1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <linux/ratelimit.h>
36
37#include "rds.h"
38#include "iw.h"
39
40
41/*
42 * This is stored as mr->r_trans_private.
43 */
44struct rds_iw_mr {
45	struct rds_iw_device	*device;
46	struct rds_iw_mr_pool	*pool;
47	struct rdma_cm_id	*cm_id;
48
49	struct ib_mr	*mr;
50	struct ib_fast_reg_page_list *page_list;
51
52	struct rds_iw_mapping	mapping;
53	unsigned char		remap_count;
54};
55
56/*
57 * Our own little MR pool
58 */
59struct rds_iw_mr_pool {
60	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
61
62	struct mutex		flush_lock;		/* serialize fmr invalidate */
63	struct work_struct	flush_worker;		/* flush worker */
64
65	spinlock_t		list_lock;		/* protect variables below */
66	atomic_t		item_count;		/* total # of MRs */
67	atomic_t		dirty_count;		/* # dirty of MRs */
68	struct list_head	dirty_list;		/* dirty mappings */
69	struct list_head	clean_list;		/* unused & unamapped MRs */
70	atomic_t		free_pinned;		/* memory pinned by free MRs */
71	unsigned long		max_message_size;	/* in pages */
72	unsigned long		max_items;
73	unsigned long		max_items_soft;
74	unsigned long		max_free_pinned;
75	int			max_pages;
76};
77
78static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82			  struct rds_iw_mr *ibmr,
83			  struct scatterlist *sg, unsigned int nents);
84static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86			struct list_head *unmap_list,
87			struct list_head *kill_list,
88			int *unpinned);
89static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90
91static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
92			     struct rds_iw_device **rds_iwdev,
93			     struct rdma_cm_id **cm_id)
94{
95	struct rds_iw_device *iwdev;
96	struct rds_iw_cm_id *i_cm_id;
97
98	*rds_iwdev = NULL;
99	*cm_id = NULL;
100
101	list_for_each_entry(iwdev, &rds_iw_devices, list) {
102		spin_lock_irq(&iwdev->spinlock);
103		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
104			struct sockaddr_in *src_addr, *dst_addr;
105
106			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
107			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
108
109			rdsdebug("local ipaddr = %x port %d, "
110				 "remote ipaddr = %x port %d"
111				 "..looking for %x port %d, "
112				 "remote ipaddr = %x port %d\n",
113				src_addr->sin_addr.s_addr,
114				src_addr->sin_port,
115				dst_addr->sin_addr.s_addr,
116				dst_addr->sin_port,
117				src->sin_addr.s_addr,
118				src->sin_port,
119				dst->sin_addr.s_addr,
120				dst->sin_port);
121#ifdef WORKING_TUPLE_DETECTION
122			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
123			    src_addr->sin_port == src->sin_port &&
124			    dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
125			    dst_addr->sin_port == dst->sin_port) {
126#else
127			/* FIXME - needs to compare the local and remote
128			 * ipaddr/port tuple, but the ipaddr is the only
129			 * available information in the rds_sock (as the rest are
130			 * zero'ed.  It doesn't appear to be properly populated
131			 * during connection setup...
132			 */
133			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
134#endif
135				spin_unlock_irq(&iwdev->spinlock);
136				*rds_iwdev = iwdev;
137				*cm_id = i_cm_id->cm_id;
138				return 0;
139			}
140		}
141		spin_unlock_irq(&iwdev->spinlock);
142	}
143
144	return 1;
145}
146
147static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
148{
149	struct rds_iw_cm_id *i_cm_id;
150
151	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
152	if (!i_cm_id)
153		return -ENOMEM;
154
155	i_cm_id->cm_id = cm_id;
156
157	spin_lock_irq(&rds_iwdev->spinlock);
158	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
159	spin_unlock_irq(&rds_iwdev->spinlock);
160
161	return 0;
162}
163
164static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
165				struct rdma_cm_id *cm_id)
166{
167	struct rds_iw_cm_id *i_cm_id;
168
169	spin_lock_irq(&rds_iwdev->spinlock);
170	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
171		if (i_cm_id->cm_id == cm_id) {
172			list_del(&i_cm_id->list);
173			kfree(i_cm_id);
174			break;
175		}
176	}
177	spin_unlock_irq(&rds_iwdev->spinlock);
178}
179
180
181int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
182{
183	struct sockaddr_in *src_addr, *dst_addr;
184	struct rds_iw_device *rds_iwdev_old;
185	struct rdma_cm_id *pcm_id;
186	int rc;
187
188	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
189	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
190
191	rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
192	if (rc)
193		rds_iw_remove_cm_id(rds_iwdev, cm_id);
194
195	return rds_iw_add_cm_id(rds_iwdev, cm_id);
196}
197
198void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
199{
200	struct rds_iw_connection *ic = conn->c_transport_data;
201
202	/* conn was previously on the nodev_conns_list */
203	spin_lock_irq(&iw_nodev_conns_lock);
204	BUG_ON(list_empty(&iw_nodev_conns));
205	BUG_ON(list_empty(&ic->iw_node));
206	list_del(&ic->iw_node);
207
208	spin_lock(&rds_iwdev->spinlock);
209	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
210	spin_unlock(&rds_iwdev->spinlock);
211	spin_unlock_irq(&iw_nodev_conns_lock);
212
213	ic->rds_iwdev = rds_iwdev;
214}
215
216void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
217{
218	struct rds_iw_connection *ic = conn->c_transport_data;
219
220	/* place conn on nodev_conns_list */
221	spin_lock(&iw_nodev_conns_lock);
222
223	spin_lock_irq(&rds_iwdev->spinlock);
224	BUG_ON(list_empty(&ic->iw_node));
225	list_del(&ic->iw_node);
226	spin_unlock_irq(&rds_iwdev->spinlock);
227
228	list_add_tail(&ic->iw_node, &iw_nodev_conns);
229
230	spin_unlock(&iw_nodev_conns_lock);
231
232	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
233	ic->rds_iwdev = NULL;
234}
235
236void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
237{
238	struct rds_iw_connection *ic, *_ic;
239	LIST_HEAD(tmp_list);
240
241	/* avoid calling conn_destroy with irqs off */
242	spin_lock_irq(list_lock);
243	list_splice(list, &tmp_list);
244	INIT_LIST_HEAD(list);
245	spin_unlock_irq(list_lock);
246
247	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
248		rds_conn_destroy(ic->conn);
249}
250
251static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
252		struct scatterlist *list, unsigned int sg_len)
253{
254	sg->list = list;
255	sg->len = sg_len;
256	sg->dma_len = 0;
257	sg->dma_npages = 0;
258	sg->bytes = 0;
259}
260
261static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
262			struct rds_iw_scatterlist *sg)
263{
264	struct ib_device *dev = rds_iwdev->dev;
265	u64 *dma_pages = NULL;
266	int i, j, ret;
267
268	WARN_ON(sg->dma_len);
269
270	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
271	if (unlikely(!sg->dma_len)) {
272		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
273		return ERR_PTR(-EBUSY);
274	}
275
276	sg->bytes = 0;
277	sg->dma_npages = 0;
278
279	ret = -EINVAL;
280	for (i = 0; i < sg->dma_len; ++i) {
281		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
282		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
283		u64 end_addr;
284
285		sg->bytes += dma_len;
286
287		end_addr = dma_addr + dma_len;
288		if (dma_addr & PAGE_MASK) {
289			if (i > 0)
290				goto out_unmap;
291			dma_addr &= ~PAGE_MASK;
292		}
293		if (end_addr & PAGE_MASK) {
294			if (i < sg->dma_len - 1)
295				goto out_unmap;
296			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
297		}
298
299		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
300	}
301
302	/* Now gather the dma addrs into one list */
303	if (sg->dma_npages > fastreg_message_size)
304		goto out_unmap;
305
306	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
307	if (!dma_pages) {
308		ret = -ENOMEM;
309		goto out_unmap;
310	}
311
312	for (i = j = 0; i < sg->dma_len; ++i) {
313		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
314		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
315		u64 end_addr;
316
317		end_addr = dma_addr + dma_len;
318		dma_addr &= ~PAGE_MASK;
319		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
320			dma_pages[j++] = dma_addr;
321		BUG_ON(j > sg->dma_npages);
322	}
323
324	return dma_pages;
325
326out_unmap:
327	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
328	sg->dma_len = 0;
329	kfree(dma_pages);
330	return ERR_PTR(ret);
331}
332
333
334struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
335{
336	struct rds_iw_mr_pool *pool;
337
338	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
339	if (!pool) {
340		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
341		return ERR_PTR(-ENOMEM);
342	}
343
344	pool->device = rds_iwdev;
345	INIT_LIST_HEAD(&pool->dirty_list);
346	INIT_LIST_HEAD(&pool->clean_list);
347	mutex_init(&pool->flush_lock);
348	spin_lock_init(&pool->list_lock);
349	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
350
351	pool->max_message_size = fastreg_message_size;
352	pool->max_items = fastreg_pool_size;
353	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
354	pool->max_pages = fastreg_message_size;
355
356	/* We never allow more than max_items MRs to be allocated.
357	 * When we exceed more than max_items_soft, we start freeing
358	 * items more aggressively.
359	 * Make sure that max_items > max_items_soft > max_items / 2
360	 */
361	pool->max_items_soft = pool->max_items * 3 / 4;
362
363	return pool;
364}
365
366void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
367{
368	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
369
370	iinfo->rdma_mr_max = pool->max_items;
371	iinfo->rdma_mr_size = pool->max_pages;
372}
373
374void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
375{
376	flush_workqueue(rds_wq);
377	rds_iw_flush_mr_pool(pool, 1);
378	BUG_ON(atomic_read(&pool->item_count));
379	BUG_ON(atomic_read(&pool->free_pinned));
380	kfree(pool);
381}
382
383static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
384{
385	struct rds_iw_mr *ibmr = NULL;
386	unsigned long flags;
387
388	spin_lock_irqsave(&pool->list_lock, flags);
389	if (!list_empty(&pool->clean_list)) {
390		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
391		list_del_init(&ibmr->mapping.m_list);
392	}
393	spin_unlock_irqrestore(&pool->list_lock, flags);
394
395	return ibmr;
396}
397
398static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
399{
400	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
401	struct rds_iw_mr *ibmr = NULL;
402	int err = 0, iter = 0;
403
404	while (1) {
405		ibmr = rds_iw_reuse_fmr(pool);
406		if (ibmr)
407			return ibmr;
408
409		/* No clean MRs - now we have the choice of either
410		 * allocating a fresh MR up to the limit imposed by the
411		 * driver, or flush any dirty unused MRs.
412		 * We try to avoid stalling in the send path if possible,
413		 * so we allocate as long as we're allowed to.
414		 *
415		 * We're fussy with enforcing the FMR limit, though. If the driver
416		 * tells us we can't use more than N fmrs, we shouldn't start
417		 * arguing with it */
418		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
419			break;
420
421		atomic_dec(&pool->item_count);
422
423		if (++iter > 2) {
424			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
425			return ERR_PTR(-EAGAIN);
426		}
427
428		/* We do have some empty MRs. Flush them out. */
429		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
430		rds_iw_flush_mr_pool(pool, 0);
431	}
432
433	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
434	if (!ibmr) {
435		err = -ENOMEM;
436		goto out_no_cigar;
437	}
438
439	spin_lock_init(&ibmr->mapping.m_lock);
440	INIT_LIST_HEAD(&ibmr->mapping.m_list);
441	ibmr->mapping.m_mr = ibmr;
442
443	err = rds_iw_init_fastreg(pool, ibmr);
444	if (err)
445		goto out_no_cigar;
446
447	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
448	return ibmr;
449
450out_no_cigar:
451	if (ibmr) {
452		rds_iw_destroy_fastreg(pool, ibmr);
453		kfree(ibmr);
454	}
455	atomic_dec(&pool->item_count);
456	return ERR_PTR(err);
457}
458
459void rds_iw_sync_mr(void *trans_private, int direction)
460{
461	struct rds_iw_mr *ibmr = trans_private;
462	struct rds_iw_device *rds_iwdev = ibmr->device;
463
464	switch (direction) {
465	case DMA_FROM_DEVICE:
466		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
467			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
468		break;
469	case DMA_TO_DEVICE:
470		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
471			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
472		break;
473	}
474}
475
476/*
477 * Flush our pool of MRs.
478 * At a minimum, all currently unused MRs are unmapped.
479 * If the number of MRs allocated exceeds the limit, we also try
480 * to free as many MRs as needed to get back to this limit.
481 */
482static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
483{
484	struct rds_iw_mr *ibmr, *next;
485	LIST_HEAD(unmap_list);
486	LIST_HEAD(kill_list);
487	unsigned long flags;
488	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
489	int ret = 0;
490
491	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
492
493	mutex_lock(&pool->flush_lock);
494
495	spin_lock_irqsave(&pool->list_lock, flags);
496	/* Get the list of all mappings to be destroyed */
497	list_splice_init(&pool->dirty_list, &unmap_list);
498	if (free_all)
499		list_splice_init(&pool->clean_list, &kill_list);
500	spin_unlock_irqrestore(&pool->list_lock, flags);
501
502	/* Batched invalidate of dirty MRs.
503	 * For FMR based MRs, the mappings on the unmap list are
504	 * actually members of an ibmr (ibmr->mapping). They either
505	 * migrate to the kill_list, or have been cleaned and should be
506	 * moved to the clean_list.
507	 * For fastregs, they will be dynamically allocated, and
508	 * will be destroyed by the unmap function.
509	 */
510	if (!list_empty(&unmap_list)) {
511		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
512						     &kill_list, &unpinned);
513		/* If we've been asked to destroy all MRs, move those
514		 * that were simply cleaned to the kill list */
515		if (free_all)
516			list_splice_init(&unmap_list, &kill_list);
517	}
518
519	/* Destroy any MRs that are past their best before date */
520	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
521		rds_iw_stats_inc(s_iw_rdma_mr_free);
522		list_del(&ibmr->mapping.m_list);
523		rds_iw_destroy_fastreg(pool, ibmr);
524		kfree(ibmr);
525		nfreed++;
526	}
527
528	/* Anything that remains are laundered ibmrs, which we can add
529	 * back to the clean list. */
530	if (!list_empty(&unmap_list)) {
531		spin_lock_irqsave(&pool->list_lock, flags);
532		list_splice(&unmap_list, &pool->clean_list);
533		spin_unlock_irqrestore(&pool->list_lock, flags);
534	}
535
536	atomic_sub(unpinned, &pool->free_pinned);
537	atomic_sub(ncleaned, &pool->dirty_count);
538	atomic_sub(nfreed, &pool->item_count);
539
540	mutex_unlock(&pool->flush_lock);
541	return ret;
542}
543
544static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
545{
546	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
547
548	rds_iw_flush_mr_pool(pool, 0);
549}
550
551void rds_iw_free_mr(void *trans_private, int invalidate)
552{
553	struct rds_iw_mr *ibmr = trans_private;
554	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
555
556	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
557	if (!pool)
558		return;
559
560	/* Return it to the pool's free list */
561	rds_iw_free_fastreg(pool, ibmr);
562
563	/* If we've pinned too many pages, request a flush */
564	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
565	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
566		queue_work(rds_wq, &pool->flush_worker);
567
568	if (invalidate) {
569		if (likely(!in_interrupt())) {
570			rds_iw_flush_mr_pool(pool, 0);
571		} else {
572			/* We get here if the user created a MR marked
573			 * as use_once and invalidate at the same time. */
574			queue_work(rds_wq, &pool->flush_worker);
575		}
576	}
577}
578
579void rds_iw_flush_mrs(void)
580{
581	struct rds_iw_device *rds_iwdev;
582
583	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
584		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
585
586		if (pool)
587			rds_iw_flush_mr_pool(pool, 0);
588	}
589}
590
591void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
592		    struct rds_sock *rs, u32 *key_ret)
593{
594	struct rds_iw_device *rds_iwdev;
595	struct rds_iw_mr *ibmr = NULL;
596	struct rdma_cm_id *cm_id;
597	struct sockaddr_in src = {
598		.sin_addr.s_addr = rs->rs_bound_addr,
599		.sin_port = rs->rs_bound_port,
600	};
601	struct sockaddr_in dst = {
602		.sin_addr.s_addr = rs->rs_conn_addr,
603		.sin_port = rs->rs_conn_port,
604	};
605	int ret;
606
607	ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
608	if (ret || !cm_id) {
609		ret = -ENODEV;
610		goto out;
611	}
612
613	if (!rds_iwdev->mr_pool) {
614		ret = -ENODEV;
615		goto out;
616	}
617
618	ibmr = rds_iw_alloc_mr(rds_iwdev);
619	if (IS_ERR(ibmr))
620		return ibmr;
621
622	ibmr->cm_id = cm_id;
623	ibmr->device = rds_iwdev;
624
625	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
626	if (ret == 0)
627		*key_ret = ibmr->mr->rkey;
628	else
629		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
630
631out:
632	if (ret) {
633		if (ibmr)
634			rds_iw_free_mr(ibmr, 0);
635		ibmr = ERR_PTR(ret);
636	}
637	return ibmr;
638}
639
640/*
641 * iWARP fastreg handling
642 *
643 * The life cycle of a fastreg registration is a bit different from
644 * FMRs.
645 * The idea behind fastreg is to have one MR, to which we bind different
646 * mappings over time. To avoid stalling on the expensive map and invalidate
647 * operations, these operations are pipelined on the same send queue on
648 * which we want to send the message containing the r_key.
649 *
650 * This creates a bit of a problem for us, as we do not have the destination
651 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
652 * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
653 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
654 * before queuing the SEND. When completions for these arrive, they are
655 * dispatched to the MR has a bit set showing that RDMa can be performed.
656 *
657 * There is another interesting aspect that's related to invalidation.
658 * The application can request that a mapping is invalidated in FREE_MR.
659 * The expectation there is that this invalidation step includes ALL
660 * PREVIOUSLY FREED MRs.
661 */
662static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
663				struct rds_iw_mr *ibmr)
664{
665	struct rds_iw_device *rds_iwdev = pool->device;
666	struct ib_fast_reg_page_list *page_list = NULL;
667	struct ib_mr *mr;
668	int err;
669
670	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
671	if (IS_ERR(mr)) {
672		err = PTR_ERR(mr);
673
674		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
675		return err;
676	}
677
678	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
679	 * is not filled in.
680	 */
681	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
682	if (IS_ERR(page_list)) {
683		err = PTR_ERR(page_list);
684
685		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
686		ib_dereg_mr(mr);
687		return err;
688	}
689
690	ibmr->page_list = page_list;
691	ibmr->mr = mr;
692	return 0;
693}
694
695static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
696{
697	struct rds_iw_mr *ibmr = mapping->m_mr;
698	struct ib_send_wr f_wr, *failed_wr;
699	int ret;
700
701	/*
702	 * Perform a WR for the fast_reg_mr. Each individual page
703	 * in the sg list is added to the fast reg page list and placed
704	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
705	 * counter, which should guarantee uniqueness.
706	 */
707	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
708	mapping->m_rkey = ibmr->mr->rkey;
709
710	memset(&f_wr, 0, sizeof(f_wr));
711	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
712	f_wr.opcode = IB_WR_FAST_REG_MR;
713	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
714	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
715	f_wr.wr.fast_reg.page_list = ibmr->page_list;
716	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
717	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
718	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
719				IB_ACCESS_REMOTE_READ |
720				IB_ACCESS_REMOTE_WRITE;
721	f_wr.wr.fast_reg.iova_start = 0;
722	f_wr.send_flags = IB_SEND_SIGNALED;
723
724	failed_wr = &f_wr;
725	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
726	BUG_ON(failed_wr != &f_wr);
727	if (ret)
728		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
729			__func__, __LINE__, ret);
730	return ret;
731}
732
733static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
734{
735	struct ib_send_wr s_wr, *failed_wr;
736	int ret = 0;
737
738	if (!ibmr->cm_id->qp || !ibmr->mr)
739		goto out;
740
741	memset(&s_wr, 0, sizeof(s_wr));
742	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
743	s_wr.opcode = IB_WR_LOCAL_INV;
744	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
745	s_wr.send_flags = IB_SEND_SIGNALED;
746
747	failed_wr = &s_wr;
748	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
749	if (ret) {
750		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
751			__func__, __LINE__, ret);
752		goto out;
753	}
754out:
755	return ret;
756}
757
758static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
759			struct rds_iw_mr *ibmr,
760			struct scatterlist *sg,
761			unsigned int sg_len)
762{
763	struct rds_iw_device *rds_iwdev = pool->device;
764	struct rds_iw_mapping *mapping = &ibmr->mapping;
765	u64 *dma_pages;
766	int i, ret = 0;
767
768	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
769
770	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
771	if (IS_ERR(dma_pages)) {
772		ret = PTR_ERR(dma_pages);
773		dma_pages = NULL;
774		goto out;
775	}
776
777	if (mapping->m_sg.dma_len > pool->max_message_size) {
778		ret = -EMSGSIZE;
779		goto out;
780	}
781
782	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
783		ibmr->page_list->page_list[i] = dma_pages[i];
784
785	ret = rds_iw_rdma_build_fastreg(mapping);
786	if (ret)
787		goto out;
788
789	rds_iw_stats_inc(s_iw_rdma_mr_used);
790
791out:
792	kfree(dma_pages);
793
794	return ret;
795}
796
797/*
798 * "Free" a fastreg MR.
799 */
800static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
801		struct rds_iw_mr *ibmr)
802{
803	unsigned long flags;
804	int ret;
805
806	if (!ibmr->mapping.m_sg.dma_len)
807		return;
808
809	ret = rds_iw_rdma_fastreg_inv(ibmr);
810	if (ret)
811		return;
812
813	/* Try to post the LOCAL_INV WR to the queue. */
814	spin_lock_irqsave(&pool->list_lock, flags);
815
816	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
817	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
818	atomic_inc(&pool->dirty_count);
819
820	spin_unlock_irqrestore(&pool->list_lock, flags);
821}
822
823static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
824				struct list_head *unmap_list,
825				struct list_head *kill_list,
826				int *unpinned)
827{
828	struct rds_iw_mapping *mapping, *next;
829	unsigned int ncleaned = 0;
830	LIST_HEAD(laundered);
831
832	/* Batched invalidation of fastreg MRs.
833	 * Why do we do it this way, even though we could pipeline unmap
834	 * and remap? The reason is the application semantics - when the
835	 * application requests an invalidation of MRs, it expects all
836	 * previously released R_Keys to become invalid.
837	 *
838	 * If we implement MR reuse naively, we risk memory corruption
839	 * (this has actually been observed). So the default behavior
840	 * requires that a MR goes through an explicit unmap operation before
841	 * we can reuse it again.
842	 *
843	 * We could probably improve on this a little, by allowing immediate
844	 * reuse of a MR on the same socket (eg you could add small
845	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
846	 * of these without requiring an explicit invalidate).
847	 */
848	while (!list_empty(unmap_list)) {
849		unsigned long flags;
850
851		spin_lock_irqsave(&pool->list_lock, flags);
852		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
853			*unpinned += mapping->m_sg.len;
854			list_move(&mapping->m_list, &laundered);
855			ncleaned++;
856		}
857		spin_unlock_irqrestore(&pool->list_lock, flags);
858	}
859
860	/* Move all laundered mappings back to the unmap list.
861	 * We do not kill any WRs right now - it doesn't seem the
862	 * fastreg API has a max_remap limit. */
863	list_splice_init(&laundered, unmap_list);
864
865	return ncleaned;
866}
867
868static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
869		struct rds_iw_mr *ibmr)
870{
871	if (ibmr->page_list)
872		ib_free_fast_reg_page_list(ibmr->page_list);
873	if (ibmr->mr)
874		ib_dereg_mr(ibmr->mr);
875}
876