1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
286 
287 int sysctl_tcp_min_tso_segs __read_mostly = 2;
288 
289 int sysctl_tcp_autocorking __read_mostly = 1;
290 
291 struct percpu_counter tcp_orphan_count;
292 EXPORT_SYMBOL_GPL(tcp_orphan_count);
293 
294 long sysctl_tcp_mem[3] __read_mostly;
295 int sysctl_tcp_wmem[3] __read_mostly;
296 int sysctl_tcp_rmem[3] __read_mostly;
297 
298 EXPORT_SYMBOL(sysctl_tcp_mem);
299 EXPORT_SYMBOL(sysctl_tcp_rmem);
300 EXPORT_SYMBOL(sysctl_tcp_wmem);
301 
302 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 int tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL(tcp_memory_pressure);
328 
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	if (!tcp_memory_pressure) {
332 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
333 		tcp_memory_pressure = 1;
334 	}
335 }
336 EXPORT_SYMBOL(tcp_enter_memory_pressure);
337 
338 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)339 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
340 {
341 	u8 res = 0;
342 
343 	if (seconds > 0) {
344 		int period = timeout;
345 
346 		res = 1;
347 		while (seconds > period && res < 255) {
348 			res++;
349 			timeout <<= 1;
350 			if (timeout > rto_max)
351 				timeout = rto_max;
352 			period += timeout;
353 		}
354 	}
355 	return res;
356 }
357 
358 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)359 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
360 {
361 	int period = 0;
362 
363 	if (retrans > 0) {
364 		period = timeout;
365 		while (--retrans) {
366 			timeout <<= 1;
367 			if (timeout > rto_max)
368 				timeout = rto_max;
369 			period += timeout;
370 		}
371 	}
372 	return period;
373 }
374 
375 /* Address-family independent initialization for a tcp_sock.
376  *
377  * NOTE: A lot of things set to zero explicitly by call to
378  *       sk_alloc() so need not be done here.
379  */
tcp_init_sock(struct sock * sk)380 void tcp_init_sock(struct sock *sk)
381 {
382 	struct inet_connection_sock *icsk = inet_csk(sk);
383 	struct tcp_sock *tp = tcp_sk(sk);
384 
385 	__skb_queue_head_init(&tp->out_of_order_queue);
386 	tcp_init_xmit_timers(sk);
387 	tcp_prequeue_init(tp);
388 	INIT_LIST_HEAD(&tp->tsq_node);
389 
390 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
391 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
392 
393 	/* So many TCP implementations out there (incorrectly) count the
394 	 * initial SYN frame in their delayed-ACK and congestion control
395 	 * algorithms that we must have the following bandaid to talk
396 	 * efficiently to them.  -DaveM
397 	 */
398 	tp->snd_cwnd = TCP_INIT_CWND;
399 
400 	/* See draft-stevens-tcpca-spec-01 for discussion of the
401 	 * initialization of these values.
402 	 */
403 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
404 	tp->snd_cwnd_clamp = ~0;
405 	tp->mss_cache = TCP_MSS_DEFAULT;
406 	u64_stats_init(&tp->syncp);
407 
408 	tp->reordering = sysctl_tcp_reordering;
409 	tcp_enable_early_retrans(tp);
410 	tcp_assign_congestion_control(sk);
411 
412 	tp->tsoffset = 0;
413 
414 	sk->sk_state = TCP_CLOSE;
415 
416 	sk->sk_write_space = sk_stream_write_space;
417 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 
419 	icsk->icsk_sync_mss = tcp_sync_mss;
420 
421 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 
424 	local_bh_disable();
425 	sock_update_memcg(sk);
426 	sk_sockets_allocated_inc(sk);
427 	local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430 
tcp_tx_timestamp(struct sock * sk,struct sk_buff * skb)431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
432 {
433 	if (sk->sk_tsflags) {
434 		struct skb_shared_info *shinfo = skb_shinfo(skb);
435 
436 		sock_tx_timestamp(sk, &shinfo->tx_flags);
437 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
438 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
439 	}
440 }
441 
442 /*
443  *	Wait for a TCP event.
444  *
445  *	Note that we don't need to lock the socket, as the upper poll layers
446  *	take care of normal races (between the test and the event) and we don't
447  *	go look at any of the socket buffers directly.
448  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
450 {
451 	unsigned int mask;
452 	struct sock *sk = sock->sk;
453 	const struct tcp_sock *tp = tcp_sk(sk);
454 
455 	sock_rps_record_flow(sk);
456 
457 	sock_poll_wait(file, sk_sleep(sk), wait);
458 	if (sk->sk_state == TCP_LISTEN)
459 		return inet_csk_listen_poll(sk);
460 
461 	/* Socket is not locked. We are protected from async events
462 	 * by poll logic and correct handling of state changes
463 	 * made by other threads is impossible in any case.
464 	 */
465 
466 	mask = 0;
467 
468 	/*
469 	 * POLLHUP is certainly not done right. But poll() doesn't
470 	 * have a notion of HUP in just one direction, and for a
471 	 * socket the read side is more interesting.
472 	 *
473 	 * Some poll() documentation says that POLLHUP is incompatible
474 	 * with the POLLOUT/POLLWR flags, so somebody should check this
475 	 * all. But careful, it tends to be safer to return too many
476 	 * bits than too few, and you can easily break real applications
477 	 * if you don't tell them that something has hung up!
478 	 *
479 	 * Check-me.
480 	 *
481 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
482 	 * our fs/select.c). It means that after we received EOF,
483 	 * poll always returns immediately, making impossible poll() on write()
484 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
485 	 * if and only if shutdown has been made in both directions.
486 	 * Actually, it is interesting to look how Solaris and DUX
487 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
488 	 * then we could set it on SND_SHUTDOWN. BTW examples given
489 	 * in Stevens' books assume exactly this behaviour, it explains
490 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
491 	 *
492 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
493 	 * blocking on fresh not-connected or disconnected socket. --ANK
494 	 */
495 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
496 		mask |= POLLHUP;
497 	if (sk->sk_shutdown & RCV_SHUTDOWN)
498 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
499 
500 	/* Connected or passive Fast Open socket? */
501 	if (sk->sk_state != TCP_SYN_SENT &&
502 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
503 		int target = sock_rcvlowat(sk, 0, INT_MAX);
504 
505 		if (tp->urg_seq == tp->copied_seq &&
506 		    !sock_flag(sk, SOCK_URGINLINE) &&
507 		    tp->urg_data)
508 			target++;
509 
510 		/* Potential race condition. If read of tp below will
511 		 * escape above sk->sk_state, we can be illegally awaken
512 		 * in SYN_* states. */
513 		if (tp->rcv_nxt - tp->copied_seq >= target)
514 			mask |= POLLIN | POLLRDNORM;
515 
516 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
517 			if (sk_stream_is_writeable(sk)) {
518 				mask |= POLLOUT | POLLWRNORM;
519 			} else {  /* send SIGIO later */
520 				set_bit(SOCK_ASYNC_NOSPACE,
521 					&sk->sk_socket->flags);
522 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
523 
524 				/* Race breaker. If space is freed after
525 				 * wspace test but before the flags are set,
526 				 * IO signal will be lost. Memory barrier
527 				 * pairs with the input side.
528 				 */
529 				smp_mb__after_atomic();
530 				if (sk_stream_is_writeable(sk))
531 					mask |= POLLOUT | POLLWRNORM;
532 			}
533 		} else
534 			mask |= POLLOUT | POLLWRNORM;
535 
536 		if (tp->urg_data & TCP_URG_VALID)
537 			mask |= POLLPRI;
538 	}
539 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
540 	smp_rmb();
541 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
542 		mask |= POLLERR;
543 
544 	return mask;
545 }
546 EXPORT_SYMBOL(tcp_poll);
547 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)548 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
549 {
550 	struct tcp_sock *tp = tcp_sk(sk);
551 	int answ;
552 	bool slow;
553 
554 	switch (cmd) {
555 	case SIOCINQ:
556 		if (sk->sk_state == TCP_LISTEN)
557 			return -EINVAL;
558 
559 		slow = lock_sock_fast(sk);
560 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
561 			answ = 0;
562 		else if (sock_flag(sk, SOCK_URGINLINE) ||
563 			 !tp->urg_data ||
564 			 before(tp->urg_seq, tp->copied_seq) ||
565 			 !before(tp->urg_seq, tp->rcv_nxt)) {
566 
567 			answ = tp->rcv_nxt - tp->copied_seq;
568 
569 			/* Subtract 1, if FIN was received */
570 			if (answ && sock_flag(sk, SOCK_DONE))
571 				answ--;
572 		} else
573 			answ = tp->urg_seq - tp->copied_seq;
574 		unlock_sock_fast(sk, slow);
575 		break;
576 	case SIOCATMARK:
577 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
578 		break;
579 	case SIOCOUTQ:
580 		if (sk->sk_state == TCP_LISTEN)
581 			return -EINVAL;
582 
583 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 			answ = 0;
585 		else
586 			answ = tp->write_seq - tp->snd_una;
587 		break;
588 	case SIOCOUTQNSD:
589 		if (sk->sk_state == TCP_LISTEN)
590 			return -EINVAL;
591 
592 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
593 			answ = 0;
594 		else
595 			answ = tp->write_seq - tp->snd_nxt;
596 		break;
597 	default:
598 		return -ENOIOCTLCMD;
599 	}
600 
601 	return put_user(answ, (int __user *)arg);
602 }
603 EXPORT_SYMBOL(tcp_ioctl);
604 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)605 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
606 {
607 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
608 	tp->pushed_seq = tp->write_seq;
609 }
610 
forced_push(const struct tcp_sock * tp)611 static inline bool forced_push(const struct tcp_sock *tp)
612 {
613 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
614 }
615 
skb_entail(struct sock * sk,struct sk_buff * skb)616 static void skb_entail(struct sock *sk, struct sk_buff *skb)
617 {
618 	struct tcp_sock *tp = tcp_sk(sk);
619 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
620 
621 	skb->csum    = 0;
622 	tcb->seq     = tcb->end_seq = tp->write_seq;
623 	tcb->tcp_flags = TCPHDR_ACK;
624 	tcb->sacked  = 0;
625 	__skb_header_release(skb);
626 	tcp_add_write_queue_tail(sk, skb);
627 	sk->sk_wmem_queued += skb->truesize;
628 	sk_mem_charge(sk, skb->truesize);
629 	if (tp->nonagle & TCP_NAGLE_PUSH)
630 		tp->nonagle &= ~TCP_NAGLE_PUSH;
631 }
632 
tcp_mark_urg(struct tcp_sock * tp,int flags)633 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
634 {
635 	if (flags & MSG_OOB)
636 		tp->snd_up = tp->write_seq;
637 }
638 
639 /* If a not yet filled skb is pushed, do not send it if
640  * we have data packets in Qdisc or NIC queues :
641  * Because TX completion will happen shortly, it gives a chance
642  * to coalesce future sendmsg() payload into this skb, without
643  * need for a timer, and with no latency trade off.
644  * As packets containing data payload have a bigger truesize
645  * than pure acks (dataless) packets, the last checks prevent
646  * autocorking if we only have an ACK in Qdisc/NIC queues,
647  * or if TX completion was delayed after we processed ACK packet.
648  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)649 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
650 				int size_goal)
651 {
652 	return skb->len < size_goal &&
653 	       sysctl_tcp_autocorking &&
654 	       skb != tcp_write_queue_head(sk) &&
655 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
656 }
657 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)658 static void tcp_push(struct sock *sk, int flags, int mss_now,
659 		     int nonagle, int size_goal)
660 {
661 	struct tcp_sock *tp = tcp_sk(sk);
662 	struct sk_buff *skb;
663 
664 	if (!tcp_send_head(sk))
665 		return;
666 
667 	skb = tcp_write_queue_tail(sk);
668 	if (!(flags & MSG_MORE) || forced_push(tp))
669 		tcp_mark_push(tp, skb);
670 
671 	tcp_mark_urg(tp, flags);
672 
673 	if (tcp_should_autocork(sk, skb, size_goal)) {
674 
675 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
676 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
677 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
678 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
679 		}
680 		/* It is possible TX completion already happened
681 		 * before we set TSQ_THROTTLED.
682 		 */
683 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
684 			return;
685 	}
686 
687 	if (flags & MSG_MORE)
688 		nonagle = TCP_NAGLE_CORK;
689 
690 	__tcp_push_pending_frames(sk, mss_now, nonagle);
691 }
692 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)693 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
694 				unsigned int offset, size_t len)
695 {
696 	struct tcp_splice_state *tss = rd_desc->arg.data;
697 	int ret;
698 
699 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
700 			      tss->flags);
701 	if (ret > 0)
702 		rd_desc->count -= ret;
703 	return ret;
704 }
705 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)706 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
707 {
708 	/* Store TCP splice context information in read_descriptor_t. */
709 	read_descriptor_t rd_desc = {
710 		.arg.data = tss,
711 		.count	  = tss->len,
712 	};
713 
714 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
715 }
716 
717 /**
718  *  tcp_splice_read - splice data from TCP socket to a pipe
719  * @sock:	socket to splice from
720  * @ppos:	position (not valid)
721  * @pipe:	pipe to splice to
722  * @len:	number of bytes to splice
723  * @flags:	splice modifier flags
724  *
725  * Description:
726  *    Will read pages from given socket and fill them into a pipe.
727  *
728  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)729 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
730 			struct pipe_inode_info *pipe, size_t len,
731 			unsigned int flags)
732 {
733 	struct sock *sk = sock->sk;
734 	struct tcp_splice_state tss = {
735 		.pipe = pipe,
736 		.len = len,
737 		.flags = flags,
738 	};
739 	long timeo;
740 	ssize_t spliced;
741 	int ret;
742 
743 	sock_rps_record_flow(sk);
744 	/*
745 	 * We can't seek on a socket input
746 	 */
747 	if (unlikely(*ppos))
748 		return -ESPIPE;
749 
750 	ret = spliced = 0;
751 
752 	lock_sock(sk);
753 
754 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
755 	while (tss.len) {
756 		ret = __tcp_splice_read(sk, &tss);
757 		if (ret < 0)
758 			break;
759 		else if (!ret) {
760 			if (spliced)
761 				break;
762 			if (sock_flag(sk, SOCK_DONE))
763 				break;
764 			if (sk->sk_err) {
765 				ret = sock_error(sk);
766 				break;
767 			}
768 			if (sk->sk_shutdown & RCV_SHUTDOWN)
769 				break;
770 			if (sk->sk_state == TCP_CLOSE) {
771 				/*
772 				 * This occurs when user tries to read
773 				 * from never connected socket.
774 				 */
775 				if (!sock_flag(sk, SOCK_DONE))
776 					ret = -ENOTCONN;
777 				break;
778 			}
779 			if (!timeo) {
780 				ret = -EAGAIN;
781 				break;
782 			}
783 			sk_wait_data(sk, &timeo);
784 			if (signal_pending(current)) {
785 				ret = sock_intr_errno(timeo);
786 				break;
787 			}
788 			continue;
789 		}
790 		tss.len -= ret;
791 		spliced += ret;
792 
793 		if (!timeo)
794 			break;
795 		release_sock(sk);
796 		lock_sock(sk);
797 
798 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
799 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
800 		    signal_pending(current))
801 			break;
802 	}
803 
804 	release_sock(sk);
805 
806 	if (spliced)
807 		return spliced;
808 
809 	return ret;
810 }
811 EXPORT_SYMBOL(tcp_splice_read);
812 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp)813 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
814 {
815 	struct sk_buff *skb;
816 
817 	/* The TCP header must be at least 32-bit aligned.  */
818 	size = ALIGN(size, 4);
819 
820 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
821 	if (skb) {
822 		if (sk_wmem_schedule(sk, skb->truesize)) {
823 			skb_reserve(skb, sk->sk_prot->max_header);
824 			/*
825 			 * Make sure that we have exactly size bytes
826 			 * available to the caller, no more, no less.
827 			 */
828 			skb->reserved_tailroom = skb->end - skb->tail - size;
829 			return skb;
830 		}
831 		__kfree_skb(skb);
832 	} else {
833 		sk->sk_prot->enter_memory_pressure(sk);
834 		sk_stream_moderate_sndbuf(sk);
835 	}
836 	return NULL;
837 }
838 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)839 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
840 				       int large_allowed)
841 {
842 	struct tcp_sock *tp = tcp_sk(sk);
843 	u32 new_size_goal, size_goal;
844 
845 	if (!large_allowed || !sk_can_gso(sk))
846 		return mss_now;
847 
848 	/* Note : tcp_tso_autosize() will eventually split this later */
849 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
850 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
851 
852 	/* We try hard to avoid divides here */
853 	size_goal = tp->gso_segs * mss_now;
854 	if (unlikely(new_size_goal < size_goal ||
855 		     new_size_goal >= size_goal + mss_now)) {
856 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
857 				     sk->sk_gso_max_segs);
858 		size_goal = tp->gso_segs * mss_now;
859 	}
860 
861 	return max(size_goal, mss_now);
862 }
863 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)864 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
865 {
866 	int mss_now;
867 
868 	mss_now = tcp_current_mss(sk);
869 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
870 
871 	return mss_now;
872 }
873 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)874 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
875 				size_t size, int flags)
876 {
877 	struct tcp_sock *tp = tcp_sk(sk);
878 	int mss_now, size_goal;
879 	int err;
880 	ssize_t copied;
881 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
882 
883 	/* Wait for a connection to finish. One exception is TCP Fast Open
884 	 * (passive side) where data is allowed to be sent before a connection
885 	 * is fully established.
886 	 */
887 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
888 	    !tcp_passive_fastopen(sk)) {
889 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
890 			goto out_err;
891 	}
892 
893 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
894 
895 	mss_now = tcp_send_mss(sk, &size_goal, flags);
896 	copied = 0;
897 
898 	err = -EPIPE;
899 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
900 		goto out_err;
901 
902 	while (size > 0) {
903 		struct sk_buff *skb = tcp_write_queue_tail(sk);
904 		int copy, i;
905 		bool can_coalesce;
906 
907 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
908 new_segment:
909 			if (!sk_stream_memory_free(sk))
910 				goto wait_for_sndbuf;
911 
912 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
913 			if (!skb)
914 				goto wait_for_memory;
915 
916 			skb_entail(sk, skb);
917 			copy = size_goal;
918 		}
919 
920 		if (copy > size)
921 			copy = size;
922 
923 		i = skb_shinfo(skb)->nr_frags;
924 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
925 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
926 			tcp_mark_push(tp, skb);
927 			goto new_segment;
928 		}
929 		if (!sk_wmem_schedule(sk, copy))
930 			goto wait_for_memory;
931 
932 		if (can_coalesce) {
933 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
934 		} else {
935 			get_page(page);
936 			skb_fill_page_desc(skb, i, page, offset, copy);
937 		}
938 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
939 
940 		skb->len += copy;
941 		skb->data_len += copy;
942 		skb->truesize += copy;
943 		sk->sk_wmem_queued += copy;
944 		sk_mem_charge(sk, copy);
945 		skb->ip_summed = CHECKSUM_PARTIAL;
946 		tp->write_seq += copy;
947 		TCP_SKB_CB(skb)->end_seq += copy;
948 		tcp_skb_pcount_set(skb, 0);
949 
950 		if (!copied)
951 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
952 
953 		copied += copy;
954 		offset += copy;
955 		if (!(size -= copy)) {
956 			tcp_tx_timestamp(sk, skb);
957 			goto out;
958 		}
959 
960 		if (skb->len < size_goal || (flags & MSG_OOB))
961 			continue;
962 
963 		if (forced_push(tp)) {
964 			tcp_mark_push(tp, skb);
965 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
966 		} else if (skb == tcp_send_head(sk))
967 			tcp_push_one(sk, mss_now);
968 		continue;
969 
970 wait_for_sndbuf:
971 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
972 wait_for_memory:
973 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
974 			 TCP_NAGLE_PUSH, size_goal);
975 
976 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
977 			goto do_error;
978 
979 		mss_now = tcp_send_mss(sk, &size_goal, flags);
980 	}
981 
982 out:
983 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
984 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
985 	return copied;
986 
987 do_error:
988 	if (copied)
989 		goto out;
990 out_err:
991 	return sk_stream_error(sk, flags, err);
992 }
993 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)994 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
995 		 size_t size, int flags)
996 {
997 	ssize_t res;
998 
999 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1000 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1001 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1002 					flags);
1003 
1004 	lock_sock(sk);
1005 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1006 	release_sock(sk);
1007 	return res;
1008 }
1009 EXPORT_SYMBOL(tcp_sendpage);
1010 
select_size(const struct sock * sk,bool sg)1011 static inline int select_size(const struct sock *sk, bool sg)
1012 {
1013 	const struct tcp_sock *tp = tcp_sk(sk);
1014 	int tmp = tp->mss_cache;
1015 
1016 	if (sg) {
1017 		if (sk_can_gso(sk)) {
1018 			/* Small frames wont use a full page:
1019 			 * Payload will immediately follow tcp header.
1020 			 */
1021 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1022 		} else {
1023 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1024 
1025 			if (tmp >= pgbreak &&
1026 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1027 				tmp = pgbreak;
1028 		}
1029 	}
1030 
1031 	return tmp;
1032 }
1033 
tcp_free_fastopen_req(struct tcp_sock * tp)1034 void tcp_free_fastopen_req(struct tcp_sock *tp)
1035 {
1036 	if (tp->fastopen_req) {
1037 		kfree(tp->fastopen_req);
1038 		tp->fastopen_req = NULL;
1039 	}
1040 }
1041 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1042 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1043 				int *copied, size_t size)
1044 {
1045 	struct tcp_sock *tp = tcp_sk(sk);
1046 	int err, flags;
1047 
1048 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1049 		return -EOPNOTSUPP;
1050 	if (tp->fastopen_req)
1051 		return -EALREADY; /* Another Fast Open is in progress */
1052 
1053 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1054 				   sk->sk_allocation);
1055 	if (unlikely(!tp->fastopen_req))
1056 		return -ENOBUFS;
1057 	tp->fastopen_req->data = msg;
1058 	tp->fastopen_req->size = size;
1059 
1060 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1061 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1062 				    msg->msg_namelen, flags);
1063 	*copied = tp->fastopen_req->copied;
1064 	tcp_free_fastopen_req(tp);
1065 	return err;
1066 }
1067 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1068 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1069 {
1070 	struct tcp_sock *tp = tcp_sk(sk);
1071 	struct sk_buff *skb;
1072 	int flags, err, copied = 0;
1073 	int mss_now = 0, size_goal, copied_syn = 0;
1074 	bool sg;
1075 	long timeo;
1076 
1077 	lock_sock(sk);
1078 
1079 	flags = msg->msg_flags;
1080 	if (flags & MSG_FASTOPEN) {
1081 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1082 		if (err == -EINPROGRESS && copied_syn > 0)
1083 			goto out;
1084 		else if (err)
1085 			goto out_err;
1086 	}
1087 
1088 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1089 
1090 	/* Wait for a connection to finish. One exception is TCP Fast Open
1091 	 * (passive side) where data is allowed to be sent before a connection
1092 	 * is fully established.
1093 	 */
1094 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1095 	    !tcp_passive_fastopen(sk)) {
1096 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1097 			goto do_error;
1098 	}
1099 
1100 	if (unlikely(tp->repair)) {
1101 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1102 			copied = tcp_send_rcvq(sk, msg, size);
1103 			goto out_nopush;
1104 		}
1105 
1106 		err = -EINVAL;
1107 		if (tp->repair_queue == TCP_NO_QUEUE)
1108 			goto out_err;
1109 
1110 		/* 'common' sending to sendq */
1111 	}
1112 
1113 	/* This should be in poll */
1114 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1115 
1116 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1117 
1118 	/* Ok commence sending. */
1119 	copied = 0;
1120 
1121 	err = -EPIPE;
1122 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1123 		goto out_err;
1124 
1125 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1126 
1127 	while (msg_data_left(msg)) {
1128 		int copy = 0;
1129 		int max = size_goal;
1130 
1131 		skb = tcp_write_queue_tail(sk);
1132 		if (tcp_send_head(sk)) {
1133 			if (skb->ip_summed == CHECKSUM_NONE)
1134 				max = mss_now;
1135 			copy = max - skb->len;
1136 		}
1137 
1138 		if (copy <= 0) {
1139 new_segment:
1140 			/* Allocate new segment. If the interface is SG,
1141 			 * allocate skb fitting to single page.
1142 			 */
1143 			if (!sk_stream_memory_free(sk))
1144 				goto wait_for_sndbuf;
1145 
1146 			skb = sk_stream_alloc_skb(sk,
1147 						  select_size(sk, sg),
1148 						  sk->sk_allocation);
1149 			if (!skb)
1150 				goto wait_for_memory;
1151 
1152 			/*
1153 			 * Check whether we can use HW checksum.
1154 			 */
1155 			if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1156 				skb->ip_summed = CHECKSUM_PARTIAL;
1157 
1158 			skb_entail(sk, skb);
1159 			copy = size_goal;
1160 			max = size_goal;
1161 
1162 			/* All packets are restored as if they have
1163 			 * already been sent. skb_mstamp isn't set to
1164 			 * avoid wrong rtt estimation.
1165 			 */
1166 			if (tp->repair)
1167 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1168 		}
1169 
1170 		/* Try to append data to the end of skb. */
1171 		if (copy > msg_data_left(msg))
1172 			copy = msg_data_left(msg);
1173 
1174 		/* Where to copy to? */
1175 		if (skb_availroom(skb) > 0) {
1176 			/* We have some space in skb head. Superb! */
1177 			copy = min_t(int, copy, skb_availroom(skb));
1178 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1179 			if (err)
1180 				goto do_fault;
1181 		} else {
1182 			bool merge = true;
1183 			int i = skb_shinfo(skb)->nr_frags;
1184 			struct page_frag *pfrag = sk_page_frag(sk);
1185 
1186 			if (!sk_page_frag_refill(sk, pfrag))
1187 				goto wait_for_memory;
1188 
1189 			if (!skb_can_coalesce(skb, i, pfrag->page,
1190 					      pfrag->offset)) {
1191 				if (i == sysctl_max_skb_frags || !sg) {
1192 					tcp_mark_push(tp, skb);
1193 					goto new_segment;
1194 				}
1195 				merge = false;
1196 			}
1197 
1198 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1199 
1200 			if (!sk_wmem_schedule(sk, copy))
1201 				goto wait_for_memory;
1202 
1203 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1204 						       pfrag->page,
1205 						       pfrag->offset,
1206 						       copy);
1207 			if (err)
1208 				goto do_error;
1209 
1210 			/* Update the skb. */
1211 			if (merge) {
1212 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1213 			} else {
1214 				skb_fill_page_desc(skb, i, pfrag->page,
1215 						   pfrag->offset, copy);
1216 				get_page(pfrag->page);
1217 			}
1218 			pfrag->offset += copy;
1219 		}
1220 
1221 		if (!copied)
1222 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1223 
1224 		tp->write_seq += copy;
1225 		TCP_SKB_CB(skb)->end_seq += copy;
1226 		tcp_skb_pcount_set(skb, 0);
1227 
1228 		copied += copy;
1229 		if (!msg_data_left(msg)) {
1230 			tcp_tx_timestamp(sk, skb);
1231 			goto out;
1232 		}
1233 
1234 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1235 			continue;
1236 
1237 		if (forced_push(tp)) {
1238 			tcp_mark_push(tp, skb);
1239 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1240 		} else if (skb == tcp_send_head(sk))
1241 			tcp_push_one(sk, mss_now);
1242 		continue;
1243 
1244 wait_for_sndbuf:
1245 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1246 wait_for_memory:
1247 		if (copied)
1248 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1249 				 TCP_NAGLE_PUSH, size_goal);
1250 
1251 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1252 			goto do_error;
1253 
1254 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1255 	}
1256 
1257 out:
1258 	if (copied)
1259 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1260 out_nopush:
1261 	release_sock(sk);
1262 	return copied + copied_syn;
1263 
1264 do_fault:
1265 	if (!skb->len) {
1266 		tcp_unlink_write_queue(skb, sk);
1267 		/* It is the one place in all of TCP, except connection
1268 		 * reset, where we can be unlinking the send_head.
1269 		 */
1270 		tcp_check_send_head(sk, skb);
1271 		sk_wmem_free_skb(sk, skb);
1272 	}
1273 
1274 do_error:
1275 	if (copied + copied_syn)
1276 		goto out;
1277 out_err:
1278 	err = sk_stream_error(sk, flags, err);
1279 	release_sock(sk);
1280 	return err;
1281 }
1282 EXPORT_SYMBOL(tcp_sendmsg);
1283 
1284 /*
1285  *	Handle reading urgent data. BSD has very simple semantics for
1286  *	this, no blocking and very strange errors 8)
1287  */
1288 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1289 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1290 {
1291 	struct tcp_sock *tp = tcp_sk(sk);
1292 
1293 	/* No URG data to read. */
1294 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1295 	    tp->urg_data == TCP_URG_READ)
1296 		return -EINVAL;	/* Yes this is right ! */
1297 
1298 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1299 		return -ENOTCONN;
1300 
1301 	if (tp->urg_data & TCP_URG_VALID) {
1302 		int err = 0;
1303 		char c = tp->urg_data;
1304 
1305 		if (!(flags & MSG_PEEK))
1306 			tp->urg_data = TCP_URG_READ;
1307 
1308 		/* Read urgent data. */
1309 		msg->msg_flags |= MSG_OOB;
1310 
1311 		if (len > 0) {
1312 			if (!(flags & MSG_TRUNC))
1313 				err = memcpy_to_msg(msg, &c, 1);
1314 			len = 1;
1315 		} else
1316 			msg->msg_flags |= MSG_TRUNC;
1317 
1318 		return err ? -EFAULT : len;
1319 	}
1320 
1321 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1322 		return 0;
1323 
1324 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1325 	 * the available implementations agree in this case:
1326 	 * this call should never block, independent of the
1327 	 * blocking state of the socket.
1328 	 * Mike <pall@rz.uni-karlsruhe.de>
1329 	 */
1330 	return -EAGAIN;
1331 }
1332 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1333 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1334 {
1335 	struct sk_buff *skb;
1336 	int copied = 0, err = 0;
1337 
1338 	/* XXX -- need to support SO_PEEK_OFF */
1339 
1340 	skb_queue_walk(&sk->sk_write_queue, skb) {
1341 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1342 		if (err)
1343 			break;
1344 
1345 		copied += skb->len;
1346 	}
1347 
1348 	return err ?: copied;
1349 }
1350 
1351 /* Clean up the receive buffer for full frames taken by the user,
1352  * then send an ACK if necessary.  COPIED is the number of bytes
1353  * tcp_recvmsg has given to the user so far, it speeds up the
1354  * calculation of whether or not we must ACK for the sake of
1355  * a window update.
1356  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1357 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1358 {
1359 	struct tcp_sock *tp = tcp_sk(sk);
1360 	bool time_to_ack = false;
1361 
1362 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1363 
1364 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1365 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1366 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1367 
1368 	if (inet_csk_ack_scheduled(sk)) {
1369 		const struct inet_connection_sock *icsk = inet_csk(sk);
1370 		   /* Delayed ACKs frequently hit locked sockets during bulk
1371 		    * receive. */
1372 		if (icsk->icsk_ack.blocked ||
1373 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1374 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1375 		    /*
1376 		     * If this read emptied read buffer, we send ACK, if
1377 		     * connection is not bidirectional, user drained
1378 		     * receive buffer and there was a small segment
1379 		     * in queue.
1380 		     */
1381 		    (copied > 0 &&
1382 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1383 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1384 		       !icsk->icsk_ack.pingpong)) &&
1385 		      !atomic_read(&sk->sk_rmem_alloc)))
1386 			time_to_ack = true;
1387 	}
1388 
1389 	/* We send an ACK if we can now advertise a non-zero window
1390 	 * which has been raised "significantly".
1391 	 *
1392 	 * Even if window raised up to infinity, do not send window open ACK
1393 	 * in states, where we will not receive more. It is useless.
1394 	 */
1395 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1396 		__u32 rcv_window_now = tcp_receive_window(tp);
1397 
1398 		/* Optimize, __tcp_select_window() is not cheap. */
1399 		if (2*rcv_window_now <= tp->window_clamp) {
1400 			__u32 new_window = __tcp_select_window(sk);
1401 
1402 			/* Send ACK now, if this read freed lots of space
1403 			 * in our buffer. Certainly, new_window is new window.
1404 			 * We can advertise it now, if it is not less than current one.
1405 			 * "Lots" means "at least twice" here.
1406 			 */
1407 			if (new_window && new_window >= 2 * rcv_window_now)
1408 				time_to_ack = true;
1409 		}
1410 	}
1411 	if (time_to_ack)
1412 		tcp_send_ack(sk);
1413 }
1414 
tcp_prequeue_process(struct sock * sk)1415 static void tcp_prequeue_process(struct sock *sk)
1416 {
1417 	struct sk_buff *skb;
1418 	struct tcp_sock *tp = tcp_sk(sk);
1419 
1420 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1421 
1422 	/* RX process wants to run with disabled BHs, though it is not
1423 	 * necessary */
1424 	local_bh_disable();
1425 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1426 		sk_backlog_rcv(sk, skb);
1427 	local_bh_enable();
1428 
1429 	/* Clear memory counter. */
1430 	tp->ucopy.memory = 0;
1431 }
1432 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1433 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1434 {
1435 	struct sk_buff *skb;
1436 	u32 offset;
1437 
1438 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1439 		offset = seq - TCP_SKB_CB(skb)->seq;
1440 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1441 			offset--;
1442 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1443 			*off = offset;
1444 			return skb;
1445 		}
1446 		/* This looks weird, but this can happen if TCP collapsing
1447 		 * splitted a fat GRO packet, while we released socket lock
1448 		 * in skb_splice_bits()
1449 		 */
1450 		sk_eat_skb(sk, skb);
1451 	}
1452 	return NULL;
1453 }
1454 
1455 /*
1456  * This routine provides an alternative to tcp_recvmsg() for routines
1457  * that would like to handle copying from skbuffs directly in 'sendfile'
1458  * fashion.
1459  * Note:
1460  *	- It is assumed that the socket was locked by the caller.
1461  *	- The routine does not block.
1462  *	- At present, there is no support for reading OOB data
1463  *	  or for 'peeking' the socket using this routine
1464  *	  (although both would be easy to implement).
1465  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1466 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1467 		  sk_read_actor_t recv_actor)
1468 {
1469 	struct sk_buff *skb;
1470 	struct tcp_sock *tp = tcp_sk(sk);
1471 	u32 seq = tp->copied_seq;
1472 	u32 offset;
1473 	int copied = 0;
1474 
1475 	if (sk->sk_state == TCP_LISTEN)
1476 		return -ENOTCONN;
1477 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1478 		if (offset < skb->len) {
1479 			int used;
1480 			size_t len;
1481 
1482 			len = skb->len - offset;
1483 			/* Stop reading if we hit a patch of urgent data */
1484 			if (tp->urg_data) {
1485 				u32 urg_offset = tp->urg_seq - seq;
1486 				if (urg_offset < len)
1487 					len = urg_offset;
1488 				if (!len)
1489 					break;
1490 			}
1491 			used = recv_actor(desc, skb, offset, len);
1492 			if (used <= 0) {
1493 				if (!copied)
1494 					copied = used;
1495 				break;
1496 			} else if (used <= len) {
1497 				seq += used;
1498 				copied += used;
1499 				offset += used;
1500 			}
1501 			/* If recv_actor drops the lock (e.g. TCP splice
1502 			 * receive) the skb pointer might be invalid when
1503 			 * getting here: tcp_collapse might have deleted it
1504 			 * while aggregating skbs from the socket queue.
1505 			 */
1506 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1507 			if (!skb)
1508 				break;
1509 			/* TCP coalescing might have appended data to the skb.
1510 			 * Try to splice more frags
1511 			 */
1512 			if (offset + 1 != skb->len)
1513 				continue;
1514 		}
1515 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1516 			sk_eat_skb(sk, skb);
1517 			++seq;
1518 			break;
1519 		}
1520 		sk_eat_skb(sk, skb);
1521 		if (!desc->count)
1522 			break;
1523 		tp->copied_seq = seq;
1524 	}
1525 	tp->copied_seq = seq;
1526 
1527 	tcp_rcv_space_adjust(sk);
1528 
1529 	/* Clean up data we have read: This will do ACK frames. */
1530 	if (copied > 0) {
1531 		tcp_recv_skb(sk, seq, &offset);
1532 		tcp_cleanup_rbuf(sk, copied);
1533 	}
1534 	return copied;
1535 }
1536 EXPORT_SYMBOL(tcp_read_sock);
1537 
1538 /*
1539  *	This routine copies from a sock struct into the user buffer.
1540  *
1541  *	Technical note: in 2.3 we work on _locked_ socket, so that
1542  *	tricks with *seq access order and skb->users are not required.
1543  *	Probably, code can be easily improved even more.
1544  */
1545 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1546 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1547 		int flags, int *addr_len)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	int copied = 0;
1551 	u32 peek_seq;
1552 	u32 *seq;
1553 	unsigned long used;
1554 	int err;
1555 	int target;		/* Read at least this many bytes */
1556 	long timeo;
1557 	struct task_struct *user_recv = NULL;
1558 	struct sk_buff *skb;
1559 	u32 urg_hole = 0;
1560 
1561 	if (unlikely(flags & MSG_ERRQUEUE))
1562 		return inet_recv_error(sk, msg, len, addr_len);
1563 
1564 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1565 	    (sk->sk_state == TCP_ESTABLISHED))
1566 		sk_busy_loop(sk, nonblock);
1567 
1568 	lock_sock(sk);
1569 
1570 	err = -ENOTCONN;
1571 	if (sk->sk_state == TCP_LISTEN)
1572 		goto out;
1573 
1574 	timeo = sock_rcvtimeo(sk, nonblock);
1575 
1576 	/* Urgent data needs to be handled specially. */
1577 	if (flags & MSG_OOB)
1578 		goto recv_urg;
1579 
1580 	if (unlikely(tp->repair)) {
1581 		err = -EPERM;
1582 		if (!(flags & MSG_PEEK))
1583 			goto out;
1584 
1585 		if (tp->repair_queue == TCP_SEND_QUEUE)
1586 			goto recv_sndq;
1587 
1588 		err = -EINVAL;
1589 		if (tp->repair_queue == TCP_NO_QUEUE)
1590 			goto out;
1591 
1592 		/* 'common' recv queue MSG_PEEK-ing */
1593 	}
1594 
1595 	seq = &tp->copied_seq;
1596 	if (flags & MSG_PEEK) {
1597 		peek_seq = tp->copied_seq;
1598 		seq = &peek_seq;
1599 	}
1600 
1601 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1602 
1603 	do {
1604 		u32 offset;
1605 
1606 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1607 		if (tp->urg_data && tp->urg_seq == *seq) {
1608 			if (copied)
1609 				break;
1610 			if (signal_pending(current)) {
1611 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1612 				break;
1613 			}
1614 		}
1615 
1616 		/* Next get a buffer. */
1617 
1618 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1619 			/* Now that we have two receive queues this
1620 			 * shouldn't happen.
1621 			 */
1622 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1623 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1624 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1625 				 flags))
1626 				break;
1627 
1628 			offset = *seq - TCP_SKB_CB(skb)->seq;
1629 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1630 				offset--;
1631 			if (offset < skb->len)
1632 				goto found_ok_skb;
1633 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1634 				goto found_fin_ok;
1635 			WARN(!(flags & MSG_PEEK),
1636 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1637 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1638 		}
1639 
1640 		/* Well, if we have backlog, try to process it now yet. */
1641 
1642 		if (copied >= target && !sk->sk_backlog.tail)
1643 			break;
1644 
1645 		if (copied) {
1646 			if (sk->sk_err ||
1647 			    sk->sk_state == TCP_CLOSE ||
1648 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1649 			    !timeo ||
1650 			    signal_pending(current))
1651 				break;
1652 		} else {
1653 			if (sock_flag(sk, SOCK_DONE))
1654 				break;
1655 
1656 			if (sk->sk_err) {
1657 				copied = sock_error(sk);
1658 				break;
1659 			}
1660 
1661 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1662 				break;
1663 
1664 			if (sk->sk_state == TCP_CLOSE) {
1665 				if (!sock_flag(sk, SOCK_DONE)) {
1666 					/* This occurs when user tries to read
1667 					 * from never connected socket.
1668 					 */
1669 					copied = -ENOTCONN;
1670 					break;
1671 				}
1672 				break;
1673 			}
1674 
1675 			if (!timeo) {
1676 				copied = -EAGAIN;
1677 				break;
1678 			}
1679 
1680 			if (signal_pending(current)) {
1681 				copied = sock_intr_errno(timeo);
1682 				break;
1683 			}
1684 		}
1685 
1686 		tcp_cleanup_rbuf(sk, copied);
1687 
1688 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1689 			/* Install new reader */
1690 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1691 				user_recv = current;
1692 				tp->ucopy.task = user_recv;
1693 				tp->ucopy.msg = msg;
1694 			}
1695 
1696 			tp->ucopy.len = len;
1697 
1698 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1699 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1700 
1701 			/* Ugly... If prequeue is not empty, we have to
1702 			 * process it before releasing socket, otherwise
1703 			 * order will be broken at second iteration.
1704 			 * More elegant solution is required!!!
1705 			 *
1706 			 * Look: we have the following (pseudo)queues:
1707 			 *
1708 			 * 1. packets in flight
1709 			 * 2. backlog
1710 			 * 3. prequeue
1711 			 * 4. receive_queue
1712 			 *
1713 			 * Each queue can be processed only if the next ones
1714 			 * are empty. At this point we have empty receive_queue.
1715 			 * But prequeue _can_ be not empty after 2nd iteration,
1716 			 * when we jumped to start of loop because backlog
1717 			 * processing added something to receive_queue.
1718 			 * We cannot release_sock(), because backlog contains
1719 			 * packets arrived _after_ prequeued ones.
1720 			 *
1721 			 * Shortly, algorithm is clear --- to process all
1722 			 * the queues in order. We could make it more directly,
1723 			 * requeueing packets from backlog to prequeue, if
1724 			 * is not empty. It is more elegant, but eats cycles,
1725 			 * unfortunately.
1726 			 */
1727 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1728 				goto do_prequeue;
1729 
1730 			/* __ Set realtime policy in scheduler __ */
1731 		}
1732 
1733 		if (copied >= target) {
1734 			/* Do not sleep, just process backlog. */
1735 			release_sock(sk);
1736 			lock_sock(sk);
1737 		} else
1738 			sk_wait_data(sk, &timeo);
1739 
1740 		if (user_recv) {
1741 			int chunk;
1742 
1743 			/* __ Restore normal policy in scheduler __ */
1744 
1745 			if ((chunk = len - tp->ucopy.len) != 0) {
1746 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1747 				len -= chunk;
1748 				copied += chunk;
1749 			}
1750 
1751 			if (tp->rcv_nxt == tp->copied_seq &&
1752 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1753 do_prequeue:
1754 				tcp_prequeue_process(sk);
1755 
1756 				if ((chunk = len - tp->ucopy.len) != 0) {
1757 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1758 					len -= chunk;
1759 					copied += chunk;
1760 				}
1761 			}
1762 		}
1763 		if ((flags & MSG_PEEK) &&
1764 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1765 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1766 					    current->comm,
1767 					    task_pid_nr(current));
1768 			peek_seq = tp->copied_seq;
1769 		}
1770 		continue;
1771 
1772 	found_ok_skb:
1773 		/* Ok so how much can we use? */
1774 		used = skb->len - offset;
1775 		if (len < used)
1776 			used = len;
1777 
1778 		/* Do we have urgent data here? */
1779 		if (tp->urg_data) {
1780 			u32 urg_offset = tp->urg_seq - *seq;
1781 			if (urg_offset < used) {
1782 				if (!urg_offset) {
1783 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1784 						++*seq;
1785 						urg_hole++;
1786 						offset++;
1787 						used--;
1788 						if (!used)
1789 							goto skip_copy;
1790 					}
1791 				} else
1792 					used = urg_offset;
1793 			}
1794 		}
1795 
1796 		if (!(flags & MSG_TRUNC)) {
1797 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1798 			if (err) {
1799 				/* Exception. Bailout! */
1800 				if (!copied)
1801 					copied = -EFAULT;
1802 				break;
1803 			}
1804 		}
1805 
1806 		*seq += used;
1807 		copied += used;
1808 		len -= used;
1809 
1810 		tcp_rcv_space_adjust(sk);
1811 
1812 skip_copy:
1813 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1814 			tp->urg_data = 0;
1815 			tcp_fast_path_check(sk);
1816 		}
1817 		if (used + offset < skb->len)
1818 			continue;
1819 
1820 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1821 			goto found_fin_ok;
1822 		if (!(flags & MSG_PEEK))
1823 			sk_eat_skb(sk, skb);
1824 		continue;
1825 
1826 	found_fin_ok:
1827 		/* Process the FIN. */
1828 		++*seq;
1829 		if (!(flags & MSG_PEEK))
1830 			sk_eat_skb(sk, skb);
1831 		break;
1832 	} while (len > 0);
1833 
1834 	if (user_recv) {
1835 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1836 			int chunk;
1837 
1838 			tp->ucopy.len = copied > 0 ? len : 0;
1839 
1840 			tcp_prequeue_process(sk);
1841 
1842 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1843 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1844 				len -= chunk;
1845 				copied += chunk;
1846 			}
1847 		}
1848 
1849 		tp->ucopy.task = NULL;
1850 		tp->ucopy.len = 0;
1851 	}
1852 
1853 	/* According to UNIX98, msg_name/msg_namelen are ignored
1854 	 * on connected socket. I was just happy when found this 8) --ANK
1855 	 */
1856 
1857 	/* Clean up data we have read: This will do ACK frames. */
1858 	tcp_cleanup_rbuf(sk, copied);
1859 
1860 	release_sock(sk);
1861 	return copied;
1862 
1863 out:
1864 	release_sock(sk);
1865 	return err;
1866 
1867 recv_urg:
1868 	err = tcp_recv_urg(sk, msg, len, flags);
1869 	goto out;
1870 
1871 recv_sndq:
1872 	err = tcp_peek_sndq(sk, msg, len);
1873 	goto out;
1874 }
1875 EXPORT_SYMBOL(tcp_recvmsg);
1876 
tcp_set_state(struct sock * sk,int state)1877 void tcp_set_state(struct sock *sk, int state)
1878 {
1879 	int oldstate = sk->sk_state;
1880 
1881 	switch (state) {
1882 	case TCP_ESTABLISHED:
1883 		if (oldstate != TCP_ESTABLISHED)
1884 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1885 		break;
1886 
1887 	case TCP_CLOSE:
1888 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1889 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1890 
1891 		sk->sk_prot->unhash(sk);
1892 		if (inet_csk(sk)->icsk_bind_hash &&
1893 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1894 			inet_put_port(sk);
1895 		/* fall through */
1896 	default:
1897 		if (oldstate == TCP_ESTABLISHED)
1898 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1899 	}
1900 
1901 	/* Change state AFTER socket is unhashed to avoid closed
1902 	 * socket sitting in hash tables.
1903 	 */
1904 	sk->sk_state = state;
1905 
1906 #ifdef STATE_TRACE
1907 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1908 #endif
1909 }
1910 EXPORT_SYMBOL_GPL(tcp_set_state);
1911 
1912 /*
1913  *	State processing on a close. This implements the state shift for
1914  *	sending our FIN frame. Note that we only send a FIN for some
1915  *	states. A shutdown() may have already sent the FIN, or we may be
1916  *	closed.
1917  */
1918 
1919 static const unsigned char new_state[16] = {
1920   /* current state:        new state:      action:	*/
1921   [0 /* (Invalid) */]	= TCP_CLOSE,
1922   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1923   [TCP_SYN_SENT]	= TCP_CLOSE,
1924   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1925   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1926   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1927   [TCP_TIME_WAIT]	= TCP_CLOSE,
1928   [TCP_CLOSE]		= TCP_CLOSE,
1929   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1930   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1931   [TCP_LISTEN]		= TCP_CLOSE,
1932   [TCP_CLOSING]		= TCP_CLOSING,
1933   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1934 };
1935 
tcp_close_state(struct sock * sk)1936 static int tcp_close_state(struct sock *sk)
1937 {
1938 	int next = (int)new_state[sk->sk_state];
1939 	int ns = next & TCP_STATE_MASK;
1940 
1941 	tcp_set_state(sk, ns);
1942 
1943 	return next & TCP_ACTION_FIN;
1944 }
1945 
1946 /*
1947  *	Shutdown the sending side of a connection. Much like close except
1948  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1949  */
1950 
tcp_shutdown(struct sock * sk,int how)1951 void tcp_shutdown(struct sock *sk, int how)
1952 {
1953 	/*	We need to grab some memory, and put together a FIN,
1954 	 *	and then put it into the queue to be sent.
1955 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1956 	 */
1957 	if (!(how & SEND_SHUTDOWN))
1958 		return;
1959 
1960 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1961 	if ((1 << sk->sk_state) &
1962 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1963 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1964 		/* Clear out any half completed packets.  FIN if needed. */
1965 		if (tcp_close_state(sk))
1966 			tcp_send_fin(sk);
1967 	}
1968 }
1969 EXPORT_SYMBOL(tcp_shutdown);
1970 
tcp_check_oom(struct sock * sk,int shift)1971 bool tcp_check_oom(struct sock *sk, int shift)
1972 {
1973 	bool too_many_orphans, out_of_socket_memory;
1974 
1975 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1976 	out_of_socket_memory = tcp_out_of_memory(sk);
1977 
1978 	if (too_many_orphans)
1979 		net_info_ratelimited("too many orphaned sockets\n");
1980 	if (out_of_socket_memory)
1981 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
1982 	return too_many_orphans || out_of_socket_memory;
1983 }
1984 
tcp_close(struct sock * sk,long timeout)1985 void tcp_close(struct sock *sk, long timeout)
1986 {
1987 	struct sk_buff *skb;
1988 	int data_was_unread = 0;
1989 	int state;
1990 
1991 	lock_sock(sk);
1992 	sk->sk_shutdown = SHUTDOWN_MASK;
1993 
1994 	if (sk->sk_state == TCP_LISTEN) {
1995 		tcp_set_state(sk, TCP_CLOSE);
1996 
1997 		/* Special case. */
1998 		inet_csk_listen_stop(sk);
1999 
2000 		goto adjudge_to_death;
2001 	}
2002 
2003 	/*  We need to flush the recv. buffs.  We do this only on the
2004 	 *  descriptor close, not protocol-sourced closes, because the
2005 	 *  reader process may not have drained the data yet!
2006 	 */
2007 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2008 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2009 
2010 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2011 			len--;
2012 		data_was_unread += len;
2013 		__kfree_skb(skb);
2014 	}
2015 
2016 	sk_mem_reclaim(sk);
2017 
2018 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2019 	if (sk->sk_state == TCP_CLOSE)
2020 		goto adjudge_to_death;
2021 
2022 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2023 	 * data was lost. To witness the awful effects of the old behavior of
2024 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2025 	 * GET in an FTP client, suspend the process, wait for the client to
2026 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2027 	 * Note: timeout is always zero in such a case.
2028 	 */
2029 	if (unlikely(tcp_sk(sk)->repair)) {
2030 		sk->sk_prot->disconnect(sk, 0);
2031 	} else if (data_was_unread) {
2032 		/* Unread data was tossed, zap the connection. */
2033 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2034 		tcp_set_state(sk, TCP_CLOSE);
2035 		tcp_send_active_reset(sk, sk->sk_allocation);
2036 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2037 		/* Check zero linger _after_ checking for unread data. */
2038 		sk->sk_prot->disconnect(sk, 0);
2039 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2040 	} else if (tcp_close_state(sk)) {
2041 		/* We FIN if the application ate all the data before
2042 		 * zapping the connection.
2043 		 */
2044 
2045 		/* RED-PEN. Formally speaking, we have broken TCP state
2046 		 * machine. State transitions:
2047 		 *
2048 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2049 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2050 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2051 		 *
2052 		 * are legal only when FIN has been sent (i.e. in window),
2053 		 * rather than queued out of window. Purists blame.
2054 		 *
2055 		 * F.e. "RFC state" is ESTABLISHED,
2056 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2057 		 *
2058 		 * The visible declinations are that sometimes
2059 		 * we enter time-wait state, when it is not required really
2060 		 * (harmless), do not send active resets, when they are
2061 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2062 		 * they look as CLOSING or LAST_ACK for Linux)
2063 		 * Probably, I missed some more holelets.
2064 		 * 						--ANK
2065 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2066 		 * in a single packet! (May consider it later but will
2067 		 * probably need API support or TCP_CORK SYN-ACK until
2068 		 * data is written and socket is closed.)
2069 		 */
2070 		tcp_send_fin(sk);
2071 	}
2072 
2073 	sk_stream_wait_close(sk, timeout);
2074 
2075 adjudge_to_death:
2076 	state = sk->sk_state;
2077 	sock_hold(sk);
2078 	sock_orphan(sk);
2079 
2080 	/* It is the last release_sock in its life. It will remove backlog. */
2081 	release_sock(sk);
2082 
2083 
2084 	/* Now socket is owned by kernel and we acquire BH lock
2085 	   to finish close. No need to check for user refs.
2086 	 */
2087 	local_bh_disable();
2088 	bh_lock_sock(sk);
2089 	WARN_ON(sock_owned_by_user(sk));
2090 
2091 	percpu_counter_inc(sk->sk_prot->orphan_count);
2092 
2093 	/* Have we already been destroyed by a softirq or backlog? */
2094 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2095 		goto out;
2096 
2097 	/*	This is a (useful) BSD violating of the RFC. There is a
2098 	 *	problem with TCP as specified in that the other end could
2099 	 *	keep a socket open forever with no application left this end.
2100 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2101 	 *	our end. If they send after that then tough - BUT: long enough
2102 	 *	that we won't make the old 4*rto = almost no time - whoops
2103 	 *	reset mistake.
2104 	 *
2105 	 *	Nope, it was not mistake. It is really desired behaviour
2106 	 *	f.e. on http servers, when such sockets are useless, but
2107 	 *	consume significant resources. Let's do it with special
2108 	 *	linger2	option.					--ANK
2109 	 */
2110 
2111 	if (sk->sk_state == TCP_FIN_WAIT2) {
2112 		struct tcp_sock *tp = tcp_sk(sk);
2113 		if (tp->linger2 < 0) {
2114 			tcp_set_state(sk, TCP_CLOSE);
2115 			tcp_send_active_reset(sk, GFP_ATOMIC);
2116 			NET_INC_STATS_BH(sock_net(sk),
2117 					LINUX_MIB_TCPABORTONLINGER);
2118 		} else {
2119 			const int tmo = tcp_fin_time(sk);
2120 
2121 			if (tmo > TCP_TIMEWAIT_LEN) {
2122 				inet_csk_reset_keepalive_timer(sk,
2123 						tmo - TCP_TIMEWAIT_LEN);
2124 			} else {
2125 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2126 				goto out;
2127 			}
2128 		}
2129 	}
2130 	if (sk->sk_state != TCP_CLOSE) {
2131 		sk_mem_reclaim(sk);
2132 		if (tcp_check_oom(sk, 0)) {
2133 			tcp_set_state(sk, TCP_CLOSE);
2134 			tcp_send_active_reset(sk, GFP_ATOMIC);
2135 			NET_INC_STATS_BH(sock_net(sk),
2136 					LINUX_MIB_TCPABORTONMEMORY);
2137 		}
2138 	}
2139 
2140 	if (sk->sk_state == TCP_CLOSE) {
2141 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2142 		/* We could get here with a non-NULL req if the socket is
2143 		 * aborted (e.g., closed with unread data) before 3WHS
2144 		 * finishes.
2145 		 */
2146 		if (req)
2147 			reqsk_fastopen_remove(sk, req, false);
2148 		inet_csk_destroy_sock(sk);
2149 	}
2150 	/* Otherwise, socket is reprieved until protocol close. */
2151 
2152 out:
2153 	bh_unlock_sock(sk);
2154 	local_bh_enable();
2155 	sock_put(sk);
2156 }
2157 EXPORT_SYMBOL(tcp_close);
2158 
2159 /* These states need RST on ABORT according to RFC793 */
2160 
tcp_need_reset(int state)2161 static inline bool tcp_need_reset(int state)
2162 {
2163 	return (1 << state) &
2164 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2165 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2166 }
2167 
tcp_disconnect(struct sock * sk,int flags)2168 int tcp_disconnect(struct sock *sk, int flags)
2169 {
2170 	struct inet_sock *inet = inet_sk(sk);
2171 	struct inet_connection_sock *icsk = inet_csk(sk);
2172 	struct tcp_sock *tp = tcp_sk(sk);
2173 	int err = 0;
2174 	int old_state = sk->sk_state;
2175 
2176 	if (old_state != TCP_CLOSE)
2177 		tcp_set_state(sk, TCP_CLOSE);
2178 
2179 	/* ABORT function of RFC793 */
2180 	if (old_state == TCP_LISTEN) {
2181 		inet_csk_listen_stop(sk);
2182 	} else if (unlikely(tp->repair)) {
2183 		sk->sk_err = ECONNABORTED;
2184 	} else if (tcp_need_reset(old_state) ||
2185 		   (tp->snd_nxt != tp->write_seq &&
2186 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2187 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2188 		 * states
2189 		 */
2190 		tcp_send_active_reset(sk, gfp_any());
2191 		sk->sk_err = ECONNRESET;
2192 	} else if (old_state == TCP_SYN_SENT)
2193 		sk->sk_err = ECONNRESET;
2194 
2195 	tcp_clear_xmit_timers(sk);
2196 	__skb_queue_purge(&sk->sk_receive_queue);
2197 	tcp_write_queue_purge(sk);
2198 	__skb_queue_purge(&tp->out_of_order_queue);
2199 
2200 	inet->inet_dport = 0;
2201 
2202 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2203 		inet_reset_saddr(sk);
2204 
2205 	sk->sk_shutdown = 0;
2206 	sock_reset_flag(sk, SOCK_DONE);
2207 	tp->srtt_us = 0;
2208 	if ((tp->write_seq += tp->max_window + 2) == 0)
2209 		tp->write_seq = 1;
2210 	icsk->icsk_backoff = 0;
2211 	tp->snd_cwnd = 2;
2212 	icsk->icsk_probes_out = 0;
2213 	tp->packets_out = 0;
2214 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2215 	tp->snd_cwnd_cnt = 0;
2216 	tp->window_clamp = 0;
2217 	tcp_set_ca_state(sk, TCP_CA_Open);
2218 	tcp_clear_retrans(tp);
2219 	inet_csk_delack_init(sk);
2220 	tcp_init_send_head(sk);
2221 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2222 	__sk_dst_reset(sk);
2223 
2224 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2225 
2226 	sk->sk_error_report(sk);
2227 	return err;
2228 }
2229 EXPORT_SYMBOL(tcp_disconnect);
2230 
tcp_sock_destruct(struct sock * sk)2231 void tcp_sock_destruct(struct sock *sk)
2232 {
2233 	inet_sock_destruct(sk);
2234 
2235 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2236 }
2237 
tcp_can_repair_sock(const struct sock * sk)2238 static inline bool tcp_can_repair_sock(const struct sock *sk)
2239 {
2240 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2241 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2242 }
2243 
tcp_repair_options_est(struct tcp_sock * tp,struct tcp_repair_opt __user * optbuf,unsigned int len)2244 static int tcp_repair_options_est(struct tcp_sock *tp,
2245 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2246 {
2247 	struct tcp_repair_opt opt;
2248 
2249 	while (len >= sizeof(opt)) {
2250 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2251 			return -EFAULT;
2252 
2253 		optbuf++;
2254 		len -= sizeof(opt);
2255 
2256 		switch (opt.opt_code) {
2257 		case TCPOPT_MSS:
2258 			tp->rx_opt.mss_clamp = opt.opt_val;
2259 			break;
2260 		case TCPOPT_WINDOW:
2261 			{
2262 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2263 				u16 rcv_wscale = opt.opt_val >> 16;
2264 
2265 				if (snd_wscale > 14 || rcv_wscale > 14)
2266 					return -EFBIG;
2267 
2268 				tp->rx_opt.snd_wscale = snd_wscale;
2269 				tp->rx_opt.rcv_wscale = rcv_wscale;
2270 				tp->rx_opt.wscale_ok = 1;
2271 			}
2272 			break;
2273 		case TCPOPT_SACK_PERM:
2274 			if (opt.opt_val != 0)
2275 				return -EINVAL;
2276 
2277 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2278 			if (sysctl_tcp_fack)
2279 				tcp_enable_fack(tp);
2280 			break;
2281 		case TCPOPT_TIMESTAMP:
2282 			if (opt.opt_val != 0)
2283 				return -EINVAL;
2284 
2285 			tp->rx_opt.tstamp_ok = 1;
2286 			break;
2287 		}
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 /*
2294  *	Socket option code for TCP.
2295  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2296 static int do_tcp_setsockopt(struct sock *sk, int level,
2297 		int optname, char __user *optval, unsigned int optlen)
2298 {
2299 	struct tcp_sock *tp = tcp_sk(sk);
2300 	struct inet_connection_sock *icsk = inet_csk(sk);
2301 	int val;
2302 	int err = 0;
2303 
2304 	/* These are data/string values, all the others are ints */
2305 	switch (optname) {
2306 	case TCP_CONGESTION: {
2307 		char name[TCP_CA_NAME_MAX];
2308 
2309 		if (optlen < 1)
2310 			return -EINVAL;
2311 
2312 		val = strncpy_from_user(name, optval,
2313 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2314 		if (val < 0)
2315 			return -EFAULT;
2316 		name[val] = 0;
2317 
2318 		lock_sock(sk);
2319 		err = tcp_set_congestion_control(sk, name);
2320 		release_sock(sk);
2321 		return err;
2322 	}
2323 	default:
2324 		/* fallthru */
2325 		break;
2326 	}
2327 
2328 	if (optlen < sizeof(int))
2329 		return -EINVAL;
2330 
2331 	if (get_user(val, (int __user *)optval))
2332 		return -EFAULT;
2333 
2334 	lock_sock(sk);
2335 
2336 	switch (optname) {
2337 	case TCP_MAXSEG:
2338 		/* Values greater than interface MTU won't take effect. However
2339 		 * at the point when this call is done we typically don't yet
2340 		 * know which interface is going to be used */
2341 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2342 			err = -EINVAL;
2343 			break;
2344 		}
2345 		tp->rx_opt.user_mss = val;
2346 		break;
2347 
2348 	case TCP_NODELAY:
2349 		if (val) {
2350 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2351 			 * this option on corked socket is remembered, but
2352 			 * it is not activated until cork is cleared.
2353 			 *
2354 			 * However, when TCP_NODELAY is set we make
2355 			 * an explicit push, which overrides even TCP_CORK
2356 			 * for currently queued segments.
2357 			 */
2358 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2359 			tcp_push_pending_frames(sk);
2360 		} else {
2361 			tp->nonagle &= ~TCP_NAGLE_OFF;
2362 		}
2363 		break;
2364 
2365 	case TCP_THIN_LINEAR_TIMEOUTS:
2366 		if (val < 0 || val > 1)
2367 			err = -EINVAL;
2368 		else
2369 			tp->thin_lto = val;
2370 		break;
2371 
2372 	case TCP_THIN_DUPACK:
2373 		if (val < 0 || val > 1)
2374 			err = -EINVAL;
2375 		else {
2376 			tp->thin_dupack = val;
2377 			if (tp->thin_dupack)
2378 				tcp_disable_early_retrans(tp);
2379 		}
2380 		break;
2381 
2382 	case TCP_REPAIR:
2383 		if (!tcp_can_repair_sock(sk))
2384 			err = -EPERM;
2385 		else if (val == 1) {
2386 			tp->repair = 1;
2387 			sk->sk_reuse = SK_FORCE_REUSE;
2388 			tp->repair_queue = TCP_NO_QUEUE;
2389 		} else if (val == 0) {
2390 			tp->repair = 0;
2391 			sk->sk_reuse = SK_NO_REUSE;
2392 			tcp_send_window_probe(sk);
2393 		} else
2394 			err = -EINVAL;
2395 
2396 		break;
2397 
2398 	case TCP_REPAIR_QUEUE:
2399 		if (!tp->repair)
2400 			err = -EPERM;
2401 		else if (val < TCP_QUEUES_NR)
2402 			tp->repair_queue = val;
2403 		else
2404 			err = -EINVAL;
2405 		break;
2406 
2407 	case TCP_QUEUE_SEQ:
2408 		if (sk->sk_state != TCP_CLOSE)
2409 			err = -EPERM;
2410 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2411 			tp->write_seq = val;
2412 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2413 			tp->rcv_nxt = val;
2414 		else
2415 			err = -EINVAL;
2416 		break;
2417 
2418 	case TCP_REPAIR_OPTIONS:
2419 		if (!tp->repair)
2420 			err = -EINVAL;
2421 		else if (sk->sk_state == TCP_ESTABLISHED)
2422 			err = tcp_repair_options_est(tp,
2423 					(struct tcp_repair_opt __user *)optval,
2424 					optlen);
2425 		else
2426 			err = -EPERM;
2427 		break;
2428 
2429 	case TCP_CORK:
2430 		/* When set indicates to always queue non-full frames.
2431 		 * Later the user clears this option and we transmit
2432 		 * any pending partial frames in the queue.  This is
2433 		 * meant to be used alongside sendfile() to get properly
2434 		 * filled frames when the user (for example) must write
2435 		 * out headers with a write() call first and then use
2436 		 * sendfile to send out the data parts.
2437 		 *
2438 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2439 		 * stronger than TCP_NODELAY.
2440 		 */
2441 		if (val) {
2442 			tp->nonagle |= TCP_NAGLE_CORK;
2443 		} else {
2444 			tp->nonagle &= ~TCP_NAGLE_CORK;
2445 			if (tp->nonagle&TCP_NAGLE_OFF)
2446 				tp->nonagle |= TCP_NAGLE_PUSH;
2447 			tcp_push_pending_frames(sk);
2448 		}
2449 		break;
2450 
2451 	case TCP_KEEPIDLE:
2452 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2453 			err = -EINVAL;
2454 		else {
2455 			tp->keepalive_time = val * HZ;
2456 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2457 			    !((1 << sk->sk_state) &
2458 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2459 				u32 elapsed = keepalive_time_elapsed(tp);
2460 				if (tp->keepalive_time > elapsed)
2461 					elapsed = tp->keepalive_time - elapsed;
2462 				else
2463 					elapsed = 0;
2464 				inet_csk_reset_keepalive_timer(sk, elapsed);
2465 			}
2466 		}
2467 		break;
2468 	case TCP_KEEPINTVL:
2469 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2470 			err = -EINVAL;
2471 		else
2472 			tp->keepalive_intvl = val * HZ;
2473 		break;
2474 	case TCP_KEEPCNT:
2475 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2476 			err = -EINVAL;
2477 		else
2478 			tp->keepalive_probes = val;
2479 		break;
2480 	case TCP_SYNCNT:
2481 		if (val < 1 || val > MAX_TCP_SYNCNT)
2482 			err = -EINVAL;
2483 		else
2484 			icsk->icsk_syn_retries = val;
2485 		break;
2486 
2487 	case TCP_LINGER2:
2488 		if (val < 0)
2489 			tp->linger2 = -1;
2490 		else if (val > sysctl_tcp_fin_timeout / HZ)
2491 			tp->linger2 = 0;
2492 		else
2493 			tp->linger2 = val * HZ;
2494 		break;
2495 
2496 	case TCP_DEFER_ACCEPT:
2497 		/* Translate value in seconds to number of retransmits */
2498 		icsk->icsk_accept_queue.rskq_defer_accept =
2499 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2500 					TCP_RTO_MAX / HZ);
2501 		break;
2502 
2503 	case TCP_WINDOW_CLAMP:
2504 		if (!val) {
2505 			if (sk->sk_state != TCP_CLOSE) {
2506 				err = -EINVAL;
2507 				break;
2508 			}
2509 			tp->window_clamp = 0;
2510 		} else
2511 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2512 						SOCK_MIN_RCVBUF / 2 : val;
2513 		break;
2514 
2515 	case TCP_QUICKACK:
2516 		if (!val) {
2517 			icsk->icsk_ack.pingpong = 1;
2518 		} else {
2519 			icsk->icsk_ack.pingpong = 0;
2520 			if ((1 << sk->sk_state) &
2521 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2522 			    inet_csk_ack_scheduled(sk)) {
2523 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2524 				tcp_cleanup_rbuf(sk, 1);
2525 				if (!(val & 1))
2526 					icsk->icsk_ack.pingpong = 1;
2527 			}
2528 		}
2529 		break;
2530 
2531 #ifdef CONFIG_TCP_MD5SIG
2532 	case TCP_MD5SIG:
2533 		/* Read the IP->Key mappings from userspace */
2534 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2535 		break;
2536 #endif
2537 	case TCP_USER_TIMEOUT:
2538 		/* Cap the max time in ms TCP will retry or probe the window
2539 		 * before giving up and aborting (ETIMEDOUT) a connection.
2540 		 */
2541 		if (val < 0)
2542 			err = -EINVAL;
2543 		else
2544 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2545 		break;
2546 
2547 	case TCP_FASTOPEN:
2548 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2549 		    TCPF_LISTEN))) {
2550 			tcp_fastopen_init_key_once(true);
2551 
2552 			err = fastopen_init_queue(sk, val);
2553 		} else {
2554 			err = -EINVAL;
2555 		}
2556 		break;
2557 	case TCP_TIMESTAMP:
2558 		if (!tp->repair)
2559 			err = -EPERM;
2560 		else
2561 			tp->tsoffset = val - tcp_time_stamp;
2562 		break;
2563 	case TCP_NOTSENT_LOWAT:
2564 		tp->notsent_lowat = val;
2565 		sk->sk_write_space(sk);
2566 		break;
2567 	default:
2568 		err = -ENOPROTOOPT;
2569 		break;
2570 	}
2571 
2572 	release_sock(sk);
2573 	return err;
2574 }
2575 
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2576 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2577 		   unsigned int optlen)
2578 {
2579 	const struct inet_connection_sock *icsk = inet_csk(sk);
2580 
2581 	if (level != SOL_TCP)
2582 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2583 						     optval, optlen);
2584 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2585 }
2586 EXPORT_SYMBOL(tcp_setsockopt);
2587 
2588 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2589 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2590 			  char __user *optval, unsigned int optlen)
2591 {
2592 	if (level != SOL_TCP)
2593 		return inet_csk_compat_setsockopt(sk, level, optname,
2594 						  optval, optlen);
2595 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2596 }
2597 EXPORT_SYMBOL(compat_tcp_setsockopt);
2598 #endif
2599 
2600 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)2601 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2602 {
2603 	const struct tcp_sock *tp = tcp_sk(sk);
2604 	const struct inet_connection_sock *icsk = inet_csk(sk);
2605 	u32 now = tcp_time_stamp;
2606 	unsigned int start;
2607 	u64 rate64;
2608 	u32 rate;
2609 
2610 	memset(info, 0, sizeof(*info));
2611 
2612 	info->tcpi_state = sk->sk_state;
2613 	info->tcpi_ca_state = icsk->icsk_ca_state;
2614 	info->tcpi_retransmits = icsk->icsk_retransmits;
2615 	info->tcpi_probes = icsk->icsk_probes_out;
2616 	info->tcpi_backoff = icsk->icsk_backoff;
2617 
2618 	if (tp->rx_opt.tstamp_ok)
2619 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2620 	if (tcp_is_sack(tp))
2621 		info->tcpi_options |= TCPI_OPT_SACK;
2622 	if (tp->rx_opt.wscale_ok) {
2623 		info->tcpi_options |= TCPI_OPT_WSCALE;
2624 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2625 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2626 	}
2627 
2628 	if (tp->ecn_flags & TCP_ECN_OK)
2629 		info->tcpi_options |= TCPI_OPT_ECN;
2630 	if (tp->ecn_flags & TCP_ECN_SEEN)
2631 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2632 	if (tp->syn_data_acked)
2633 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2634 
2635 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2636 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2637 	info->tcpi_snd_mss = tp->mss_cache;
2638 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2639 
2640 	if (sk->sk_state == TCP_LISTEN) {
2641 		info->tcpi_unacked = sk->sk_ack_backlog;
2642 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2643 	} else {
2644 		info->tcpi_unacked = tp->packets_out;
2645 		info->tcpi_sacked = tp->sacked_out;
2646 	}
2647 	info->tcpi_lost = tp->lost_out;
2648 	info->tcpi_retrans = tp->retrans_out;
2649 	info->tcpi_fackets = tp->fackets_out;
2650 
2651 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2652 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2653 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2654 
2655 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2656 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2657 	info->tcpi_rtt = tp->srtt_us >> 3;
2658 	info->tcpi_rttvar = tp->mdev_us >> 2;
2659 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2660 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2661 	info->tcpi_advmss = tp->advmss;
2662 	info->tcpi_reordering = tp->reordering;
2663 
2664 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2665 	info->tcpi_rcv_space = tp->rcvq_space.space;
2666 
2667 	info->tcpi_total_retrans = tp->total_retrans;
2668 
2669 	rate = READ_ONCE(sk->sk_pacing_rate);
2670 	rate64 = rate != ~0U ? rate : ~0ULL;
2671 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2672 
2673 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2674 	rate64 = rate != ~0U ? rate : ~0ULL;
2675 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2676 
2677 	do {
2678 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2679 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2680 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2681 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2682 }
2683 EXPORT_SYMBOL_GPL(tcp_get_info);
2684 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2685 static int do_tcp_getsockopt(struct sock *sk, int level,
2686 		int optname, char __user *optval, int __user *optlen)
2687 {
2688 	struct inet_connection_sock *icsk = inet_csk(sk);
2689 	struct tcp_sock *tp = tcp_sk(sk);
2690 	int val, len;
2691 
2692 	if (get_user(len, optlen))
2693 		return -EFAULT;
2694 
2695 	len = min_t(unsigned int, len, sizeof(int));
2696 
2697 	if (len < 0)
2698 		return -EINVAL;
2699 
2700 	switch (optname) {
2701 	case TCP_MAXSEG:
2702 		val = tp->mss_cache;
2703 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2704 			val = tp->rx_opt.user_mss;
2705 		if (tp->repair)
2706 			val = tp->rx_opt.mss_clamp;
2707 		break;
2708 	case TCP_NODELAY:
2709 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2710 		break;
2711 	case TCP_CORK:
2712 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2713 		break;
2714 	case TCP_KEEPIDLE:
2715 		val = keepalive_time_when(tp) / HZ;
2716 		break;
2717 	case TCP_KEEPINTVL:
2718 		val = keepalive_intvl_when(tp) / HZ;
2719 		break;
2720 	case TCP_KEEPCNT:
2721 		val = keepalive_probes(tp);
2722 		break;
2723 	case TCP_SYNCNT:
2724 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2725 		break;
2726 	case TCP_LINGER2:
2727 		val = tp->linger2;
2728 		if (val >= 0)
2729 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2730 		break;
2731 	case TCP_DEFER_ACCEPT:
2732 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2733 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2734 		break;
2735 	case TCP_WINDOW_CLAMP:
2736 		val = tp->window_clamp;
2737 		break;
2738 	case TCP_INFO: {
2739 		struct tcp_info info;
2740 
2741 		if (get_user(len, optlen))
2742 			return -EFAULT;
2743 
2744 		tcp_get_info(sk, &info);
2745 
2746 		len = min_t(unsigned int, len, sizeof(info));
2747 		if (put_user(len, optlen))
2748 			return -EFAULT;
2749 		if (copy_to_user(optval, &info, len))
2750 			return -EFAULT;
2751 		return 0;
2752 	}
2753 	case TCP_CC_INFO: {
2754 		const struct tcp_congestion_ops *ca_ops;
2755 		union tcp_cc_info info;
2756 		size_t sz = 0;
2757 		int attr;
2758 
2759 		if (get_user(len, optlen))
2760 			return -EFAULT;
2761 
2762 		ca_ops = icsk->icsk_ca_ops;
2763 		if (ca_ops && ca_ops->get_info)
2764 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2765 
2766 		len = min_t(unsigned int, len, sz);
2767 		if (put_user(len, optlen))
2768 			return -EFAULT;
2769 		if (copy_to_user(optval, &info, len))
2770 			return -EFAULT;
2771 		return 0;
2772 	}
2773 	case TCP_QUICKACK:
2774 		val = !icsk->icsk_ack.pingpong;
2775 		break;
2776 
2777 	case TCP_CONGESTION:
2778 		if (get_user(len, optlen))
2779 			return -EFAULT;
2780 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2781 		if (put_user(len, optlen))
2782 			return -EFAULT;
2783 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2784 			return -EFAULT;
2785 		return 0;
2786 
2787 	case TCP_THIN_LINEAR_TIMEOUTS:
2788 		val = tp->thin_lto;
2789 		break;
2790 	case TCP_THIN_DUPACK:
2791 		val = tp->thin_dupack;
2792 		break;
2793 
2794 	case TCP_REPAIR:
2795 		val = tp->repair;
2796 		break;
2797 
2798 	case TCP_REPAIR_QUEUE:
2799 		if (tp->repair)
2800 			val = tp->repair_queue;
2801 		else
2802 			return -EINVAL;
2803 		break;
2804 
2805 	case TCP_QUEUE_SEQ:
2806 		if (tp->repair_queue == TCP_SEND_QUEUE)
2807 			val = tp->write_seq;
2808 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2809 			val = tp->rcv_nxt;
2810 		else
2811 			return -EINVAL;
2812 		break;
2813 
2814 	case TCP_USER_TIMEOUT:
2815 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2816 		break;
2817 
2818 	case TCP_FASTOPEN:
2819 		if (icsk->icsk_accept_queue.fastopenq)
2820 			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2821 		else
2822 			val = 0;
2823 		break;
2824 
2825 	case TCP_TIMESTAMP:
2826 		val = tcp_time_stamp + tp->tsoffset;
2827 		break;
2828 	case TCP_NOTSENT_LOWAT:
2829 		val = tp->notsent_lowat;
2830 		break;
2831 	default:
2832 		return -ENOPROTOOPT;
2833 	}
2834 
2835 	if (put_user(len, optlen))
2836 		return -EFAULT;
2837 	if (copy_to_user(optval, &val, len))
2838 		return -EFAULT;
2839 	return 0;
2840 }
2841 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2842 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2843 		   int __user *optlen)
2844 {
2845 	struct inet_connection_sock *icsk = inet_csk(sk);
2846 
2847 	if (level != SOL_TCP)
2848 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2849 						     optval, optlen);
2850 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2851 }
2852 EXPORT_SYMBOL(tcp_getsockopt);
2853 
2854 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2855 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2856 			  char __user *optval, int __user *optlen)
2857 {
2858 	if (level != SOL_TCP)
2859 		return inet_csk_compat_getsockopt(sk, level, optname,
2860 						  optval, optlen);
2861 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2862 }
2863 EXPORT_SYMBOL(compat_tcp_getsockopt);
2864 #endif
2865 
2866 #ifdef CONFIG_TCP_MD5SIG
2867 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2868 static DEFINE_MUTEX(tcp_md5sig_mutex);
2869 static bool tcp_md5sig_pool_populated = false;
2870 
__tcp_alloc_md5sig_pool(void)2871 static void __tcp_alloc_md5sig_pool(void)
2872 {
2873 	int cpu;
2874 
2875 	for_each_possible_cpu(cpu) {
2876 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2877 			struct crypto_hash *hash;
2878 
2879 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2880 			if (IS_ERR_OR_NULL(hash))
2881 				return;
2882 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2883 		}
2884 	}
2885 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2886 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2887 	 */
2888 	smp_wmb();
2889 	tcp_md5sig_pool_populated = true;
2890 }
2891 
tcp_alloc_md5sig_pool(void)2892 bool tcp_alloc_md5sig_pool(void)
2893 {
2894 	if (unlikely(!tcp_md5sig_pool_populated)) {
2895 		mutex_lock(&tcp_md5sig_mutex);
2896 
2897 		if (!tcp_md5sig_pool_populated)
2898 			__tcp_alloc_md5sig_pool();
2899 
2900 		mutex_unlock(&tcp_md5sig_mutex);
2901 	}
2902 	return tcp_md5sig_pool_populated;
2903 }
2904 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2905 
2906 
2907 /**
2908  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2909  *
2910  *	We use percpu structure, so if we succeed, we exit with preemption
2911  *	and BH disabled, to make sure another thread or softirq handling
2912  *	wont try to get same context.
2913  */
tcp_get_md5sig_pool(void)2914 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2915 {
2916 	local_bh_disable();
2917 
2918 	if (tcp_md5sig_pool_populated) {
2919 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2920 		smp_rmb();
2921 		return this_cpu_ptr(&tcp_md5sig_pool);
2922 	}
2923 	local_bh_enable();
2924 	return NULL;
2925 }
2926 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2927 
tcp_md5_hash_header(struct tcp_md5sig_pool * hp,const struct tcphdr * th)2928 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2929 			const struct tcphdr *th)
2930 {
2931 	struct scatterlist sg;
2932 	struct tcphdr hdr;
2933 	int err;
2934 
2935 	/* We are not allowed to change tcphdr, make a local copy */
2936 	memcpy(&hdr, th, sizeof(hdr));
2937 	hdr.check = 0;
2938 
2939 	/* options aren't included in the hash */
2940 	sg_init_one(&sg, &hdr, sizeof(hdr));
2941 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2942 	return err;
2943 }
2944 EXPORT_SYMBOL(tcp_md5_hash_header);
2945 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)2946 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2947 			  const struct sk_buff *skb, unsigned int header_len)
2948 {
2949 	struct scatterlist sg;
2950 	const struct tcphdr *tp = tcp_hdr(skb);
2951 	struct hash_desc *desc = &hp->md5_desc;
2952 	unsigned int i;
2953 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2954 					   skb_headlen(skb) - header_len : 0;
2955 	const struct skb_shared_info *shi = skb_shinfo(skb);
2956 	struct sk_buff *frag_iter;
2957 
2958 	sg_init_table(&sg, 1);
2959 
2960 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2961 	if (crypto_hash_update(desc, &sg, head_data_len))
2962 		return 1;
2963 
2964 	for (i = 0; i < shi->nr_frags; ++i) {
2965 		const struct skb_frag_struct *f = &shi->frags[i];
2966 		unsigned int offset = f->page_offset;
2967 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
2968 
2969 		sg_set_page(&sg, page, skb_frag_size(f),
2970 			    offset_in_page(offset));
2971 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
2972 			return 1;
2973 	}
2974 
2975 	skb_walk_frags(skb, frag_iter)
2976 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
2977 			return 1;
2978 
2979 	return 0;
2980 }
2981 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2982 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)2983 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
2984 {
2985 	struct scatterlist sg;
2986 
2987 	sg_init_one(&sg, key->key, key->keylen);
2988 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2989 }
2990 EXPORT_SYMBOL(tcp_md5_hash_key);
2991 
2992 #endif
2993 
tcp_done(struct sock * sk)2994 void tcp_done(struct sock *sk)
2995 {
2996 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2997 
2998 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2999 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3000 
3001 	tcp_set_state(sk, TCP_CLOSE);
3002 	tcp_clear_xmit_timers(sk);
3003 	if (req)
3004 		reqsk_fastopen_remove(sk, req, false);
3005 
3006 	sk->sk_shutdown = SHUTDOWN_MASK;
3007 
3008 	if (!sock_flag(sk, SOCK_DEAD))
3009 		sk->sk_state_change(sk);
3010 	else
3011 		inet_csk_destroy_sock(sk);
3012 }
3013 EXPORT_SYMBOL_GPL(tcp_done);
3014 
3015 extern struct tcp_congestion_ops tcp_reno;
3016 
3017 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3018 static int __init set_thash_entries(char *str)
3019 {
3020 	ssize_t ret;
3021 
3022 	if (!str)
3023 		return 0;
3024 
3025 	ret = kstrtoul(str, 0, &thash_entries);
3026 	if (ret)
3027 		return 0;
3028 
3029 	return 1;
3030 }
3031 __setup("thash_entries=", set_thash_entries);
3032 
tcp_init_mem(void)3033 static void __init tcp_init_mem(void)
3034 {
3035 	unsigned long limit = nr_free_buffer_pages() / 8;
3036 	limit = max(limit, 128UL);
3037 	sysctl_tcp_mem[0] = limit / 4 * 3;
3038 	sysctl_tcp_mem[1] = limit;
3039 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3040 }
3041 
tcp_init(void)3042 void __init tcp_init(void)
3043 {
3044 	unsigned long limit;
3045 	int max_rshare, max_wshare, cnt;
3046 	unsigned int i;
3047 
3048 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3049 
3050 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3051 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3052 	tcp_hashinfo.bind_bucket_cachep =
3053 		kmem_cache_create("tcp_bind_bucket",
3054 				  sizeof(struct inet_bind_bucket), 0,
3055 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3056 
3057 	/* Size and allocate the main established and bind bucket
3058 	 * hash tables.
3059 	 *
3060 	 * The methodology is similar to that of the buffer cache.
3061 	 */
3062 	tcp_hashinfo.ehash =
3063 		alloc_large_system_hash("TCP established",
3064 					sizeof(struct inet_ehash_bucket),
3065 					thash_entries,
3066 					17, /* one slot per 128 KB of memory */
3067 					0,
3068 					NULL,
3069 					&tcp_hashinfo.ehash_mask,
3070 					0,
3071 					thash_entries ? 0 : 512 * 1024);
3072 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3073 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3074 
3075 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3076 		panic("TCP: failed to alloc ehash_locks");
3077 	tcp_hashinfo.bhash =
3078 		alloc_large_system_hash("TCP bind",
3079 					sizeof(struct inet_bind_hashbucket),
3080 					tcp_hashinfo.ehash_mask + 1,
3081 					17, /* one slot per 128 KB of memory */
3082 					0,
3083 					&tcp_hashinfo.bhash_size,
3084 					NULL,
3085 					0,
3086 					64 * 1024);
3087 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3088 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3089 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3090 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3091 	}
3092 
3093 
3094 	cnt = tcp_hashinfo.ehash_mask + 1;
3095 
3096 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3097 	sysctl_tcp_max_orphans = cnt / 2;
3098 	sysctl_max_syn_backlog = max(128, cnt / 256);
3099 
3100 	tcp_init_mem();
3101 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3102 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3103 	max_wshare = min(4UL*1024*1024, limit);
3104 	max_rshare = min(6UL*1024*1024, limit);
3105 
3106 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3107 	sysctl_tcp_wmem[1] = 16*1024;
3108 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3109 
3110 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3111 	sysctl_tcp_rmem[1] = 87380;
3112 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3113 
3114 	pr_info("Hash tables configured (established %u bind %u)\n",
3115 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3116 
3117 	tcp_metrics_init();
3118 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3119 	tcp_tasklet_init();
3120 }
3121