1/*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4 *
5 *   This program is free software; you can redistribute it and/or modify
6 *   it under the terms of the GNU General Public License as published by
7 *   the Free Software Foundation; either version 2 of the License, or
8 *   (at your option) any later version.
9 *
10 *   This program is distributed in the hope that it will be useful,
11 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 *   GNU General Public License for more details.
14 *
15 *   You should have received a copy of the GNU General Public License
16 *   along with this program; if not, write to the Free Software
17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 */
19
20/* Does not work. Warning may block system in capture mode */
21/* #define USE_VAR48KRATE */
22
23#include <linux/io.h>
24#include <linux/delay.h>
25#include <linux/interrupt.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/gameport.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <sound/core.h>
33#include <sound/info.h>
34#include <sound/control.h>
35#include <sound/pcm.h>
36#include <sound/rawmidi.h>
37#include <sound/mpu401.h>
38#include <sound/opl3.h>
39#include <sound/sb.h>
40#include <sound/asoundef.h>
41#include <sound/initval.h>
42
43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45MODULE_LICENSE("GPL");
46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47		"{C-Media,CMI8738B},"
48		"{C-Media,CMI8338A},"
49		"{C-Media,CMI8338B}}");
50
51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52#define SUPPORT_JOYSTICK 1
53#endif
54
55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
57static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
58static long mpu_port[SNDRV_CARDS];
59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61#ifdef SUPPORT_JOYSTICK
62static int joystick_port[SNDRV_CARDS];
63#endif
64
65module_param_array(index, int, NULL, 0444);
66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67module_param_array(id, charp, NULL, 0444);
68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69module_param_array(enable, bool, NULL, 0444);
70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71module_param_array(mpu_port, long, NULL, 0444);
72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73module_param_array(fm_port, long, NULL, 0444);
74MODULE_PARM_DESC(fm_port, "FM port.");
75module_param_array(soft_ac3, bool, NULL, 0444);
76MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77#ifdef SUPPORT_JOYSTICK
78module_param_array(joystick_port, int, NULL, 0444);
79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80#endif
81
82/*
83 * CM8x38 registers definition
84 */
85
86#define CM_REG_FUNCTRL0		0x00
87#define CM_RST_CH1		0x00080000
88#define CM_RST_CH0		0x00040000
89#define CM_CHEN1		0x00020000	/* ch1: enable */
90#define CM_CHEN0		0x00010000	/* ch0: enable */
91#define CM_PAUSE1		0x00000008	/* ch1: pause */
92#define CM_PAUSE0		0x00000004	/* ch0: pause */
93#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
94#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
95
96#define CM_REG_FUNCTRL1		0x04
97#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
98#define CM_DSFC_SHIFT		13
99#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
100#define CM_ASFC_SHIFT		10
101#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
102#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
103#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
104#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
105#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
106#define CM_BREQ			0x00000010	/* bus master enabled */
107#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
108#define CM_UART_EN		0x00000004	/* legacy UART */
109#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
110#define CM_ZVPORT		0x00000001	/* ZVPORT */
111
112#define CM_REG_CHFORMAT		0x08
113
114#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
115#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
116#define CM_CHB3D		0x20000000	/* 4 channels */
117
118#define CM_CHIP_MASK1		0x1f000000
119#define CM_CHIP_037		0x01000000
120#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
121#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
122#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
123#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
124#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
125#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
126/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
127
128#define CM_ADCBITLEN_MASK	0x0000C000
129#define CM_ADCBITLEN_16		0x00000000
130#define CM_ADCBITLEN_15		0x00004000
131#define CM_ADCBITLEN_14		0x00008000
132#define CM_ADCBITLEN_13		0x0000C000
133
134#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
135#define CM_ADCDACLEN_060	0x00000000
136#define CM_ADCDACLEN_066	0x00001000
137#define CM_ADCDACLEN_130	0x00002000
138#define CM_ADCDACLEN_280	0x00003000
139
140#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
141#define CM_ADCDLEN_ORIGINAL	0x00000000
142#define CM_ADCDLEN_EXTRA	0x00001000
143#define CM_ADCDLEN_24K		0x00002000
144#define CM_ADCDLEN_WEIGHT	0x00003000
145
146#define CM_CH1_SRATE_176K	0x00000800
147#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
148#define CM_CH1_SRATE_88K	0x00000400
149#define CM_CH0_SRATE_176K	0x00000200
150#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
151#define CM_CH0_SRATE_88K	0x00000100
152#define CM_CH0_SRATE_128K	0x00000300
153#define CM_CH0_SRATE_MASK	0x00000300
154
155#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
156#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
157#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
158#define CM_SPDLOCKED		0x00000010
159
160#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
161#define CM_CH1FMT_SHIFT		2
162#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
163#define CM_CH0FMT_SHIFT		0
164
165#define CM_REG_INT_HLDCLR	0x0C
166#define CM_CHIP_MASK2		0xff000000
167#define CM_CHIP_8768		0x20000000
168#define CM_CHIP_055		0x08000000
169#define CM_CHIP_039		0x04000000
170#define CM_CHIP_039_6CH		0x01000000
171#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
172#define CM_TDMA_INT_EN		0x00040000
173#define CM_CH1_INT_EN		0x00020000
174#define CM_CH0_INT_EN		0x00010000
175
176#define CM_REG_INT_STATUS	0x10
177#define CM_INTR			0x80000000
178#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
179#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
180#define CM_UARTINT		0x00010000
181#define CM_LTDMAINT		0x00008000
182#define CM_HTDMAINT		0x00004000
183#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
184#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
185#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
186#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
187#define CM_CH1BUSY		0x00000008
188#define CM_CH0BUSY		0x00000004
189#define CM_CHINT1		0x00000002
190#define CM_CHINT0		0x00000001
191
192#define CM_REG_LEGACY_CTRL	0x14
193#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
194#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
195#define CM_VMPU_330		0x00000000
196#define CM_VMPU_320		0x20000000
197#define CM_VMPU_310		0x40000000
198#define CM_VMPU_300		0x60000000
199#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
200#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
201#define CM_VSBSEL_220		0x00000000
202#define CM_VSBSEL_240		0x04000000
203#define CM_VSBSEL_260		0x08000000
204#define CM_VSBSEL_280		0x0C000000
205#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
206#define CM_FMSEL_388		0x00000000
207#define CM_FMSEL_3C8		0x01000000
208#define CM_FMSEL_3E0		0x02000000
209#define CM_FMSEL_3E8		0x03000000
210#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
211#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
212#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
213#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
214#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
216#define CM_C_EECS		0x00040000
217#define CM_C_EEDI46		0x00020000
218#define CM_C_EECK46		0x00010000
219#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
220#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
221#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
222#define CM_EXBASEN		0x00001000	/* external bass input enable */
223
224#define CM_REG_MISC_CTRL	0x18
225#define CM_PWD			0x80000000	/* power down */
226#define CM_RESET		0x40000000
227#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
228#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
229#define CM_TXVX			0x08000000	/* model 037? */
230#define CM_N4SPK3D		0x04000000	/* copy front to rear */
231#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
232#define CM_SPDIF48K		0x01000000	/* write */
233#define CM_SPATUS48K		0x01000000	/* read */
234#define CM_ENDBDAC		0x00800000	/* enable double dac */
235#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
236#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
237#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
238#define CM_FM_EN		0x00080000	/* enable legacy FM */
239#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
240#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
241#define CM_VIDWPDSB		0x00010000	/* model 037? */
242#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
243#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
244#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
245#define CM_VIDWPPRT		0x00002000	/* model 037? */
246#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
247#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
248#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
249#define CM_ENCENTER		0x00000080
250#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
251#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
252#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
253#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
254#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
255#define CM_UPDDMA_2048		0x00000000
256#define CM_UPDDMA_1024		0x00000004
257#define CM_UPDDMA_512		0x00000008
258#define CM_UPDDMA_256		0x0000000C
259#define CM_TWAIT_MASK		0x00000003	/* model 037 */
260#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263#define CM_REG_TDMA_POSITION	0x1C
264#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
265#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
266
267	/* byte */
268#define CM_REG_MIXER0		0x20
269#define CM_REG_SBVR		0x20		/* write: sb16 version */
270#define CM_REG_DEV		0x20		/* read: hardware device version */
271
272#define CM_REG_MIXER21		0x21
273#define CM_UNKNOWN_21_MASK	0x78		/* ? */
274#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
275#define CM_PROINV		0x02		/* SBPro left/right channel switching */
276#define CM_X_SB16		0x01		/* SB16 compatible */
277
278#define CM_REG_SB16_DATA	0x22
279#define CM_REG_SB16_ADDR	0x23
280
281#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
282#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
284#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
285
286#define CM_REG_MIXER1		0x24
287#define CM_FMMUTE		0x80	/* mute FM */
288#define CM_FMMUTE_SHIFT		7
289#define CM_WSMUTE		0x40	/* mute PCM */
290#define CM_WSMUTE_SHIFT		6
291#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
292#define CM_REAR2LIN_SHIFT	5
293#define CM_REAR2FRONT		0x10	/* exchange rear/front */
294#define CM_REAR2FRONT_SHIFT	4
295#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
296#define CM_WAVEINL_SHIFT	3
297#define CM_WAVEINR		0x04	/* digical wave rec. right */
298#define CM_WAVEINR_SHIFT	2
299#define CM_X3DEN		0x02	/* 3D surround enable */
300#define CM_X3DEN_SHIFT		1
301#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
302#define CM_CDPLAY_SHIFT		0
303
304#define CM_REG_MIXER2		0x25
305#define CM_RAUXREN		0x80	/* AUX right capture */
306#define CM_RAUXREN_SHIFT	7
307#define CM_RAUXLEN		0x40	/* AUX left capture */
308#define CM_RAUXLEN_SHIFT	6
309#define CM_VAUXRM		0x20	/* AUX right mute */
310#define CM_VAUXRM_SHIFT		5
311#define CM_VAUXLM		0x10	/* AUX left mute */
312#define CM_VAUXLM_SHIFT		4
313#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
314#define CM_VADMIC_SHIFT		1
315#define CM_MICGAINZ		0x01	/* mic boost */
316#define CM_MICGAINZ_SHIFT	0
317
318#define CM_REG_MIXER3		0x24
319#define CM_REG_AUX_VOL		0x26
320#define CM_VAUXL_MASK		0xf0
321#define CM_VAUXR_MASK		0x0f
322
323#define CM_REG_MISC		0x27
324#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
325#define CM_XGPO1		0x20
326// #define CM_XGPBIO		0x04
327#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
328#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
329#define CM_SPDVALID		0x02	/* spdif input valid check */
330#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
331
332#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
333/*
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
336 */
337#define CM_REG_EXTERN_CODEC	CM_REG_AC97
338
339/*
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341 */
342#define CM_REG_MPU_PCI		0x40
343
344/*
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346 */
347#define CM_REG_FM_PCI		0x50
348
349/*
350 * access from SB-mixer port
351 */
352#define CM_REG_EXTENT_IND	0xf0
353#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
354#define CM_VPHONE_SHIFT		5
355#define CM_VPHOM		0x10	/* Phone mute control */
356#define CM_VSPKM		0x08	/* Speaker mute control, default high */
357#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
358#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
359#define CM_VADMIC3		0x01	/* Mic record boost */
360
361/*
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
365 */
366#define CM_REG_PLL		0xf8
367
368/*
369 * extended registers
370 */
371#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
372#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
373#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
374#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
375
376#define CM_REG_EXT_MISC		0x90
377#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
378#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
379#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
380#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
381#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
382#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
383#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
384#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
385
386/*
387 * size of i/o region
388 */
389#define CM_EXTENT_CODEC	  0x100
390#define CM_EXTENT_MIDI	  0x2
391#define CM_EXTENT_SYNTH	  0x4
392
393
394/*
395 * channels for playback / capture
396 */
397#define CM_CH_PLAY	0
398#define CM_CH_CAPT	1
399
400/*
401 * flags to check device open/close
402 */
403#define CM_OPEN_NONE	0
404#define CM_OPEN_CH_MASK	0x01
405#define CM_OPEN_DAC	0x10
406#define CM_OPEN_ADC	0x20
407#define CM_OPEN_SPDIF	0x40
408#define CM_OPEN_MCHAN	0x80
409#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
410#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
411#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
413#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415
416
417#if CM_CH_PLAY == 1
418#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
419#define CM_PLAYBACK_SPDF	CM_SPDF_1
420#define CM_CAPTURE_SPDF		CM_SPDF_0
421#else
422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423#define CM_PLAYBACK_SPDF	CM_SPDF_0
424#define CM_CAPTURE_SPDF		CM_SPDF_1
425#endif
426
427
428/*
429 * driver data
430 */
431
432struct cmipci_pcm {
433	struct snd_pcm_substream *substream;
434	u8 running;		/* dac/adc running? */
435	u8 fmt;			/* format bits */
436	u8 is_dac;
437	u8 needs_silencing;
438	unsigned int dma_size;	/* in frames */
439	unsigned int shift;
440	unsigned int ch;	/* channel (0/1) */
441	unsigned int offset;	/* physical address of the buffer */
442};
443
444/* mixer elements toggled/resumed during ac3 playback */
445struct cmipci_mixer_auto_switches {
446	const char *name;	/* switch to toggle */
447	int toggle_on;		/* value to change when ac3 mode */
448};
449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450	{"PCM Playback Switch", 0},
451	{"IEC958 Output Switch", 1},
452	{"IEC958 Mix Analog", 0},
453	// {"IEC958 Out To DAC", 1}, // no longer used
454	{"IEC958 Loop", 0},
455};
456#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
457
458struct cmipci {
459	struct snd_card *card;
460
461	struct pci_dev *pci;
462	unsigned int device;	/* device ID */
463	int irq;
464
465	unsigned long iobase;
466	unsigned int ctrl;	/* FUNCTRL0 current value */
467
468	struct snd_pcm *pcm;		/* DAC/ADC PCM */
469	struct snd_pcm *pcm2;	/* 2nd DAC */
470	struct snd_pcm *pcm_spdif;	/* SPDIF */
471
472	int chip_version;
473	int max_channels;
474	unsigned int can_ac3_sw: 1;
475	unsigned int can_ac3_hw: 1;
476	unsigned int can_multi_ch: 1;
477	unsigned int can_96k: 1;	/* samplerate above 48k */
478	unsigned int do_soft_ac3: 1;
479
480	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
481	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
482	int spdif_counter;	/* for software AC3 */
483
484	unsigned int dig_status;
485	unsigned int dig_pcm_status;
486
487	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488
489	int opened[2];	/* open mode */
490	struct mutex open_mutex;
491
492	unsigned int mixer_insensitive: 1;
493	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494	int mixer_res_status[CM_SAVED_MIXERS];
495
496	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
497
498	/* external MIDI */
499	struct snd_rawmidi *rmidi;
500
501#ifdef SUPPORT_JOYSTICK
502	struct gameport *gameport;
503#endif
504
505	spinlock_t reg_lock;
506
507#ifdef CONFIG_PM_SLEEP
508	unsigned int saved_regs[0x20];
509	unsigned char saved_mixers[0x20];
510#endif
511};
512
513
514/* read/write operations for dword register */
515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516{
517	outl(data, cm->iobase + cmd);
518}
519
520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521{
522	return inl(cm->iobase + cmd);
523}
524
525/* read/write operations for word register */
526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527{
528	outw(data, cm->iobase + cmd);
529}
530
531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532{
533	return inw(cm->iobase + cmd);
534}
535
536/* read/write operations for byte register */
537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538{
539	outb(data, cm->iobase + cmd);
540}
541
542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543{
544	return inb(cm->iobase + cmd);
545}
546
547/* bit operations for dword register */
548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549{
550	unsigned int val, oval;
551	val = oval = inl(cm->iobase + cmd);
552	val |= flag;
553	if (val == oval)
554		return 0;
555	outl(val, cm->iobase + cmd);
556	return 1;
557}
558
559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560{
561	unsigned int val, oval;
562	val = oval = inl(cm->iobase + cmd);
563	val &= ~flag;
564	if (val == oval)
565		return 0;
566	outl(val, cm->iobase + cmd);
567	return 1;
568}
569
570/* bit operations for byte register */
571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572{
573	unsigned char val, oval;
574	val = oval = inb(cm->iobase + cmd);
575	val |= flag;
576	if (val == oval)
577		return 0;
578	outb(val, cm->iobase + cmd);
579	return 1;
580}
581
582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583{
584	unsigned char val, oval;
585	val = oval = inb(cm->iobase + cmd);
586	val &= ~flag;
587	if (val == oval)
588		return 0;
589	outb(val, cm->iobase + cmd);
590	return 1;
591}
592
593
594/*
595 * PCM interface
596 */
597
598/*
599 * calculate frequency
600 */
601
602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603
604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605{
606	unsigned int i;
607
608	for (i = 0; i < ARRAY_SIZE(rates); i++) {
609		if (rates[i] == rate)
610			return i;
611	}
612	snd_BUG();
613	return 0;
614}
615
616#ifdef USE_VAR48KRATE
617/*
618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619 * does it this way .. maybe not.  Never get any information from C-Media about
620 * that <werner@suse.de>.
621 */
622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623{
624	unsigned int delta, tolerance;
625	int xm, xn, xr;
626
627	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628		rate <<= 1;
629	*n = -1;
630	if (*r > 0xff)
631		goto out;
632	tolerance = rate*CM_TOLERANCE_RATE;
633
634	for (xn = (1+2); xn < (0x1f+2); xn++) {
635		for (xm = (1+2); xm < (0xff+2); xm++) {
636			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637
638			if (xr < rate)
639				delta = rate - xr;
640			else
641				delta = xr - rate;
642
643			/*
644			 * If we found one, remember this,
645			 * and try to find a closer one
646			 */
647			if (delta < tolerance) {
648				tolerance = delta;
649				*m = xm - 2;
650				*n = xn - 2;
651			}
652		}
653	}
654out:
655	return (*n > -1);
656}
657
658/*
659 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661 * at the register CM_REG_FUNCTRL1 (0x04).
662 * Problem: other ways are also possible (any information about that?)
663 */
664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665{
666	unsigned int reg = CM_REG_PLL + slot;
667	/*
668	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669	 * for DSFC/ASFC (000 up to 111).
670	 */
671
672	/* FIXME: Init (Do we've to set an other register first before programming?) */
673
674	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675	snd_cmipci_write_b(cm, reg, rate>>8);
676	snd_cmipci_write_b(cm, reg, rate&0xff);
677
678	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
679}
680#endif /* USE_VAR48KRATE */
681
682static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683				struct snd_pcm_hw_params *hw_params)
684{
685	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686}
687
688static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689					  struct snd_pcm_hw_params *hw_params)
690{
691	struct cmipci *cm = snd_pcm_substream_chip(substream);
692	if (params_channels(hw_params) > 2) {
693		mutex_lock(&cm->open_mutex);
694		if (cm->opened[CM_CH_PLAY]) {
695			mutex_unlock(&cm->open_mutex);
696			return -EBUSY;
697		}
698		/* reserve the channel A */
699		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700		mutex_unlock(&cm->open_mutex);
701	}
702	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703}
704
705static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706{
707	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710	udelay(10);
711}
712
713static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714{
715	return snd_pcm_lib_free_pages(substream);
716}
717
718
719/*
720 */
721
722static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724	.count = 3,
725	.list = hw_channels,
726	.mask = 0,
727};
728static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729	.count = 4,
730	.list = hw_channels,
731	.mask = 0,
732};
733static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734	.count = 5,
735	.list = hw_channels,
736	.mask = 0,
737};
738
739static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740{
741	if (channels > 2) {
742		if (!cm->can_multi_ch || !rec->ch)
743			return -EINVAL;
744		if (rec->fmt != 0x03) /* stereo 16bit only */
745			return -EINVAL;
746	}
747
748	if (cm->can_multi_ch) {
749		spin_lock_irq(&cm->reg_lock);
750		if (channels > 2) {
751			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753		} else {
754			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756		}
757		if (channels == 8)
758			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759		else
760			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761		if (channels == 6) {
762			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764		} else {
765			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767		}
768		if (channels == 4)
769			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770		else
771			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772		spin_unlock_irq(&cm->reg_lock);
773	}
774	return 0;
775}
776
777
778/*
779 * prepare playback/capture channel
780 * channel to be used must have been set in rec->ch.
781 */
782static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783				 struct snd_pcm_substream *substream)
784{
785	unsigned int reg, freq, freq_ext, val;
786	unsigned int period_size;
787	struct snd_pcm_runtime *runtime = substream->runtime;
788
789	rec->fmt = 0;
790	rec->shift = 0;
791	if (snd_pcm_format_width(runtime->format) >= 16) {
792		rec->fmt |= 0x02;
793		if (snd_pcm_format_width(runtime->format) > 16)
794			rec->shift++; /* 24/32bit */
795	}
796	if (runtime->channels > 1)
797		rec->fmt |= 0x01;
798	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799		dev_dbg(cm->card->dev, "cannot set dac channels\n");
800		return -EINVAL;
801	}
802
803	rec->offset = runtime->dma_addr;
804	/* buffer and period sizes in frame */
805	rec->dma_size = runtime->buffer_size << rec->shift;
806	period_size = runtime->period_size << rec->shift;
807	if (runtime->channels > 2) {
808		/* multi-channels */
809		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810		period_size = (period_size * runtime->channels) / 2;
811	}
812
813	spin_lock_irq(&cm->reg_lock);
814
815	/* set buffer address */
816	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817	snd_cmipci_write(cm, reg, rec->offset);
818	/* program sample counts */
819	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822
823	/* set adc/dac flag */
824	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825	if (rec->is_dac)
826		cm->ctrl &= ~val;
827	else
828		cm->ctrl |= val;
829	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
831
832	/* set sample rate */
833	freq = 0;
834	freq_ext = 0;
835	if (runtime->rate > 48000)
836		switch (runtime->rate) {
837		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
838		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
839		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840		default:     snd_BUG(); break;
841		}
842	else
843		freq = snd_cmipci_rate_freq(runtime->rate);
844	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845	if (rec->ch) {
846		val &= ~CM_DSFC_MASK;
847		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848	} else {
849		val &= ~CM_ASFC_MASK;
850		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851	}
852	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
854
855	/* set format */
856	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857	if (rec->ch) {
858		val &= ~CM_CH1FMT_MASK;
859		val |= rec->fmt << CM_CH1FMT_SHIFT;
860	} else {
861		val &= ~CM_CH0FMT_MASK;
862		val |= rec->fmt << CM_CH0FMT_SHIFT;
863	}
864	if (cm->can_96k) {
865		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866		val |= freq_ext << (rec->ch * 2);
867	}
868	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
870
871	if (!rec->is_dac && cm->chip_version) {
872		if (runtime->rate > 44100)
873			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874		else
875			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876	}
877
878	rec->running = 0;
879	spin_unlock_irq(&cm->reg_lock);
880
881	return 0;
882}
883
884/*
885 * PCM trigger/stop
886 */
887static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888				  int cmd)
889{
890	unsigned int inthld, chen, reset, pause;
891	int result = 0;
892
893	inthld = CM_CH0_INT_EN << rec->ch;
894	chen = CM_CHEN0 << rec->ch;
895	reset = CM_RST_CH0 << rec->ch;
896	pause = CM_PAUSE0 << rec->ch;
897
898	spin_lock(&cm->reg_lock);
899	switch (cmd) {
900	case SNDRV_PCM_TRIGGER_START:
901		rec->running = 1;
902		/* set interrupt */
903		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904		cm->ctrl |= chen;
905		/* enable channel */
906		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
908		break;
909	case SNDRV_PCM_TRIGGER_STOP:
910		rec->running = 0;
911		/* disable interrupt */
912		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913		/* reset */
914		cm->ctrl &= ~chen;
915		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917		rec->needs_silencing = rec->is_dac;
918		break;
919	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920	case SNDRV_PCM_TRIGGER_SUSPEND:
921		cm->ctrl |= pause;
922		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923		break;
924	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925	case SNDRV_PCM_TRIGGER_RESUME:
926		cm->ctrl &= ~pause;
927		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928		break;
929	default:
930		result = -EINVAL;
931		break;
932	}
933	spin_unlock(&cm->reg_lock);
934	return result;
935}
936
937/*
938 * return the current pointer
939 */
940static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941						struct snd_pcm_substream *substream)
942{
943	size_t ptr;
944	unsigned int reg, rem, tries;
945
946	if (!rec->running)
947		return 0;
948#if 1 // this seems better..
949	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950	for (tries = 0; tries < 3; tries++) {
951		rem = snd_cmipci_read_w(cm, reg);
952		if (rem < rec->dma_size)
953			goto ok;
954	}
955	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
956	return SNDRV_PCM_POS_XRUN;
957ok:
958	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959#else
960	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961	ptr = snd_cmipci_read(cm, reg) - rec->offset;
962	ptr = bytes_to_frames(substream->runtime, ptr);
963#endif
964	if (substream->runtime->channels > 2)
965		ptr = (ptr * 2) / substream->runtime->channels;
966	return ptr;
967}
968
969/*
970 * playback
971 */
972
973static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974				       int cmd)
975{
976	struct cmipci *cm = snd_pcm_substream_chip(substream);
977	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978}
979
980static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981{
982	struct cmipci *cm = snd_pcm_substream_chip(substream);
983	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984}
985
986
987
988/*
989 * capture
990 */
991
992static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993				     int cmd)
994{
995	struct cmipci *cm = snd_pcm_substream_chip(substream);
996	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997}
998
999static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000{
1001	struct cmipci *cm = snd_pcm_substream_chip(substream);
1002	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003}
1004
1005
1006/*
1007 * hw preparation for spdif
1008 */
1009
1010static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011					 struct snd_ctl_elem_info *uinfo)
1012{
1013	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014	uinfo->count = 1;
1015	return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019					struct snd_ctl_elem_value *ucontrol)
1020{
1021	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022	int i;
1023
1024	spin_lock_irq(&chip->reg_lock);
1025	for (i = 0; i < 4; i++)
1026		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027	spin_unlock_irq(&chip->reg_lock);
1028	return 0;
1029}
1030
1031static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032					 struct snd_ctl_elem_value *ucontrol)
1033{
1034	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035	int i, change;
1036	unsigned int val;
1037
1038	val = 0;
1039	spin_lock_irq(&chip->reg_lock);
1040	for (i = 0; i < 4; i++)
1041		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042	change = val != chip->dig_status;
1043	chip->dig_status = val;
1044	spin_unlock_irq(&chip->reg_lock);
1045	return change;
1046}
1047
1048static struct snd_kcontrol_new snd_cmipci_spdif_default =
1049{
1050	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1051	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052	.info =		snd_cmipci_spdif_default_info,
1053	.get =		snd_cmipci_spdif_default_get,
1054	.put =		snd_cmipci_spdif_default_put
1055};
1056
1057static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058				      struct snd_ctl_elem_info *uinfo)
1059{
1060	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061	uinfo->count = 1;
1062	return 0;
1063}
1064
1065static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066				     struct snd_ctl_elem_value *ucontrol)
1067{
1068	ucontrol->value.iec958.status[0] = 0xff;
1069	ucontrol->value.iec958.status[1] = 0xff;
1070	ucontrol->value.iec958.status[2] = 0xff;
1071	ucontrol->value.iec958.status[3] = 0xff;
1072	return 0;
1073}
1074
1075static struct snd_kcontrol_new snd_cmipci_spdif_mask =
1076{
1077	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1078	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1079	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080	.info =		snd_cmipci_spdif_mask_info,
1081	.get =		snd_cmipci_spdif_mask_get,
1082};
1083
1084static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085					struct snd_ctl_elem_info *uinfo)
1086{
1087	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088	uinfo->count = 1;
1089	return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093				       struct snd_ctl_elem_value *ucontrol)
1094{
1095	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096	int i;
1097
1098	spin_lock_irq(&chip->reg_lock);
1099	for (i = 0; i < 4; i++)
1100		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101	spin_unlock_irq(&chip->reg_lock);
1102	return 0;
1103}
1104
1105static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106				       struct snd_ctl_elem_value *ucontrol)
1107{
1108	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109	int i, change;
1110	unsigned int val;
1111
1112	val = 0;
1113	spin_lock_irq(&chip->reg_lock);
1114	for (i = 0; i < 4; i++)
1115		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116	change = val != chip->dig_pcm_status;
1117	chip->dig_pcm_status = val;
1118	spin_unlock_irq(&chip->reg_lock);
1119	return change;
1120}
1121
1122static struct snd_kcontrol_new snd_cmipci_spdif_stream =
1123{
1124	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1126	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127	.info =		snd_cmipci_spdif_stream_info,
1128	.get =		snd_cmipci_spdif_stream_get,
1129	.put =		snd_cmipci_spdif_stream_put
1130};
1131
1132/*
1133 */
1134
1135/* save mixer setting and mute for AC3 playback */
1136static int save_mixer_state(struct cmipci *cm)
1137{
1138	if (! cm->mixer_insensitive) {
1139		struct snd_ctl_elem_value *val;
1140		unsigned int i;
1141
1142		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143		if (!val)
1144			return -ENOMEM;
1145		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147			if (ctl) {
1148				int event;
1149				memset(val, 0, sizeof(*val));
1150				ctl->get(ctl, val);
1151				cm->mixer_res_status[i] = val->value.integer.value[0];
1152				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153				event = SNDRV_CTL_EVENT_MASK_INFO;
1154				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155					ctl->put(ctl, val); /* toggle */
1156					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157				}
1158				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159				snd_ctl_notify(cm->card, event, &ctl->id);
1160			}
1161		}
1162		kfree(val);
1163		cm->mixer_insensitive = 1;
1164	}
1165	return 0;
1166}
1167
1168
1169/* restore the previously saved mixer status */
1170static void restore_mixer_state(struct cmipci *cm)
1171{
1172	if (cm->mixer_insensitive) {
1173		struct snd_ctl_elem_value *val;
1174		unsigned int i;
1175
1176		val = kmalloc(sizeof(*val), GFP_KERNEL);
1177		if (!val)
1178			return;
1179		cm->mixer_insensitive = 0; /* at first clear this;
1180					      otherwise the changes will be ignored */
1181		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183			if (ctl) {
1184				int event;
1185
1186				memset(val, 0, sizeof(*val));
1187				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188				ctl->get(ctl, val);
1189				event = SNDRV_CTL_EVENT_MASK_INFO;
1190				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191					val->value.integer.value[0] = cm->mixer_res_status[i];
1192					ctl->put(ctl, val);
1193					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194				}
1195				snd_ctl_notify(cm->card, event, &ctl->id);
1196			}
1197		}
1198		kfree(val);
1199	}
1200}
1201
1202/* spinlock held! */
1203static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204{
1205	if (do_ac3) {
1206		/* AC3EN for 037 */
1207		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208		/* AC3EN for 039 */
1209		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210
1211		if (cm->can_ac3_hw) {
1212			/* SPD24SEL for 037, 0x02 */
1213			/* SPD24SEL for 039, 0x20, but cannot be set */
1214			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216		} else { /* can_ac3_sw */
1217			/* SPD32SEL for 037 & 039, 0x20 */
1218			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219			/* set 176K sample rate to fix 033 HW bug */
1220			if (cm->chip_version == 33) {
1221				if (rate >= 48000) {
1222					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223				} else {
1224					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225				}
1226			}
1227		}
1228
1229	} else {
1230		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233		if (cm->can_ac3_hw) {
1234			/* chip model >= 37 */
1235			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238			} else {
1239				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241			}
1242		} else {
1243			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246		}
1247	}
1248}
1249
1250static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251{
1252	int rate, err;
1253
1254	rate = subs->runtime->rate;
1255
1256	if (up && do_ac3)
1257		if ((err = save_mixer_state(cm)) < 0)
1258			return err;
1259
1260	spin_lock_irq(&cm->reg_lock);
1261	cm->spdif_playback_avail = up;
1262	if (up) {
1263		/* they are controlled via "IEC958 Output Switch" */
1264		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266		if (cm->spdif_playback_enabled)
1267			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268		setup_ac3(cm, subs, do_ac3, rate);
1269
1270		if (rate == 48000 || rate == 96000)
1271			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272		else
1273			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274		if (rate > 48000)
1275			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276		else
1277			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278	} else {
1279		/* they are controlled via "IEC958 Output Switch" */
1280		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284		setup_ac3(cm, subs, 0, 0);
1285	}
1286	spin_unlock_irq(&cm->reg_lock);
1287	return 0;
1288}
1289
1290
1291/*
1292 * preparation
1293 */
1294
1295/* playback - enable spdif only on the certain condition */
1296static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297{
1298	struct cmipci *cm = snd_pcm_substream_chip(substream);
1299	int rate = substream->runtime->rate;
1300	int err, do_spdif, do_ac3 = 0;
1301
1302	do_spdif = (rate >= 44100 && rate <= 96000 &&
1303		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304		    substream->runtime->channels == 2);
1305	if (do_spdif && cm->can_ac3_hw)
1306		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308		return err;
1309	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310}
1311
1312/* playback  (via device #2) - enable spdif always */
1313static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314{
1315	struct cmipci *cm = snd_pcm_substream_chip(substream);
1316	int err, do_ac3;
1317
1318	if (cm->can_ac3_hw)
1319		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320	else
1321		do_ac3 = 1; /* doesn't matter */
1322	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323		return err;
1324	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325}
1326
1327/*
1328 * Apparently, the samples last played on channel A stay in some buffer, even
1329 * after the channel is reset, and get added to the data for the rear DACs when
1330 * playing a multichannel stream on channel B.  This is likely to generate
1331 * wraparounds and thus distortions.
1332 * To avoid this, we play at least one zero sample after the actual stream has
1333 * stopped.
1334 */
1335static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336{
1337	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338	unsigned int reg, val;
1339
1340	if (rec->needs_silencing && runtime && runtime->dma_area) {
1341		/* set up a small silence buffer */
1342		memset(runtime->dma_area, 0, PAGE_SIZE);
1343		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345		snd_cmipci_write(cm, reg, val);
1346
1347		/* configure for 16 bits, 2 channels, 8 kHz */
1348		if (runtime->channels > 2)
1349			set_dac_channels(cm, rec, 2);
1350		spin_lock_irq(&cm->reg_lock);
1351		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358		if (cm->can_96k)
1359			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361
1362		/* start stream (we don't need interrupts) */
1363		cm->ctrl |= CM_CHEN0 << rec->ch;
1364		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365		spin_unlock_irq(&cm->reg_lock);
1366
1367		msleep(1);
1368
1369		/* stop and reset stream */
1370		spin_lock_irq(&cm->reg_lock);
1371		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372		val = CM_RST_CH0 << rec->ch;
1373		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375		spin_unlock_irq(&cm->reg_lock);
1376
1377		rec->needs_silencing = 0;
1378	}
1379}
1380
1381static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382{
1383	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384	setup_spdif_playback(cm, substream, 0, 0);
1385	restore_mixer_state(cm);
1386	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387	return snd_cmipci_hw_free(substream);
1388}
1389
1390static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391{
1392	struct cmipci *cm = snd_pcm_substream_chip(substream);
1393	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394	return snd_cmipci_hw_free(substream);
1395}
1396
1397/* capture */
1398static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399{
1400	struct cmipci *cm = snd_pcm_substream_chip(substream);
1401	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402}
1403
1404/* capture with spdif (via device #2) */
1405static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406{
1407	struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409	spin_lock_irq(&cm->reg_lock);
1410	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411	if (cm->can_96k) {
1412		if (substream->runtime->rate > 48000)
1413			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414		else
1415			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416	}
1417	if (snd_pcm_format_width(substream->runtime->format) > 16)
1418		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419	else
1420		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422	spin_unlock_irq(&cm->reg_lock);
1423
1424	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425}
1426
1427static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428{
1429	struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431	spin_lock_irq(&cm->reg_lock);
1432	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434	spin_unlock_irq(&cm->reg_lock);
1435
1436	return snd_cmipci_hw_free(subs);
1437}
1438
1439
1440/*
1441 * interrupt handler
1442 */
1443static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444{
1445	struct cmipci *cm = dev_id;
1446	unsigned int status, mask = 0;
1447
1448	/* fastpath out, to ease interrupt sharing */
1449	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450	if (!(status & CM_INTR))
1451		return IRQ_NONE;
1452
1453	/* acknowledge interrupt */
1454	spin_lock(&cm->reg_lock);
1455	if (status & CM_CHINT0)
1456		mask |= CM_CH0_INT_EN;
1457	if (status & CM_CHINT1)
1458		mask |= CM_CH1_INT_EN;
1459	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461	spin_unlock(&cm->reg_lock);
1462
1463	if (cm->rmidi && (status & CM_UARTINT))
1464		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466	if (cm->pcm) {
1467		if ((status & CM_CHINT0) && cm->channel[0].running)
1468			snd_pcm_period_elapsed(cm->channel[0].substream);
1469		if ((status & CM_CHINT1) && cm->channel[1].running)
1470			snd_pcm_period_elapsed(cm->channel[1].substream);
1471	}
1472	return IRQ_HANDLED;
1473}
1474
1475/*
1476 * h/w infos
1477 */
1478
1479/* playback on channel A */
1480static struct snd_pcm_hardware snd_cmipci_playback =
1481{
1482	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487	.rate_min =		5512,
1488	.rate_max =		48000,
1489	.channels_min =		1,
1490	.channels_max =		2,
1491	.buffer_bytes_max =	(128*1024),
1492	.period_bytes_min =	64,
1493	.period_bytes_max =	(128*1024),
1494	.periods_min =		2,
1495	.periods_max =		1024,
1496	.fifo_size =		0,
1497};
1498
1499/* capture on channel B */
1500static struct snd_pcm_hardware snd_cmipci_capture =
1501{
1502	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507	.rate_min =		5512,
1508	.rate_max =		48000,
1509	.channels_min =		1,
1510	.channels_max =		2,
1511	.buffer_bytes_max =	(128*1024),
1512	.period_bytes_min =	64,
1513	.period_bytes_max =	(128*1024),
1514	.periods_min =		2,
1515	.periods_max =		1024,
1516	.fifo_size =		0,
1517};
1518
1519/* playback on channel B - stereo 16bit only? */
1520static struct snd_pcm_hardware snd_cmipci_playback2 =
1521{
1522	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1526	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527	.rate_min =		5512,
1528	.rate_max =		48000,
1529	.channels_min =		2,
1530	.channels_max =		2,
1531	.buffer_bytes_max =	(128*1024),
1532	.period_bytes_min =	64,
1533	.period_bytes_max =	(128*1024),
1534	.periods_min =		2,
1535	.periods_max =		1024,
1536	.fifo_size =		0,
1537};
1538
1539/* spdif playback on channel A */
1540static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541{
1542	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1546	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547	.rate_min =		44100,
1548	.rate_max =		48000,
1549	.channels_min =		2,
1550	.channels_max =		2,
1551	.buffer_bytes_max =	(128*1024),
1552	.period_bytes_min =	64,
1553	.period_bytes_max =	(128*1024),
1554	.periods_min =		2,
1555	.periods_max =		1024,
1556	.fifo_size =		0,
1557};
1558
1559/* spdif playback on channel A (32bit, IEC958 subframes) */
1560static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561{
1562	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567	.rate_min =		44100,
1568	.rate_max =		48000,
1569	.channels_min =		2,
1570	.channels_max =		2,
1571	.buffer_bytes_max =	(128*1024),
1572	.period_bytes_min =	64,
1573	.period_bytes_max =	(128*1024),
1574	.periods_min =		2,
1575	.periods_max =		1024,
1576	.fifo_size =		0,
1577};
1578
1579/* spdif capture on channel B */
1580static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581{
1582	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1586				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588	.rate_min =		44100,
1589	.rate_max =		48000,
1590	.channels_min =		2,
1591	.channels_max =		2,
1592	.buffer_bytes_max =	(128*1024),
1593	.period_bytes_min =	64,
1594	.period_bytes_max =	(128*1024),
1595	.periods_min =		2,
1596	.periods_max =		1024,
1597	.fifo_size =		0,
1598};
1599
1600static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601			32000, 44100, 48000, 88200, 96000, 128000 };
1602static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603		.count = ARRAY_SIZE(rate_constraints),
1604		.list = rate_constraints,
1605		.mask = 0,
1606};
1607
1608/*
1609 * check device open/close
1610 */
1611static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612{
1613	int ch = mode & CM_OPEN_CH_MASK;
1614
1615	/* FIXME: a file should wait until the device becomes free
1616	 * when it's opened on blocking mode.  however, since the current
1617	 * pcm framework doesn't pass file pointer before actually opened,
1618	 * we can't know whether blocking mode or not in open callback..
1619	 */
1620	mutex_lock(&cm->open_mutex);
1621	if (cm->opened[ch]) {
1622		mutex_unlock(&cm->open_mutex);
1623		return -EBUSY;
1624	}
1625	cm->opened[ch] = mode;
1626	cm->channel[ch].substream = subs;
1627	if (! (mode & CM_OPEN_DAC)) {
1628		/* disable dual DAC mode */
1629		cm->channel[ch].is_dac = 0;
1630		spin_lock_irq(&cm->reg_lock);
1631		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632		spin_unlock_irq(&cm->reg_lock);
1633	}
1634	mutex_unlock(&cm->open_mutex);
1635	return 0;
1636}
1637
1638static void close_device_check(struct cmipci *cm, int mode)
1639{
1640	int ch = mode & CM_OPEN_CH_MASK;
1641
1642	mutex_lock(&cm->open_mutex);
1643	if (cm->opened[ch] == mode) {
1644		if (cm->channel[ch].substream) {
1645			snd_cmipci_ch_reset(cm, ch);
1646			cm->channel[ch].running = 0;
1647			cm->channel[ch].substream = NULL;
1648		}
1649		cm->opened[ch] = 0;
1650		if (! cm->channel[ch].is_dac) {
1651			/* enable dual DAC mode again */
1652			cm->channel[ch].is_dac = 1;
1653			spin_lock_irq(&cm->reg_lock);
1654			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655			spin_unlock_irq(&cm->reg_lock);
1656		}
1657	}
1658	mutex_unlock(&cm->open_mutex);
1659}
1660
1661/*
1662 */
1663
1664static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665{
1666	struct cmipci *cm = snd_pcm_substream_chip(substream);
1667	struct snd_pcm_runtime *runtime = substream->runtime;
1668	int err;
1669
1670	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671		return err;
1672	runtime->hw = snd_cmipci_playback;
1673	if (cm->chip_version == 68) {
1674		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675				     SNDRV_PCM_RATE_96000;
1676		runtime->hw.rate_max = 96000;
1677	} else if (cm->chip_version == 55) {
1678		err = snd_pcm_hw_constraint_list(runtime, 0,
1679			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680		if (err < 0)
1681			return err;
1682		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683		runtime->hw.rate_max = 128000;
1684	}
1685	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686	cm->dig_pcm_status = cm->dig_status;
1687	return 0;
1688}
1689
1690static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691{
1692	struct cmipci *cm = snd_pcm_substream_chip(substream);
1693	struct snd_pcm_runtime *runtime = substream->runtime;
1694	int err;
1695
1696	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697		return err;
1698	runtime->hw = snd_cmipci_capture;
1699	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1700		runtime->hw.rate_min = 41000;
1701		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702	} else if (cm->chip_version == 55) {
1703		err = snd_pcm_hw_constraint_list(runtime, 0,
1704			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705		if (err < 0)
1706			return err;
1707		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708		runtime->hw.rate_max = 128000;
1709	}
1710	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711	return 0;
1712}
1713
1714static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715{
1716	struct cmipci *cm = snd_pcm_substream_chip(substream);
1717	struct snd_pcm_runtime *runtime = substream->runtime;
1718	int err;
1719
1720	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721		return err;
1722	runtime->hw = snd_cmipci_playback2;
1723	mutex_lock(&cm->open_mutex);
1724	if (! cm->opened[CM_CH_PLAY]) {
1725		if (cm->can_multi_ch) {
1726			runtime->hw.channels_max = cm->max_channels;
1727			if (cm->max_channels == 4)
1728				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729			else if (cm->max_channels == 6)
1730				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731			else if (cm->max_channels == 8)
1732				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733		}
1734	}
1735	mutex_unlock(&cm->open_mutex);
1736	if (cm->chip_version == 68) {
1737		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738				     SNDRV_PCM_RATE_96000;
1739		runtime->hw.rate_max = 96000;
1740	} else if (cm->chip_version == 55) {
1741		err = snd_pcm_hw_constraint_list(runtime, 0,
1742			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743		if (err < 0)
1744			return err;
1745		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746		runtime->hw.rate_max = 128000;
1747	}
1748	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749	return 0;
1750}
1751
1752static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753{
1754	struct cmipci *cm = snd_pcm_substream_chip(substream);
1755	struct snd_pcm_runtime *runtime = substream->runtime;
1756	int err;
1757
1758	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759		return err;
1760	if (cm->can_ac3_hw) {
1761		runtime->hw = snd_cmipci_playback_spdif;
1762		if (cm->chip_version >= 37) {
1763			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765		}
1766		if (cm->can_96k) {
1767			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768					     SNDRV_PCM_RATE_96000;
1769			runtime->hw.rate_max = 96000;
1770		}
1771	} else {
1772		runtime->hw = snd_cmipci_playback_iec958_subframe;
1773	}
1774	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775	cm->dig_pcm_status = cm->dig_status;
1776	return 0;
1777}
1778
1779static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780{
1781	struct cmipci *cm = snd_pcm_substream_chip(substream);
1782	struct snd_pcm_runtime *runtime = substream->runtime;
1783	int err;
1784
1785	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786		return err;
1787	runtime->hw = snd_cmipci_capture_spdif;
1788	if (cm->can_96k && !(cm->chip_version == 68)) {
1789		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790				     SNDRV_PCM_RATE_96000;
1791		runtime->hw.rate_max = 96000;
1792	}
1793	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794	return 0;
1795}
1796
1797
1798/*
1799 */
1800
1801static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802{
1803	struct cmipci *cm = snd_pcm_substream_chip(substream);
1804	close_device_check(cm, CM_OPEN_PLAYBACK);
1805	return 0;
1806}
1807
1808static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809{
1810	struct cmipci *cm = snd_pcm_substream_chip(substream);
1811	close_device_check(cm, CM_OPEN_CAPTURE);
1812	return 0;
1813}
1814
1815static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816{
1817	struct cmipci *cm = snd_pcm_substream_chip(substream);
1818	close_device_check(cm, CM_OPEN_PLAYBACK2);
1819	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820	return 0;
1821}
1822
1823static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824{
1825	struct cmipci *cm = snd_pcm_substream_chip(substream);
1826	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827	return 0;
1828}
1829
1830static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831{
1832	struct cmipci *cm = snd_pcm_substream_chip(substream);
1833	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834	return 0;
1835}
1836
1837
1838/*
1839 */
1840
1841static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842	.open =		snd_cmipci_playback_open,
1843	.close =	snd_cmipci_playback_close,
1844	.ioctl =	snd_pcm_lib_ioctl,
1845	.hw_params =	snd_cmipci_hw_params,
1846	.hw_free =	snd_cmipci_playback_hw_free,
1847	.prepare =	snd_cmipci_playback_prepare,
1848	.trigger =	snd_cmipci_playback_trigger,
1849	.pointer =	snd_cmipci_playback_pointer,
1850};
1851
1852static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853	.open =		snd_cmipci_capture_open,
1854	.close =	snd_cmipci_capture_close,
1855	.ioctl =	snd_pcm_lib_ioctl,
1856	.hw_params =	snd_cmipci_hw_params,
1857	.hw_free =	snd_cmipci_hw_free,
1858	.prepare =	snd_cmipci_capture_prepare,
1859	.trigger =	snd_cmipci_capture_trigger,
1860	.pointer =	snd_cmipci_capture_pointer,
1861};
1862
1863static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864	.open =		snd_cmipci_playback2_open,
1865	.close =	snd_cmipci_playback2_close,
1866	.ioctl =	snd_pcm_lib_ioctl,
1867	.hw_params =	snd_cmipci_playback2_hw_params,
1868	.hw_free =	snd_cmipci_playback2_hw_free,
1869	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1870	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1871	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1872};
1873
1874static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875	.open =		snd_cmipci_playback_spdif_open,
1876	.close =	snd_cmipci_playback_spdif_close,
1877	.ioctl =	snd_pcm_lib_ioctl,
1878	.hw_params =	snd_cmipci_hw_params,
1879	.hw_free =	snd_cmipci_playback_hw_free,
1880	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1881	.trigger =	snd_cmipci_playback_trigger,
1882	.pointer =	snd_cmipci_playback_pointer,
1883};
1884
1885static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886	.open =		snd_cmipci_capture_spdif_open,
1887	.close =	snd_cmipci_capture_spdif_close,
1888	.ioctl =	snd_pcm_lib_ioctl,
1889	.hw_params =	snd_cmipci_hw_params,
1890	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1891	.prepare =	snd_cmipci_capture_spdif_prepare,
1892	.trigger =	snd_cmipci_capture_trigger,
1893	.pointer =	snd_cmipci_capture_pointer,
1894};
1895
1896
1897/*
1898 */
1899
1900static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901{
1902	struct snd_pcm *pcm;
1903	int err;
1904
1905	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906	if (err < 0)
1907		return err;
1908
1909	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912	pcm->private_data = cm;
1913	pcm->info_flags = 0;
1914	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915	cm->pcm = pcm;
1916
1917	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920	return 0;
1921}
1922
1923static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924{
1925	struct snd_pcm *pcm;
1926	int err;
1927
1928	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929	if (err < 0)
1930		return err;
1931
1932	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934	pcm->private_data = cm;
1935	pcm->info_flags = 0;
1936	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937	cm->pcm2 = pcm;
1938
1939	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942	return 0;
1943}
1944
1945static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946{
1947	struct snd_pcm *pcm;
1948	int err;
1949
1950	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951	if (err < 0)
1952		return err;
1953
1954	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957	pcm->private_data = cm;
1958	pcm->info_flags = 0;
1959	strcpy(pcm->name, "C-Media PCI IEC958");
1960	cm->pcm_spdif = pcm;
1961
1962	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1966				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1967				     NULL);
1968	if (err < 0)
1969		return err;
1970
1971	return 0;
1972}
1973
1974/*
1975 * mixer interface:
1976 * - CM8338/8738 has a compatible mixer interface with SB16, but
1977 *   lack of some elements like tone control, i/o gain and AGC.
1978 * - Access to native registers:
1979 *   - A 3D switch
1980 *   - Output mute switches
1981 */
1982
1983static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1984{
1985	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1986	outb(data, s->iobase + CM_REG_SB16_DATA);
1987}
1988
1989static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1990{
1991	unsigned char v;
1992
1993	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1994	v = inb(s->iobase + CM_REG_SB16_DATA);
1995	return v;
1996}
1997
1998/*
1999 * general mixer element
2000 */
2001struct cmipci_sb_reg {
2002	unsigned int left_reg, right_reg;
2003	unsigned int left_shift, right_shift;
2004	unsigned int mask;
2005	unsigned int invert: 1;
2006	unsigned int stereo: 1;
2007};
2008
2009#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2010 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2011
2012#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2013{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014  .info = snd_cmipci_info_volume, \
2015  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2016  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2017}
2018
2019#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2020#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2021#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2022#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2023
2024static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2025{
2026	r->left_reg = val & 0xff;
2027	r->right_reg = (val >> 8) & 0xff;
2028	r->left_shift = (val >> 16) & 0x07;
2029	r->right_shift = (val >> 19) & 0x07;
2030	r->invert = (val >> 22) & 1;
2031	r->stereo = (val >> 23) & 1;
2032	r->mask = (val >> 24) & 0xff;
2033}
2034
2035static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2036				  struct snd_ctl_elem_info *uinfo)
2037{
2038	struct cmipci_sb_reg reg;
2039
2040	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2041	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2042	uinfo->count = reg.stereo + 1;
2043	uinfo->value.integer.min = 0;
2044	uinfo->value.integer.max = reg.mask;
2045	return 0;
2046}
2047
2048static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2049				 struct snd_ctl_elem_value *ucontrol)
2050{
2051	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2052	struct cmipci_sb_reg reg;
2053	int val;
2054
2055	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2056	spin_lock_irq(&cm->reg_lock);
2057	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2058	if (reg.invert)
2059		val = reg.mask - val;
2060	ucontrol->value.integer.value[0] = val;
2061	if (reg.stereo) {
2062		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2063		if (reg.invert)
2064			val = reg.mask - val;
2065		ucontrol->value.integer.value[1] = val;
2066	}
2067	spin_unlock_irq(&cm->reg_lock);
2068	return 0;
2069}
2070
2071static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2072				 struct snd_ctl_elem_value *ucontrol)
2073{
2074	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075	struct cmipci_sb_reg reg;
2076	int change;
2077	int left, right, oleft, oright;
2078
2079	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2080	left = ucontrol->value.integer.value[0] & reg.mask;
2081	if (reg.invert)
2082		left = reg.mask - left;
2083	left <<= reg.left_shift;
2084	if (reg.stereo) {
2085		right = ucontrol->value.integer.value[1] & reg.mask;
2086		if (reg.invert)
2087			right = reg.mask - right;
2088		right <<= reg.right_shift;
2089	} else
2090		right = 0;
2091	spin_lock_irq(&cm->reg_lock);
2092	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2093	left |= oleft & ~(reg.mask << reg.left_shift);
2094	change = left != oleft;
2095	if (reg.stereo) {
2096		if (reg.left_reg != reg.right_reg) {
2097			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2098			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2099		} else
2100			oright = left;
2101		right |= oright & ~(reg.mask << reg.right_shift);
2102		change |= right != oright;
2103		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2104	} else
2105		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2106	spin_unlock_irq(&cm->reg_lock);
2107	return change;
2108}
2109
2110/*
2111 * input route (left,right) -> (left,right)
2112 */
2113#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2114{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2115  .info = snd_cmipci_info_input_sw, \
2116  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2117  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2118}
2119
2120static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2121				    struct snd_ctl_elem_info *uinfo)
2122{
2123	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2124	uinfo->count = 4;
2125	uinfo->value.integer.min = 0;
2126	uinfo->value.integer.max = 1;
2127	return 0;
2128}
2129
2130static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2131				   struct snd_ctl_elem_value *ucontrol)
2132{
2133	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2134	struct cmipci_sb_reg reg;
2135	int val1, val2;
2136
2137	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2138	spin_lock_irq(&cm->reg_lock);
2139	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141	spin_unlock_irq(&cm->reg_lock);
2142	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2143	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2144	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2145	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2146	return 0;
2147}
2148
2149static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2150				   struct snd_ctl_elem_value *ucontrol)
2151{
2152	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2153	struct cmipci_sb_reg reg;
2154	int change;
2155	int val1, val2, oval1, oval2;
2156
2157	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2158	spin_lock_irq(&cm->reg_lock);
2159	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2160	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2161	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2163	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2164	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2165	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2166	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2167	change = val1 != oval1 || val2 != oval2;
2168	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2169	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2170	spin_unlock_irq(&cm->reg_lock);
2171	return change;
2172}
2173
2174/*
2175 * native mixer switches/volumes
2176 */
2177
2178#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2179{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180  .info = snd_cmipci_info_native_mixer, \
2181  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2183}
2184
2185#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2186{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187  .info = snd_cmipci_info_native_mixer, \
2188  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2190}
2191
2192#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2193{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2194  .info = snd_cmipci_info_native_mixer, \
2195  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2196  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2197}
2198
2199#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2200{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2201  .info = snd_cmipci_info_native_mixer, \
2202  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2203  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2204}
2205
2206static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2207					struct snd_ctl_elem_info *uinfo)
2208{
2209	struct cmipci_sb_reg reg;
2210
2211	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2212	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2213	uinfo->count = reg.stereo + 1;
2214	uinfo->value.integer.min = 0;
2215	uinfo->value.integer.max = reg.mask;
2216	return 0;
2217
2218}
2219
2220static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2221				       struct snd_ctl_elem_value *ucontrol)
2222{
2223	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2224	struct cmipci_sb_reg reg;
2225	unsigned char oreg, val;
2226
2227	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2228	spin_lock_irq(&cm->reg_lock);
2229	oreg = inb(cm->iobase + reg.left_reg);
2230	val = (oreg >> reg.left_shift) & reg.mask;
2231	if (reg.invert)
2232		val = reg.mask - val;
2233	ucontrol->value.integer.value[0] = val;
2234	if (reg.stereo) {
2235		val = (oreg >> reg.right_shift) & reg.mask;
2236		if (reg.invert)
2237			val = reg.mask - val;
2238		ucontrol->value.integer.value[1] = val;
2239	}
2240	spin_unlock_irq(&cm->reg_lock);
2241	return 0;
2242}
2243
2244static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2245				       struct snd_ctl_elem_value *ucontrol)
2246{
2247	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2248	struct cmipci_sb_reg reg;
2249	unsigned char oreg, nreg, val;
2250
2251	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2252	spin_lock_irq(&cm->reg_lock);
2253	oreg = inb(cm->iobase + reg.left_reg);
2254	val = ucontrol->value.integer.value[0] & reg.mask;
2255	if (reg.invert)
2256		val = reg.mask - val;
2257	nreg = oreg & ~(reg.mask << reg.left_shift);
2258	nreg |= (val << reg.left_shift);
2259	if (reg.stereo) {
2260		val = ucontrol->value.integer.value[1] & reg.mask;
2261		if (reg.invert)
2262			val = reg.mask - val;
2263		nreg &= ~(reg.mask << reg.right_shift);
2264		nreg |= (val << reg.right_shift);
2265	}
2266	outb(nreg, cm->iobase + reg.left_reg);
2267	spin_unlock_irq(&cm->reg_lock);
2268	return (nreg != oreg);
2269}
2270
2271/*
2272 * special case - check mixer sensitivity
2273 */
2274static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2275						 struct snd_ctl_elem_value *ucontrol)
2276{
2277	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2278	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2279}
2280
2281static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2282						 struct snd_ctl_elem_value *ucontrol)
2283{
2284	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285	if (cm->mixer_insensitive) {
2286		/* ignored */
2287		return 0;
2288	}
2289	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2290}
2291
2292
2293static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2294	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2295	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2296	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2297	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2298	{ /* switch with sensitivity */
2299		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2300		.name = "PCM Playback Switch",
2301		.info = snd_cmipci_info_native_mixer,
2302		.get = snd_cmipci_get_native_mixer_sensitive,
2303		.put = snd_cmipci_put_native_mixer_sensitive,
2304		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2305	},
2306	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2307	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2308	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2309	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2310	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2311	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2312	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2313	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2314	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2315	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2316	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2317	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2318	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2319	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2320	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2321	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2322	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2323	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2324	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2325	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2326	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2327	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2328	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2329};
2330
2331/*
2332 * other switches
2333 */
2334
2335struct cmipci_switch_args {
2336	int reg;		/* register index */
2337	unsigned int mask;	/* mask bits */
2338	unsigned int mask_on;	/* mask bits to turn on */
2339	unsigned int is_byte: 1;		/* byte access? */
2340	unsigned int ac3_sensitive: 1;	/* access forbidden during
2341					 * non-audio operation?
2342					 */
2343};
2344
2345#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2346
2347static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2348				   struct snd_ctl_elem_value *ucontrol,
2349				   struct cmipci_switch_args *args)
2350{
2351	unsigned int val;
2352	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2353
2354	spin_lock_irq(&cm->reg_lock);
2355	if (args->ac3_sensitive && cm->mixer_insensitive) {
2356		ucontrol->value.integer.value[0] = 0;
2357		spin_unlock_irq(&cm->reg_lock);
2358		return 0;
2359	}
2360	if (args->is_byte)
2361		val = inb(cm->iobase + args->reg);
2362	else
2363		val = snd_cmipci_read(cm, args->reg);
2364	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2365	spin_unlock_irq(&cm->reg_lock);
2366	return 0;
2367}
2368
2369static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2370				  struct snd_ctl_elem_value *ucontrol)
2371{
2372	struct cmipci_switch_args *args;
2373	args = (struct cmipci_switch_args *)kcontrol->private_value;
2374	if (snd_BUG_ON(!args))
2375		return -EINVAL;
2376	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2377}
2378
2379static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380				   struct snd_ctl_elem_value *ucontrol,
2381				   struct cmipci_switch_args *args)
2382{
2383	unsigned int val;
2384	int change;
2385	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2386
2387	spin_lock_irq(&cm->reg_lock);
2388	if (args->ac3_sensitive && cm->mixer_insensitive) {
2389		/* ignored */
2390		spin_unlock_irq(&cm->reg_lock);
2391		return 0;
2392	}
2393	if (args->is_byte)
2394		val = inb(cm->iobase + args->reg);
2395	else
2396		val = snd_cmipci_read(cm, args->reg);
2397	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2398			args->mask_on : (args->mask & ~args->mask_on));
2399	if (change) {
2400		val &= ~args->mask;
2401		if (ucontrol->value.integer.value[0])
2402			val |= args->mask_on;
2403		else
2404			val |= (args->mask & ~args->mask_on);
2405		if (args->is_byte)
2406			outb((unsigned char)val, cm->iobase + args->reg);
2407		else
2408			snd_cmipci_write(cm, args->reg, val);
2409	}
2410	spin_unlock_irq(&cm->reg_lock);
2411	return change;
2412}
2413
2414static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2415				  struct snd_ctl_elem_value *ucontrol)
2416{
2417	struct cmipci_switch_args *args;
2418	args = (struct cmipci_switch_args *)kcontrol->private_value;
2419	if (snd_BUG_ON(!args))
2420		return -EINVAL;
2421	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2422}
2423
2424#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2425static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2426  .reg = xreg, \
2427  .mask = xmask, \
2428  .mask_on = xmask_on, \
2429  .is_byte = xis_byte, \
2430  .ac3_sensitive = xac3, \
2431}
2432
2433#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2434	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2435
2436#if 0 /* these will be controlled in pcm device */
2437DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2438DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2439#endif
2440DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2441DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2442DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2443DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2444DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2445DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2446DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2447DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2448// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2449DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2450DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2451/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2452DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2453DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2454#if CM_CH_PLAY == 1
2455DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2456#else
2457DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2458#endif
2459DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2460// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2461// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2462// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2463DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2464
2465#define DEFINE_SWITCH(sname, stype, sarg) \
2466{ .name = sname, \
2467  .iface = stype, \
2468  .info = snd_cmipci_uswitch_info, \
2469  .get = snd_cmipci_uswitch_get, \
2470  .put = snd_cmipci_uswitch_put, \
2471  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2472}
2473
2474#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2475#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2476
2477
2478/*
2479 * callbacks for spdif output switch
2480 * needs toggle two registers..
2481 */
2482static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2483					struct snd_ctl_elem_value *ucontrol)
2484{
2485	int changed;
2486	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2487	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2488	return changed;
2489}
2490
2491static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2492					struct snd_ctl_elem_value *ucontrol)
2493{
2494	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2495	int changed;
2496	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2497	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2498	if (changed) {
2499		if (ucontrol->value.integer.value[0]) {
2500			if (chip->spdif_playback_avail)
2501				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2502		} else {
2503			if (chip->spdif_playback_avail)
2504				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2505		}
2506	}
2507	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2508	return changed;
2509}
2510
2511
2512static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2513					struct snd_ctl_elem_info *uinfo)
2514{
2515	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516	static const char *const texts[3] = {
2517		"Line-In", "Rear Output", "Bass Output"
2518	};
2519
2520	return snd_ctl_enum_info(uinfo, 1,
2521				 cm->chip_version >= 39 ? 3 : 2, texts);
2522}
2523
2524static inline unsigned int get_line_in_mode(struct cmipci *cm)
2525{
2526	unsigned int val;
2527	if (cm->chip_version >= 39) {
2528		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2529		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2530			return 2;
2531	}
2532	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2533	if (val & CM_REAR2LIN)
2534		return 1;
2535	return 0;
2536}
2537
2538static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2539				       struct snd_ctl_elem_value *ucontrol)
2540{
2541	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542
2543	spin_lock_irq(&cm->reg_lock);
2544	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2545	spin_unlock_irq(&cm->reg_lock);
2546	return 0;
2547}
2548
2549static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2550				       struct snd_ctl_elem_value *ucontrol)
2551{
2552	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553	int change;
2554
2555	spin_lock_irq(&cm->reg_lock);
2556	if (ucontrol->value.enumerated.item[0] == 2)
2557		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2558	else
2559		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2560	if (ucontrol->value.enumerated.item[0] == 1)
2561		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2562	else
2563		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2564	spin_unlock_irq(&cm->reg_lock);
2565	return change;
2566}
2567
2568static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2569				       struct snd_ctl_elem_info *uinfo)
2570{
2571	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2572
2573	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2574}
2575
2576static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2577				      struct snd_ctl_elem_value *ucontrol)
2578{
2579	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2580	/* same bit as spdi_phase */
2581	spin_lock_irq(&cm->reg_lock);
2582	ucontrol->value.enumerated.item[0] =
2583		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2584	spin_unlock_irq(&cm->reg_lock);
2585	return 0;
2586}
2587
2588static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2589				      struct snd_ctl_elem_value *ucontrol)
2590{
2591	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2592	int change;
2593
2594	spin_lock_irq(&cm->reg_lock);
2595	if (ucontrol->value.enumerated.item[0])
2596		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2597	else
2598		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2599	spin_unlock_irq(&cm->reg_lock);
2600	return change;
2601}
2602
2603/* both for CM8338/8738 */
2604static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2605	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2606	{
2607		.name = "Line-In Mode",
2608		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2609		.info = snd_cmipci_line_in_mode_info,
2610		.get = snd_cmipci_line_in_mode_get,
2611		.put = snd_cmipci_line_in_mode_put,
2612	},
2613};
2614
2615/* for non-multichannel chips */
2616static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2617DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2618
2619/* only for CM8738 */
2620static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2621#if 0 /* controlled in pcm device */
2622	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2623	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2624	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2625#endif
2626	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2627	{ .name = "IEC958 Output Switch",
2628	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629	  .info = snd_cmipci_uswitch_info,
2630	  .get = snd_cmipci_spdout_enable_get,
2631	  .put = snd_cmipci_spdout_enable_put,
2632	},
2633	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2634	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2635	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2636//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2637	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2638	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2639};
2640
2641/* only for model 033/037 */
2642static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2643	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2644	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2645	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2646};
2647
2648/* only for model 039 or later */
2649static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2650	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2651	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2652	{
2653		.name = "Mic-In Mode",
2654		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2655		.info = snd_cmipci_mic_in_mode_info,
2656		.get = snd_cmipci_mic_in_mode_get,
2657		.put = snd_cmipci_mic_in_mode_put,
2658	}
2659};
2660
2661/* card control switches */
2662static struct snd_kcontrol_new snd_cmipci_modem_switch =
2663DEFINE_CARD_SWITCH("Modem", modem);
2664
2665
2666static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2667{
2668	struct snd_card *card;
2669	struct snd_kcontrol_new *sw;
2670	struct snd_kcontrol *kctl;
2671	unsigned int idx;
2672	int err;
2673
2674	if (snd_BUG_ON(!cm || !cm->card))
2675		return -EINVAL;
2676
2677	card = cm->card;
2678
2679	strcpy(card->mixername, "CMedia PCI");
2680
2681	spin_lock_irq(&cm->reg_lock);
2682	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2683	spin_unlock_irq(&cm->reg_lock);
2684
2685	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2686		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2687			if (!strcmp(snd_cmipci_mixers[idx].name,
2688				"PCM Playback Volume"))
2689				continue;
2690		}
2691		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2692			return err;
2693	}
2694
2695	/* mixer switches */
2696	sw = snd_cmipci_mixer_switches;
2697	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2698		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699		if (err < 0)
2700			return err;
2701	}
2702	if (! cm->can_multi_ch) {
2703		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2704		if (err < 0)
2705			return err;
2706	}
2707	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2708	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2709		sw = snd_cmipci_8738_mixer_switches;
2710		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2711			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2712			if (err < 0)
2713				return err;
2714		}
2715		if (cm->can_ac3_hw) {
2716			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2717				return err;
2718			kctl->id.device = pcm_spdif_device;
2719			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2720				return err;
2721			kctl->id.device = pcm_spdif_device;
2722			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2723				return err;
2724			kctl->id.device = pcm_spdif_device;
2725		}
2726		if (cm->chip_version <= 37) {
2727			sw = snd_cmipci_old_mixer_switches;
2728			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2729				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2730				if (err < 0)
2731					return err;
2732			}
2733		}
2734	}
2735	if (cm->chip_version >= 39) {
2736		sw = snd_cmipci_extra_mixer_switches;
2737		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2738			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2739			if (err < 0)
2740				return err;
2741		}
2742	}
2743
2744	/* card switches */
2745	/*
2746	 * newer chips don't have the register bits to force modem link
2747	 * detection; the bit that was FLINKON now mutes CH1
2748	 */
2749	if (cm->chip_version < 39) {
2750		err = snd_ctl_add(cm->card,
2751				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2752		if (err < 0)
2753			return err;
2754	}
2755
2756	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2757		struct snd_ctl_elem_id elem_id;
2758		struct snd_kcontrol *ctl;
2759		memset(&elem_id, 0, sizeof(elem_id));
2760		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2761		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2762		ctl = snd_ctl_find_id(cm->card, &elem_id);
2763		if (ctl)
2764			cm->mixer_res_ctl[idx] = ctl;
2765	}
2766
2767	return 0;
2768}
2769
2770
2771/*
2772 * proc interface
2773 */
2774
2775#ifdef CONFIG_PROC_FS
2776static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2777				 struct snd_info_buffer *buffer)
2778{
2779	struct cmipci *cm = entry->private_data;
2780	int i, v;
2781
2782	snd_iprintf(buffer, "%s\n", cm->card->longname);
2783	for (i = 0; i < 0x94; i++) {
2784		if (i == 0x28)
2785			i = 0x90;
2786		v = inb(cm->iobase + i);
2787		if (i % 4 == 0)
2788			snd_iprintf(buffer, "\n%02x:", i);
2789		snd_iprintf(buffer, " %02x", v);
2790	}
2791	snd_iprintf(buffer, "\n");
2792}
2793
2794static void snd_cmipci_proc_init(struct cmipci *cm)
2795{
2796	struct snd_info_entry *entry;
2797
2798	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2799		snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2800}
2801#else /* !CONFIG_PROC_FS */
2802static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2803#endif
2804
2805
2806static const struct pci_device_id snd_cmipci_ids[] = {
2807	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2808	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2809	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2810	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2811	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2812	{0,},
2813};
2814
2815
2816/*
2817 * check chip version and capabilities
2818 * driver name is modified according to the chip model
2819 */
2820static void query_chip(struct cmipci *cm)
2821{
2822	unsigned int detect;
2823
2824	/* check reg 0Ch, bit 24-31 */
2825	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2826	if (! detect) {
2827		/* check reg 08h, bit 24-28 */
2828		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2829		switch (detect) {
2830		case 0:
2831			cm->chip_version = 33;
2832			if (cm->do_soft_ac3)
2833				cm->can_ac3_sw = 1;
2834			else
2835				cm->can_ac3_hw = 1;
2836			break;
2837		case CM_CHIP_037:
2838			cm->chip_version = 37;
2839			cm->can_ac3_hw = 1;
2840			break;
2841		default:
2842			cm->chip_version = 39;
2843			cm->can_ac3_hw = 1;
2844			break;
2845		}
2846		cm->max_channels = 2;
2847	} else {
2848		if (detect & CM_CHIP_039) {
2849			cm->chip_version = 39;
2850			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2851				cm->max_channels = 6;
2852			else
2853				cm->max_channels = 4;
2854		} else if (detect & CM_CHIP_8768) {
2855			cm->chip_version = 68;
2856			cm->max_channels = 8;
2857			cm->can_96k = 1;
2858		} else {
2859			cm->chip_version = 55;
2860			cm->max_channels = 6;
2861			cm->can_96k = 1;
2862		}
2863		cm->can_ac3_hw = 1;
2864		cm->can_multi_ch = 1;
2865	}
2866}
2867
2868#ifdef SUPPORT_JOYSTICK
2869static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2870{
2871	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2872	struct gameport *gp;
2873	struct resource *r = NULL;
2874	int i, io_port = 0;
2875
2876	if (joystick_port[dev] == 0)
2877		return -ENODEV;
2878
2879	if (joystick_port[dev] == 1) { /* auto-detect */
2880		for (i = 0; ports[i]; i++) {
2881			io_port = ports[i];
2882			r = request_region(io_port, 1, "CMIPCI gameport");
2883			if (r)
2884				break;
2885		}
2886	} else {
2887		io_port = joystick_port[dev];
2888		r = request_region(io_port, 1, "CMIPCI gameport");
2889	}
2890
2891	if (!r) {
2892		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2893		return -EBUSY;
2894	}
2895
2896	cm->gameport = gp = gameport_allocate_port();
2897	if (!gp) {
2898		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2899		release_and_free_resource(r);
2900		return -ENOMEM;
2901	}
2902	gameport_set_name(gp, "C-Media Gameport");
2903	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2904	gameport_set_dev_parent(gp, &cm->pci->dev);
2905	gp->io = io_port;
2906	gameport_set_port_data(gp, r);
2907
2908	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2909
2910	gameport_register_port(cm->gameport);
2911
2912	return 0;
2913}
2914
2915static void snd_cmipci_free_gameport(struct cmipci *cm)
2916{
2917	if (cm->gameport) {
2918		struct resource *r = gameport_get_port_data(cm->gameport);
2919
2920		gameport_unregister_port(cm->gameport);
2921		cm->gameport = NULL;
2922
2923		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2924		release_and_free_resource(r);
2925	}
2926}
2927#else
2928static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2929static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2930#endif
2931
2932static int snd_cmipci_free(struct cmipci *cm)
2933{
2934	if (cm->irq >= 0) {
2935		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2936		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2937		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2938		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2939		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2940		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2941		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2942
2943		/* reset mixer */
2944		snd_cmipci_mixer_write(cm, 0, 0);
2945
2946		free_irq(cm->irq, cm);
2947	}
2948
2949	snd_cmipci_free_gameport(cm);
2950	pci_release_regions(cm->pci);
2951	pci_disable_device(cm->pci);
2952	kfree(cm);
2953	return 0;
2954}
2955
2956static int snd_cmipci_dev_free(struct snd_device *device)
2957{
2958	struct cmipci *cm = device->device_data;
2959	return snd_cmipci_free(cm);
2960}
2961
2962static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2963{
2964	long iosynth;
2965	unsigned int val;
2966	struct snd_opl3 *opl3;
2967	int err;
2968
2969	if (!fm_port)
2970		goto disable_fm;
2971
2972	if (cm->chip_version >= 39) {
2973		/* first try FM regs in PCI port range */
2974		iosynth = cm->iobase + CM_REG_FM_PCI;
2975		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976				      OPL3_HW_OPL3, 1, &opl3);
2977	} else {
2978		err = -EIO;
2979	}
2980	if (err < 0) {
2981		/* then try legacy ports */
2982		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2983		iosynth = fm_port;
2984		switch (iosynth) {
2985		case 0x3E8: val |= CM_FMSEL_3E8; break;
2986		case 0x3E0: val |= CM_FMSEL_3E0; break;
2987		case 0x3C8: val |= CM_FMSEL_3C8; break;
2988		case 0x388: val |= CM_FMSEL_388; break;
2989		default:
2990			goto disable_fm;
2991		}
2992		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2993		/* enable FM */
2994		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2995
2996		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2997				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2998			dev_err(cm->card->dev,
2999				"no OPL device at %#lx, skipping...\n",
3000				iosynth);
3001			goto disable_fm;
3002		}
3003	}
3004	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
3005		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
3006		return err;
3007	}
3008	return 0;
3009
3010 disable_fm:
3011	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3012	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3013	return 0;
3014}
3015
3016static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3017			     int dev, struct cmipci **rcmipci)
3018{
3019	struct cmipci *cm;
3020	int err;
3021	static struct snd_device_ops ops = {
3022		.dev_free =	snd_cmipci_dev_free,
3023	};
3024	unsigned int val;
3025	long iomidi = 0;
3026	int integrated_midi = 0;
3027	char modelstr[16];
3028	int pcm_index, pcm_spdif_index;
3029	static const struct pci_device_id intel_82437vx[] = {
3030		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3031		{ },
3032	};
3033
3034	*rcmipci = NULL;
3035
3036	if ((err = pci_enable_device(pci)) < 0)
3037		return err;
3038
3039	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3040	if (cm == NULL) {
3041		pci_disable_device(pci);
3042		return -ENOMEM;
3043	}
3044
3045	spin_lock_init(&cm->reg_lock);
3046	mutex_init(&cm->open_mutex);
3047	cm->device = pci->device;
3048	cm->card = card;
3049	cm->pci = pci;
3050	cm->irq = -1;
3051	cm->channel[0].ch = 0;
3052	cm->channel[1].ch = 1;
3053	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3054
3055	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3056		kfree(cm);
3057		pci_disable_device(pci);
3058		return err;
3059	}
3060	cm->iobase = pci_resource_start(pci, 0);
3061
3062	if (request_irq(pci->irq, snd_cmipci_interrupt,
3063			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3064		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3065		snd_cmipci_free(cm);
3066		return -EBUSY;
3067	}
3068	cm->irq = pci->irq;
3069
3070	pci_set_master(cm->pci);
3071
3072	/*
3073	 * check chip version, max channels and capabilities
3074	 */
3075
3076	cm->chip_version = 0;
3077	cm->max_channels = 2;
3078	cm->do_soft_ac3 = soft_ac3[dev];
3079
3080	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3081	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3082		query_chip(cm);
3083	/* added -MCx suffix for chip supporting multi-channels */
3084	if (cm->can_multi_ch)
3085		sprintf(cm->card->driver + strlen(cm->card->driver),
3086			"-MC%d", cm->max_channels);
3087	else if (cm->can_ac3_sw)
3088		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3089
3090	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3091	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3092
3093#if CM_CH_PLAY == 1
3094	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3095#else
3096	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3097#endif
3098
3099	/* initialize codec registers */
3100	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3101	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3102	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3103	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3104	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3105	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3106	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3107
3108	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3109	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3110#if CM_CH_PLAY == 1
3111	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3112#else
3113	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3114#endif
3115	if (cm->chip_version) {
3116		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3117		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3118	}
3119	/* Set Bus Master Request */
3120	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3121
3122	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3123	switch (pci->device) {
3124	case PCI_DEVICE_ID_CMEDIA_CM8738:
3125	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3126		if (!pci_dev_present(intel_82437vx))
3127			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3128		break;
3129	default:
3130		break;
3131	}
3132
3133	if (cm->chip_version < 68) {
3134		val = pci->device < 0x110 ? 8338 : 8738;
3135	} else {
3136		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3137		case 0:
3138			val = 8769;
3139			break;
3140		case 2:
3141			val = 8762;
3142			break;
3143		default:
3144			switch ((pci->subsystem_vendor << 16) |
3145				pci->subsystem_device) {
3146			case 0x13f69761:
3147			case 0x584d3741:
3148			case 0x584d3751:
3149			case 0x584d3761:
3150			case 0x584d3771:
3151			case 0x72848384:
3152				val = 8770;
3153				break;
3154			default:
3155				val = 8768;
3156				break;
3157			}
3158		}
3159	}
3160	sprintf(card->shortname, "C-Media CMI%d", val);
3161	if (cm->chip_version < 68)
3162		sprintf(modelstr, " (model %d)", cm->chip_version);
3163	else
3164		modelstr[0] = '\0';
3165	sprintf(card->longname, "%s%s at %#lx, irq %i",
3166		card->shortname, modelstr, cm->iobase, cm->irq);
3167
3168	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3169		snd_cmipci_free(cm);
3170		return err;
3171	}
3172
3173	if (cm->chip_version >= 39) {
3174		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3175		if (val != 0x00 && val != 0xff) {
3176			iomidi = cm->iobase + CM_REG_MPU_PCI;
3177			integrated_midi = 1;
3178		}
3179	}
3180	if (!integrated_midi) {
3181		val = 0;
3182		iomidi = mpu_port[dev];
3183		switch (iomidi) {
3184		case 0x320: val = CM_VMPU_320; break;
3185		case 0x310: val = CM_VMPU_310; break;
3186		case 0x300: val = CM_VMPU_300; break;
3187		case 0x330: val = CM_VMPU_330; break;
3188		default:
3189			    iomidi = 0; break;
3190		}
3191		if (iomidi > 0) {
3192			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3193			/* enable UART */
3194			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3195			if (inb(iomidi + 1) == 0xff) {
3196				dev_err(cm->card->dev,
3197					"cannot enable MPU-401 port at %#lx\n",
3198					iomidi);
3199				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3200						     CM_UART_EN);
3201				iomidi = 0;
3202			}
3203		}
3204	}
3205
3206	if (cm->chip_version < 68) {
3207		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3208		if (err < 0)
3209			return err;
3210	}
3211
3212	/* reset mixer */
3213	snd_cmipci_mixer_write(cm, 0, 0);
3214
3215	snd_cmipci_proc_init(cm);
3216
3217	/* create pcm devices */
3218	pcm_index = pcm_spdif_index = 0;
3219	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3220		return err;
3221	pcm_index++;
3222	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3223		return err;
3224	pcm_index++;
3225	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3226		pcm_spdif_index = pcm_index;
3227		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3228			return err;
3229	}
3230
3231	/* create mixer interface & switches */
3232	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3233		return err;
3234
3235	if (iomidi > 0) {
3236		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3237					       iomidi,
3238					       (integrated_midi ?
3239						MPU401_INFO_INTEGRATED : 0) |
3240					       MPU401_INFO_IRQ_HOOK,
3241					       -1, &cm->rmidi)) < 0) {
3242			dev_err(cm->card->dev,
3243				"no UART401 device at 0x%lx\n", iomidi);
3244		}
3245	}
3246
3247#ifdef USE_VAR48KRATE
3248	for (val = 0; val < ARRAY_SIZE(rates); val++)
3249		snd_cmipci_set_pll(cm, rates[val], val);
3250
3251	/*
3252	 * (Re-)Enable external switch spdo_48k
3253	 */
3254	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3255#endif /* USE_VAR48KRATE */
3256
3257	if (snd_cmipci_create_gameport(cm, dev) < 0)
3258		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3259
3260	*rcmipci = cm;
3261	return 0;
3262}
3263
3264/*
3265 */
3266
3267MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3268
3269static int snd_cmipci_probe(struct pci_dev *pci,
3270			    const struct pci_device_id *pci_id)
3271{
3272	static int dev;
3273	struct snd_card *card;
3274	struct cmipci *cm;
3275	int err;
3276
3277	if (dev >= SNDRV_CARDS)
3278		return -ENODEV;
3279	if (! enable[dev]) {
3280		dev++;
3281		return -ENOENT;
3282	}
3283
3284	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3285			   0, &card);
3286	if (err < 0)
3287		return err;
3288
3289	switch (pci->device) {
3290	case PCI_DEVICE_ID_CMEDIA_CM8738:
3291	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3292		strcpy(card->driver, "CMI8738");
3293		break;
3294	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3295	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3296		strcpy(card->driver, "CMI8338");
3297		break;
3298	default:
3299		strcpy(card->driver, "CMIPCI");
3300		break;
3301	}
3302
3303	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3304		snd_card_free(card);
3305		return err;
3306	}
3307	card->private_data = cm;
3308
3309	if ((err = snd_card_register(card)) < 0) {
3310		snd_card_free(card);
3311		return err;
3312	}
3313	pci_set_drvdata(pci, card);
3314	dev++;
3315	return 0;
3316
3317}
3318
3319static void snd_cmipci_remove(struct pci_dev *pci)
3320{
3321	snd_card_free(pci_get_drvdata(pci));
3322}
3323
3324
3325#ifdef CONFIG_PM_SLEEP
3326/*
3327 * power management
3328 */
3329static unsigned char saved_regs[] = {
3330	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3331	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3332	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3333	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3334	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3335};
3336
3337static unsigned char saved_mixers[] = {
3338	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3339	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3340	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3341	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3342	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3343	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3344	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3345	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3346};
3347
3348static int snd_cmipci_suspend(struct device *dev)
3349{
3350	struct snd_card *card = dev_get_drvdata(dev);
3351	struct cmipci *cm = card->private_data;
3352	int i;
3353
3354	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3355
3356	snd_pcm_suspend_all(cm->pcm);
3357	snd_pcm_suspend_all(cm->pcm2);
3358	snd_pcm_suspend_all(cm->pcm_spdif);
3359
3360	/* save registers */
3361	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3362		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3363	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3364		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3365
3366	/* disable ints */
3367	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3368	return 0;
3369}
3370
3371static int snd_cmipci_resume(struct device *dev)
3372{
3373	struct snd_card *card = dev_get_drvdata(dev);
3374	struct cmipci *cm = card->private_data;
3375	int i;
3376
3377	/* reset / initialize to a sane state */
3378	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3379	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3380	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3381	snd_cmipci_mixer_write(cm, 0, 0);
3382
3383	/* restore registers */
3384	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3385		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3386	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3387		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3388
3389	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3390	return 0;
3391}
3392
3393static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3394#define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3395#else
3396#define SND_CMIPCI_PM_OPS	NULL
3397#endif /* CONFIG_PM_SLEEP */
3398
3399static struct pci_driver cmipci_driver = {
3400	.name = KBUILD_MODNAME,
3401	.id_table = snd_cmipci_ids,
3402	.probe = snd_cmipci_probe,
3403	.remove = snd_cmipci_remove,
3404	.driver = {
3405		.pm = SND_CMIPCI_PM_OPS,
3406	},
3407};
3408
3409module_pci_driver(cmipci_driver);
3410