1 /*
2  *  linux/arch/cris/arch-v32/kernel/time.c
3  *
4  *  Copyright (C) 2003-2010 Axis Communications AB
5  *
6  */
7 
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/clockchips.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/threads.h>
17 #include <linux/cpufreq.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <asm/types.h>
21 #include <asm/signal.h>
22 #include <asm/io.h>
23 #include <asm/delay.h>
24 #include <asm/irq.h>
25 #include <asm/irq_regs.h>
26 
27 #include <hwregs/reg_map.h>
28 #include <hwregs/reg_rdwr.h>
29 #include <hwregs/timer_defs.h>
30 #include <hwregs/intr_vect_defs.h>
31 #ifdef CONFIG_CRIS_MACH_ARTPEC3
32 #include <hwregs/clkgen_defs.h>
33 #endif
34 
35 /* Watchdog defines */
36 #define ETRAX_WD_KEY_MASK	0x7F /* key is 7 bit */
37 #define ETRAX_WD_HZ		763 /* watchdog counts at 763 Hz */
38 /* Number of 763 counts before watchdog bites */
39 #define ETRAX_WD_CNT		((2*ETRAX_WD_HZ)/HZ + 1)
40 
41 #define CRISV32_TIMER_FREQ	(100000000lu)
42 
43 unsigned long timer_regs[NR_CPUS] =
44 {
45 	regi_timer0,
46 };
47 
48 extern int set_rtc_mmss(unsigned long nowtime);
49 
50 #ifdef CONFIG_CPU_FREQ
51 static int cris_time_freq_notifier(struct notifier_block *nb,
52 				   unsigned long val, void *data);
53 
54 static struct notifier_block cris_time_freq_notifier_block = {
55 	.notifier_call = cris_time_freq_notifier,
56 };
57 #endif
58 
get_ns_in_jiffie(void)59 unsigned long get_ns_in_jiffie(void)
60 {
61 	reg_timer_r_tmr0_data data;
62 	unsigned long ns;
63 
64 	data = REG_RD(timer, regi_timer0, r_tmr0_data);
65 	ns = (TIMER0_DIV - data) * 10;
66 	return ns;
67 }
68 
69 /* From timer MDS describing the hardware watchdog:
70  * 4.3.1 Watchdog Operation
71  * The watchdog timer is an 8-bit timer with a configurable start value.
72  * Once started the watchdog counts downwards with a frequency of 763 Hz
73  * (100/131072 MHz). When the watchdog counts down to 1, it generates an
74  * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
75  * chip.
76  */
77 /* This gives us 1.3 ms to do something useful when the NMI comes */
78 
79 /* Right now, starting the watchdog is the same as resetting it */
80 #define start_watchdog reset_watchdog
81 
82 #if defined(CONFIG_ETRAX_WATCHDOG)
83 static short int watchdog_key = 42;  /* arbitrary 7 bit number */
84 #endif
85 
86 /* Number of pages to consider "out of memory". It is normal that the memory
87  * is used though, so set this really low. */
88 #define WATCHDOG_MIN_FREE_PAGES 8
89 
90 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
91 /* for reliable NICE_DOGGY behaviour */
92 static int bite_in_progress;
93 #endif
94 
reset_watchdog(void)95 void reset_watchdog(void)
96 {
97 #if defined(CONFIG_ETRAX_WATCHDOG)
98 	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
99 
100 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
101 	if (unlikely(bite_in_progress))
102 		return;
103 #endif
104 	/* Only keep watchdog happy as long as we have memory left! */
105 	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
106 		/* Reset the watchdog with the inverse of the old key */
107 		/* Invert key, which is 7 bits */
108 		watchdog_key ^= ETRAX_WD_KEY_MASK;
109 		wd_ctrl.cnt = ETRAX_WD_CNT;
110 		wd_ctrl.cmd = regk_timer_start;
111 		wd_ctrl.key = watchdog_key;
112 		REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
113 	}
114 #endif
115 }
116 
117 /* stop the watchdog - we still need the correct key */
118 
stop_watchdog(void)119 void stop_watchdog(void)
120 {
121 #if defined(CONFIG_ETRAX_WATCHDOG)
122 	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
123 	watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
124 	wd_ctrl.cnt = ETRAX_WD_CNT;
125 	wd_ctrl.cmd = regk_timer_stop;
126 	wd_ctrl.key = watchdog_key;
127 	REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
128 #endif
129 }
130 
131 extern void show_registers(struct pt_regs *regs);
132 
handle_watchdog_bite(struct pt_regs * regs)133 void handle_watchdog_bite(struct pt_regs *regs)
134 {
135 #if defined(CONFIG_ETRAX_WATCHDOG)
136 	extern int cause_of_death;
137 
138 	nmi_enter();
139 	oops_in_progress = 1;
140 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
141 	bite_in_progress = 1;
142 #endif
143 	printk(KERN_WARNING "Watchdog bite\n");
144 
145 	/* Check if forced restart or unexpected watchdog */
146 	if (cause_of_death == 0xbedead) {
147 #ifdef CONFIG_CRIS_MACH_ARTPEC3
148 		/* There is a bug in Artpec-3 (voodoo TR 78) that requires
149 		 * us to go to lower frequency for the reset to be reliable
150 		 */
151 		reg_clkgen_rw_clk_ctrl ctrl =
152 			REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
153 		ctrl.pll = 0;
154 		REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
155 #endif
156 		while(1);
157 	}
158 
159 	/* Unexpected watchdog, stop the watchdog and dump registers. */
160 	stop_watchdog();
161 	printk(KERN_WARNING "Oops: bitten by watchdog\n");
162 	show_registers(regs);
163 	oops_in_progress = 0;
164 	printk("\n"); /* Flush mtdoops.  */
165 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
166 	reset_watchdog();
167 #endif
168 	while(1) /* nothing */;
169 #endif
170 }
171 
172 extern void cris_profile_sample(struct pt_regs *regs);
173 static void __iomem *timer_base;
174 
crisv32_clkevt_switch_state(struct clock_event_device * dev)175 static int crisv32_clkevt_switch_state(struct clock_event_device *dev)
176 {
177 	reg_timer_rw_tmr0_ctrl ctrl = {
178 		.op = regk_timer_hold,
179 		.freq = regk_timer_f100,
180 	};
181 
182 	REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
183 	return 0;
184 }
185 
crisv32_clkevt_next_event(unsigned long evt,struct clock_event_device * dev)186 static int crisv32_clkevt_next_event(unsigned long evt,
187 				     struct clock_event_device *dev)
188 {
189 	reg_timer_rw_tmr0_ctrl ctrl = {
190 		.op = regk_timer_ld,
191 		.freq = regk_timer_f100,
192 	};
193 
194 	REG_WR(timer, timer_base, rw_tmr0_div, evt);
195 	REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
196 
197 	ctrl.op = regk_timer_run;
198 	REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
199 
200 	return 0;
201 }
202 
crisv32_timer_interrupt(int irq,void * dev_id)203 static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id)
204 {
205 	struct clock_event_device *evt = dev_id;
206 	reg_timer_rw_tmr0_ctrl ctrl = {
207 		.op = regk_timer_hold,
208 		.freq = regk_timer_f100,
209 	};
210 	reg_timer_rw_ack_intr ack = { .tmr0 = 1 };
211 	reg_timer_r_masked_intr intr;
212 
213 	intr = REG_RD(timer, timer_base, r_masked_intr);
214 	if (!intr.tmr0)
215 		return IRQ_NONE;
216 
217 	REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
218 	REG_WR(timer, timer_base, rw_ack_intr, ack);
219 
220 	reset_watchdog();
221 #ifdef CONFIG_SYSTEM_PROFILER
222 	cris_profile_sample(get_irq_regs());
223 #endif
224 
225 	evt->event_handler(evt);
226 
227 	return IRQ_HANDLED;
228 }
229 
230 static struct clock_event_device crisv32_clockevent = {
231 	.name = "crisv32-timer",
232 	.rating = 300,
233 	.features = CLOCK_EVT_FEAT_ONESHOT,
234 	.set_state_oneshot = crisv32_clkevt_switch_state,
235 	.set_state_shutdown = crisv32_clkevt_switch_state,
236 	.tick_resume = crisv32_clkevt_switch_state,
237 	.set_next_event = crisv32_clkevt_next_event,
238 };
239 
240 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
241 static struct irqaction irq_timer = {
242 	.handler = crisv32_timer_interrupt,
243 	.flags = IRQF_TIMER | IRQF_SHARED,
244 	.name = "crisv32-timer",
245 	.dev_id = &crisv32_clockevent,
246 };
247 
crisv32_timer_sched_clock(void)248 static u64 notrace crisv32_timer_sched_clock(void)
249 {
250 	return REG_RD(timer, timer_base, r_time);
251 }
252 
crisv32_timer_init(void)253 static void __init crisv32_timer_init(void)
254 {
255 	reg_timer_rw_intr_mask timer_intr_mask;
256 	reg_timer_rw_tmr0_ctrl ctrl = {
257 		.op = regk_timer_hold,
258 		.freq = regk_timer_f100,
259 	};
260 
261 	REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
262 
263 	timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask);
264 	timer_intr_mask.tmr0 = 1;
265 	REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask);
266 }
267 
time_init(void)268 void __init time_init(void)
269 {
270 	int irq;
271 	int ret;
272 
273 	/* Probe for the RTC and read it if it exists.
274 	 * Before the RTC can be probed the loops_per_usec variable needs
275 	 * to be initialized to make usleep work. A better value for
276 	 * loops_per_usec is calculated by the kernel later once the
277 	 * clock has started.
278 	 */
279 	loops_per_usec = 50;
280 
281 	irq = TIMER0_INTR_VECT;
282 	timer_base = (void __iomem *) regi_timer0;
283 
284 	crisv32_timer_init();
285 
286 	sched_clock_register(crisv32_timer_sched_clock, 32,
287 			     CRISV32_TIMER_FREQ);
288 
289 	clocksource_mmio_init(timer_base + REG_RD_ADDR_timer_r_time,
290 			      "crisv32-timer", CRISV32_TIMER_FREQ,
291 			      300, 32, clocksource_mmio_readl_up);
292 
293 	crisv32_clockevent.cpumask = cpu_possible_mask;
294 	crisv32_clockevent.irq = irq;
295 
296 	ret = setup_irq(irq, &irq_timer);
297 	if (ret)
298 		pr_warn("failed to setup irq %d\n", irq);
299 
300 	clockevents_config_and_register(&crisv32_clockevent,
301 					CRISV32_TIMER_FREQ,
302 					2, 0xffffffff);
303 
304 	/* Enable watchdog if we should use one. */
305 
306 #if defined(CONFIG_ETRAX_WATCHDOG)
307 	printk(KERN_INFO "Enabling watchdog...\n");
308 	start_watchdog();
309 
310 	/* If we use the hardware watchdog, we want to trap it as an NMI
311 	 * and dump registers before it resets us.  For this to happen, we
312 	 * must set the "m" NMI enable flag (which once set, is unset only
313 	 * when an NMI is taken). */
314 	{
315 		unsigned long flags;
316 		local_save_flags(flags);
317 		flags |= (1<<30); /* NMI M flag is at bit 30 */
318 		local_irq_restore(flags);
319 	}
320 #endif
321 
322 #ifdef CONFIG_CPU_FREQ
323 	cpufreq_register_notifier(&cris_time_freq_notifier_block,
324 				  CPUFREQ_TRANSITION_NOTIFIER);
325 #endif
326 }
327 
328 #ifdef CONFIG_CPU_FREQ
cris_time_freq_notifier(struct notifier_block * nb,unsigned long val,void * data)329 static int cris_time_freq_notifier(struct notifier_block *nb,
330 				   unsigned long val, void *data)
331 {
332 	struct cpufreq_freqs *freqs = data;
333 	if (val == CPUFREQ_POSTCHANGE) {
334 		reg_timer_r_tmr0_data data;
335 		reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
336 		do {
337 			data = REG_RD(timer, timer_regs[freqs->cpu],
338 				r_tmr0_data);
339 		} while (data > 20);
340 		REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
341 	}
342 	return 0;
343 }
344 #endif
345