1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34
35 struct inet_timewait_death_row tcp_death_row = {
36 .sysctl_max_tw_buckets = NR_FILE * 2,
37 .hashinfo = &tcp_hashinfo,
38 };
39 EXPORT_SYMBOL_GPL(tcp_death_row);
40
tcp_in_window(u32 seq,u32 end_seq,u32 s_win,u32 e_win)41 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
42 {
43 if (seq == s_win)
44 return true;
45 if (after(end_seq, s_win) && before(seq, e_win))
46 return true;
47 return seq == e_win && seq == end_seq;
48 }
49
50 static enum tcp_tw_status
tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock * tw,const struct sk_buff * skb,int mib_idx)51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
52 const struct sk_buff *skb, int mib_idx)
53 {
54 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
55
56 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
57 &tcptw->tw_last_oow_ack_time)) {
58 /* Send ACK. Note, we do not put the bucket,
59 * it will be released by caller.
60 */
61 return TCP_TW_ACK;
62 }
63
64 /* We are rate-limiting, so just release the tw sock and drop skb. */
65 inet_twsk_put(tw);
66 return TCP_TW_SUCCESS;
67 }
68
69 /*
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 * (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 * lifetime in the internet, which results in wrong conclusion, that
75 * it is set to catch "old duplicate segments" wandering out of their path.
76 * It is not quite correct. This timeout is calculated so that it exceeds
77 * maximal retransmission timeout enough to allow to lose one (or more)
78 * segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 * finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86 *
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
90 *
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc. --ANK
96 *
97 * We don't need to initialize tmp_out.sack_ok as we don't use the results
98 */
99 enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock * tw,struct sk_buff * skb,const struct tcphdr * th)100 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
101 const struct tcphdr *th)
102 {
103 struct tcp_options_received tmp_opt;
104 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
105 bool paws_reject = false;
106
107 tmp_opt.saw_tstamp = 0;
108 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
109 tcp_parse_options(skb, &tmp_opt, 0, NULL);
110
111 if (tmp_opt.saw_tstamp) {
112 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
113 tmp_opt.ts_recent = tcptw->tw_ts_recent;
114 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
115 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
116 }
117 }
118
119 if (tw->tw_substate == TCP_FIN_WAIT2) {
120 /* Just repeat all the checks of tcp_rcv_state_process() */
121
122 /* Out of window, send ACK */
123 if (paws_reject ||
124 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
125 tcptw->tw_rcv_nxt,
126 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
127 return tcp_timewait_check_oow_rate_limit(
128 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
129
130 if (th->rst)
131 goto kill;
132
133 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
134 goto kill_with_rst;
135
136 /* Dup ACK? */
137 if (!th->ack ||
138 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
139 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
140 inet_twsk_put(tw);
141 return TCP_TW_SUCCESS;
142 }
143
144 /* New data or FIN. If new data arrive after half-duplex close,
145 * reset.
146 */
147 if (!th->fin ||
148 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
149 kill_with_rst:
150 inet_twsk_deschedule(tw);
151 inet_twsk_put(tw);
152 return TCP_TW_RST;
153 }
154
155 /* FIN arrived, enter true time-wait state. */
156 tw->tw_substate = TCP_TIME_WAIT;
157 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
158 if (tmp_opt.saw_tstamp) {
159 tcptw->tw_ts_recent_stamp = get_seconds();
160 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
161 }
162
163 if (tcp_death_row.sysctl_tw_recycle &&
164 tcptw->tw_ts_recent_stamp &&
165 tcp_tw_remember_stamp(tw))
166 inet_twsk_reschedule(tw, tw->tw_timeout);
167 else
168 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
169 return TCP_TW_ACK;
170 }
171
172 /*
173 * Now real TIME-WAIT state.
174 *
175 * RFC 1122:
176 * "When a connection is [...] on TIME-WAIT state [...]
177 * [a TCP] MAY accept a new SYN from the remote TCP to
178 * reopen the connection directly, if it:
179 *
180 * (1) assigns its initial sequence number for the new
181 * connection to be larger than the largest sequence
182 * number it used on the previous connection incarnation,
183 * and
184 *
185 * (2) returns to TIME-WAIT state if the SYN turns out
186 * to be an old duplicate".
187 */
188
189 if (!paws_reject &&
190 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
191 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
192 /* In window segment, it may be only reset or bare ack. */
193
194 if (th->rst) {
195 /* This is TIME_WAIT assassination, in two flavors.
196 * Oh well... nobody has a sufficient solution to this
197 * protocol bug yet.
198 */
199 if (sysctl_tcp_rfc1337 == 0) {
200 kill:
201 inet_twsk_deschedule(tw);
202 inet_twsk_put(tw);
203 return TCP_TW_SUCCESS;
204 }
205 }
206 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
207
208 if (tmp_opt.saw_tstamp) {
209 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
210 tcptw->tw_ts_recent_stamp = get_seconds();
211 }
212
213 inet_twsk_put(tw);
214 return TCP_TW_SUCCESS;
215 }
216
217 /* Out of window segment.
218
219 All the segments are ACKed immediately.
220
221 The only exception is new SYN. We accept it, if it is
222 not old duplicate and we are not in danger to be killed
223 by delayed old duplicates. RFC check is that it has
224 newer sequence number works at rates <40Mbit/sec.
225 However, if paws works, it is reliable AND even more,
226 we even may relax silly seq space cutoff.
227
228 RED-PEN: we violate main RFC requirement, if this SYN will appear
229 old duplicate (i.e. we receive RST in reply to SYN-ACK),
230 we must return socket to time-wait state. It is not good,
231 but not fatal yet.
232 */
233
234 if (th->syn && !th->rst && !th->ack && !paws_reject &&
235 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
236 (tmp_opt.saw_tstamp &&
237 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
238 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239 if (isn == 0)
240 isn++;
241 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
242 return TCP_TW_SYN;
243 }
244
245 if (paws_reject)
246 NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247
248 if (!th->rst) {
249 /* In this case we must reset the TIMEWAIT timer.
250 *
251 * If it is ACKless SYN it may be both old duplicate
252 * and new good SYN with random sequence number <rcv_nxt.
253 * Do not reschedule in the last case.
254 */
255 if (paws_reject || th->ack)
256 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
257
258 return tcp_timewait_check_oow_rate_limit(
259 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
260 }
261 inet_twsk_put(tw);
262 return TCP_TW_SUCCESS;
263 }
264 EXPORT_SYMBOL(tcp_timewait_state_process);
265
266 /*
267 * Move a socket to time-wait or dead fin-wait-2 state.
268 */
tcp_time_wait(struct sock * sk,int state,int timeo)269 void tcp_time_wait(struct sock *sk, int state, int timeo)
270 {
271 const struct inet_connection_sock *icsk = inet_csk(sk);
272 const struct tcp_sock *tp = tcp_sk(sk);
273 struct inet_timewait_sock *tw;
274 bool recycle_ok = false;
275
276 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
277 recycle_ok = tcp_remember_stamp(sk);
278
279 tw = inet_twsk_alloc(sk, &tcp_death_row, state);
280
281 if (tw) {
282 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
283 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
284 struct inet_sock *inet = inet_sk(sk);
285
286 tw->tw_transparent = inet->transparent;
287 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
288 tcptw->tw_rcv_nxt = tp->rcv_nxt;
289 tcptw->tw_snd_nxt = tp->snd_nxt;
290 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
291 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
292 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
293 tcptw->tw_ts_offset = tp->tsoffset;
294 tcptw->tw_last_oow_ack_time = 0;
295
296 #if IS_ENABLED(CONFIG_IPV6)
297 if (tw->tw_family == PF_INET6) {
298 struct ipv6_pinfo *np = inet6_sk(sk);
299
300 tw->tw_v6_daddr = sk->sk_v6_daddr;
301 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
302 tw->tw_tclass = np->tclass;
303 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
304 tw->tw_ipv6only = sk->sk_ipv6only;
305 }
306 #endif
307
308 #ifdef CONFIG_TCP_MD5SIG
309 /*
310 * The timewait bucket does not have the key DB from the
311 * sock structure. We just make a quick copy of the
312 * md5 key being used (if indeed we are using one)
313 * so the timewait ack generating code has the key.
314 */
315 do {
316 struct tcp_md5sig_key *key;
317 tcptw->tw_md5_key = NULL;
318 key = tp->af_specific->md5_lookup(sk, sk);
319 if (key) {
320 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
321 if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
322 BUG();
323 }
324 } while (0);
325 #endif
326
327 /* Get the TIME_WAIT timeout firing. */
328 if (timeo < rto)
329 timeo = rto;
330
331 if (recycle_ok) {
332 tw->tw_timeout = rto;
333 } else {
334 tw->tw_timeout = TCP_TIMEWAIT_LEN;
335 if (state == TCP_TIME_WAIT)
336 timeo = TCP_TIMEWAIT_LEN;
337 }
338
339 inet_twsk_schedule(tw, timeo);
340 /* Linkage updates. */
341 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
342 inet_twsk_put(tw);
343 } else {
344 /* Sorry, if we're out of memory, just CLOSE this
345 * socket up. We've got bigger problems than
346 * non-graceful socket closings.
347 */
348 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
349 }
350
351 tcp_update_metrics(sk);
352 tcp_done(sk);
353 }
354
tcp_twsk_destructor(struct sock * sk)355 void tcp_twsk_destructor(struct sock *sk)
356 {
357 #ifdef CONFIG_TCP_MD5SIG
358 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
359
360 if (twsk->tw_md5_key)
361 kfree_rcu(twsk->tw_md5_key, rcu);
362 #endif
363 }
364 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
365
tcp_openreq_init_rwin(struct request_sock * req,struct sock * sk,struct dst_entry * dst)366 void tcp_openreq_init_rwin(struct request_sock *req,
367 struct sock *sk, struct dst_entry *dst)
368 {
369 struct inet_request_sock *ireq = inet_rsk(req);
370 struct tcp_sock *tp = tcp_sk(sk);
371 __u8 rcv_wscale;
372 int mss = dst_metric_advmss(dst);
373
374 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
375 mss = tp->rx_opt.user_mss;
376
377 /* Set this up on the first call only */
378 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380 /* limit the window selection if the user enforce a smaller rx buffer */
381 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
382 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
383 req->window_clamp = tcp_full_space(sk);
384
385 /* tcp_full_space because it is guaranteed to be the first packet */
386 tcp_select_initial_window(tcp_full_space(sk),
387 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388 &req->rcv_wnd,
389 &req->window_clamp,
390 ireq->wscale_ok,
391 &rcv_wscale,
392 dst_metric(dst, RTAX_INITRWND));
393 ireq->rcv_wscale = rcv_wscale;
394 }
395 EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
tcp_ecn_openreq_child(struct tcp_sock * tp,const struct request_sock * req)397 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398 const struct request_sock *req)
399 {
400 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401 }
402
tcp_ca_openreq_child(struct sock * sk,const struct dst_entry * dst)403 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404 {
405 struct inet_connection_sock *icsk = inet_csk(sk);
406 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407 bool ca_got_dst = false;
408
409 if (ca_key != TCP_CA_UNSPEC) {
410 const struct tcp_congestion_ops *ca;
411
412 rcu_read_lock();
413 ca = tcp_ca_find_key(ca_key);
414 if (likely(ca && try_module_get(ca->owner))) {
415 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416 icsk->icsk_ca_ops = ca;
417 ca_got_dst = true;
418 }
419 rcu_read_unlock();
420 }
421
422 /* If no valid choice made yet, assign current system default ca. */
423 if (!ca_got_dst &&
424 (!icsk->icsk_ca_setsockopt ||
425 !try_module_get(icsk->icsk_ca_ops->owner)))
426 tcp_assign_congestion_control(sk);
427
428 tcp_set_ca_state(sk, TCP_CA_Open);
429 }
430 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
432 /* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
tcp_create_openreq_child(struct sock * sk,struct request_sock * req,struct sk_buff * skb)438 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
439 {
440 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
441
442 if (newsk) {
443 const struct inet_request_sock *ireq = inet_rsk(req);
444 struct tcp_request_sock *treq = tcp_rsk(req);
445 struct inet_connection_sock *newicsk = inet_csk(newsk);
446 struct tcp_sock *newtp = tcp_sk(newsk);
447
448 /* Now setup tcp_sock */
449 newtp->pred_flags = 0;
450
451 newtp->rcv_wup = newtp->copied_seq =
452 newtp->rcv_nxt = treq->rcv_isn + 1;
453
454 newtp->snd_sml = newtp->snd_una =
455 newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
456
457 tcp_prequeue_init(newtp);
458 INIT_LIST_HEAD(&newtp->tsq_node);
459
460 tcp_init_wl(newtp, treq->rcv_isn);
461
462 newtp->srtt_us = 0;
463 newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
464 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
465
466 newtp->packets_out = 0;
467 newtp->retrans_out = 0;
468 newtp->sacked_out = 0;
469 newtp->fackets_out = 0;
470 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
471 tcp_enable_early_retrans(newtp);
472 newtp->tlp_high_seq = 0;
473 newtp->lsndtime = treq->snt_synack;
474 newtp->last_oow_ack_time = 0;
475 newtp->total_retrans = req->num_retrans;
476
477 /* So many TCP implementations out there (incorrectly) count the
478 * initial SYN frame in their delayed-ACK and congestion control
479 * algorithms that we must have the following bandaid to talk
480 * efficiently to them. -DaveM
481 */
482 newtp->snd_cwnd = TCP_INIT_CWND;
483 newtp->snd_cwnd_cnt = 0;
484
485 tcp_init_xmit_timers(newsk);
486 __skb_queue_head_init(&newtp->out_of_order_queue);
487 newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
488
489 newtp->rx_opt.saw_tstamp = 0;
490
491 newtp->rx_opt.dsack = 0;
492 newtp->rx_opt.num_sacks = 0;
493
494 newtp->urg_data = 0;
495
496 if (sock_flag(newsk, SOCK_KEEPOPEN))
497 inet_csk_reset_keepalive_timer(newsk,
498 keepalive_time_when(newtp));
499
500 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
501 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
502 if (sysctl_tcp_fack)
503 tcp_enable_fack(newtp);
504 }
505 newtp->window_clamp = req->window_clamp;
506 newtp->rcv_ssthresh = req->rcv_wnd;
507 newtp->rcv_wnd = req->rcv_wnd;
508 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
509 if (newtp->rx_opt.wscale_ok) {
510 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
511 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
512 } else {
513 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
514 newtp->window_clamp = min(newtp->window_clamp, 65535U);
515 }
516 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
517 newtp->rx_opt.snd_wscale);
518 newtp->max_window = newtp->snd_wnd;
519
520 if (newtp->rx_opt.tstamp_ok) {
521 newtp->rx_opt.ts_recent = req->ts_recent;
522 newtp->rx_opt.ts_recent_stamp = get_seconds();
523 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
524 } else {
525 newtp->rx_opt.ts_recent_stamp = 0;
526 newtp->tcp_header_len = sizeof(struct tcphdr);
527 }
528 newtp->tsoffset = 0;
529 #ifdef CONFIG_TCP_MD5SIG
530 newtp->md5sig_info = NULL; /*XXX*/
531 if (newtp->af_specific->md5_lookup(sk, newsk))
532 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
533 #endif
534 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
535 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
536 newtp->rx_opt.mss_clamp = req->mss;
537 tcp_ecn_openreq_child(newtp, req);
538 newtp->fastopen_rsk = NULL;
539 newtp->syn_data_acked = 0;
540
541 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
542 }
543 return newsk;
544 }
545 EXPORT_SYMBOL(tcp_create_openreq_child);
546
547 /*
548 * Process an incoming packet for SYN_RECV sockets represented as a
549 * request_sock. Normally sk is the listener socket but for TFO it
550 * points to the child socket.
551 *
552 * XXX (TFO) - The current impl contains a special check for ack
553 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
554 *
555 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
556 */
557
tcp_check_req(struct sock * sk,struct sk_buff * skb,struct request_sock * req,bool fastopen)558 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
559 struct request_sock *req,
560 bool fastopen)
561 {
562 struct tcp_options_received tmp_opt;
563 struct sock *child;
564 const struct tcphdr *th = tcp_hdr(skb);
565 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
566 bool paws_reject = false;
567
568 BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
569
570 tmp_opt.saw_tstamp = 0;
571 if (th->doff > (sizeof(struct tcphdr)>>2)) {
572 tcp_parse_options(skb, &tmp_opt, 0, NULL);
573
574 if (tmp_opt.saw_tstamp) {
575 tmp_opt.ts_recent = req->ts_recent;
576 /* We do not store true stamp, but it is not required,
577 * it can be estimated (approximately)
578 * from another data.
579 */
580 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
581 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
582 }
583 }
584
585 /* Check for pure retransmitted SYN. */
586 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
587 flg == TCP_FLAG_SYN &&
588 !paws_reject) {
589 /*
590 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
591 * this case on figure 6 and figure 8, but formal
592 * protocol description says NOTHING.
593 * To be more exact, it says that we should send ACK,
594 * because this segment (at least, if it has no data)
595 * is out of window.
596 *
597 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
598 * describe SYN-RECV state. All the description
599 * is wrong, we cannot believe to it and should
600 * rely only on common sense and implementation
601 * experience.
602 *
603 * Enforce "SYN-ACK" according to figure 8, figure 6
604 * of RFC793, fixed by RFC1122.
605 *
606 * Note that even if there is new data in the SYN packet
607 * they will be thrown away too.
608 *
609 * Reset timer after retransmitting SYNACK, similar to
610 * the idea of fast retransmit in recovery.
611 */
612 if (!tcp_oow_rate_limited(sock_net(sk), skb,
613 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
614 &tcp_rsk(req)->last_oow_ack_time) &&
615
616 !inet_rtx_syn_ack(sk, req)) {
617 unsigned long expires = jiffies;
618
619 expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
620 TCP_RTO_MAX);
621 if (!fastopen)
622 mod_timer_pending(&req->rsk_timer, expires);
623 else
624 req->rsk_timer.expires = expires;
625 }
626 return NULL;
627 }
628
629 /* Further reproduces section "SEGMENT ARRIVES"
630 for state SYN-RECEIVED of RFC793.
631 It is broken, however, it does not work only
632 when SYNs are crossed.
633
634 You would think that SYN crossing is impossible here, since
635 we should have a SYN_SENT socket (from connect()) on our end,
636 but this is not true if the crossed SYNs were sent to both
637 ends by a malicious third party. We must defend against this,
638 and to do that we first verify the ACK (as per RFC793, page
639 36) and reset if it is invalid. Is this a true full defense?
640 To convince ourselves, let us consider a way in which the ACK
641 test can still pass in this 'malicious crossed SYNs' case.
642 Malicious sender sends identical SYNs (and thus identical sequence
643 numbers) to both A and B:
644
645 A: gets SYN, seq=7
646 B: gets SYN, seq=7
647
648 By our good fortune, both A and B select the same initial
649 send sequence number of seven :-)
650
651 A: sends SYN|ACK, seq=7, ack_seq=8
652 B: sends SYN|ACK, seq=7, ack_seq=8
653
654 So we are now A eating this SYN|ACK, ACK test passes. So
655 does sequence test, SYN is truncated, and thus we consider
656 it a bare ACK.
657
658 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
659 bare ACK. Otherwise, we create an established connection. Both
660 ends (listening sockets) accept the new incoming connection and try
661 to talk to each other. 8-)
662
663 Note: This case is both harmless, and rare. Possibility is about the
664 same as us discovering intelligent life on another plant tomorrow.
665
666 But generally, we should (RFC lies!) to accept ACK
667 from SYNACK both here and in tcp_rcv_state_process().
668 tcp_rcv_state_process() does not, hence, we do not too.
669
670 Note that the case is absolutely generic:
671 we cannot optimize anything here without
672 violating protocol. All the checks must be made
673 before attempt to create socket.
674 */
675
676 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
677 * and the incoming segment acknowledges something not yet
678 * sent (the segment carries an unacceptable ACK) ...
679 * a reset is sent."
680 *
681 * Invalid ACK: reset will be sent by listening socket.
682 * Note that the ACK validity check for a Fast Open socket is done
683 * elsewhere and is checked directly against the child socket rather
684 * than req because user data may have been sent out.
685 */
686 if ((flg & TCP_FLAG_ACK) && !fastopen &&
687 (TCP_SKB_CB(skb)->ack_seq !=
688 tcp_rsk(req)->snt_isn + 1))
689 return sk;
690
691 /* Also, it would be not so bad idea to check rcv_tsecr, which
692 * is essentially ACK extension and too early or too late values
693 * should cause reset in unsynchronized states.
694 */
695
696 /* RFC793: "first check sequence number". */
697
698 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
699 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
700 /* Out of window: send ACK and drop. */
701 if (!(flg & TCP_FLAG_RST))
702 req->rsk_ops->send_ack(sk, skb, req);
703 if (paws_reject)
704 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
705 return NULL;
706 }
707
708 /* In sequence, PAWS is OK. */
709
710 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
711 req->ts_recent = tmp_opt.rcv_tsval;
712
713 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
714 /* Truncate SYN, it is out of window starting
715 at tcp_rsk(req)->rcv_isn + 1. */
716 flg &= ~TCP_FLAG_SYN;
717 }
718
719 /* RFC793: "second check the RST bit" and
720 * "fourth, check the SYN bit"
721 */
722 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
723 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
724 goto embryonic_reset;
725 }
726
727 /* ACK sequence verified above, just make sure ACK is
728 * set. If ACK not set, just silently drop the packet.
729 *
730 * XXX (TFO) - if we ever allow "data after SYN", the
731 * following check needs to be removed.
732 */
733 if (!(flg & TCP_FLAG_ACK))
734 return NULL;
735
736 /* For Fast Open no more processing is needed (sk is the
737 * child socket).
738 */
739 if (fastopen)
740 return sk;
741
742 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
743 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
744 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
745 inet_rsk(req)->acked = 1;
746 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
747 return NULL;
748 }
749
750 /* OK, ACK is valid, create big socket and
751 * feed this segment to it. It will repeat all
752 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
753 * ESTABLISHED STATE. If it will be dropped after
754 * socket is created, wait for troubles.
755 */
756 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
757 if (!child)
758 goto listen_overflow;
759
760 inet_csk_reqsk_queue_drop(sk, req);
761 inet_csk_reqsk_queue_add(sk, req, child);
762 /* Warning: caller must not call reqsk_put(req);
763 * child stole last reference on it.
764 */
765 return child;
766
767 listen_overflow:
768 if (!sysctl_tcp_abort_on_overflow) {
769 inet_rsk(req)->acked = 1;
770 return NULL;
771 }
772
773 embryonic_reset:
774 if (!(flg & TCP_FLAG_RST)) {
775 /* Received a bad SYN pkt - for TFO We try not to reset
776 * the local connection unless it's really necessary to
777 * avoid becoming vulnerable to outside attack aiming at
778 * resetting legit local connections.
779 */
780 req->rsk_ops->send_reset(sk, skb);
781 } else if (fastopen) { /* received a valid RST pkt */
782 reqsk_fastopen_remove(sk, req, true);
783 tcp_reset(sk);
784 }
785 if (!fastopen) {
786 inet_csk_reqsk_queue_drop(sk, req);
787 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
788 }
789 return NULL;
790 }
791 EXPORT_SYMBOL(tcp_check_req);
792
793 /*
794 * Queue segment on the new socket if the new socket is active,
795 * otherwise we just shortcircuit this and continue with
796 * the new socket.
797 *
798 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
799 * when entering. But other states are possible due to a race condition
800 * where after __inet_lookup_established() fails but before the listener
801 * locked is obtained, other packets cause the same connection to
802 * be created.
803 */
804
tcp_child_process(struct sock * parent,struct sock * child,struct sk_buff * skb)805 int tcp_child_process(struct sock *parent, struct sock *child,
806 struct sk_buff *skb)
807 {
808 int ret = 0;
809 int state = child->sk_state;
810
811 if (!sock_owned_by_user(child)) {
812 ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
813 skb->len);
814 /* Wakeup parent, send SIGIO */
815 if (state == TCP_SYN_RECV && child->sk_state != state)
816 parent->sk_data_ready(parent);
817 } else {
818 /* Alas, it is possible again, because we do lookup
819 * in main socket hash table and lock on listening
820 * socket does not protect us more.
821 */
822 __sk_add_backlog(child, skb);
823 }
824
825 bh_unlock_sock(child);
826 sock_put(child);
827 return ret;
828 }
829 EXPORT_SYMBOL(tcp_child_process);
830