1/*
2 * Physical mapping layer for MTD using the Axis partitiontable format
3 *
4 * Copyright (c) 2001, 2002 Axis Communications AB
5 *
6 * This file is under the GPL.
7 *
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/types.h>
17#include <linux/kernel.h>
18#include <linux/init.h>
19#include <linux/slab.h>
20
21#include <linux/mtd/concat.h>
22#include <linux/mtd/map.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/mtdram.h>
25#include <linux/mtd/partitions.h>
26
27#include <asm/axisflashmap.h>
28#include <asm/mmu.h>
29#include <arch/sv_addr_ag.h>
30
31#ifdef CONFIG_CRIS_LOW_MAP
32#define FLASH_UNCACHED_ADDR  KSEG_8
33#define FLASH_CACHED_ADDR    KSEG_5
34#else
35#define FLASH_UNCACHED_ADDR  KSEG_E
36#define FLASH_CACHED_ADDR    KSEG_F
37#endif
38
39#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
40#define flash_data __u8
41#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
42#define flash_data __u16
43#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
44#define flash_data __u32
45#endif
46
47/* From head.S */
48extern unsigned long romfs_start, romfs_length, romfs_in_flash;
49
50/* The master mtd for the entire flash. */
51struct mtd_info* axisflash_mtd = NULL;
52
53/* Map driver functions. */
54
55static map_word flash_read(struct map_info *map, unsigned long ofs)
56{
57	map_word tmp;
58	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
59	return tmp;
60}
61
62static void flash_copy_from(struct map_info *map, void *to,
63			    unsigned long from, ssize_t len)
64{
65	memcpy(to, (void *)(map->map_priv_1 + from), len);
66}
67
68static void flash_write(struct map_info *map, map_word d, unsigned long adr)
69{
70	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
71}
72
73/*
74 * The map for chip select e0.
75 *
76 * We run into tricky coherence situations if we mix cached with uncached
77 * accesses to we only use the uncached version here.
78 *
79 * The size field is the total size where the flash chips may be mapped on the
80 * chip select. MTD probes should find all devices there and it does not matter
81 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
82 * probes will ignore them.
83 *
84 * The start address in map_priv_1 is in virtual memory so we cannot use
85 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
86 * address of cse0.
87 */
88static struct map_info map_cse0 = {
89	.name = "cse0",
90	.size = MEM_CSE0_SIZE,
91	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
92	.read = flash_read,
93	.copy_from = flash_copy_from,
94	.write = flash_write,
95	.map_priv_1 = FLASH_UNCACHED_ADDR
96};
97
98/*
99 * The map for chip select e1.
100 *
101 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
102 * address, but there isn't.
103 */
104static struct map_info map_cse1 = {
105	.name = "cse1",
106	.size = MEM_CSE1_SIZE,
107	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
108	.read = flash_read,
109	.copy_from = flash_copy_from,
110	.write = flash_write,
111	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
112};
113
114/* If no partition-table was found, we use this default-set. */
115#define MAX_PARTITIONS         7
116#define NUM_DEFAULT_PARTITIONS 3
117
118/*
119 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
120 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
121 * to use JFFS.
122 */
123static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
124	{
125		.name = "boot firmware",
126		.size = CONFIG_ETRAX_PTABLE_SECTOR,
127		.offset = 0
128	},
129	{
130		.name = "kernel",
131		.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
132		.offset = CONFIG_ETRAX_PTABLE_SECTOR
133	},
134	{
135		.name = "filesystem",
136		.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
137		.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
138	}
139};
140
141/* Initialize the ones normally used. */
142static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
143	{
144		.name = "part0",
145		.size = CONFIG_ETRAX_PTABLE_SECTOR,
146		.offset = 0
147	},
148	{
149		.name = "part1",
150		.size = 0,
151		.offset = 0
152	},
153	{
154		.name = "part2",
155		.size = 0,
156		.offset = 0
157	},
158	{
159		.name = "part3",
160		.size = 0,
161		.offset = 0
162	},
163	{
164		.name = "part4",
165		.size = 0,
166		.offset = 0
167	},
168	{
169		.name = "part5",
170		.size = 0,
171		.offset = 0
172	},
173	{
174		.name = "part6",
175		.size = 0,
176		.offset = 0
177	},
178};
179
180#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
181/* Main flash device */
182static struct mtd_partition main_partition = {
183	.name = "main",
184	.size = 0,
185	.offset = 0
186};
187#endif
188
189/*
190 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
191 * chips in that order (because the amd_flash-driver is faster).
192 */
193static struct mtd_info *probe_cs(struct map_info *map_cs)
194{
195	struct mtd_info *mtd_cs = NULL;
196
197	printk(KERN_INFO
198               "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
199	       map_cs->name, map_cs->size, map_cs->map_priv_1);
200
201#ifdef CONFIG_MTD_CFI
202	mtd_cs = do_map_probe("cfi_probe", map_cs);
203#endif
204#ifdef CONFIG_MTD_JEDECPROBE
205	if (!mtd_cs)
206		mtd_cs = do_map_probe("jedec_probe", map_cs);
207#endif
208
209	return mtd_cs;
210}
211
212/*
213 * Probe each chip select individually for flash chips. If there are chips on
214 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
215 * so that MTD partitions can cross chip boundries.
216 *
217 * The only known restriction to how you can mount your chips is that each
218 * chip select must hold similar flash chips. But you need external hardware
219 * to do that anyway and you can put totally different chips on cse0 and cse1
220 * so it isn't really much of a restriction.
221 */
222static struct mtd_info *flash_probe(void)
223{
224	struct mtd_info *mtd_cse0;
225	struct mtd_info *mtd_cse1;
226	struct mtd_info *mtd_cse;
227
228	mtd_cse0 = probe_cs(&map_cse0);
229	mtd_cse1 = probe_cs(&map_cse1);
230
231	if (!mtd_cse0 && !mtd_cse1) {
232		/* No chip found. */
233		return NULL;
234	}
235
236	if (mtd_cse0 && mtd_cse1) {
237		struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
238
239		/* Since the concatenation layer adds a small overhead we
240		 * could try to figure out if the chips in cse0 and cse1 are
241		 * identical and reprobe the whole cse0+cse1 window. But since
242		 * flash chips are slow, the overhead is relatively small.
243		 * So we use the MTD concatenation layer instead of further
244		 * complicating the probing procedure.
245		 */
246		mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
247					    "cse0+cse1");
248		if (!mtd_cse) {
249			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
250			       map_cse0.name, map_cse1.name);
251
252			/* The best we can do now is to only use what we found
253			 * at cse0.
254			 */
255			mtd_cse = mtd_cse0;
256			map_destroy(mtd_cse1);
257		}
258	} else {
259		mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
260	}
261
262	return mtd_cse;
263}
264
265/*
266 * Probe the flash chip(s) and, if it succeeds, read the partition-table
267 * and register the partitions with MTD.
268 */
269static int __init init_axis_flash(void)
270{
271	struct mtd_info *mymtd;
272	int err = 0;
273	int pidx = 0;
274	struct partitiontable_head *ptable_head = NULL;
275	struct partitiontable_entry *ptable;
276	int use_default_ptable = 1; /* Until proven otherwise. */
277	const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n";
278
279	if (!(mymtd = flash_probe())) {
280		/* There's no reason to use this module if no flash chip can
281		 * be identified. Make sure that's understood.
282		 */
283		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
284	} else {
285		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
286		       mymtd->name, mymtd->size);
287		axisflash_mtd = mymtd;
288	}
289
290	if (mymtd) {
291		mymtd->owner = THIS_MODULE;
292		ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
293			      CONFIG_ETRAX_PTABLE_SECTOR +
294			      PARTITION_TABLE_OFFSET);
295	}
296	pidx++;  /* First partition is always set to the default. */
297
298	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
299	    && (ptable_head->size <
300		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
301		PARTITIONTABLE_END_MARKER_SIZE))
302	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
303				  ptable_head->size -
304				  PARTITIONTABLE_END_MARKER_SIZE)
305		== PARTITIONTABLE_END_MARKER)) {
306		/* Looks like a start, sane length and end of a
307		 * partition table, lets check csum etc.
308		 */
309		int ptable_ok = 0;
310		struct partitiontable_entry *max_addr =
311			(struct partitiontable_entry *)
312			((unsigned long)ptable_head + sizeof(*ptable_head) +
313			 ptable_head->size);
314		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
315		unsigned char *p;
316		unsigned long csum = 0;
317
318		ptable = (struct partitiontable_entry *)
319			((unsigned long)ptable_head + sizeof(*ptable_head));
320
321		/* Lets be PARANOID, and check the checksum. */
322		p = (unsigned char*) ptable;
323
324		while (p <= (unsigned char*)max_addr) {
325			csum += *p++;
326			csum += *p++;
327			csum += *p++;
328			csum += *p++;
329		}
330		ptable_ok = (csum == ptable_head->checksum);
331
332		/* Read the entries and use/show the info.  */
333		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
334		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
335		       max_addr);
336
337		/* We have found a working bootblock.  Now read the
338		 * partition table.  Scan the table.  It ends when
339		 * there is 0xffffffff, that is, empty flash.
340		 */
341		while (ptable_ok
342		       && ptable->offset != 0xffffffff
343		       && ptable < max_addr
344		       && pidx < MAX_PARTITIONS) {
345
346			axis_partitions[pidx].offset = offset + ptable->offset;
347			axis_partitions[pidx].size = ptable->size;
348
349			printk(pmsg, pidx, axis_partitions[pidx].offset,
350			       axis_partitions[pidx].size);
351			pidx++;
352			ptable++;
353		}
354		use_default_ptable = !ptable_ok;
355	}
356
357	if (romfs_in_flash) {
358		/* Add an overlapping device for the root partition (romfs). */
359
360		axis_partitions[pidx].name = "romfs";
361		axis_partitions[pidx].size = romfs_length;
362		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
363		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
364
365		printk(KERN_INFO
366                       " Adding readonly flash partition for romfs image:\n");
367		printk(pmsg, pidx, axis_partitions[pidx].offset,
368		       axis_partitions[pidx].size);
369		pidx++;
370	}
371
372#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
373	if (mymtd) {
374		main_partition.size = mymtd->size;
375		err = mtd_device_register(mymtd, &main_partition, 1);
376		if (err)
377			panic("axisflashmap: Could not initialize "
378			      "partition for whole main mtd device!\n");
379	}
380#endif
381
382        if (mymtd) {
383		if (use_default_ptable) {
384			printk(KERN_INFO " Using default partition table.\n");
385			err = mtd_device_register(mymtd,
386						  axis_default_partitions,
387						  NUM_DEFAULT_PARTITIONS);
388		} else {
389			err = mtd_device_register(mymtd, axis_partitions,
390						  pidx);
391		}
392
393		if (err)
394			panic("axisflashmap could not add MTD partitions!\n");
395	}
396
397	if (!romfs_in_flash) {
398		/* Create an RAM device for the root partition (romfs). */
399
400#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
401		/* No use trying to boot this kernel from RAM. Panic! */
402		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
403		       "device due to kernel (mis)configuration!\n");
404		panic("This kernel cannot boot from RAM!\n");
405#else
406		struct mtd_info *mtd_ram;
407
408		mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
409		if (!mtd_ram)
410			panic("axisflashmap couldn't allocate memory for "
411			      "mtd_info!\n");
412
413		printk(KERN_INFO " Adding RAM partition for romfs image:\n");
414		printk(pmsg, pidx, (unsigned)romfs_start,
415			(unsigned)romfs_length);
416
417		err = mtdram_init_device(mtd_ram,
418			(void *)romfs_start,
419			romfs_length,
420			"romfs");
421		if (err)
422			panic("axisflashmap could not initialize MTD RAM "
423			      "device!\n");
424#endif
425	}
426	return err;
427}
428
429/* This adds the above to the kernels init-call chain. */
430module_init(init_axis_flash);
431
432EXPORT_SYMBOL(axisflash_mtd);
433