1 /*
2  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3  * with Common Isochronous Packet (IEC 61883-1) headers
4  *
5  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include <sound/rawmidi.h>
18 #include "amdtp.h"
19 
20 #define TICKS_PER_CYCLE		3072
21 #define CYCLES_PER_SECOND	8000
22 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
23 
24 /*
25  * Nominally 3125 bytes/second, but the MIDI port's clock might be
26  * 1% too slow, and the bus clock 100 ppm too fast.
27  */
28 #define MIDI_BYTES_PER_SECOND	3093
29 
30 /*
31  * Several devices look only at the first eight data blocks.
32  * In any case, this is more than enough for the MIDI data rate.
33  */
34 #define MAX_MIDI_RX_BLOCKS	8
35 
36 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
37 
38 /* isochronous header parameters */
39 #define ISO_DATA_LENGTH_SHIFT	16
40 #define TAG_CIP			1
41 
42 /* common isochronous packet header parameters */
43 #define CIP_EOH			(1u << 31)
44 #define CIP_EOH_MASK		0x80000000
45 #define CIP_FMT_AM		(0x10 << 24)
46 #define CIP_FMT_MASK		0x3f000000
47 #define CIP_SYT_MASK		0x0000ffff
48 #define CIP_SYT_NO_INFO		0xffff
49 #define CIP_FDF_MASK		0x00ff0000
50 #define CIP_FDF_SFC_SHIFT	16
51 
52 /*
53  * Audio and Music transfer protocol specific parameters
54  * only "Clock-based rate control mode" is supported
55  */
56 #define AMDTP_FDF_AM824		(0 << (CIP_FDF_SFC_SHIFT + 3))
57 #define AMDTP_FDF_NO_DATA	0xff
58 #define AMDTP_DBS_MASK		0x00ff0000
59 #define AMDTP_DBS_SHIFT		16
60 #define AMDTP_DBC_MASK		0x000000ff
61 
62 /* TODO: make these configurable */
63 #define INTERRUPT_INTERVAL	16
64 #define QUEUE_LENGTH		48
65 
66 #define IN_PACKET_HEADER_SIZE	4
67 #define OUT_PACKET_HEADER_SIZE	0
68 
69 static void pcm_period_tasklet(unsigned long data);
70 
71 /**
72  * amdtp_stream_init - initialize an AMDTP stream structure
73  * @s: the AMDTP stream to initialize
74  * @unit: the target of the stream
75  * @dir: the direction of stream
76  * @flags: the packet transmission method to use
77  */
amdtp_stream_init(struct amdtp_stream * s,struct fw_unit * unit,enum amdtp_stream_direction dir,enum cip_flags flags)78 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
79 		      enum amdtp_stream_direction dir, enum cip_flags flags)
80 {
81 	s->unit = unit;
82 	s->direction = dir;
83 	s->flags = flags;
84 	s->context = ERR_PTR(-1);
85 	mutex_init(&s->mutex);
86 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
87 	s->packet_index = 0;
88 
89 	init_waitqueue_head(&s->callback_wait);
90 	s->callbacked = false;
91 	s->sync_slave = NULL;
92 
93 	return 0;
94 }
95 EXPORT_SYMBOL(amdtp_stream_init);
96 
97 /**
98  * amdtp_stream_destroy - free stream resources
99  * @s: the AMDTP stream to destroy
100  */
amdtp_stream_destroy(struct amdtp_stream * s)101 void amdtp_stream_destroy(struct amdtp_stream *s)
102 {
103 	WARN_ON(amdtp_stream_running(s));
104 	mutex_destroy(&s->mutex);
105 }
106 EXPORT_SYMBOL(amdtp_stream_destroy);
107 
108 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
109 	[CIP_SFC_32000]  =  8,
110 	[CIP_SFC_44100]  =  8,
111 	[CIP_SFC_48000]  =  8,
112 	[CIP_SFC_88200]  = 16,
113 	[CIP_SFC_96000]  = 16,
114 	[CIP_SFC_176400] = 32,
115 	[CIP_SFC_192000] = 32,
116 };
117 EXPORT_SYMBOL(amdtp_syt_intervals);
118 
119 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
120 	[CIP_SFC_32000]  =  32000,
121 	[CIP_SFC_44100]  =  44100,
122 	[CIP_SFC_48000]  =  48000,
123 	[CIP_SFC_88200]  =  88200,
124 	[CIP_SFC_96000]  =  96000,
125 	[CIP_SFC_176400] = 176400,
126 	[CIP_SFC_192000] = 192000,
127 };
128 EXPORT_SYMBOL(amdtp_rate_table);
129 
130 /**
131  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
132  * @s:		the AMDTP stream, which must be initialized.
133  * @runtime:	the PCM substream runtime
134  */
amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream * s,struct snd_pcm_runtime * runtime)135 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
136 					struct snd_pcm_runtime *runtime)
137 {
138 	int err;
139 
140 	/* AM824 in IEC 61883-6 can deliver 24bit data */
141 	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
142 	if (err < 0)
143 		goto end;
144 
145 	/*
146 	 * Currently firewire-lib processes 16 packets in one software
147 	 * interrupt callback. This equals to 2msec but actually the
148 	 * interval of the interrupts has a jitter.
149 	 * Additionally, even if adding a constraint to fit period size to
150 	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
151 	 * depending on sampling rate.
152 	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
153 	 * Here let us use 5msec for safe period interrupt.
154 	 */
155 	err = snd_pcm_hw_constraint_minmax(runtime,
156 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
157 					   5000, UINT_MAX);
158 	if (err < 0)
159 		goto end;
160 
161 	/* Non-Blocking stream has no more constraints */
162 	if (!(s->flags & CIP_BLOCKING))
163 		goto end;
164 
165 	/*
166 	 * One AMDTP packet can include some frames. In blocking mode, the
167 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
168 	 * depending on its sampling rate. For accurate period interrupt, it's
169 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
170 	 *
171 	 * TODO: These constraints can be improved with proper rules.
172 	 * Currently apply LCM of SYT_INTERVALs.
173 	 */
174 	err = snd_pcm_hw_constraint_step(runtime, 0,
175 					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
176 	if (err < 0)
177 		goto end;
178 	err = snd_pcm_hw_constraint_step(runtime, 0,
179 					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
180 end:
181 	return err;
182 }
183 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
184 
185 /**
186  * amdtp_stream_set_parameters - set stream parameters
187  * @s: the AMDTP stream to configure
188  * @rate: the sample rate
189  * @pcm_channels: the number of PCM samples in each data block, to be encoded
190  *                as AM824 multi-bit linear audio
191  * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
192  *
193  * The parameters must be set before the stream is started, and must not be
194  * changed while the stream is running.
195  */
amdtp_stream_set_parameters(struct amdtp_stream * s,unsigned int rate,unsigned int pcm_channels,unsigned int midi_ports)196 void amdtp_stream_set_parameters(struct amdtp_stream *s,
197 				 unsigned int rate,
198 				 unsigned int pcm_channels,
199 				 unsigned int midi_ports)
200 {
201 	unsigned int i, sfc, midi_channels;
202 
203 	midi_channels = DIV_ROUND_UP(midi_ports, 8);
204 
205 	if (WARN_ON(amdtp_stream_running(s)) |
206 	    WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
207 	    WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
208 		return;
209 
210 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
211 		if (amdtp_rate_table[sfc] == rate)
212 			goto sfc_found;
213 	WARN_ON(1);
214 	return;
215 
216 sfc_found:
217 	s->pcm_channels = pcm_channels;
218 	s->sfc = sfc;
219 	s->data_block_quadlets = s->pcm_channels + midi_channels;
220 	s->midi_ports = midi_ports;
221 
222 	s->syt_interval = amdtp_syt_intervals[sfc];
223 
224 	/* default buffering in the device */
225 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
226 	if (s->flags & CIP_BLOCKING)
227 		/* additional buffering needed to adjust for no-data packets */
228 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
229 
230 	/* init the position map for PCM and MIDI channels */
231 	for (i = 0; i < pcm_channels; i++)
232 		s->pcm_positions[i] = i;
233 	s->midi_position = s->pcm_channels;
234 
235 	/*
236 	 * We do not know the actual MIDI FIFO size of most devices.  Just
237 	 * assume two bytes, i.e., one byte can be received over the bus while
238 	 * the previous one is transmitted over MIDI.
239 	 * (The value here is adjusted for midi_ratelimit_per_packet().)
240 	 */
241 	s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
242 }
243 EXPORT_SYMBOL(amdtp_stream_set_parameters);
244 
245 /**
246  * amdtp_stream_get_max_payload - get the stream's packet size
247  * @s: the AMDTP stream
248  *
249  * This function must not be called before the stream has been configured
250  * with amdtp_stream_set_parameters().
251  */
amdtp_stream_get_max_payload(struct amdtp_stream * s)252 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
253 {
254 	return 8 + s->syt_interval * s->data_block_quadlets * 4;
255 }
256 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
257 
258 static void amdtp_write_s16(struct amdtp_stream *s,
259 			    struct snd_pcm_substream *pcm,
260 			    __be32 *buffer, unsigned int frames);
261 static void amdtp_write_s32(struct amdtp_stream *s,
262 			    struct snd_pcm_substream *pcm,
263 			    __be32 *buffer, unsigned int frames);
264 static void amdtp_read_s32(struct amdtp_stream *s,
265 			   struct snd_pcm_substream *pcm,
266 			   __be32 *buffer, unsigned int frames);
267 
268 /**
269  * amdtp_stream_set_pcm_format - set the PCM format
270  * @s: the AMDTP stream to configure
271  * @format: the format of the ALSA PCM device
272  *
273  * The sample format must be set after the other parameters (rate/PCM channels/
274  * MIDI) and before the stream is started, and must not be changed while the
275  * stream is running.
276  */
amdtp_stream_set_pcm_format(struct amdtp_stream * s,snd_pcm_format_t format)277 void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
278 				 snd_pcm_format_t format)
279 {
280 	if (WARN_ON(amdtp_stream_pcm_running(s)))
281 		return;
282 
283 	switch (format) {
284 	default:
285 		WARN_ON(1);
286 		/* fall through */
287 	case SNDRV_PCM_FORMAT_S16:
288 		if (s->direction == AMDTP_OUT_STREAM) {
289 			s->transfer_samples = amdtp_write_s16;
290 			break;
291 		}
292 		WARN_ON(1);
293 		/* fall through */
294 	case SNDRV_PCM_FORMAT_S32:
295 		if (s->direction == AMDTP_OUT_STREAM)
296 			s->transfer_samples = amdtp_write_s32;
297 		else
298 			s->transfer_samples = amdtp_read_s32;
299 		break;
300 	}
301 }
302 EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
303 
304 /**
305  * amdtp_stream_pcm_prepare - prepare PCM device for running
306  * @s: the AMDTP stream
307  *
308  * This function should be called from the PCM device's .prepare callback.
309  */
amdtp_stream_pcm_prepare(struct amdtp_stream * s)310 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
311 {
312 	tasklet_kill(&s->period_tasklet);
313 	s->pcm_buffer_pointer = 0;
314 	s->pcm_period_pointer = 0;
315 	s->pointer_flush = true;
316 }
317 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
318 
calculate_data_blocks(struct amdtp_stream * s)319 static unsigned int calculate_data_blocks(struct amdtp_stream *s)
320 {
321 	unsigned int phase, data_blocks;
322 
323 	if (s->flags & CIP_BLOCKING)
324 		data_blocks = s->syt_interval;
325 	else if (!cip_sfc_is_base_44100(s->sfc)) {
326 		/* Sample_rate / 8000 is an integer, and precomputed. */
327 		data_blocks = s->data_block_state;
328 	} else {
329 		phase = s->data_block_state;
330 
331 		/*
332 		 * This calculates the number of data blocks per packet so that
333 		 * 1) the overall rate is correct and exactly synchronized to
334 		 *    the bus clock, and
335 		 * 2) packets with a rounded-up number of blocks occur as early
336 		 *    as possible in the sequence (to prevent underruns of the
337 		 *    device's buffer).
338 		 */
339 		if (s->sfc == CIP_SFC_44100)
340 			/* 6 6 5 6 5 6 5 ... */
341 			data_blocks = 5 + ((phase & 1) ^
342 					   (phase == 0 || phase >= 40));
343 		else
344 			/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
345 			data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
346 		if (++phase >= (80 >> (s->sfc >> 1)))
347 			phase = 0;
348 		s->data_block_state = phase;
349 	}
350 
351 	return data_blocks;
352 }
353 
calculate_syt(struct amdtp_stream * s,unsigned int cycle)354 static unsigned int calculate_syt(struct amdtp_stream *s,
355 				  unsigned int cycle)
356 {
357 	unsigned int syt_offset, phase, index, syt;
358 
359 	if (s->last_syt_offset < TICKS_PER_CYCLE) {
360 		if (!cip_sfc_is_base_44100(s->sfc))
361 			syt_offset = s->last_syt_offset + s->syt_offset_state;
362 		else {
363 		/*
364 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
365 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
366 		 * Modulo TICKS_PER_CYCLE, the difference between successive
367 		 * elements is about 1386.23.  Rounding the results of this
368 		 * formula to the SYT precision results in a sequence of
369 		 * differences that begins with:
370 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
371 		 * This code generates _exactly_ the same sequence.
372 		 */
373 			phase = s->syt_offset_state;
374 			index = phase % 13;
375 			syt_offset = s->last_syt_offset;
376 			syt_offset += 1386 + ((index && !(index & 3)) ||
377 					      phase == 146);
378 			if (++phase >= 147)
379 				phase = 0;
380 			s->syt_offset_state = phase;
381 		}
382 	} else
383 		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
384 	s->last_syt_offset = syt_offset;
385 
386 	if (syt_offset < TICKS_PER_CYCLE) {
387 		syt_offset += s->transfer_delay;
388 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
389 		syt += syt_offset % TICKS_PER_CYCLE;
390 
391 		return syt & CIP_SYT_MASK;
392 	} else {
393 		return CIP_SYT_NO_INFO;
394 	}
395 }
396 
amdtp_write_s32(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)397 static void amdtp_write_s32(struct amdtp_stream *s,
398 			    struct snd_pcm_substream *pcm,
399 			    __be32 *buffer, unsigned int frames)
400 {
401 	struct snd_pcm_runtime *runtime = pcm->runtime;
402 	unsigned int channels, remaining_frames, i, c;
403 	const u32 *src;
404 
405 	channels = s->pcm_channels;
406 	src = (void *)runtime->dma_area +
407 			frames_to_bytes(runtime, s->pcm_buffer_pointer);
408 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
409 
410 	for (i = 0; i < frames; ++i) {
411 		for (c = 0; c < channels; ++c) {
412 			buffer[s->pcm_positions[c]] =
413 					cpu_to_be32((*src >> 8) | 0x40000000);
414 			src++;
415 		}
416 		buffer += s->data_block_quadlets;
417 		if (--remaining_frames == 0)
418 			src = (void *)runtime->dma_area;
419 	}
420 }
421 
amdtp_write_s16(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)422 static void amdtp_write_s16(struct amdtp_stream *s,
423 			    struct snd_pcm_substream *pcm,
424 			    __be32 *buffer, unsigned int frames)
425 {
426 	struct snd_pcm_runtime *runtime = pcm->runtime;
427 	unsigned int channels, remaining_frames, i, c;
428 	const u16 *src;
429 
430 	channels = s->pcm_channels;
431 	src = (void *)runtime->dma_area +
432 			frames_to_bytes(runtime, s->pcm_buffer_pointer);
433 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
434 
435 	for (i = 0; i < frames; ++i) {
436 		for (c = 0; c < channels; ++c) {
437 			buffer[s->pcm_positions[c]] =
438 					cpu_to_be32((*src << 8) | 0x42000000);
439 			src++;
440 		}
441 		buffer += s->data_block_quadlets;
442 		if (--remaining_frames == 0)
443 			src = (void *)runtime->dma_area;
444 	}
445 }
446 
amdtp_read_s32(struct amdtp_stream * s,struct snd_pcm_substream * pcm,__be32 * buffer,unsigned int frames)447 static void amdtp_read_s32(struct amdtp_stream *s,
448 			   struct snd_pcm_substream *pcm,
449 			   __be32 *buffer, unsigned int frames)
450 {
451 	struct snd_pcm_runtime *runtime = pcm->runtime;
452 	unsigned int channels, remaining_frames, i, c;
453 	u32 *dst;
454 
455 	channels = s->pcm_channels;
456 	dst  = (void *)runtime->dma_area +
457 			frames_to_bytes(runtime, s->pcm_buffer_pointer);
458 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
459 
460 	for (i = 0; i < frames; ++i) {
461 		for (c = 0; c < channels; ++c) {
462 			*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
463 			dst++;
464 		}
465 		buffer += s->data_block_quadlets;
466 		if (--remaining_frames == 0)
467 			dst = (void *)runtime->dma_area;
468 	}
469 }
470 
amdtp_fill_pcm_silence(struct amdtp_stream * s,__be32 * buffer,unsigned int frames)471 static void amdtp_fill_pcm_silence(struct amdtp_stream *s,
472 				   __be32 *buffer, unsigned int frames)
473 {
474 	unsigned int i, c;
475 
476 	for (i = 0; i < frames; ++i) {
477 		for (c = 0; c < s->pcm_channels; ++c)
478 			buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
479 		buffer += s->data_block_quadlets;
480 	}
481 }
482 
483 /*
484  * To avoid sending MIDI bytes at too high a rate, assume that the receiving
485  * device has a FIFO, and track how much it is filled.  This values increases
486  * by one whenever we send one byte in a packet, but the FIFO empties at
487  * a constant rate independent of our packet rate.  One packet has syt_interval
488  * samples, so the number of bytes that empty out of the FIFO, per packet(!),
489  * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate.  To avoid storing
490  * fractional values, the values in midi_fifo_used[] are measured in bytes
491  * multiplied by the sample rate.
492  */
midi_ratelimit_per_packet(struct amdtp_stream * s,unsigned int port)493 static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
494 {
495 	int used;
496 
497 	used = s->midi_fifo_used[port];
498 	if (used == 0) /* common shortcut */
499 		return true;
500 
501 	used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
502 	used = max(used, 0);
503 	s->midi_fifo_used[port] = used;
504 
505 	return used < s->midi_fifo_limit;
506 }
507 
midi_rate_use_one_byte(struct amdtp_stream * s,unsigned int port)508 static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
509 {
510 	s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
511 }
512 
amdtp_fill_midi(struct amdtp_stream * s,__be32 * buffer,unsigned int frames)513 static void amdtp_fill_midi(struct amdtp_stream *s,
514 			    __be32 *buffer, unsigned int frames)
515 {
516 	unsigned int f, port;
517 	u8 *b;
518 
519 	for (f = 0; f < frames; f++) {
520 		b = (u8 *)&buffer[s->midi_position];
521 
522 		port = (s->data_block_counter + f) % 8;
523 		if (f < MAX_MIDI_RX_BLOCKS &&
524 		    midi_ratelimit_per_packet(s, port) &&
525 		    s->midi[port] != NULL &&
526 		    snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
527 			midi_rate_use_one_byte(s, port);
528 			b[0] = 0x81;
529 		} else {
530 			b[0] = 0x80;
531 			b[1] = 0;
532 		}
533 		b[2] = 0;
534 		b[3] = 0;
535 
536 		buffer += s->data_block_quadlets;
537 	}
538 }
539 
amdtp_pull_midi(struct amdtp_stream * s,__be32 * buffer,unsigned int frames)540 static void amdtp_pull_midi(struct amdtp_stream *s,
541 			    __be32 *buffer, unsigned int frames)
542 {
543 	unsigned int f, port;
544 	int len;
545 	u8 *b;
546 
547 	for (f = 0; f < frames; f++) {
548 		port = (s->data_block_counter + f) % 8;
549 		b = (u8 *)&buffer[s->midi_position];
550 
551 		len = b[0] - 0x80;
552 		if ((1 <= len) &&  (len <= 3) && (s->midi[port]))
553 			snd_rawmidi_receive(s->midi[port], b + 1, len);
554 
555 		buffer += s->data_block_quadlets;
556 	}
557 }
558 
update_pcm_pointers(struct amdtp_stream * s,struct snd_pcm_substream * pcm,unsigned int frames)559 static void update_pcm_pointers(struct amdtp_stream *s,
560 				struct snd_pcm_substream *pcm,
561 				unsigned int frames)
562 {
563 	unsigned int ptr;
564 
565 	/*
566 	 * In IEC 61883-6, one data block represents one event. In ALSA, one
567 	 * event equals to one PCM frame. But Dice has a quirk to transfer
568 	 * two PCM frames in one data block.
569 	 */
570 	if (s->double_pcm_frames)
571 		frames *= 2;
572 
573 	ptr = s->pcm_buffer_pointer + frames;
574 	if (ptr >= pcm->runtime->buffer_size)
575 		ptr -= pcm->runtime->buffer_size;
576 	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
577 
578 	s->pcm_period_pointer += frames;
579 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
580 		s->pcm_period_pointer -= pcm->runtime->period_size;
581 		s->pointer_flush = false;
582 		tasklet_hi_schedule(&s->period_tasklet);
583 	}
584 }
585 
pcm_period_tasklet(unsigned long data)586 static void pcm_period_tasklet(unsigned long data)
587 {
588 	struct amdtp_stream *s = (void *)data;
589 	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
590 
591 	if (pcm)
592 		snd_pcm_period_elapsed(pcm);
593 }
594 
queue_packet(struct amdtp_stream * s,unsigned int header_length,unsigned int payload_length,bool skip)595 static int queue_packet(struct amdtp_stream *s,
596 			unsigned int header_length,
597 			unsigned int payload_length, bool skip)
598 {
599 	struct fw_iso_packet p = {0};
600 	int err = 0;
601 
602 	if (IS_ERR(s->context))
603 		goto end;
604 
605 	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
606 	p.tag = TAG_CIP;
607 	p.header_length = header_length;
608 	p.payload_length = (!skip) ? payload_length : 0;
609 	p.skip = skip;
610 	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
611 				   s->buffer.packets[s->packet_index].offset);
612 	if (err < 0) {
613 		dev_err(&s->unit->device, "queueing error: %d\n", err);
614 		goto end;
615 	}
616 
617 	if (++s->packet_index >= QUEUE_LENGTH)
618 		s->packet_index = 0;
619 end:
620 	return err;
621 }
622 
queue_out_packet(struct amdtp_stream * s,unsigned int payload_length,bool skip)623 static inline int queue_out_packet(struct amdtp_stream *s,
624 				   unsigned int payload_length, bool skip)
625 {
626 	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
627 			    payload_length, skip);
628 }
629 
queue_in_packet(struct amdtp_stream * s)630 static inline int queue_in_packet(struct amdtp_stream *s)
631 {
632 	return queue_packet(s, IN_PACKET_HEADER_SIZE,
633 			    amdtp_stream_get_max_payload(s), false);
634 }
635 
handle_out_packet(struct amdtp_stream * s,unsigned int syt)636 static void handle_out_packet(struct amdtp_stream *s, unsigned int syt)
637 {
638 	__be32 *buffer;
639 	unsigned int data_blocks, payload_length;
640 	struct snd_pcm_substream *pcm;
641 
642 	if (s->packet_index < 0)
643 		return;
644 
645 	/* this module generate empty packet for 'no data' */
646 	if (!(s->flags & CIP_BLOCKING) || (syt != CIP_SYT_NO_INFO))
647 		data_blocks = calculate_data_blocks(s);
648 	else
649 		data_blocks = 0;
650 
651 	buffer = s->buffer.packets[s->packet_index].buffer;
652 	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
653 				(s->data_block_quadlets << AMDTP_DBS_SHIFT) |
654 				s->data_block_counter);
655 	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
656 				(s->sfc << CIP_FDF_SFC_SHIFT) | syt);
657 	buffer += 2;
658 
659 	pcm = ACCESS_ONCE(s->pcm);
660 	if (pcm)
661 		s->transfer_samples(s, pcm, buffer, data_blocks);
662 	else
663 		amdtp_fill_pcm_silence(s, buffer, data_blocks);
664 	if (s->midi_ports)
665 		amdtp_fill_midi(s, buffer, data_blocks);
666 
667 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
668 
669 	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
670 	if (queue_out_packet(s, payload_length, false) < 0) {
671 		s->packet_index = -1;
672 		amdtp_stream_pcm_abort(s);
673 		return;
674 	}
675 
676 	if (pcm)
677 		update_pcm_pointers(s, pcm, data_blocks);
678 }
679 
handle_in_packet(struct amdtp_stream * s,unsigned int payload_quadlets,__be32 * buffer)680 static void handle_in_packet(struct amdtp_stream *s,
681 			     unsigned int payload_quadlets,
682 			     __be32 *buffer)
683 {
684 	u32 cip_header[2];
685 	unsigned int data_blocks, data_block_quadlets, data_block_counter,
686 		     dbc_interval;
687 	struct snd_pcm_substream *pcm = NULL;
688 	bool lost;
689 
690 	cip_header[0] = be32_to_cpu(buffer[0]);
691 	cip_header[1] = be32_to_cpu(buffer[1]);
692 
693 	/*
694 	 * This module supports 'Two-quadlet CIP header with SYT field'.
695 	 * For convenience, also check FMT field is AM824 or not.
696 	 */
697 	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
698 	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
699 	    ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
700 		dev_info_ratelimited(&s->unit->device,
701 				"Invalid CIP header for AMDTP: %08X:%08X\n",
702 				cip_header[0], cip_header[1]);
703 		goto end;
704 	}
705 
706 	/* Calculate data blocks */
707 	if (payload_quadlets < 3 ||
708 	    ((cip_header[1] & CIP_FDF_MASK) ==
709 				(AMDTP_FDF_NO_DATA << CIP_FDF_SFC_SHIFT))) {
710 		data_blocks = 0;
711 	} else {
712 		data_block_quadlets =
713 			(cip_header[0] & AMDTP_DBS_MASK) >> AMDTP_DBS_SHIFT;
714 		/* avoid division by zero */
715 		if (data_block_quadlets == 0) {
716 			dev_info_ratelimited(&s->unit->device,
717 				"Detect invalid value in dbs field: %08X\n",
718 				cip_header[0]);
719 			goto err;
720 		}
721 		if (s->flags & CIP_WRONG_DBS)
722 			data_block_quadlets = s->data_block_quadlets;
723 
724 		data_blocks = (payload_quadlets - 2) / data_block_quadlets;
725 	}
726 
727 	/* Check data block counter continuity */
728 	data_block_counter = cip_header[0] & AMDTP_DBC_MASK;
729 	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
730 	    s->data_block_counter != UINT_MAX)
731 		data_block_counter = s->data_block_counter;
732 
733 	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
734 	     data_block_counter == s->tx_first_dbc) ||
735 	    s->data_block_counter == UINT_MAX) {
736 		lost = false;
737 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
738 		lost = data_block_counter != s->data_block_counter;
739 	} else {
740 		if ((data_blocks > 0) && (s->tx_dbc_interval > 0))
741 			dbc_interval = s->tx_dbc_interval;
742 		else
743 			dbc_interval = data_blocks;
744 
745 		lost = data_block_counter !=
746 		       ((s->data_block_counter + dbc_interval) & 0xff);
747 	}
748 
749 	if (lost) {
750 		dev_info(&s->unit->device,
751 			 "Detect discontinuity of CIP: %02X %02X\n",
752 			 s->data_block_counter, data_block_counter);
753 		goto err;
754 	}
755 
756 	if (data_blocks > 0) {
757 		buffer += 2;
758 
759 		pcm = ACCESS_ONCE(s->pcm);
760 		if (pcm)
761 			s->transfer_samples(s, pcm, buffer, data_blocks);
762 
763 		if (s->midi_ports)
764 			amdtp_pull_midi(s, buffer, data_blocks);
765 	}
766 
767 	if (s->flags & CIP_DBC_IS_END_EVENT)
768 		s->data_block_counter = data_block_counter;
769 	else
770 		s->data_block_counter =
771 				(data_block_counter + data_blocks) & 0xff;
772 end:
773 	if (queue_in_packet(s) < 0)
774 		goto err;
775 
776 	if (pcm)
777 		update_pcm_pointers(s, pcm, data_blocks);
778 
779 	return;
780 err:
781 	s->packet_index = -1;
782 	amdtp_stream_pcm_abort(s);
783 }
784 
out_stream_callback(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * private_data)785 static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
786 				size_t header_length, void *header,
787 				void *private_data)
788 {
789 	struct amdtp_stream *s = private_data;
790 	unsigned int i, syt, packets = header_length / 4;
791 
792 	/*
793 	 * Compute the cycle of the last queued packet.
794 	 * (We need only the four lowest bits for the SYT, so we can ignore
795 	 * that bits 0-11 must wrap around at 3072.)
796 	 */
797 	cycle += QUEUE_LENGTH - packets;
798 
799 	for (i = 0; i < packets; ++i) {
800 		syt = calculate_syt(s, ++cycle);
801 		handle_out_packet(s, syt);
802 	}
803 	fw_iso_context_queue_flush(s->context);
804 }
805 
in_stream_callback(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * private_data)806 static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
807 			       size_t header_length, void *header,
808 			       void *private_data)
809 {
810 	struct amdtp_stream *s = private_data;
811 	unsigned int p, syt, packets, payload_quadlets;
812 	__be32 *buffer, *headers = header;
813 
814 	/* The number of packets in buffer */
815 	packets = header_length / IN_PACKET_HEADER_SIZE;
816 
817 	for (p = 0; p < packets; p++) {
818 		if (s->packet_index < 0)
819 			break;
820 
821 		buffer = s->buffer.packets[s->packet_index].buffer;
822 
823 		/* Process sync slave stream */
824 		if (s->sync_slave && s->sync_slave->callbacked) {
825 			syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
826 			handle_out_packet(s->sync_slave, syt);
827 		}
828 
829 		/* The number of quadlets in this packet */
830 		payload_quadlets =
831 			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
832 		handle_in_packet(s, payload_quadlets, buffer);
833 	}
834 
835 	/* Queueing error or detecting discontinuity */
836 	if (s->packet_index < 0) {
837 		/* Abort sync slave. */
838 		if (s->sync_slave) {
839 			s->sync_slave->packet_index = -1;
840 			amdtp_stream_pcm_abort(s->sync_slave);
841 		}
842 		return;
843 	}
844 
845 	/* when sync to device, flush the packets for slave stream */
846 	if (s->sync_slave && s->sync_slave->callbacked)
847 		fw_iso_context_queue_flush(s->sync_slave->context);
848 
849 	fw_iso_context_queue_flush(s->context);
850 }
851 
852 /* processing is done by master callback */
slave_stream_callback(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * private_data)853 static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
854 				  size_t header_length, void *header,
855 				  void *private_data)
856 {
857 	return;
858 }
859 
860 /* this is executed one time */
amdtp_stream_first_callback(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * private_data)861 static void amdtp_stream_first_callback(struct fw_iso_context *context,
862 					u32 cycle, size_t header_length,
863 					void *header, void *private_data)
864 {
865 	struct amdtp_stream *s = private_data;
866 
867 	/*
868 	 * For in-stream, first packet has come.
869 	 * For out-stream, prepared to transmit first packet
870 	 */
871 	s->callbacked = true;
872 	wake_up(&s->callback_wait);
873 
874 	if (s->direction == AMDTP_IN_STREAM)
875 		context->callback.sc = in_stream_callback;
876 	else if ((s->flags & CIP_BLOCKING) && (s->flags & CIP_SYNC_TO_DEVICE))
877 		context->callback.sc = slave_stream_callback;
878 	else
879 		context->callback.sc = out_stream_callback;
880 
881 	context->callback.sc(context, cycle, header_length, header, s);
882 }
883 
884 /**
885  * amdtp_stream_start - start transferring packets
886  * @s: the AMDTP stream to start
887  * @channel: the isochronous channel on the bus
888  * @speed: firewire speed code
889  *
890  * The stream cannot be started until it has been configured with
891  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
892  * device can be started.
893  */
amdtp_stream_start(struct amdtp_stream * s,int channel,int speed)894 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
895 {
896 	static const struct {
897 		unsigned int data_block;
898 		unsigned int syt_offset;
899 	} initial_state[] = {
900 		[CIP_SFC_32000]  = {  4, 3072 },
901 		[CIP_SFC_48000]  = {  6, 1024 },
902 		[CIP_SFC_96000]  = { 12, 1024 },
903 		[CIP_SFC_192000] = { 24, 1024 },
904 		[CIP_SFC_44100]  = {  0,   67 },
905 		[CIP_SFC_88200]  = {  0,   67 },
906 		[CIP_SFC_176400] = {  0,   67 },
907 	};
908 	unsigned int header_size;
909 	enum dma_data_direction dir;
910 	int type, tag, err;
911 
912 	mutex_lock(&s->mutex);
913 
914 	if (WARN_ON(amdtp_stream_running(s) ||
915 		    (s->data_block_quadlets < 1))) {
916 		err = -EBADFD;
917 		goto err_unlock;
918 	}
919 
920 	if (s->direction == AMDTP_IN_STREAM &&
921 	    s->flags & CIP_SKIP_INIT_DBC_CHECK)
922 		s->data_block_counter = UINT_MAX;
923 	else
924 		s->data_block_counter = 0;
925 	s->data_block_state = initial_state[s->sfc].data_block;
926 	s->syt_offset_state = initial_state[s->sfc].syt_offset;
927 	s->last_syt_offset = TICKS_PER_CYCLE;
928 
929 	/* initialize packet buffer */
930 	if (s->direction == AMDTP_IN_STREAM) {
931 		dir = DMA_FROM_DEVICE;
932 		type = FW_ISO_CONTEXT_RECEIVE;
933 		header_size = IN_PACKET_HEADER_SIZE;
934 	} else {
935 		dir = DMA_TO_DEVICE;
936 		type = FW_ISO_CONTEXT_TRANSMIT;
937 		header_size = OUT_PACKET_HEADER_SIZE;
938 	}
939 	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
940 				      amdtp_stream_get_max_payload(s), dir);
941 	if (err < 0)
942 		goto err_unlock;
943 
944 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
945 					   type, channel, speed, header_size,
946 					   amdtp_stream_first_callback, s);
947 	if (IS_ERR(s->context)) {
948 		err = PTR_ERR(s->context);
949 		if (err == -EBUSY)
950 			dev_err(&s->unit->device,
951 				"no free stream on this controller\n");
952 		goto err_buffer;
953 	}
954 
955 	amdtp_stream_update(s);
956 
957 	s->packet_index = 0;
958 	do {
959 		if (s->direction == AMDTP_IN_STREAM)
960 			err = queue_in_packet(s);
961 		else
962 			err = queue_out_packet(s, 0, true);
963 		if (err < 0)
964 			goto err_context;
965 	} while (s->packet_index > 0);
966 
967 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
968 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
969 	if (s->flags & CIP_EMPTY_WITH_TAG0)
970 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
971 
972 	s->callbacked = false;
973 	err = fw_iso_context_start(s->context, -1, 0, tag);
974 	if (err < 0)
975 		goto err_context;
976 
977 	mutex_unlock(&s->mutex);
978 
979 	return 0;
980 
981 err_context:
982 	fw_iso_context_destroy(s->context);
983 	s->context = ERR_PTR(-1);
984 err_buffer:
985 	iso_packets_buffer_destroy(&s->buffer, s->unit);
986 err_unlock:
987 	mutex_unlock(&s->mutex);
988 
989 	return err;
990 }
991 EXPORT_SYMBOL(amdtp_stream_start);
992 
993 /**
994  * amdtp_stream_pcm_pointer - get the PCM buffer position
995  * @s: the AMDTP stream that transports the PCM data
996  *
997  * Returns the current buffer position, in frames.
998  */
amdtp_stream_pcm_pointer(struct amdtp_stream * s)999 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1000 {
1001 	/* this optimization is allowed to be racy */
1002 	if (s->pointer_flush && amdtp_stream_running(s))
1003 		fw_iso_context_flush_completions(s->context);
1004 	else
1005 		s->pointer_flush = true;
1006 
1007 	return ACCESS_ONCE(s->pcm_buffer_pointer);
1008 }
1009 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1010 
1011 /**
1012  * amdtp_stream_update - update the stream after a bus reset
1013  * @s: the AMDTP stream
1014  */
amdtp_stream_update(struct amdtp_stream * s)1015 void amdtp_stream_update(struct amdtp_stream *s)
1016 {
1017 	ACCESS_ONCE(s->source_node_id_field) =
1018 		(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
1019 }
1020 EXPORT_SYMBOL(amdtp_stream_update);
1021 
1022 /**
1023  * amdtp_stream_stop - stop sending packets
1024  * @s: the AMDTP stream to stop
1025  *
1026  * All PCM and MIDI devices of the stream must be stopped before the stream
1027  * itself can be stopped.
1028  */
amdtp_stream_stop(struct amdtp_stream * s)1029 void amdtp_stream_stop(struct amdtp_stream *s)
1030 {
1031 	mutex_lock(&s->mutex);
1032 
1033 	if (!amdtp_stream_running(s)) {
1034 		mutex_unlock(&s->mutex);
1035 		return;
1036 	}
1037 
1038 	tasklet_kill(&s->period_tasklet);
1039 	fw_iso_context_stop(s->context);
1040 	fw_iso_context_destroy(s->context);
1041 	s->context = ERR_PTR(-1);
1042 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1043 
1044 	s->callbacked = false;
1045 
1046 	mutex_unlock(&s->mutex);
1047 }
1048 EXPORT_SYMBOL(amdtp_stream_stop);
1049 
1050 /**
1051  * amdtp_stream_pcm_abort - abort the running PCM device
1052  * @s: the AMDTP stream about to be stopped
1053  *
1054  * If the isochronous stream needs to be stopped asynchronously, call this
1055  * function first to stop the PCM device.
1056  */
amdtp_stream_pcm_abort(struct amdtp_stream * s)1057 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1058 {
1059 	struct snd_pcm_substream *pcm;
1060 
1061 	pcm = ACCESS_ONCE(s->pcm);
1062 	if (pcm)
1063 		snd_pcm_stop_xrun(pcm);
1064 }
1065 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1066