs, unsigned long address,
533		   unsigned long error_code);
534
535void mapin_ram(void);
536int map_page(unsigned long va, phys_addr_t pa, int flags);
537
538extern int mem_init_done;
539
540asmlinkage void __init mmu_init(void);
541
542void __init *early_get_page(void);
543
544#endif /* __ASSEMBLY__ */
545#endif /* __KERNEL__ */
546
547#endif /* CONFIG_MMU */
548
549#ifndef __ASSEMBLY__
550#include <asm-generic/pgtable.h>
551
552extern unsigned long ioremap_bot, ioremap_base;
553
554void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle);
555void consistent_free(size_t size, void *vaddr);
556void consistent_sync(void *vaddr, size_t size, int direction);
557void consistent_sync_page(struct page *page, unsigned long offset,
558	size_t size, int direction);
559unsigned long consistent_virt_to_pfn(void *vaddr);
560
561void setup_memory(void);
562#endif /* __ASSEMBLY__ */
563
564#endif /* _ASM_MICROBLAZE_PGTABLE_H */
565