1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 
71 #include "af_netlink.h"
72 
73 struct listeners {
74 	struct rcu_head		rcu;
75 	unsigned long		masks[0];
76 };
77 
78 /* state bits */
79 #define NETLINK_CONGESTED	0x0
80 
81 /* flags */
82 #define NETLINK_KERNEL_SOCKET	0x1
83 #define NETLINK_RECV_PKTINFO	0x2
84 #define NETLINK_BROADCAST_SEND_ERROR	0x4
85 #define NETLINK_RECV_NO_ENOBUFS	0x8
86 
netlink_is_kernel(struct sock * sk)87 static inline int netlink_is_kernel(struct sock *sk)
88 {
89 	return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
90 }
91 
92 struct netlink_table *nl_table __read_mostly;
93 EXPORT_SYMBOL_GPL(nl_table);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
96 
97 static int netlink_dump(struct sock *sk);
98 static void netlink_skb_destructor(struct sk_buff *skb);
99 
100 /* nl_table locking explained:
101  * Lookup and traversal are protected with an RCU read-side lock. Insertion
102  * and removal are protected with per bucket lock while using RCU list
103  * modification primitives and may run in parallel to RCU protected lookups.
104  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
105  * been acquired * either during or after the socket has been removed from
106  * the list and after an RCU grace period.
107  */
108 DEFINE_RWLOCK(nl_table_lock);
109 EXPORT_SYMBOL_GPL(nl_table_lock);
110 static atomic_t nl_table_users = ATOMIC_INIT(0);
111 
112 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
113 
114 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
115 
116 static DEFINE_SPINLOCK(netlink_tap_lock);
117 static struct list_head netlink_tap_all __read_mostly;
118 
119 static const struct rhashtable_params netlink_rhashtable_params;
120 
netlink_group_mask(u32 group)121 static inline u32 netlink_group_mask(u32 group)
122 {
123 	return group ? 1 << (group - 1) : 0;
124 }
125 
netlink_to_full_skb(const struct sk_buff * skb,gfp_t gfp_mask)126 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
127 					   gfp_t gfp_mask)
128 {
129 	unsigned int len = skb_end_offset(skb);
130 	struct sk_buff *new;
131 
132 	new = alloc_skb(len, gfp_mask);
133 	if (new == NULL)
134 		return NULL;
135 
136 	NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
137 	NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
138 	NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
139 
140 	memcpy(skb_put(new, len), skb->data, len);
141 	return new;
142 }
143 
netlink_add_tap(struct netlink_tap * nt)144 int netlink_add_tap(struct netlink_tap *nt)
145 {
146 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
147 		return -EINVAL;
148 
149 	spin_lock(&netlink_tap_lock);
150 	list_add_rcu(&nt->list, &netlink_tap_all);
151 	spin_unlock(&netlink_tap_lock);
152 
153 	__module_get(nt->module);
154 
155 	return 0;
156 }
157 EXPORT_SYMBOL_GPL(netlink_add_tap);
158 
__netlink_remove_tap(struct netlink_tap * nt)159 static int __netlink_remove_tap(struct netlink_tap *nt)
160 {
161 	bool found = false;
162 	struct netlink_tap *tmp;
163 
164 	spin_lock(&netlink_tap_lock);
165 
166 	list_for_each_entry(tmp, &netlink_tap_all, list) {
167 		if (nt == tmp) {
168 			list_del_rcu(&nt->list);
169 			found = true;
170 			goto out;
171 		}
172 	}
173 
174 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
175 out:
176 	spin_unlock(&netlink_tap_lock);
177 
178 	if (found && nt->module)
179 		module_put(nt->module);
180 
181 	return found ? 0 : -ENODEV;
182 }
183 
netlink_remove_tap(struct netlink_tap * nt)184 int netlink_remove_tap(struct netlink_tap *nt)
185 {
186 	int ret;
187 
188 	ret = __netlink_remove_tap(nt);
189 	synchronize_net();
190 
191 	return ret;
192 }
193 EXPORT_SYMBOL_GPL(netlink_remove_tap);
194 
netlink_filter_tap(const struct sk_buff * skb)195 static bool netlink_filter_tap(const struct sk_buff *skb)
196 {
197 	struct sock *sk = skb->sk;
198 
199 	/* We take the more conservative approach and
200 	 * whitelist socket protocols that may pass.
201 	 */
202 	switch (sk->sk_protocol) {
203 	case NETLINK_ROUTE:
204 	case NETLINK_USERSOCK:
205 	case NETLINK_SOCK_DIAG:
206 	case NETLINK_NFLOG:
207 	case NETLINK_XFRM:
208 	case NETLINK_FIB_LOOKUP:
209 	case NETLINK_NETFILTER:
210 	case NETLINK_GENERIC:
211 		return true;
212 	}
213 
214 	return false;
215 }
216 
__netlink_deliver_tap_skb(struct sk_buff * skb,struct net_device * dev)217 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
218 				     struct net_device *dev)
219 {
220 	struct sk_buff *nskb;
221 	struct sock *sk = skb->sk;
222 	int ret = -ENOMEM;
223 
224 	dev_hold(dev);
225 
226 	if (netlink_skb_is_mmaped(skb) || is_vmalloc_addr(skb->head))
227 		nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
228 	else
229 		nskb = skb_clone(skb, GFP_ATOMIC);
230 	if (nskb) {
231 		nskb->dev = dev;
232 		nskb->protocol = htons((u16) sk->sk_protocol);
233 		nskb->pkt_type = netlink_is_kernel(sk) ?
234 				 PACKET_KERNEL : PACKET_USER;
235 		skb_reset_network_header(nskb);
236 		ret = dev_queue_xmit(nskb);
237 		if (unlikely(ret > 0))
238 			ret = net_xmit_errno(ret);
239 	}
240 
241 	dev_put(dev);
242 	return ret;
243 }
244 
__netlink_deliver_tap(struct sk_buff * skb)245 static void __netlink_deliver_tap(struct sk_buff *skb)
246 {
247 	int ret;
248 	struct netlink_tap *tmp;
249 
250 	if (!netlink_filter_tap(skb))
251 		return;
252 
253 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
254 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
255 		if (unlikely(ret))
256 			break;
257 	}
258 }
259 
netlink_deliver_tap(struct sk_buff * skb)260 static void netlink_deliver_tap(struct sk_buff *skb)
261 {
262 	rcu_read_lock();
263 
264 	if (unlikely(!list_empty(&netlink_tap_all)))
265 		__netlink_deliver_tap(skb);
266 
267 	rcu_read_unlock();
268 }
269 
netlink_deliver_tap_kernel(struct sock * dst,struct sock * src,struct sk_buff * skb)270 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
271 				       struct sk_buff *skb)
272 {
273 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
274 		netlink_deliver_tap(skb);
275 }
276 
netlink_overrun(struct sock * sk)277 static void netlink_overrun(struct sock *sk)
278 {
279 	struct netlink_sock *nlk = nlk_sk(sk);
280 
281 	if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
282 		if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
283 			sk->sk_err = ENOBUFS;
284 			sk->sk_error_report(sk);
285 		}
286 	}
287 	atomic_inc(&sk->sk_drops);
288 }
289 
netlink_rcv_wake(struct sock * sk)290 static void netlink_rcv_wake(struct sock *sk)
291 {
292 	struct netlink_sock *nlk = nlk_sk(sk);
293 
294 	if (skb_queue_empty(&sk->sk_receive_queue))
295 		clear_bit(NETLINK_CONGESTED, &nlk->state);
296 	if (!test_bit(NETLINK_CONGESTED, &nlk->state))
297 		wake_up_interruptible(&nlk->wait);
298 }
299 
300 #ifdef CONFIG_NETLINK_MMAP
netlink_rx_is_mmaped(struct sock * sk)301 static bool netlink_rx_is_mmaped(struct sock *sk)
302 {
303 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
304 }
305 
netlink_tx_is_mmaped(struct sock * sk)306 static bool netlink_tx_is_mmaped(struct sock *sk)
307 {
308 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
309 }
310 
pgvec_to_page(const void * addr)311 static __pure struct page *pgvec_to_page(const void *addr)
312 {
313 	if (is_vmalloc_addr(addr))
314 		return vmalloc_to_page(addr);
315 	else
316 		return virt_to_page(addr);
317 }
318 
free_pg_vec(void ** pg_vec,unsigned int order,unsigned int len)319 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
320 {
321 	unsigned int i;
322 
323 	for (i = 0; i < len; i++) {
324 		if (pg_vec[i] != NULL) {
325 			if (is_vmalloc_addr(pg_vec[i]))
326 				vfree(pg_vec[i]);
327 			else
328 				free_pages((unsigned long)pg_vec[i], order);
329 		}
330 	}
331 	kfree(pg_vec);
332 }
333 
alloc_one_pg_vec_page(unsigned long order)334 static void *alloc_one_pg_vec_page(unsigned long order)
335 {
336 	void *buffer;
337 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
338 			  __GFP_NOWARN | __GFP_NORETRY;
339 
340 	buffer = (void *)__get_free_pages(gfp_flags, order);
341 	if (buffer != NULL)
342 		return buffer;
343 
344 	buffer = vzalloc((1 << order) * PAGE_SIZE);
345 	if (buffer != NULL)
346 		return buffer;
347 
348 	gfp_flags &= ~__GFP_NORETRY;
349 	return (void *)__get_free_pages(gfp_flags, order);
350 }
351 
alloc_pg_vec(struct netlink_sock * nlk,struct nl_mmap_req * req,unsigned int order)352 static void **alloc_pg_vec(struct netlink_sock *nlk,
353 			   struct nl_mmap_req *req, unsigned int order)
354 {
355 	unsigned int block_nr = req->nm_block_nr;
356 	unsigned int i;
357 	void **pg_vec;
358 
359 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
360 	if (pg_vec == NULL)
361 		return NULL;
362 
363 	for (i = 0; i < block_nr; i++) {
364 		pg_vec[i] = alloc_one_pg_vec_page(order);
365 		if (pg_vec[i] == NULL)
366 			goto err1;
367 	}
368 
369 	return pg_vec;
370 err1:
371 	free_pg_vec(pg_vec, order, block_nr);
372 	return NULL;
373 }
374 
375 
376 static void
__netlink_set_ring(struct sock * sk,struct nl_mmap_req * req,bool tx_ring,void ** pg_vec,unsigned int order)377 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec,
378 		   unsigned int order)
379 {
380 	struct netlink_sock *nlk = nlk_sk(sk);
381 	struct sk_buff_head *queue;
382 	struct netlink_ring *ring;
383 
384 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
385 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
386 
387 	spin_lock_bh(&queue->lock);
388 
389 	ring->frame_max		= req->nm_frame_nr - 1;
390 	ring->head		= 0;
391 	ring->frame_size	= req->nm_frame_size;
392 	ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
393 
394 	swap(ring->pg_vec_len, req->nm_block_nr);
395 	swap(ring->pg_vec_order, order);
396 	swap(ring->pg_vec, pg_vec);
397 
398 	__skb_queue_purge(queue);
399 	spin_unlock_bh(&queue->lock);
400 
401 	WARN_ON(atomic_read(&nlk->mapped));
402 
403 	if (pg_vec)
404 		free_pg_vec(pg_vec, order, req->nm_block_nr);
405 }
406 
netlink_set_ring(struct sock * sk,struct nl_mmap_req * req,bool tx_ring)407 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
408 			    bool tx_ring)
409 {
410 	struct netlink_sock *nlk = nlk_sk(sk);
411 	struct netlink_ring *ring;
412 	void **pg_vec = NULL;
413 	unsigned int order = 0;
414 
415 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
416 
417 	if (atomic_read(&nlk->mapped))
418 		return -EBUSY;
419 	if (atomic_read(&ring->pending))
420 		return -EBUSY;
421 
422 	if (req->nm_block_nr) {
423 		if (ring->pg_vec != NULL)
424 			return -EBUSY;
425 
426 		if ((int)req->nm_block_size <= 0)
427 			return -EINVAL;
428 		if (!PAGE_ALIGNED(req->nm_block_size))
429 			return -EINVAL;
430 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
431 			return -EINVAL;
432 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
433 			return -EINVAL;
434 
435 		ring->frames_per_block = req->nm_block_size /
436 					 req->nm_frame_size;
437 		if (ring->frames_per_block == 0)
438 			return -EINVAL;
439 		if (ring->frames_per_block * req->nm_block_nr !=
440 		    req->nm_frame_nr)
441 			return -EINVAL;
442 
443 		order = get_order(req->nm_block_size);
444 		pg_vec = alloc_pg_vec(nlk, req, order);
445 		if (pg_vec == NULL)
446 			return -ENOMEM;
447 	} else {
448 		if (req->nm_frame_nr)
449 			return -EINVAL;
450 	}
451 
452 	mutex_lock(&nlk->pg_vec_lock);
453 	if (atomic_read(&nlk->mapped) == 0) {
454 		__netlink_set_ring(sk, req, tx_ring, pg_vec, order);
455 		mutex_unlock(&nlk->pg_vec_lock);
456 		return 0;
457 	}
458 
459 	mutex_unlock(&nlk->pg_vec_lock);
460 
461 	if (pg_vec)
462 		free_pg_vec(pg_vec, order, req->nm_block_nr);
463 
464 	return -EBUSY;
465 }
466 
netlink_mm_open(struct vm_area_struct * vma)467 static void netlink_mm_open(struct vm_area_struct *vma)
468 {
469 	struct file *file = vma->vm_file;
470 	struct socket *sock = file->private_data;
471 	struct sock *sk = sock->sk;
472 
473 	if (sk)
474 		atomic_inc(&nlk_sk(sk)->mapped);
475 }
476 
netlink_mm_close(struct vm_area_struct * vma)477 static void netlink_mm_close(struct vm_area_struct *vma)
478 {
479 	struct file *file = vma->vm_file;
480 	struct socket *sock = file->private_data;
481 	struct sock *sk = sock->sk;
482 
483 	if (sk)
484 		atomic_dec(&nlk_sk(sk)->mapped);
485 }
486 
487 static const struct vm_operations_struct netlink_mmap_ops = {
488 	.open	= netlink_mm_open,
489 	.close	= netlink_mm_close,
490 };
491 
netlink_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)492 static int netlink_mmap(struct file *file, struct socket *sock,
493 			struct vm_area_struct *vma)
494 {
495 	struct sock *sk = sock->sk;
496 	struct netlink_sock *nlk = nlk_sk(sk);
497 	struct netlink_ring *ring;
498 	unsigned long start, size, expected;
499 	unsigned int i;
500 	int err = -EINVAL;
501 
502 	if (vma->vm_pgoff)
503 		return -EINVAL;
504 
505 	mutex_lock(&nlk->pg_vec_lock);
506 
507 	expected = 0;
508 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
509 		if (ring->pg_vec == NULL)
510 			continue;
511 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
512 	}
513 
514 	if (expected == 0)
515 		goto out;
516 
517 	size = vma->vm_end - vma->vm_start;
518 	if (size != expected)
519 		goto out;
520 
521 	start = vma->vm_start;
522 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
523 		if (ring->pg_vec == NULL)
524 			continue;
525 
526 		for (i = 0; i < ring->pg_vec_len; i++) {
527 			struct page *page;
528 			void *kaddr = ring->pg_vec[i];
529 			unsigned int pg_num;
530 
531 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
532 				page = pgvec_to_page(kaddr);
533 				err = vm_insert_page(vma, start, page);
534 				if (err < 0)
535 					goto out;
536 				start += PAGE_SIZE;
537 				kaddr += PAGE_SIZE;
538 			}
539 		}
540 	}
541 
542 	atomic_inc(&nlk->mapped);
543 	vma->vm_ops = &netlink_mmap_ops;
544 	err = 0;
545 out:
546 	mutex_unlock(&nlk->pg_vec_lock);
547 	return err;
548 }
549 
netlink_frame_flush_dcache(const struct nl_mmap_hdr * hdr,unsigned int nm_len)550 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
551 {
552 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
553 	struct page *p_start, *p_end;
554 
555 	/* First page is flushed through netlink_{get,set}_status */
556 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
557 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
558 	while (p_start <= p_end) {
559 		flush_dcache_page(p_start);
560 		p_start++;
561 	}
562 #endif
563 }
564 
netlink_get_status(const struct nl_mmap_hdr * hdr)565 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
566 {
567 	smp_rmb();
568 	flush_dcache_page(pgvec_to_page(hdr));
569 	return hdr->nm_status;
570 }
571 
netlink_set_status(struct nl_mmap_hdr * hdr,enum nl_mmap_status status)572 static void netlink_set_status(struct nl_mmap_hdr *hdr,
573 			       enum nl_mmap_status status)
574 {
575 	smp_mb();
576 	hdr->nm_status = status;
577 	flush_dcache_page(pgvec_to_page(hdr));
578 }
579 
580 static struct nl_mmap_hdr *
__netlink_lookup_frame(const struct netlink_ring * ring,unsigned int pos)581 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
582 {
583 	unsigned int pg_vec_pos, frame_off;
584 
585 	pg_vec_pos = pos / ring->frames_per_block;
586 	frame_off  = pos % ring->frames_per_block;
587 
588 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
589 }
590 
591 static struct nl_mmap_hdr *
netlink_lookup_frame(const struct netlink_ring * ring,unsigned int pos,enum nl_mmap_status status)592 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
593 		     enum nl_mmap_status status)
594 {
595 	struct nl_mmap_hdr *hdr;
596 
597 	hdr = __netlink_lookup_frame(ring, pos);
598 	if (netlink_get_status(hdr) != status)
599 		return NULL;
600 
601 	return hdr;
602 }
603 
604 static struct nl_mmap_hdr *
netlink_current_frame(const struct netlink_ring * ring,enum nl_mmap_status status)605 netlink_current_frame(const struct netlink_ring *ring,
606 		      enum nl_mmap_status status)
607 {
608 	return netlink_lookup_frame(ring, ring->head, status);
609 }
610 
611 static struct nl_mmap_hdr *
netlink_previous_frame(const struct netlink_ring * ring,enum nl_mmap_status status)612 netlink_previous_frame(const struct netlink_ring *ring,
613 		       enum nl_mmap_status status)
614 {
615 	unsigned int prev;
616 
617 	prev = ring->head ? ring->head - 1 : ring->frame_max;
618 	return netlink_lookup_frame(ring, prev, status);
619 }
620 
netlink_increment_head(struct netlink_ring * ring)621 static void netlink_increment_head(struct netlink_ring *ring)
622 {
623 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
624 }
625 
netlink_forward_ring(struct netlink_ring * ring)626 static void netlink_forward_ring(struct netlink_ring *ring)
627 {
628 	unsigned int head = ring->head, pos = head;
629 	const struct nl_mmap_hdr *hdr;
630 
631 	do {
632 		hdr = __netlink_lookup_frame(ring, pos);
633 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
634 			break;
635 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
636 			break;
637 		netlink_increment_head(ring);
638 	} while (ring->head != head);
639 }
640 
netlink_dump_space(struct netlink_sock * nlk)641 static bool netlink_dump_space(struct netlink_sock *nlk)
642 {
643 	struct netlink_ring *ring = &nlk->rx_ring;
644 	struct nl_mmap_hdr *hdr;
645 	unsigned int n;
646 
647 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
648 	if (hdr == NULL)
649 		return false;
650 
651 	n = ring->head + ring->frame_max / 2;
652 	if (n > ring->frame_max)
653 		n -= ring->frame_max;
654 
655 	hdr = __netlink_lookup_frame(ring, n);
656 
657 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
658 }
659 
netlink_poll(struct file * file,struct socket * sock,poll_table * wait)660 static unsigned int netlink_poll(struct file *file, struct socket *sock,
661 				 poll_table *wait)
662 {
663 	struct sock *sk = sock->sk;
664 	struct netlink_sock *nlk = nlk_sk(sk);
665 	unsigned int mask;
666 	int err;
667 
668 	if (nlk->rx_ring.pg_vec != NULL) {
669 		/* Memory mapped sockets don't call recvmsg(), so flow control
670 		 * for dumps is performed here. A dump is allowed to continue
671 		 * if at least half the ring is unused.
672 		 */
673 		while (nlk->cb_running && netlink_dump_space(nlk)) {
674 			err = netlink_dump(sk);
675 			if (err < 0) {
676 				sk->sk_err = -err;
677 				sk->sk_error_report(sk);
678 				break;
679 			}
680 		}
681 		netlink_rcv_wake(sk);
682 	}
683 
684 	mask = datagram_poll(file, sock, wait);
685 
686 	spin_lock_bh(&sk->sk_receive_queue.lock);
687 	if (nlk->rx_ring.pg_vec) {
688 		netlink_forward_ring(&nlk->rx_ring);
689 		if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
690 			mask |= POLLIN | POLLRDNORM;
691 	}
692 	spin_unlock_bh(&sk->sk_receive_queue.lock);
693 
694 	spin_lock_bh(&sk->sk_write_queue.lock);
695 	if (nlk->tx_ring.pg_vec) {
696 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
697 			mask |= POLLOUT | POLLWRNORM;
698 	}
699 	spin_unlock_bh(&sk->sk_write_queue.lock);
700 
701 	return mask;
702 }
703 
netlink_mmap_hdr(struct sk_buff * skb)704 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
705 {
706 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
707 }
708 
netlink_ring_setup_skb(struct sk_buff * skb,struct sock * sk,struct netlink_ring * ring,struct nl_mmap_hdr * hdr)709 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
710 				   struct netlink_ring *ring,
711 				   struct nl_mmap_hdr *hdr)
712 {
713 	unsigned int size;
714 	void *data;
715 
716 	size = ring->frame_size - NL_MMAP_HDRLEN;
717 	data = (void *)hdr + NL_MMAP_HDRLEN;
718 
719 	skb->head	= data;
720 	skb->data	= data;
721 	skb_reset_tail_pointer(skb);
722 	skb->end	= skb->tail + size;
723 	skb->len	= 0;
724 
725 	skb->destructor	= netlink_skb_destructor;
726 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
727 	NETLINK_CB(skb).sk = sk;
728 }
729 
netlink_mmap_sendmsg(struct sock * sk,struct msghdr * msg,u32 dst_portid,u32 dst_group,struct scm_cookie * scm)730 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
731 				u32 dst_portid, u32 dst_group,
732 				struct scm_cookie *scm)
733 {
734 	struct netlink_sock *nlk = nlk_sk(sk);
735 	struct netlink_ring *ring;
736 	struct nl_mmap_hdr *hdr;
737 	struct sk_buff *skb;
738 	unsigned int maxlen;
739 	int err = 0, len = 0;
740 
741 	mutex_lock(&nlk->pg_vec_lock);
742 
743 	ring   = &nlk->tx_ring;
744 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
745 
746 	do {
747 		unsigned int nm_len;
748 
749 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
750 		if (hdr == NULL) {
751 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
752 			    atomic_read(&nlk->tx_ring.pending))
753 				schedule();
754 			continue;
755 		}
756 
757 		nm_len = ACCESS_ONCE(hdr->nm_len);
758 		if (nm_len > maxlen) {
759 			err = -EINVAL;
760 			goto out;
761 		}
762 
763 		netlink_frame_flush_dcache(hdr, nm_len);
764 
765 		skb = alloc_skb(nm_len, GFP_KERNEL);
766 		if (skb == NULL) {
767 			err = -ENOBUFS;
768 			goto out;
769 		}
770 		__skb_put(skb, nm_len);
771 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
772 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
773 
774 		netlink_increment_head(ring);
775 
776 		NETLINK_CB(skb).portid	  = nlk->portid;
777 		NETLINK_CB(skb).dst_group = dst_group;
778 		NETLINK_CB(skb).creds	  = scm->creds;
779 
780 		err = security_netlink_send(sk, skb);
781 		if (err) {
782 			kfree_skb(skb);
783 			goto out;
784 		}
785 
786 		if (unlikely(dst_group)) {
787 			atomic_inc(&skb->users);
788 			netlink_broadcast(sk, skb, dst_portid, dst_group,
789 					  GFP_KERNEL);
790 		}
791 		err = netlink_unicast(sk, skb, dst_portid,
792 				      msg->msg_flags & MSG_DONTWAIT);
793 		if (err < 0)
794 			goto out;
795 		len += err;
796 
797 	} while (hdr != NULL ||
798 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
799 		  atomic_read(&nlk->tx_ring.pending)));
800 
801 	if (len > 0)
802 		err = len;
803 out:
804 	mutex_unlock(&nlk->pg_vec_lock);
805 	return err;
806 }
807 
netlink_queue_mmaped_skb(struct sock * sk,struct sk_buff * skb)808 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
809 {
810 	struct nl_mmap_hdr *hdr;
811 
812 	hdr = netlink_mmap_hdr(skb);
813 	hdr->nm_len	= skb->len;
814 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
815 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
816 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
817 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
818 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
819 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
820 
821 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
822 	kfree_skb(skb);
823 }
824 
netlink_ring_set_copied(struct sock * sk,struct sk_buff * skb)825 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
826 {
827 	struct netlink_sock *nlk = nlk_sk(sk);
828 	struct netlink_ring *ring = &nlk->rx_ring;
829 	struct nl_mmap_hdr *hdr;
830 
831 	spin_lock_bh(&sk->sk_receive_queue.lock);
832 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
833 	if (hdr == NULL) {
834 		spin_unlock_bh(&sk->sk_receive_queue.lock);
835 		kfree_skb(skb);
836 		netlink_overrun(sk);
837 		return;
838 	}
839 	netlink_increment_head(ring);
840 	__skb_queue_tail(&sk->sk_receive_queue, skb);
841 	spin_unlock_bh(&sk->sk_receive_queue.lock);
842 
843 	hdr->nm_len	= skb->len;
844 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
845 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
846 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
847 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
848 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
849 }
850 
851 #else /* CONFIG_NETLINK_MMAP */
852 #define netlink_rx_is_mmaped(sk)	false
853 #define netlink_tx_is_mmaped(sk)	false
854 #define netlink_mmap			sock_no_mmap
855 #define netlink_poll			datagram_poll
856 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm)	0
857 #endif /* CONFIG_NETLINK_MMAP */
858 
netlink_skb_destructor(struct sk_buff * skb)859 static void netlink_skb_destructor(struct sk_buff *skb)
860 {
861 #ifdef CONFIG_NETLINK_MMAP
862 	struct nl_mmap_hdr *hdr;
863 	struct netlink_ring *ring;
864 	struct sock *sk;
865 
866 	/* If a packet from the kernel to userspace was freed because of an
867 	 * error without being delivered to userspace, the kernel must reset
868 	 * the status. In the direction userspace to kernel, the status is
869 	 * always reset here after the packet was processed and freed.
870 	 */
871 	if (netlink_skb_is_mmaped(skb)) {
872 		hdr = netlink_mmap_hdr(skb);
873 		sk = NETLINK_CB(skb).sk;
874 
875 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
876 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
877 			ring = &nlk_sk(sk)->tx_ring;
878 		} else {
879 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
880 				hdr->nm_len = 0;
881 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
882 			}
883 			ring = &nlk_sk(sk)->rx_ring;
884 		}
885 
886 		WARN_ON(atomic_read(&ring->pending) == 0);
887 		atomic_dec(&ring->pending);
888 		sock_put(sk);
889 
890 		skb->head = NULL;
891 	}
892 #endif
893 	if (is_vmalloc_addr(skb->head)) {
894 		if (!skb->cloned ||
895 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
896 			vfree(skb->head);
897 
898 		skb->head = NULL;
899 	}
900 	if (skb->sk != NULL)
901 		sock_rfree(skb);
902 }
903 
netlink_skb_set_owner_r(struct sk_buff * skb,struct sock * sk)904 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
905 {
906 	WARN_ON(skb->sk != NULL);
907 	skb->sk = sk;
908 	skb->destructor = netlink_skb_destructor;
909 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
910 	sk_mem_charge(sk, skb->truesize);
911 }
912 
netlink_sock_destruct(struct sock * sk)913 static void netlink_sock_destruct(struct sock *sk)
914 {
915 	struct netlink_sock *nlk = nlk_sk(sk);
916 
917 	if (nlk->cb_running) {
918 		if (nlk->cb.done)
919 			nlk->cb.done(&nlk->cb);
920 
921 		module_put(nlk->cb.module);
922 		kfree_skb(nlk->cb.skb);
923 	}
924 
925 	skb_queue_purge(&sk->sk_receive_queue);
926 #ifdef CONFIG_NETLINK_MMAP
927 	if (1) {
928 		struct nl_mmap_req req;
929 
930 		memset(&req, 0, sizeof(req));
931 		if (nlk->rx_ring.pg_vec)
932 			__netlink_set_ring(sk, &req, false, NULL, 0);
933 		memset(&req, 0, sizeof(req));
934 		if (nlk->tx_ring.pg_vec)
935 			__netlink_set_ring(sk, &req, true, NULL, 0);
936 	}
937 #endif /* CONFIG_NETLINK_MMAP */
938 
939 	if (!sock_flag(sk, SOCK_DEAD)) {
940 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
941 		return;
942 	}
943 
944 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
945 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
946 	WARN_ON(nlk_sk(sk)->groups);
947 }
948 
949 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
950  * SMP. Look, when several writers sleep and reader wakes them up, all but one
951  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
952  * this, _but_ remember, it adds useless work on UP machines.
953  */
954 
netlink_table_grab(void)955 void netlink_table_grab(void)
956 	__acquires(nl_table_lock)
957 {
958 	might_sleep();
959 
960 	write_lock_irq(&nl_table_lock);
961 
962 	if (atomic_read(&nl_table_users)) {
963 		DECLARE_WAITQUEUE(wait, current);
964 
965 		add_wait_queue_exclusive(&nl_table_wait, &wait);
966 		for (;;) {
967 			set_current_state(TASK_UNINTERRUPTIBLE);
968 			if (atomic_read(&nl_table_users) == 0)
969 				break;
970 			write_unlock_irq(&nl_table_lock);
971 			schedule();
972 			write_lock_irq(&nl_table_lock);
973 		}
974 
975 		__set_current_state(TASK_RUNNING);
976 		remove_wait_queue(&nl_table_wait, &wait);
977 	}
978 }
979 
netlink_table_ungrab(void)980 void netlink_table_ungrab(void)
981 	__releases(nl_table_lock)
982 {
983 	write_unlock_irq(&nl_table_lock);
984 	wake_up(&nl_table_wait);
985 }
986 
987 static inline void
netlink_lock_table(void)988 netlink_lock_table(void)
989 {
990 	/* read_lock() synchronizes us to netlink_table_grab */
991 
992 	read_lock(&nl_table_lock);
993 	atomic_inc(&nl_table_users);
994 	read_unlock(&nl_table_lock);
995 }
996 
997 static inline void
netlink_unlock_table(void)998 netlink_unlock_table(void)
999 {
1000 	if (atomic_dec_and_test(&nl_table_users))
1001 		wake_up(&nl_table_wait);
1002 }
1003 
1004 struct netlink_compare_arg
1005 {
1006 	possible_net_t pnet;
1007 	u32 portid;
1008 };
1009 
1010 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
1011 #define netlink_compare_arg_len \
1012 	(offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
1013 
netlink_compare(struct rhashtable_compare_arg * arg,const void * ptr)1014 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
1015 				  const void *ptr)
1016 {
1017 	const struct netlink_compare_arg *x = arg->key;
1018 	const struct netlink_sock *nlk = ptr;
1019 
1020 	return nlk->portid != x->portid ||
1021 	       !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
1022 }
1023 
netlink_compare_arg_init(struct netlink_compare_arg * arg,struct net * net,u32 portid)1024 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
1025 				     struct net *net, u32 portid)
1026 {
1027 	memset(arg, 0, sizeof(*arg));
1028 	write_pnet(&arg->pnet, net);
1029 	arg->portid = portid;
1030 }
1031 
__netlink_lookup(struct netlink_table * table,u32 portid,struct net * net)1032 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1033 				     struct net *net)
1034 {
1035 	struct netlink_compare_arg arg;
1036 
1037 	netlink_compare_arg_init(&arg, net, portid);
1038 	return rhashtable_lookup_fast(&table->hash, &arg,
1039 				      netlink_rhashtable_params);
1040 }
1041 
__netlink_insert(struct netlink_table * table,struct sock * sk)1042 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1043 {
1044 	struct netlink_compare_arg arg;
1045 
1046 	netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1047 	return rhashtable_lookup_insert_key(&table->hash, &arg,
1048 					    &nlk_sk(sk)->node,
1049 					    netlink_rhashtable_params);
1050 }
1051 
netlink_lookup(struct net * net,int protocol,u32 portid)1052 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1053 {
1054 	struct netlink_table *table = &nl_table[protocol];
1055 	struct sock *sk;
1056 
1057 	rcu_read_lock();
1058 	sk = __netlink_lookup(table, portid, net);
1059 	if (sk)
1060 		sock_hold(sk);
1061 	rcu_read_unlock();
1062 
1063 	return sk;
1064 }
1065 
1066 static const struct proto_ops netlink_ops;
1067 
1068 static void
netlink_update_listeners(struct sock * sk)1069 netlink_update_listeners(struct sock *sk)
1070 {
1071 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1072 	unsigned long mask;
1073 	unsigned int i;
1074 	struct listeners *listeners;
1075 
1076 	listeners = nl_deref_protected(tbl->listeners);
1077 	if (!listeners)
1078 		return;
1079 
1080 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1081 		mask = 0;
1082 		sk_for_each_bound(sk, &tbl->mc_list) {
1083 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1084 				mask |= nlk_sk(sk)->groups[i];
1085 		}
1086 		listeners->masks[i] = mask;
1087 	}
1088 	/* this function is only called with the netlink table "grabbed", which
1089 	 * makes sure updates are visible before bind or setsockopt return. */
1090 }
1091 
netlink_insert(struct sock * sk,u32 portid)1092 static int netlink_insert(struct sock *sk, u32 portid)
1093 {
1094 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1095 	int err;
1096 
1097 	lock_sock(sk);
1098 
1099 	err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
1100 	if (nlk_sk(sk)->bound)
1101 		goto err;
1102 
1103 	err = -ENOMEM;
1104 	if (BITS_PER_LONG > 32 &&
1105 	    unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1106 		goto err;
1107 
1108 	nlk_sk(sk)->portid = portid;
1109 	sock_hold(sk);
1110 
1111 	err = __netlink_insert(table, sk);
1112 	if (err) {
1113 		/* In case the hashtable backend returns with -EBUSY
1114 		 * from here, it must not escape to the caller.
1115 		 */
1116 		if (unlikely(err == -EBUSY))
1117 			err = -EOVERFLOW;
1118 		if (err == -EEXIST)
1119 			err = -EADDRINUSE;
1120 		sock_put(sk);
1121 		goto err;
1122 	}
1123 
1124 	/* We need to ensure that the socket is hashed and visible. */
1125 	smp_wmb();
1126 	nlk_sk(sk)->bound = portid;
1127 
1128 err:
1129 	release_sock(sk);
1130 	return err;
1131 }
1132 
netlink_remove(struct sock * sk)1133 static void netlink_remove(struct sock *sk)
1134 {
1135 	struct netlink_table *table;
1136 
1137 	table = &nl_table[sk->sk_protocol];
1138 	if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1139 				    netlink_rhashtable_params)) {
1140 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1141 		__sock_put(sk);
1142 	}
1143 
1144 	netlink_table_grab();
1145 	if (nlk_sk(sk)->subscriptions) {
1146 		__sk_del_bind_node(sk);
1147 		netlink_update_listeners(sk);
1148 	}
1149 	if (sk->sk_protocol == NETLINK_GENERIC)
1150 		atomic_inc(&genl_sk_destructing_cnt);
1151 	netlink_table_ungrab();
1152 }
1153 
1154 static struct proto netlink_proto = {
1155 	.name	  = "NETLINK",
1156 	.owner	  = THIS_MODULE,
1157 	.obj_size = sizeof(struct netlink_sock),
1158 };
1159 
__netlink_create(struct net * net,struct socket * sock,struct mutex * cb_mutex,int protocol)1160 static int __netlink_create(struct net *net, struct socket *sock,
1161 			    struct mutex *cb_mutex, int protocol)
1162 {
1163 	struct sock *sk;
1164 	struct netlink_sock *nlk;
1165 
1166 	sock->ops = &netlink_ops;
1167 
1168 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1169 	if (!sk)
1170 		return -ENOMEM;
1171 
1172 	sock_init_data(sock, sk);
1173 
1174 	nlk = nlk_sk(sk);
1175 	if (cb_mutex) {
1176 		nlk->cb_mutex = cb_mutex;
1177 	} else {
1178 		nlk->cb_mutex = &nlk->cb_def_mutex;
1179 		mutex_init(nlk->cb_mutex);
1180 	}
1181 	init_waitqueue_head(&nlk->wait);
1182 #ifdef CONFIG_NETLINK_MMAP
1183 	mutex_init(&nlk->pg_vec_lock);
1184 #endif
1185 
1186 	sk->sk_destruct = netlink_sock_destruct;
1187 	sk->sk_protocol = protocol;
1188 	return 0;
1189 }
1190 
netlink_create(struct net * net,struct socket * sock,int protocol,int kern)1191 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1192 			  int kern)
1193 {
1194 	struct module *module = NULL;
1195 	struct mutex *cb_mutex;
1196 	struct netlink_sock *nlk;
1197 	int (*bind)(struct net *net, int group);
1198 	void (*unbind)(struct net *net, int group);
1199 	int err = 0;
1200 
1201 	sock->state = SS_UNCONNECTED;
1202 
1203 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1204 		return -ESOCKTNOSUPPORT;
1205 
1206 	if (protocol < 0 || protocol >= MAX_LINKS)
1207 		return -EPROTONOSUPPORT;
1208 
1209 	netlink_lock_table();
1210 #ifdef CONFIG_MODULES
1211 	if (!nl_table[protocol].registered) {
1212 		netlink_unlock_table();
1213 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1214 		netlink_lock_table();
1215 	}
1216 #endif
1217 	if (nl_table[protocol].registered &&
1218 	    try_module_get(nl_table[protocol].module))
1219 		module = nl_table[protocol].module;
1220 	else
1221 		err = -EPROTONOSUPPORT;
1222 	cb_mutex = nl_table[protocol].cb_mutex;
1223 	bind = nl_table[protocol].bind;
1224 	unbind = nl_table[protocol].unbind;
1225 	netlink_unlock_table();
1226 
1227 	if (err < 0)
1228 		goto out;
1229 
1230 	err = __netlink_create(net, sock, cb_mutex, protocol);
1231 	if (err < 0)
1232 		goto out_module;
1233 
1234 	local_bh_disable();
1235 	sock_prot_inuse_add(net, &netlink_proto, 1);
1236 	local_bh_enable();
1237 
1238 	nlk = nlk_sk(sock->sk);
1239 	nlk->module = module;
1240 	nlk->netlink_bind = bind;
1241 	nlk->netlink_unbind = unbind;
1242 out:
1243 	return err;
1244 
1245 out_module:
1246 	module_put(module);
1247 	goto out;
1248 }
1249 
deferred_put_nlk_sk(struct rcu_head * head)1250 static void deferred_put_nlk_sk(struct rcu_head *head)
1251 {
1252 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1253 
1254 	sock_put(&nlk->sk);
1255 }
1256 
netlink_release(struct socket * sock)1257 static int netlink_release(struct socket *sock)
1258 {
1259 	struct sock *sk = sock->sk;
1260 	struct netlink_sock *nlk;
1261 
1262 	if (!sk)
1263 		return 0;
1264 
1265 	netlink_remove(sk);
1266 	sock_orphan(sk);
1267 	nlk = nlk_sk(sk);
1268 
1269 	/*
1270 	 * OK. Socket is unlinked, any packets that arrive now
1271 	 * will be purged.
1272 	 */
1273 
1274 	/* must not acquire netlink_table_lock in any way again before unbind
1275 	 * and notifying genetlink is done as otherwise it might deadlock
1276 	 */
1277 	if (nlk->netlink_unbind) {
1278 		int i;
1279 
1280 		for (i = 0; i < nlk->ngroups; i++)
1281 			if (test_bit(i, nlk->groups))
1282 				nlk->netlink_unbind(sock_net(sk), i + 1);
1283 	}
1284 	if (sk->sk_protocol == NETLINK_GENERIC &&
1285 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1286 		wake_up(&genl_sk_destructing_waitq);
1287 
1288 	sock->sk = NULL;
1289 	wake_up_interruptible_all(&nlk->wait);
1290 
1291 	skb_queue_purge(&sk->sk_write_queue);
1292 
1293 	if (nlk->portid && nlk->bound) {
1294 		struct netlink_notify n = {
1295 						.net = sock_net(sk),
1296 						.protocol = sk->sk_protocol,
1297 						.portid = nlk->portid,
1298 					  };
1299 		atomic_notifier_call_chain(&netlink_chain,
1300 				NETLINK_URELEASE, &n);
1301 	}
1302 
1303 	module_put(nlk->module);
1304 
1305 	if (netlink_is_kernel(sk)) {
1306 		netlink_table_grab();
1307 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1308 		if (--nl_table[sk->sk_protocol].registered == 0) {
1309 			struct listeners *old;
1310 
1311 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1312 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1313 			kfree_rcu(old, rcu);
1314 			nl_table[sk->sk_protocol].module = NULL;
1315 			nl_table[sk->sk_protocol].bind = NULL;
1316 			nl_table[sk->sk_protocol].unbind = NULL;
1317 			nl_table[sk->sk_protocol].flags = 0;
1318 			nl_table[sk->sk_protocol].registered = 0;
1319 		}
1320 		netlink_table_ungrab();
1321 	}
1322 
1323 	kfree(nlk->groups);
1324 	nlk->groups = NULL;
1325 
1326 	local_bh_disable();
1327 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1328 	local_bh_enable();
1329 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1330 	return 0;
1331 }
1332 
netlink_autobind(struct socket * sock)1333 static int netlink_autobind(struct socket *sock)
1334 {
1335 	struct sock *sk = sock->sk;
1336 	struct net *net = sock_net(sk);
1337 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1338 	s32 portid = task_tgid_vnr(current);
1339 	int err;
1340 	static s32 rover = -4097;
1341 
1342 retry:
1343 	cond_resched();
1344 	rcu_read_lock();
1345 	if (__netlink_lookup(table, portid, net)) {
1346 		/* Bind collision, search negative portid values. */
1347 		portid = rover--;
1348 		if (rover > -4097)
1349 			rover = -4097;
1350 		rcu_read_unlock();
1351 		goto retry;
1352 	}
1353 	rcu_read_unlock();
1354 
1355 	err = netlink_insert(sk, portid);
1356 	if (err == -EADDRINUSE)
1357 		goto retry;
1358 
1359 	/* If 2 threads race to autobind, that is fine.  */
1360 	if (err == -EBUSY)
1361 		err = 0;
1362 
1363 	return err;
1364 }
1365 
1366 /**
1367  * __netlink_ns_capable - General netlink message capability test
1368  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1369  * @user_ns: The user namespace of the capability to use
1370  * @cap: The capability to use
1371  *
1372  * Test to see if the opener of the socket we received the message
1373  * from had when the netlink socket was created and the sender of the
1374  * message has has the capability @cap in the user namespace @user_ns.
1375  */
__netlink_ns_capable(const struct netlink_skb_parms * nsp,struct user_namespace * user_ns,int cap)1376 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1377 			struct user_namespace *user_ns, int cap)
1378 {
1379 	return ((nsp->flags & NETLINK_SKB_DST) ||
1380 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1381 		ns_capable(user_ns, cap);
1382 }
1383 EXPORT_SYMBOL(__netlink_ns_capable);
1384 
1385 /**
1386  * netlink_ns_capable - General netlink message capability test
1387  * @skb: socket buffer holding a netlink command from userspace
1388  * @user_ns: The user namespace of the capability to use
1389  * @cap: The capability to use
1390  *
1391  * Test to see if the opener of the socket we received the message
1392  * from had when the netlink socket was created and the sender of the
1393  * message has has the capability @cap in the user namespace @user_ns.
1394  */
netlink_ns_capable(const struct sk_buff * skb,struct user_namespace * user_ns,int cap)1395 bool netlink_ns_capable(const struct sk_buff *skb,
1396 			struct user_namespace *user_ns, int cap)
1397 {
1398 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1399 }
1400 EXPORT_SYMBOL(netlink_ns_capable);
1401 
1402 /**
1403  * netlink_capable - Netlink global message capability test
1404  * @skb: socket buffer holding a netlink command from userspace
1405  * @cap: The capability to use
1406  *
1407  * Test to see if the opener of the socket we received the message
1408  * from had when the netlink socket was created and the sender of the
1409  * message has has the capability @cap in all user namespaces.
1410  */
netlink_capable(const struct sk_buff * skb,int cap)1411 bool netlink_capable(const struct sk_buff *skb, int cap)
1412 {
1413 	return netlink_ns_capable(skb, &init_user_ns, cap);
1414 }
1415 EXPORT_SYMBOL(netlink_capable);
1416 
1417 /**
1418  * netlink_net_capable - Netlink network namespace message capability test
1419  * @skb: socket buffer holding a netlink command from userspace
1420  * @cap: The capability to use
1421  *
1422  * Test to see if the opener of the socket we received the message
1423  * from had when the netlink socket was created and the sender of the
1424  * message has has the capability @cap over the network namespace of
1425  * the socket we received the message from.
1426  */
netlink_net_capable(const struct sk_buff * skb,int cap)1427 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1428 {
1429 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1430 }
1431 EXPORT_SYMBOL(netlink_net_capable);
1432 
netlink_allowed(const struct socket * sock,unsigned int flag)1433 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1434 {
1435 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1436 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1437 }
1438 
1439 static void
netlink_update_subscriptions(struct sock * sk,unsigned int subscriptions)1440 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1441 {
1442 	struct netlink_sock *nlk = nlk_sk(sk);
1443 
1444 	if (nlk->subscriptions && !subscriptions)
1445 		__sk_del_bind_node(sk);
1446 	else if (!nlk->subscriptions && subscriptions)
1447 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1448 	nlk->subscriptions = subscriptions;
1449 }
1450 
netlink_realloc_groups(struct sock * sk)1451 static int netlink_realloc_groups(struct sock *sk)
1452 {
1453 	struct netlink_sock *nlk = nlk_sk(sk);
1454 	unsigned int groups;
1455 	unsigned long *new_groups;
1456 	int err = 0;
1457 
1458 	netlink_table_grab();
1459 
1460 	groups = nl_table[sk->sk_protocol].groups;
1461 	if (!nl_table[sk->sk_protocol].registered) {
1462 		err = -ENOENT;
1463 		goto out_unlock;
1464 	}
1465 
1466 	if (nlk->ngroups >= groups)
1467 		goto out_unlock;
1468 
1469 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1470 	if (new_groups == NULL) {
1471 		err = -ENOMEM;
1472 		goto out_unlock;
1473 	}
1474 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1475 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1476 
1477 	nlk->groups = new_groups;
1478 	nlk->ngroups = groups;
1479  out_unlock:
1480 	netlink_table_ungrab();
1481 	return err;
1482 }
1483 
netlink_undo_bind(int group,long unsigned int groups,struct sock * sk)1484 static void netlink_undo_bind(int group, long unsigned int groups,
1485 			      struct sock *sk)
1486 {
1487 	struct netlink_sock *nlk = nlk_sk(sk);
1488 	int undo;
1489 
1490 	if (!nlk->netlink_unbind)
1491 		return;
1492 
1493 	for (undo = 0; undo < group; undo++)
1494 		if (test_bit(undo, &groups))
1495 			nlk->netlink_unbind(sock_net(sk), undo + 1);
1496 }
1497 
netlink_bind(struct socket * sock,struct sockaddr * addr,int addr_len)1498 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1499 			int addr_len)
1500 {
1501 	struct sock *sk = sock->sk;
1502 	struct net *net = sock_net(sk);
1503 	struct netlink_sock *nlk = nlk_sk(sk);
1504 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1505 	int err;
1506 	long unsigned int groups = nladdr->nl_groups;
1507 	bool bound;
1508 
1509 	if (addr_len < sizeof(struct sockaddr_nl))
1510 		return -EINVAL;
1511 
1512 	if (nladdr->nl_family != AF_NETLINK)
1513 		return -EINVAL;
1514 
1515 	/* Only superuser is allowed to listen multicasts */
1516 	if (groups) {
1517 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1518 			return -EPERM;
1519 		err = netlink_realloc_groups(sk);
1520 		if (err)
1521 			return err;
1522 	}
1523 
1524 	bound = nlk->bound;
1525 	if (bound) {
1526 		/* Ensure nlk->portid is up-to-date. */
1527 		smp_rmb();
1528 
1529 		if (nladdr->nl_pid != nlk->portid)
1530 			return -EINVAL;
1531 	}
1532 
1533 	if (nlk->netlink_bind && groups) {
1534 		int group;
1535 
1536 		for (group = 0; group < nlk->ngroups; group++) {
1537 			if (!test_bit(group, &groups))
1538 				continue;
1539 			err = nlk->netlink_bind(net, group + 1);
1540 			if (!err)
1541 				continue;
1542 			netlink_undo_bind(group, groups, sk);
1543 			return err;
1544 		}
1545 	}
1546 
1547 	/* No need for barriers here as we return to user-space without
1548 	 * using any of the bound attributes.
1549 	 */
1550 	if (!bound) {
1551 		err = nladdr->nl_pid ?
1552 			netlink_insert(sk, nladdr->nl_pid) :
1553 			netlink_autobind(sock);
1554 		if (err) {
1555 			netlink_undo_bind(nlk->ngroups, groups, sk);
1556 			return err;
1557 		}
1558 	}
1559 
1560 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1561 		return 0;
1562 
1563 	netlink_table_grab();
1564 	netlink_update_subscriptions(sk, nlk->subscriptions +
1565 					 hweight32(groups) -
1566 					 hweight32(nlk->groups[0]));
1567 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1568 	netlink_update_listeners(sk);
1569 	netlink_table_ungrab();
1570 
1571 	return 0;
1572 }
1573 
netlink_connect(struct socket * sock,struct sockaddr * addr,int alen,int flags)1574 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1575 			   int alen, int flags)
1576 {
1577 	int err = 0;
1578 	struct sock *sk = sock->sk;
1579 	struct netlink_sock *nlk = nlk_sk(sk);
1580 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1581 
1582 	if (alen < sizeof(addr->sa_family))
1583 		return -EINVAL;
1584 
1585 	if (addr->sa_family == AF_UNSPEC) {
1586 		sk->sk_state	= NETLINK_UNCONNECTED;
1587 		nlk->dst_portid	= 0;
1588 		nlk->dst_group  = 0;
1589 		return 0;
1590 	}
1591 	if (addr->sa_family != AF_NETLINK)
1592 		return -EINVAL;
1593 
1594 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1595 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1596 		return -EPERM;
1597 
1598 	/* No need for barriers here as we return to user-space without
1599 	 * using any of the bound attributes.
1600 	 */
1601 	if (!nlk->bound)
1602 		err = netlink_autobind(sock);
1603 
1604 	if (err == 0) {
1605 		sk->sk_state	= NETLINK_CONNECTED;
1606 		nlk->dst_portid = nladdr->nl_pid;
1607 		nlk->dst_group  = ffs(nladdr->nl_groups);
1608 	}
1609 
1610 	return err;
1611 }
1612 
netlink_getname(struct socket * sock,struct sockaddr * addr,int * addr_len,int peer)1613 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1614 			   int *addr_len, int peer)
1615 {
1616 	struct sock *sk = sock->sk;
1617 	struct netlink_sock *nlk = nlk_sk(sk);
1618 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1619 
1620 	nladdr->nl_family = AF_NETLINK;
1621 	nladdr->nl_pad = 0;
1622 	*addr_len = sizeof(*nladdr);
1623 
1624 	if (peer) {
1625 		nladdr->nl_pid = nlk->dst_portid;
1626 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1627 	} else {
1628 		nladdr->nl_pid = nlk->portid;
1629 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1630 	}
1631 	return 0;
1632 }
1633 
netlink_getsockbyportid(struct sock * ssk,u32 portid)1634 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1635 {
1636 	struct sock *sock;
1637 	struct netlink_sock *nlk;
1638 
1639 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1640 	if (!sock)
1641 		return ERR_PTR(-ECONNREFUSED);
1642 
1643 	/* Don't bother queuing skb if kernel socket has no input function */
1644 	nlk = nlk_sk(sock);
1645 	if (sock->sk_state == NETLINK_CONNECTED &&
1646 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1647 		sock_put(sock);
1648 		return ERR_PTR(-ECONNREFUSED);
1649 	}
1650 	return sock;
1651 }
1652 
netlink_getsockbyfilp(struct file * filp)1653 struct sock *netlink_getsockbyfilp(struct file *filp)
1654 {
1655 	struct inode *inode = file_inode(filp);
1656 	struct sock *sock;
1657 
1658 	if (!S_ISSOCK(inode->i_mode))
1659 		return ERR_PTR(-ENOTSOCK);
1660 
1661 	sock = SOCKET_I(inode)->sk;
1662 	if (sock->sk_family != AF_NETLINK)
1663 		return ERR_PTR(-EINVAL);
1664 
1665 	sock_hold(sock);
1666 	return sock;
1667 }
1668 
netlink_alloc_large_skb(unsigned int size,int broadcast)1669 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1670 					       int broadcast)
1671 {
1672 	struct sk_buff *skb;
1673 	void *data;
1674 
1675 	if (size <= NLMSG_GOODSIZE || broadcast)
1676 		return alloc_skb(size, GFP_KERNEL);
1677 
1678 	size = SKB_DATA_ALIGN(size) +
1679 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1680 
1681 	data = vmalloc(size);
1682 	if (data == NULL)
1683 		return NULL;
1684 
1685 	skb = __build_skb(data, size);
1686 	if (skb == NULL)
1687 		vfree(data);
1688 	else
1689 		skb->destructor = netlink_skb_destructor;
1690 
1691 	return skb;
1692 }
1693 
1694 /*
1695  * Attach a skb to a netlink socket.
1696  * The caller must hold a reference to the destination socket. On error, the
1697  * reference is dropped. The skb is not send to the destination, just all
1698  * all error checks are performed and memory in the queue is reserved.
1699  * Return values:
1700  * < 0: error. skb freed, reference to sock dropped.
1701  * 0: continue
1702  * 1: repeat lookup - reference dropped while waiting for socket memory.
1703  */
netlink_attachskb(struct sock * sk,struct sk_buff * skb,long * timeo,struct sock * ssk)1704 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1705 		      long *timeo, struct sock *ssk)
1706 {
1707 	struct netlink_sock *nlk;
1708 
1709 	nlk = nlk_sk(sk);
1710 
1711 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1712 	     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1713 	    !netlink_skb_is_mmaped(skb)) {
1714 		DECLARE_WAITQUEUE(wait, current);
1715 		if (!*timeo) {
1716 			if (!ssk || netlink_is_kernel(ssk))
1717 				netlink_overrun(sk);
1718 			sock_put(sk);
1719 			kfree_skb(skb);
1720 			return -EAGAIN;
1721 		}
1722 
1723 		__set_current_state(TASK_INTERRUPTIBLE);
1724 		add_wait_queue(&nlk->wait, &wait);
1725 
1726 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1727 		     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1728 		    !sock_flag(sk, SOCK_DEAD))
1729 			*timeo = schedule_timeout(*timeo);
1730 
1731 		__set_current_state(TASK_RUNNING);
1732 		remove_wait_queue(&nlk->wait, &wait);
1733 		sock_put(sk);
1734 
1735 		if (signal_pending(current)) {
1736 			kfree_skb(skb);
1737 			return sock_intr_errno(*timeo);
1738 		}
1739 		return 1;
1740 	}
1741 	netlink_skb_set_owner_r(skb, sk);
1742 	return 0;
1743 }
1744 
__netlink_sendskb(struct sock * sk,struct sk_buff * skb)1745 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1746 {
1747 	int len = skb->len;
1748 
1749 	netlink_deliver_tap(skb);
1750 
1751 #ifdef CONFIG_NETLINK_MMAP
1752 	if (netlink_skb_is_mmaped(skb))
1753 		netlink_queue_mmaped_skb(sk, skb);
1754 	else if (netlink_rx_is_mmaped(sk))
1755 		netlink_ring_set_copied(sk, skb);
1756 	else
1757 #endif /* CONFIG_NETLINK_MMAP */
1758 		skb_queue_tail(&sk->sk_receive_queue, skb);
1759 	sk->sk_data_ready(sk);
1760 	return len;
1761 }
1762 
netlink_sendskb(struct sock * sk,struct sk_buff * skb)1763 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1764 {
1765 	int len = __netlink_sendskb(sk, skb);
1766 
1767 	sock_put(sk);
1768 	return len;
1769 }
1770 
netlink_detachskb(struct sock * sk,struct sk_buff * skb)1771 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1772 {
1773 	kfree_skb(skb);
1774 	sock_put(sk);
1775 }
1776 
netlink_trim(struct sk_buff * skb,gfp_t allocation)1777 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1778 {
1779 	int delta;
1780 
1781 	WARN_ON(skb->sk != NULL);
1782 	if (netlink_skb_is_mmaped(skb))
1783 		return skb;
1784 
1785 	delta = skb->end - skb->tail;
1786 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1787 		return skb;
1788 
1789 	if (skb_shared(skb)) {
1790 		struct sk_buff *nskb = skb_clone(skb, allocation);
1791 		if (!nskb)
1792 			return skb;
1793 		consume_skb(skb);
1794 		skb = nskb;
1795 	}
1796 
1797 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1798 		skb->truesize -= delta;
1799 
1800 	return skb;
1801 }
1802 
netlink_unicast_kernel(struct sock * sk,struct sk_buff * skb,struct sock * ssk)1803 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1804 				  struct sock *ssk)
1805 {
1806 	int ret;
1807 	struct netlink_sock *nlk = nlk_sk(sk);
1808 
1809 	ret = -ECONNREFUSED;
1810 	if (nlk->netlink_rcv != NULL) {
1811 		ret = skb->len;
1812 		netlink_skb_set_owner_r(skb, sk);
1813 		NETLINK_CB(skb).sk = ssk;
1814 		netlink_deliver_tap_kernel(sk, ssk, skb);
1815 		nlk->netlink_rcv(skb);
1816 		consume_skb(skb);
1817 	} else {
1818 		kfree_skb(skb);
1819 	}
1820 	sock_put(sk);
1821 	return ret;
1822 }
1823 
netlink_unicast(struct sock * ssk,struct sk_buff * skb,u32 portid,int nonblock)1824 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1825 		    u32 portid, int nonblock)
1826 {
1827 	struct sock *sk;
1828 	int err;
1829 	long timeo;
1830 
1831 	skb = netlink_trim(skb, gfp_any());
1832 
1833 	timeo = sock_sndtimeo(ssk, nonblock);
1834 retry:
1835 	sk = netlink_getsockbyportid(ssk, portid);
1836 	if (IS_ERR(sk)) {
1837 		kfree_skb(skb);
1838 		return PTR_ERR(sk);
1839 	}
1840 	if (netlink_is_kernel(sk))
1841 		return netlink_unicast_kernel(sk, skb, ssk);
1842 
1843 	if (sk_filter(sk, skb)) {
1844 		err = skb->len;
1845 		kfree_skb(skb);
1846 		sock_put(sk);
1847 		return err;
1848 	}
1849 
1850 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1851 	if (err == 1)
1852 		goto retry;
1853 	if (err)
1854 		return err;
1855 
1856 	return netlink_sendskb(sk, skb);
1857 }
1858 EXPORT_SYMBOL(netlink_unicast);
1859 
netlink_alloc_skb(struct sock * ssk,unsigned int size,u32 dst_portid,gfp_t gfp_mask)1860 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1861 				  u32 dst_portid, gfp_t gfp_mask)
1862 {
1863 #ifdef CONFIG_NETLINK_MMAP
1864 	struct sock *sk = NULL;
1865 	struct sk_buff *skb;
1866 	struct netlink_ring *ring;
1867 	struct nl_mmap_hdr *hdr;
1868 	unsigned int maxlen;
1869 
1870 	sk = netlink_getsockbyportid(ssk, dst_portid);
1871 	if (IS_ERR(sk))
1872 		goto out;
1873 
1874 	ring = &nlk_sk(sk)->rx_ring;
1875 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1876 	if (ring->pg_vec == NULL)
1877 		goto out_put;
1878 
1879 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1880 		goto out_put;
1881 
1882 	skb = alloc_skb_head(gfp_mask);
1883 	if (skb == NULL)
1884 		goto err1;
1885 
1886 	spin_lock_bh(&sk->sk_receive_queue.lock);
1887 	/* check again under lock */
1888 	if (ring->pg_vec == NULL)
1889 		goto out_free;
1890 
1891 	/* check again under lock */
1892 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1893 	if (maxlen < size)
1894 		goto out_free;
1895 
1896 	netlink_forward_ring(ring);
1897 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1898 	if (hdr == NULL)
1899 		goto err2;
1900 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1901 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1902 	atomic_inc(&ring->pending);
1903 	netlink_increment_head(ring);
1904 
1905 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1906 	return skb;
1907 
1908 err2:
1909 	kfree_skb(skb);
1910 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1911 	netlink_overrun(sk);
1912 err1:
1913 	sock_put(sk);
1914 	return NULL;
1915 
1916 out_free:
1917 	kfree_skb(skb);
1918 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1919 out_put:
1920 	sock_put(sk);
1921 out:
1922 #endif
1923 	return alloc_skb(size, gfp_mask);
1924 }
1925 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1926 
netlink_has_listeners(struct sock * sk,unsigned int group)1927 int netlink_has_listeners(struct sock *sk, unsigned int group)
1928 {
1929 	int res = 0;
1930 	struct listeners *listeners;
1931 
1932 	BUG_ON(!netlink_is_kernel(sk));
1933 
1934 	rcu_read_lock();
1935 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1936 
1937 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1938 		res = test_bit(group - 1, listeners->masks);
1939 
1940 	rcu_read_unlock();
1941 
1942 	return res;
1943 }
1944 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1945 
netlink_broadcast_deliver(struct sock * sk,struct sk_buff * skb)1946 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1947 {
1948 	struct netlink_sock *nlk = nlk_sk(sk);
1949 
1950 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1951 	    !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1952 		netlink_skb_set_owner_r(skb, sk);
1953 		__netlink_sendskb(sk, skb);
1954 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1955 	}
1956 	return -1;
1957 }
1958 
1959 struct netlink_broadcast_data {
1960 	struct sock *exclude_sk;
1961 	struct net *net;
1962 	u32 portid;
1963 	u32 group;
1964 	int failure;
1965 	int delivery_failure;
1966 	int congested;
1967 	int delivered;
1968 	gfp_t allocation;
1969 	struct sk_buff *skb, *skb2;
1970 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1971 	void *tx_data;
1972 };
1973 
do_one_broadcast(struct sock * sk,struct netlink_broadcast_data * p)1974 static void do_one_broadcast(struct sock *sk,
1975 				    struct netlink_broadcast_data *p)
1976 {
1977 	struct netlink_sock *nlk = nlk_sk(sk);
1978 	int val;
1979 
1980 	if (p->exclude_sk == sk)
1981 		return;
1982 
1983 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1984 	    !test_bit(p->group - 1, nlk->groups))
1985 		return;
1986 
1987 	if (!net_eq(sock_net(sk), p->net))
1988 		return;
1989 
1990 	if (p->failure) {
1991 		netlink_overrun(sk);
1992 		return;
1993 	}
1994 
1995 	sock_hold(sk);
1996 	if (p->skb2 == NULL) {
1997 		if (skb_shared(p->skb)) {
1998 			p->skb2 = skb_clone(p->skb, p->allocation);
1999 		} else {
2000 			p->skb2 = skb_get(p->skb);
2001 			/*
2002 			 * skb ownership may have been set when
2003 			 * delivered to a previous socket.
2004 			 */
2005 			skb_orphan(p->skb2);
2006 		}
2007 	}
2008 	if (p->skb2 == NULL) {
2009 		netlink_overrun(sk);
2010 		/* Clone failed. Notify ALL listeners. */
2011 		p->failure = 1;
2012 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
2013 			p->delivery_failure = 1;
2014 	} else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
2015 		kfree_skb(p->skb2);
2016 		p->skb2 = NULL;
2017 	} else if (sk_filter(sk, p->skb2)) {
2018 		kfree_skb(p->skb2);
2019 		p->skb2 = NULL;
2020 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
2021 		netlink_overrun(sk);
2022 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
2023 			p->delivery_failure = 1;
2024 	} else {
2025 		p->congested |= val;
2026 		p->delivered = 1;
2027 		p->skb2 = NULL;
2028 	}
2029 	sock_put(sk);
2030 }
2031 
netlink_broadcast_filtered(struct sock * ssk,struct sk_buff * skb,u32 portid,u32 group,gfp_t allocation,int (* filter)(struct sock * dsk,struct sk_buff * skb,void * data),void * filter_data)2032 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2033 	u32 group, gfp_t allocation,
2034 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2035 	void *filter_data)
2036 {
2037 	struct net *net = sock_net(ssk);
2038 	struct netlink_broadcast_data info;
2039 	struct sock *sk;
2040 
2041 	skb = netlink_trim(skb, allocation);
2042 
2043 	info.exclude_sk = ssk;
2044 	info.net = net;
2045 	info.portid = portid;
2046 	info.group = group;
2047 	info.failure = 0;
2048 	info.delivery_failure = 0;
2049 	info.congested = 0;
2050 	info.delivered = 0;
2051 	info.allocation = allocation;
2052 	info.skb = skb;
2053 	info.skb2 = NULL;
2054 	info.tx_filter = filter;
2055 	info.tx_data = filter_data;
2056 
2057 	/* While we sleep in clone, do not allow to change socket list */
2058 
2059 	netlink_lock_table();
2060 
2061 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2062 		do_one_broadcast(sk, &info);
2063 
2064 	consume_skb(skb);
2065 
2066 	netlink_unlock_table();
2067 
2068 	if (info.delivery_failure) {
2069 		kfree_skb(info.skb2);
2070 		return -ENOBUFS;
2071 	}
2072 	consume_skb(info.skb2);
2073 
2074 	if (info.delivered) {
2075 		if (info.congested && (allocation & __GFP_WAIT))
2076 			yield();
2077 		return 0;
2078 	}
2079 	return -ESRCH;
2080 }
2081 EXPORT_SYMBOL(netlink_broadcast_filtered);
2082 
netlink_broadcast(struct sock * ssk,struct sk_buff * skb,u32 portid,u32 group,gfp_t allocation)2083 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2084 		      u32 group, gfp_t allocation)
2085 {
2086 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2087 		NULL, NULL);
2088 }
2089 EXPORT_SYMBOL(netlink_broadcast);
2090 
2091 struct netlink_set_err_data {
2092 	struct sock *exclude_sk;
2093 	u32 portid;
2094 	u32 group;
2095 	int code;
2096 };
2097 
do_one_set_err(struct sock * sk,struct netlink_set_err_data * p)2098 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2099 {
2100 	struct netlink_sock *nlk = nlk_sk(sk);
2101 	int ret = 0;
2102 
2103 	if (sk == p->exclude_sk)
2104 		goto out;
2105 
2106 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2107 		goto out;
2108 
2109 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2110 	    !test_bit(p->group - 1, nlk->groups))
2111 		goto out;
2112 
2113 	if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2114 		ret = 1;
2115 		goto out;
2116 	}
2117 
2118 	sk->sk_err = p->code;
2119 	sk->sk_error_report(sk);
2120 out:
2121 	return ret;
2122 }
2123 
2124 /**
2125  * netlink_set_err - report error to broadcast listeners
2126  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2127  * @portid: the PORTID of a process that we want to skip (if any)
2128  * @group: the broadcast group that will notice the error
2129  * @code: error code, must be negative (as usual in kernelspace)
2130  *
2131  * This function returns the number of broadcast listeners that have set the
2132  * NETLINK_RECV_NO_ENOBUFS socket option.
2133  */
netlink_set_err(struct sock * ssk,u32 portid,u32 group,int code)2134 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2135 {
2136 	struct netlink_set_err_data info;
2137 	struct sock *sk;
2138 	int ret = 0;
2139 
2140 	info.exclude_sk = ssk;
2141 	info.portid = portid;
2142 	info.group = group;
2143 	/* sk->sk_err wants a positive error value */
2144 	info.code = -code;
2145 
2146 	read_lock(&nl_table_lock);
2147 
2148 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2149 		ret += do_one_set_err(sk, &info);
2150 
2151 	read_unlock(&nl_table_lock);
2152 	return ret;
2153 }
2154 EXPORT_SYMBOL(netlink_set_err);
2155 
2156 /* must be called with netlink table grabbed */
netlink_update_socket_mc(struct netlink_sock * nlk,unsigned int group,int is_new)2157 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2158 				     unsigned int group,
2159 				     int is_new)
2160 {
2161 	int old, new = !!is_new, subscriptions;
2162 
2163 	old = test_bit(group - 1, nlk->groups);
2164 	subscriptions = nlk->subscriptions - old + new;
2165 	if (new)
2166 		__set_bit(group - 1, nlk->groups);
2167 	else
2168 		__clear_bit(group - 1, nlk->groups);
2169 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2170 	netlink_update_listeners(&nlk->sk);
2171 }
2172 
netlink_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2173 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2174 			      char __user *optval, unsigned int optlen)
2175 {
2176 	struct sock *sk = sock->sk;
2177 	struct netlink_sock *nlk = nlk_sk(sk);
2178 	unsigned int val = 0;
2179 	int err;
2180 
2181 	if (level != SOL_NETLINK)
2182 		return -ENOPROTOOPT;
2183 
2184 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2185 	    optlen >= sizeof(int) &&
2186 	    get_user(val, (unsigned int __user *)optval))
2187 		return -EFAULT;
2188 
2189 	switch (optname) {
2190 	case NETLINK_PKTINFO:
2191 		if (val)
2192 			nlk->flags |= NETLINK_RECV_PKTINFO;
2193 		else
2194 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
2195 		err = 0;
2196 		break;
2197 	case NETLINK_ADD_MEMBERSHIP:
2198 	case NETLINK_DROP_MEMBERSHIP: {
2199 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2200 			return -EPERM;
2201 		err = netlink_realloc_groups(sk);
2202 		if (err)
2203 			return err;
2204 		if (!val || val - 1 >= nlk->ngroups)
2205 			return -EINVAL;
2206 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2207 			err = nlk->netlink_bind(sock_net(sk), val);
2208 			if (err)
2209 				return err;
2210 		}
2211 		netlink_table_grab();
2212 		netlink_update_socket_mc(nlk, val,
2213 					 optname == NETLINK_ADD_MEMBERSHIP);
2214 		netlink_table_ungrab();
2215 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2216 			nlk->netlink_unbind(sock_net(sk), val);
2217 
2218 		err = 0;
2219 		break;
2220 	}
2221 	case NETLINK_BROADCAST_ERROR:
2222 		if (val)
2223 			nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2224 		else
2225 			nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2226 		err = 0;
2227 		break;
2228 	case NETLINK_NO_ENOBUFS:
2229 		if (val) {
2230 			nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2231 			clear_bit(NETLINK_CONGESTED, &nlk->state);
2232 			wake_up_interruptible(&nlk->wait);
2233 		} else {
2234 			nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2235 		}
2236 		err = 0;
2237 		break;
2238 #ifdef CONFIG_NETLINK_MMAP
2239 	case NETLINK_RX_RING:
2240 	case NETLINK_TX_RING: {
2241 		struct nl_mmap_req req;
2242 
2243 		/* Rings might consume more memory than queue limits, require
2244 		 * CAP_NET_ADMIN.
2245 		 */
2246 		if (!capable(CAP_NET_ADMIN))
2247 			return -EPERM;
2248 		if (optlen < sizeof(req))
2249 			return -EINVAL;
2250 		if (copy_from_user(&req, optval, sizeof(req)))
2251 			return -EFAULT;
2252 		err = netlink_set_ring(sk, &req,
2253 				       optname == NETLINK_TX_RING);
2254 		break;
2255 	}
2256 #endif /* CONFIG_NETLINK_MMAP */
2257 	default:
2258 		err = -ENOPROTOOPT;
2259 	}
2260 	return err;
2261 }
2262 
netlink_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2263 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2264 			      char __user *optval, int __user *optlen)
2265 {
2266 	struct sock *sk = sock->sk;
2267 	struct netlink_sock *nlk = nlk_sk(sk);
2268 	int len, val, err;
2269 
2270 	if (level != SOL_NETLINK)
2271 		return -ENOPROTOOPT;
2272 
2273 	if (get_user(len, optlen))
2274 		return -EFAULT;
2275 	if (len < 0)
2276 		return -EINVAL;
2277 
2278 	switch (optname) {
2279 	case NETLINK_PKTINFO:
2280 		if (len < sizeof(int))
2281 			return -EINVAL;
2282 		len = sizeof(int);
2283 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2284 		if (put_user(len, optlen) ||
2285 		    put_user(val, optval))
2286 			return -EFAULT;
2287 		err = 0;
2288 		break;
2289 	case NETLINK_BROADCAST_ERROR:
2290 		if (len < sizeof(int))
2291 			return -EINVAL;
2292 		len = sizeof(int);
2293 		val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2294 		if (put_user(len, optlen) ||
2295 		    put_user(val, optval))
2296 			return -EFAULT;
2297 		err = 0;
2298 		break;
2299 	case NETLINK_NO_ENOBUFS:
2300 		if (len < sizeof(int))
2301 			return -EINVAL;
2302 		len = sizeof(int);
2303 		val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2304 		if (put_user(len, optlen) ||
2305 		    put_user(val, optval))
2306 			return -EFAULT;
2307 		err = 0;
2308 		break;
2309 	default:
2310 		err = -ENOPROTOOPT;
2311 	}
2312 	return err;
2313 }
2314 
netlink_cmsg_recv_pktinfo(struct msghdr * msg,struct sk_buff * skb)2315 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2316 {
2317 	struct nl_pktinfo info;
2318 
2319 	info.group = NETLINK_CB(skb).dst_group;
2320 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2321 }
2322 
netlink_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)2323 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2324 {
2325 	struct sock *sk = sock->sk;
2326 	struct netlink_sock *nlk = nlk_sk(sk);
2327 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2328 	u32 dst_portid;
2329 	u32 dst_group;
2330 	struct sk_buff *skb;
2331 	int err;
2332 	struct scm_cookie scm;
2333 	u32 netlink_skb_flags = 0;
2334 
2335 	if (msg->msg_flags&MSG_OOB)
2336 		return -EOPNOTSUPP;
2337 
2338 	err = scm_send(sock, msg, &scm, true);
2339 	if (err < 0)
2340 		return err;
2341 
2342 	if (msg->msg_namelen) {
2343 		err = -EINVAL;
2344 		if (addr->nl_family != AF_NETLINK)
2345 			goto out;
2346 		dst_portid = addr->nl_pid;
2347 		dst_group = ffs(addr->nl_groups);
2348 		err =  -EPERM;
2349 		if ((dst_group || dst_portid) &&
2350 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2351 			goto out;
2352 		netlink_skb_flags |= NETLINK_SKB_DST;
2353 	} else {
2354 		dst_portid = nlk->dst_portid;
2355 		dst_group = nlk->dst_group;
2356 	}
2357 
2358 	if (!nlk->bound) {
2359 		err = netlink_autobind(sock);
2360 		if (err)
2361 			goto out;
2362 	} else {
2363 		/* Ensure nlk is hashed and visible. */
2364 		smp_rmb();
2365 	}
2366 
2367 	/* It's a really convoluted way for userland to ask for mmaped
2368 	 * sendmsg(), but that's what we've got...
2369 	 */
2370 	if (netlink_tx_is_mmaped(sk) &&
2371 	    msg->msg_iter.type == ITER_IOVEC &&
2372 	    msg->msg_iter.nr_segs == 1 &&
2373 	    msg->msg_iter.iov->iov_base == NULL) {
2374 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2375 					   &scm);
2376 		goto out;
2377 	}
2378 
2379 	err = -EMSGSIZE;
2380 	if (len > sk->sk_sndbuf - 32)
2381 		goto out;
2382 	err = -ENOBUFS;
2383 	skb = netlink_alloc_large_skb(len, dst_group);
2384 	if (skb == NULL)
2385 		goto out;
2386 
2387 	NETLINK_CB(skb).portid	= nlk->portid;
2388 	NETLINK_CB(skb).dst_group = dst_group;
2389 	NETLINK_CB(skb).creds	= scm.creds;
2390 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2391 
2392 	err = -EFAULT;
2393 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2394 		kfree_skb(skb);
2395 		goto out;
2396 	}
2397 
2398 	err = security_netlink_send(sk, skb);
2399 	if (err) {
2400 		kfree_skb(skb);
2401 		goto out;
2402 	}
2403 
2404 	if (dst_group) {
2405 		atomic_inc(&skb->users);
2406 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2407 	}
2408 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2409 
2410 out:
2411 	scm_destroy(&scm);
2412 	return err;
2413 }
2414 
netlink_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2415 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2416 			   int flags)
2417 {
2418 	struct scm_cookie scm;
2419 	struct sock *sk = sock->sk;
2420 	struct netlink_sock *nlk = nlk_sk(sk);
2421 	int noblock = flags&MSG_DONTWAIT;
2422 	size_t copied;
2423 	struct sk_buff *skb, *data_skb;
2424 	int err, ret;
2425 
2426 	if (flags&MSG_OOB)
2427 		return -EOPNOTSUPP;
2428 
2429 	copied = 0;
2430 
2431 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2432 	if (skb == NULL)
2433 		goto out;
2434 
2435 	data_skb = skb;
2436 
2437 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2438 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2439 		/*
2440 		 * If this skb has a frag_list, then here that means that we
2441 		 * will have to use the frag_list skb's data for compat tasks
2442 		 * and the regular skb's data for normal (non-compat) tasks.
2443 		 *
2444 		 * If we need to send the compat skb, assign it to the
2445 		 * 'data_skb' variable so that it will be used below for data
2446 		 * copying. We keep 'skb' for everything else, including
2447 		 * freeing both later.
2448 		 */
2449 		if (flags & MSG_CMSG_COMPAT)
2450 			data_skb = skb_shinfo(skb)->frag_list;
2451 	}
2452 #endif
2453 
2454 	/* Record the max length of recvmsg() calls for future allocations */
2455 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2456 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2457 				     16384);
2458 
2459 	copied = data_skb->len;
2460 	if (len < copied) {
2461 		msg->msg_flags |= MSG_TRUNC;
2462 		copied = len;
2463 	}
2464 
2465 	skb_reset_transport_header(data_skb);
2466 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2467 
2468 	if (msg->msg_name) {
2469 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2470 		addr->nl_family = AF_NETLINK;
2471 		addr->nl_pad    = 0;
2472 		addr->nl_pid	= NETLINK_CB(skb).portid;
2473 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2474 		msg->msg_namelen = sizeof(*addr);
2475 	}
2476 
2477 	if (nlk->flags & NETLINK_RECV_PKTINFO)
2478 		netlink_cmsg_recv_pktinfo(msg, skb);
2479 
2480 	memset(&scm, 0, sizeof(scm));
2481 	scm.creds = *NETLINK_CREDS(skb);
2482 	if (flags & MSG_TRUNC)
2483 		copied = data_skb->len;
2484 
2485 	skb_free_datagram(sk, skb);
2486 
2487 	if (nlk->cb_running &&
2488 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2489 		ret = netlink_dump(sk);
2490 		if (ret) {
2491 			sk->sk_err = -ret;
2492 			sk->sk_error_report(sk);
2493 		}
2494 	}
2495 
2496 	scm_recv(sock, msg, &scm, flags);
2497 out:
2498 	netlink_rcv_wake(sk);
2499 	return err ? : copied;
2500 }
2501 
netlink_data_ready(struct sock * sk)2502 static void netlink_data_ready(struct sock *sk)
2503 {
2504 	BUG();
2505 }
2506 
2507 /*
2508  *	We export these functions to other modules. They provide a
2509  *	complete set of kernel non-blocking support for message
2510  *	queueing.
2511  */
2512 
2513 struct sock *
__netlink_kernel_create(struct net * net,int unit,struct module * module,struct netlink_kernel_cfg * cfg)2514 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2515 			struct netlink_kernel_cfg *cfg)
2516 {
2517 	struct socket *sock;
2518 	struct sock *sk;
2519 	struct netlink_sock *nlk;
2520 	struct listeners *listeners = NULL;
2521 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2522 	unsigned int groups;
2523 
2524 	BUG_ON(!nl_table);
2525 
2526 	if (unit < 0 || unit >= MAX_LINKS)
2527 		return NULL;
2528 
2529 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2530 		return NULL;
2531 
2532 	/*
2533 	 * We have to just have a reference on the net from sk, but don't
2534 	 * get_net it. Besides, we cannot get and then put the net here.
2535 	 * So we create one inside init_net and the move it to net.
2536 	 */
2537 
2538 	if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2539 		goto out_sock_release_nosk;
2540 
2541 	sk = sock->sk;
2542 	sk_change_net(sk, net);
2543 
2544 	if (!cfg || cfg->groups < 32)
2545 		groups = 32;
2546 	else
2547 		groups = cfg->groups;
2548 
2549 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2550 	if (!listeners)
2551 		goto out_sock_release;
2552 
2553 	sk->sk_data_ready = netlink_data_ready;
2554 	if (cfg && cfg->input)
2555 		nlk_sk(sk)->netlink_rcv = cfg->input;
2556 
2557 	if (netlink_insert(sk, 0))
2558 		goto out_sock_release;
2559 
2560 	nlk = nlk_sk(sk);
2561 	nlk->flags |= NETLINK_KERNEL_SOCKET;
2562 
2563 	netlink_table_grab();
2564 	if (!nl_table[unit].registered) {
2565 		nl_table[unit].groups = groups;
2566 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2567 		nl_table[unit].cb_mutex = cb_mutex;
2568 		nl_table[unit].module = module;
2569 		if (cfg) {
2570 			nl_table[unit].bind = cfg->bind;
2571 			nl_table[unit].unbind = cfg->unbind;
2572 			nl_table[unit].flags = cfg->flags;
2573 			if (cfg->compare)
2574 				nl_table[unit].compare = cfg->compare;
2575 		}
2576 		nl_table[unit].registered = 1;
2577 	} else {
2578 		kfree(listeners);
2579 		nl_table[unit].registered++;
2580 	}
2581 	netlink_table_ungrab();
2582 	return sk;
2583 
2584 out_sock_release:
2585 	kfree(listeners);
2586 	netlink_kernel_release(sk);
2587 	return NULL;
2588 
2589 out_sock_release_nosk:
2590 	sock_release(sock);
2591 	return NULL;
2592 }
2593 EXPORT_SYMBOL(__netlink_kernel_create);
2594 
2595 void
netlink_kernel_release(struct sock * sk)2596 netlink_kernel_release(struct sock *sk)
2597 {
2598 	sk_release_kernel(sk);
2599 }
2600 EXPORT_SYMBOL(netlink_kernel_release);
2601 
__netlink_change_ngroups(struct sock * sk,unsigned int groups)2602 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2603 {
2604 	struct listeners *new, *old;
2605 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2606 
2607 	if (groups < 32)
2608 		groups = 32;
2609 
2610 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2611 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2612 		if (!new)
2613 			return -ENOMEM;
2614 		old = nl_deref_protected(tbl->listeners);
2615 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2616 		rcu_assign_pointer(tbl->listeners, new);
2617 
2618 		kfree_rcu(old, rcu);
2619 	}
2620 	tbl->groups = groups;
2621 
2622 	return 0;
2623 }
2624 
2625 /**
2626  * netlink_change_ngroups - change number of multicast groups
2627  *
2628  * This changes the number of multicast groups that are available
2629  * on a certain netlink family. Note that it is not possible to
2630  * change the number of groups to below 32. Also note that it does
2631  * not implicitly call netlink_clear_multicast_users() when the
2632  * number of groups is reduced.
2633  *
2634  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2635  * @groups: The new number of groups.
2636  */
netlink_change_ngroups(struct sock * sk,unsigned int groups)2637 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2638 {
2639 	int err;
2640 
2641 	netlink_table_grab();
2642 	err = __netlink_change_ngroups(sk, groups);
2643 	netlink_table_ungrab();
2644 
2645 	return err;
2646 }
2647 
__netlink_clear_multicast_users(struct sock * ksk,unsigned int group)2648 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2649 {
2650 	struct sock *sk;
2651 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2652 
2653 	sk_for_each_bound(sk, &tbl->mc_list)
2654 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2655 }
2656 
2657 struct nlmsghdr *
__nlmsg_put(struct sk_buff * skb,u32 portid,u32 seq,int type,int len,int flags)2658 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2659 {
2660 	struct nlmsghdr *nlh;
2661 	int size = nlmsg_msg_size(len);
2662 
2663 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2664 	nlh->nlmsg_type = type;
2665 	nlh->nlmsg_len = size;
2666 	nlh->nlmsg_flags = flags;
2667 	nlh->nlmsg_pid = portid;
2668 	nlh->nlmsg_seq = seq;
2669 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2670 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2671 	return nlh;
2672 }
2673 EXPORT_SYMBOL(__nlmsg_put);
2674 
2675 /*
2676  * It looks a bit ugly.
2677  * It would be better to create kernel thread.
2678  */
2679 
netlink_dump(struct sock * sk)2680 static int netlink_dump(struct sock *sk)
2681 {
2682 	struct netlink_sock *nlk = nlk_sk(sk);
2683 	struct netlink_callback *cb;
2684 	struct sk_buff *skb = NULL;
2685 	struct nlmsghdr *nlh;
2686 	int len, err = -ENOBUFS;
2687 	int alloc_min_size;
2688 	int alloc_size;
2689 
2690 	mutex_lock(nlk->cb_mutex);
2691 	if (!nlk->cb_running) {
2692 		err = -EINVAL;
2693 		goto errout_skb;
2694 	}
2695 
2696 	if (!netlink_rx_is_mmaped(sk) &&
2697 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2698 		goto errout_skb;
2699 
2700 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2701 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2702 	 * to reduce number of system calls on dump operations, if user
2703 	 * ever provided a big enough buffer.
2704 	 */
2705 	cb = &nlk->cb;
2706 	alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2707 
2708 	if (alloc_min_size < nlk->max_recvmsg_len) {
2709 		alloc_size = nlk->max_recvmsg_len;
2710 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2711 					GFP_KERNEL |
2712 					__GFP_NOWARN |
2713 					__GFP_NORETRY);
2714 	}
2715 	if (!skb) {
2716 		alloc_size = alloc_min_size;
2717 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2718 					GFP_KERNEL);
2719 	}
2720 	if (!skb)
2721 		goto errout_skb;
2722 
2723 	/* Trim skb to allocated size. User is expected to provide buffer as
2724 	 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
2725 	 * netlink_recvmsg())). dump will pack as many smaller messages as
2726 	 * could fit within the allocated skb. skb is typically allocated
2727 	 * with larger space than required (could be as much as near 2x the
2728 	 * requested size with align to next power of 2 approach). Allowing
2729 	 * dump to use the excess space makes it difficult for a user to have a
2730 	 * reasonable static buffer based on the expected largest dump of a
2731 	 * single netdev. The outcome is MSG_TRUNC error.
2732 	 */
2733 	skb_reserve(skb, skb_tailroom(skb) - alloc_size);
2734 	netlink_skb_set_owner_r(skb, sk);
2735 
2736 	len = cb->dump(skb, cb);
2737 
2738 	if (len > 0) {
2739 		mutex_unlock(nlk->cb_mutex);
2740 
2741 		if (sk_filter(sk, skb))
2742 			kfree_skb(skb);
2743 		else
2744 			__netlink_sendskb(sk, skb);
2745 		return 0;
2746 	}
2747 
2748 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2749 	if (!nlh)
2750 		goto errout_skb;
2751 
2752 	nl_dump_check_consistent(cb, nlh);
2753 
2754 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2755 
2756 	if (sk_filter(sk, skb))
2757 		kfree_skb(skb);
2758 	else
2759 		__netlink_sendskb(sk, skb);
2760 
2761 	if (cb->done)
2762 		cb->done(cb);
2763 
2764 	nlk->cb_running = false;
2765 	mutex_unlock(nlk->cb_mutex);
2766 	module_put(cb->module);
2767 	consume_skb(cb->skb);
2768 	return 0;
2769 
2770 errout_skb:
2771 	mutex_unlock(nlk->cb_mutex);
2772 	kfree_skb(skb);
2773 	return err;
2774 }
2775 
__netlink_dump_start(struct sock * ssk,struct sk_buff * skb,const struct nlmsghdr * nlh,struct netlink_dump_control * control)2776 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2777 			 const struct nlmsghdr *nlh,
2778 			 struct netlink_dump_control *control)
2779 {
2780 	struct netlink_callback *cb;
2781 	struct sock *sk;
2782 	struct netlink_sock *nlk;
2783 	int ret;
2784 
2785 	/* Memory mapped dump requests need to be copied to avoid looping
2786 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2787 	 * a reference to the skb.
2788 	 */
2789 	if (netlink_skb_is_mmaped(skb)) {
2790 		skb = skb_copy(skb, GFP_KERNEL);
2791 		if (skb == NULL)
2792 			return -ENOBUFS;
2793 	} else
2794 		atomic_inc(&skb->users);
2795 
2796 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2797 	if (sk == NULL) {
2798 		ret = -ECONNREFUSED;
2799 		goto error_free;
2800 	}
2801 
2802 	nlk = nlk_sk(sk);
2803 	mutex_lock(nlk->cb_mutex);
2804 	/* A dump is in progress... */
2805 	if (nlk->cb_running) {
2806 		ret = -EBUSY;
2807 		goto error_unlock;
2808 	}
2809 	/* add reference of module which cb->dump belongs to */
2810 	if (!try_module_get(control->module)) {
2811 		ret = -EPROTONOSUPPORT;
2812 		goto error_unlock;
2813 	}
2814 
2815 	cb = &nlk->cb;
2816 	memset(cb, 0, sizeof(*cb));
2817 	cb->dump = control->dump;
2818 	cb->done = control->done;
2819 	cb->nlh = nlh;
2820 	cb->data = control->data;
2821 	cb->module = control->module;
2822 	cb->min_dump_alloc = control->min_dump_alloc;
2823 	cb->skb = skb;
2824 
2825 	nlk->cb_running = true;
2826 
2827 	mutex_unlock(nlk->cb_mutex);
2828 
2829 	ret = netlink_dump(sk);
2830 	sock_put(sk);
2831 
2832 	if (ret)
2833 		return ret;
2834 
2835 	/* We successfully started a dump, by returning -EINTR we
2836 	 * signal not to send ACK even if it was requested.
2837 	 */
2838 	return -EINTR;
2839 
2840 error_unlock:
2841 	sock_put(sk);
2842 	mutex_unlock(nlk->cb_mutex);
2843 error_free:
2844 	kfree_skb(skb);
2845 	return ret;
2846 }
2847 EXPORT_SYMBOL(__netlink_dump_start);
2848 
netlink_ack(struct sk_buff * in_skb,struct nlmsghdr * nlh,int err)2849 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2850 {
2851 	struct sk_buff *skb;
2852 	struct nlmsghdr *rep;
2853 	struct nlmsgerr *errmsg;
2854 	size_t payload = sizeof(*errmsg);
2855 
2856 	/* error messages get the original request appened */
2857 	if (err)
2858 		payload += nlmsg_len(nlh);
2859 
2860 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2861 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2862 	if (!skb) {
2863 		struct sock *sk;
2864 
2865 		sk = netlink_lookup(sock_net(in_skb->sk),
2866 				    in_skb->sk->sk_protocol,
2867 				    NETLINK_CB(in_skb).portid);
2868 		if (sk) {
2869 			sk->sk_err = ENOBUFS;
2870 			sk->sk_error_report(sk);
2871 			sock_put(sk);
2872 		}
2873 		return;
2874 	}
2875 
2876 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2877 			  NLMSG_ERROR, payload, 0);
2878 	errmsg = nlmsg_data(rep);
2879 	errmsg->error = err;
2880 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2881 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2882 }
2883 EXPORT_SYMBOL(netlink_ack);
2884 
netlink_rcv_skb(struct sk_buff * skb,int (* cb)(struct sk_buff *,struct nlmsghdr *))2885 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2886 						     struct nlmsghdr *))
2887 {
2888 	struct nlmsghdr *nlh;
2889 	int err;
2890 
2891 	while (skb->len >= nlmsg_total_size(0)) {
2892 		int msglen;
2893 
2894 		nlh = nlmsg_hdr(skb);
2895 		err = 0;
2896 
2897 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2898 			return 0;
2899 
2900 		/* Only requests are handled by the kernel */
2901 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2902 			goto ack;
2903 
2904 		/* Skip control messages */
2905 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2906 			goto ack;
2907 
2908 		err = cb(skb, nlh);
2909 		if (err == -EINTR)
2910 			goto skip;
2911 
2912 ack:
2913 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2914 			netlink_ack(skb, nlh, err);
2915 
2916 skip:
2917 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2918 		if (msglen > skb->len)
2919 			msglen = skb->len;
2920 		skb_pull(skb, msglen);
2921 	}
2922 
2923 	return 0;
2924 }
2925 EXPORT_SYMBOL(netlink_rcv_skb);
2926 
2927 /**
2928  * nlmsg_notify - send a notification netlink message
2929  * @sk: netlink socket to use
2930  * @skb: notification message
2931  * @portid: destination netlink portid for reports or 0
2932  * @group: destination multicast group or 0
2933  * @report: 1 to report back, 0 to disable
2934  * @flags: allocation flags
2935  */
nlmsg_notify(struct sock * sk,struct sk_buff * skb,u32 portid,unsigned int group,int report,gfp_t flags)2936 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2937 		 unsigned int group, int report, gfp_t flags)
2938 {
2939 	int err = 0;
2940 
2941 	if (group) {
2942 		int exclude_portid = 0;
2943 
2944 		if (report) {
2945 			atomic_inc(&skb->users);
2946 			exclude_portid = portid;
2947 		}
2948 
2949 		/* errors reported via destination sk->sk_err, but propagate
2950 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2951 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2952 	}
2953 
2954 	if (report) {
2955 		int err2;
2956 
2957 		err2 = nlmsg_unicast(sk, skb, portid);
2958 		if (!err || err == -ESRCH)
2959 			err = err2;
2960 	}
2961 
2962 	return err;
2963 }
2964 EXPORT_SYMBOL(nlmsg_notify);
2965 
2966 #ifdef CONFIG_PROC_FS
2967 struct nl_seq_iter {
2968 	struct seq_net_private p;
2969 	struct rhashtable_iter hti;
2970 	int link;
2971 };
2972 
netlink_walk_start(struct nl_seq_iter * iter)2973 static int netlink_walk_start(struct nl_seq_iter *iter)
2974 {
2975 	int err;
2976 
2977 	err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2978 	if (err) {
2979 		iter->link = MAX_LINKS;
2980 		return err;
2981 	}
2982 
2983 	err = rhashtable_walk_start(&iter->hti);
2984 	return err == -EAGAIN ? 0 : err;
2985 }
2986 
netlink_walk_stop(struct nl_seq_iter * iter)2987 static void netlink_walk_stop(struct nl_seq_iter *iter)
2988 {
2989 	rhashtable_walk_stop(&iter->hti);
2990 	rhashtable_walk_exit(&iter->hti);
2991 }
2992 
__netlink_seq_next(struct seq_file * seq)2993 static void *__netlink_seq_next(struct seq_file *seq)
2994 {
2995 	struct nl_seq_iter *iter = seq->private;
2996 	struct netlink_sock *nlk;
2997 
2998 	do {
2999 		for (;;) {
3000 			int err;
3001 
3002 			nlk = rhashtable_walk_next(&iter->hti);
3003 
3004 			if (IS_ERR(nlk)) {
3005 				if (PTR_ERR(nlk) == -EAGAIN)
3006 					continue;
3007 
3008 				return nlk;
3009 			}
3010 
3011 			if (nlk)
3012 				break;
3013 
3014 			netlink_walk_stop(iter);
3015 			if (++iter->link >= MAX_LINKS)
3016 				return NULL;
3017 
3018 			err = netlink_walk_start(iter);
3019 			if (err)
3020 				return ERR_PTR(err);
3021 		}
3022 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
3023 
3024 	return nlk;
3025 }
3026 
netlink_seq_start(struct seq_file * seq,loff_t * posp)3027 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3028 {
3029 	struct nl_seq_iter *iter = seq->private;
3030 	void *obj = SEQ_START_TOKEN;
3031 	loff_t pos;
3032 	int err;
3033 
3034 	iter->link = 0;
3035 
3036 	err = netlink_walk_start(iter);
3037 	if (err)
3038 		return ERR_PTR(err);
3039 
3040 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3041 		obj = __netlink_seq_next(seq);
3042 
3043 	return obj;
3044 }
3045 
netlink_seq_next(struct seq_file * seq,void * v,loff_t * pos)3046 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3047 {
3048 	++*pos;
3049 	return __netlink_seq_next(seq);
3050 }
3051 
netlink_seq_stop(struct seq_file * seq,void * v)3052 static void netlink_seq_stop(struct seq_file *seq, void *v)
3053 {
3054 	struct nl_seq_iter *iter = seq->private;
3055 
3056 	if (iter->link >= MAX_LINKS)
3057 		return;
3058 
3059 	netlink_walk_stop(iter);
3060 }
3061 
3062 
netlink_seq_show(struct seq_file * seq,void * v)3063 static int netlink_seq_show(struct seq_file *seq, void *v)
3064 {
3065 	if (v == SEQ_START_TOKEN) {
3066 		seq_puts(seq,
3067 			 "sk       Eth Pid    Groups   "
3068 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
3069 	} else {
3070 		struct sock *s = v;
3071 		struct netlink_sock *nlk = nlk_sk(s);
3072 
3073 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3074 			   s,
3075 			   s->sk_protocol,
3076 			   nlk->portid,
3077 			   nlk->groups ? (u32)nlk->groups[0] : 0,
3078 			   sk_rmem_alloc_get(s),
3079 			   sk_wmem_alloc_get(s),
3080 			   nlk->cb_running,
3081 			   atomic_read(&s->sk_refcnt),
3082 			   atomic_read(&s->sk_drops),
3083 			   sock_i_ino(s)
3084 			);
3085 
3086 	}
3087 	return 0;
3088 }
3089 
3090 static const struct seq_operations netlink_seq_ops = {
3091 	.start  = netlink_seq_start,
3092 	.next   = netlink_seq_next,
3093 	.stop   = netlink_seq_stop,
3094 	.show   = netlink_seq_show,
3095 };
3096 
3097 
netlink_seq_open(struct inode * inode,struct file * file)3098 static int netlink_seq_open(struct inode *inode, struct file *file)
3099 {
3100 	return seq_open_net(inode, file, &netlink_seq_ops,
3101 				sizeof(struct nl_seq_iter));
3102 }
3103 
3104 static const struct file_operations netlink_seq_fops = {
3105 	.owner		= THIS_MODULE,
3106 	.open		= netlink_seq_open,
3107 	.read		= seq_read,
3108 	.llseek		= seq_lseek,
3109 	.release	= seq_release_net,
3110 };
3111 
3112 #endif
3113 
netlink_register_notifier(struct notifier_block * nb)3114 int netlink_register_notifier(struct notifier_block *nb)
3115 {
3116 	return atomic_notifier_chain_register(&netlink_chain, nb);
3117 }
3118 EXPORT_SYMBOL(netlink_register_notifier);
3119 
netlink_unregister_notifier(struct notifier_block * nb)3120 int netlink_unregister_notifier(struct notifier_block *nb)
3121 {
3122 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3123 }
3124 EXPORT_SYMBOL(netlink_unregister_notifier);
3125 
3126 static const struct proto_ops netlink_ops = {
3127 	.family =	PF_NETLINK,
3128 	.owner =	THIS_MODULE,
3129 	.release =	netlink_release,
3130 	.bind =		netlink_bind,
3131 	.connect =	netlink_connect,
3132 	.socketpair =	sock_no_socketpair,
3133 	.accept =	sock_no_accept,
3134 	.getname =	netlink_getname,
3135 	.poll =		netlink_poll,
3136 	.ioctl =	sock_no_ioctl,
3137 	.listen =	sock_no_listen,
3138 	.shutdown =	sock_no_shutdown,
3139 	.setsockopt =	netlink_setsockopt,
3140 	.getsockopt =	netlink_getsockopt,
3141 	.sendmsg =	netlink_sendmsg,
3142 	.recvmsg =	netlink_recvmsg,
3143 	.mmap =		netlink_mmap,
3144 	.sendpage =	sock_no_sendpage,
3145 };
3146 
3147 static const struct net_proto_family netlink_family_ops = {
3148 	.family = PF_NETLINK,
3149 	.create = netlink_create,
3150 	.owner	= THIS_MODULE,	/* for consistency 8) */
3151 };
3152 
netlink_net_init(struct net * net)3153 static int __net_init netlink_net_init(struct net *net)
3154 {
3155 #ifdef CONFIG_PROC_FS
3156 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3157 		return -ENOMEM;
3158 #endif
3159 	return 0;
3160 }
3161 
netlink_net_exit(struct net * net)3162 static void __net_exit netlink_net_exit(struct net *net)
3163 {
3164 #ifdef CONFIG_PROC_FS
3165 	remove_proc_entry("netlink", net->proc_net);
3166 #endif
3167 }
3168 
netlink_add_usersock_entry(void)3169 static void __init netlink_add_usersock_entry(void)
3170 {
3171 	struct listeners *listeners;
3172 	int groups = 32;
3173 
3174 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3175 	if (!listeners)
3176 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3177 
3178 	netlink_table_grab();
3179 
3180 	nl_table[NETLINK_USERSOCK].groups = groups;
3181 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3182 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3183 	nl_table[NETLINK_USERSOCK].registered = 1;
3184 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3185 
3186 	netlink_table_ungrab();
3187 }
3188 
3189 static struct pernet_operations __net_initdata netlink_net_ops = {
3190 	.init = netlink_net_init,
3191 	.exit = netlink_net_exit,
3192 };
3193 
netlink_hash(const void * data,u32 len,u32 seed)3194 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3195 {
3196 	const struct netlink_sock *nlk = data;
3197 	struct netlink_compare_arg arg;
3198 
3199 	netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3200 	return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3201 }
3202 
3203 static const struct rhashtable_params netlink_rhashtable_params = {
3204 	.head_offset = offsetof(struct netlink_sock, node),
3205 	.key_len = netlink_compare_arg_len,
3206 	.obj_hashfn = netlink_hash,
3207 	.obj_cmpfn = netlink_compare,
3208 	.automatic_shrinking = true,
3209 };
3210 
netlink_proto_init(void)3211 static int __init netlink_proto_init(void)
3212 {
3213 	int i;
3214 	int err = proto_register(&netlink_proto, 0);
3215 
3216 	if (err != 0)
3217 		goto out;
3218 
3219 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3220 
3221 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3222 	if (!nl_table)
3223 		goto panic;
3224 
3225 	for (i = 0; i < MAX_LINKS; i++) {
3226 		if (rhashtable_init(&nl_table[i].hash,
3227 				    &netlink_rhashtable_params) < 0) {
3228 			while (--i > 0)
3229 				rhashtable_destroy(&nl_table[i].hash);
3230 			kfree(nl_table);
3231 			goto panic;
3232 		}
3233 	}
3234 
3235 	INIT_LIST_HEAD(&netlink_tap_all);
3236 
3237 	netlink_add_usersock_entry();
3238 
3239 	sock_register(&netlink_family_ops);
3240 	register_pernet_subsys(&netlink_net_ops);
3241 	/* The netlink device handler may be needed early. */
3242 	rtnetlink_init();
3243 out:
3244 	return err;
3245 panic:
3246 	panic("netlink_init: Cannot allocate nl_table\n");
3247 }
3248 
3249 core_initcall(netlink_proto_init);
3250