1/*
2 * Copyright (c) 2013, Kenneth MacKay
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 *  * Redistributions of source code must retain the above copyright
9 *   notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <linux/random.h>
28
29#include "ecc.h"
30
31/* 256-bit curve */
32#define ECC_BYTES 32
33
34#define MAX_TRIES 16
35
36/* Number of u64's needed */
37#define NUM_ECC_DIGITS (ECC_BYTES / 8)
38
39struct ecc_point {
40	u64 x[NUM_ECC_DIGITS];
41	u64 y[NUM_ECC_DIGITS];
42};
43
44typedef struct {
45	u64 m_low;
46	u64 m_high;
47} uint128_t;
48
49#define CURVE_P_32 {	0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
50			0x0000000000000000ull, 0xFFFFFFFF00000001ull }
51
52#define CURVE_G_32 { \
53		{	0xF4A13945D898C296ull, 0x77037D812DEB33A0ull,	\
54			0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \
55		{	0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull,	\
56			0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull }	\
57}
58
59#define CURVE_N_32 {	0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull,	\
60			0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }
61
62static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32;
63static struct ecc_point curve_g = CURVE_G_32;
64static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32;
65
66static void vli_clear(u64 *vli)
67{
68	int i;
69
70	for (i = 0; i < NUM_ECC_DIGITS; i++)
71		vli[i] = 0;
72}
73
74/* Returns true if vli == 0, false otherwise. */
75static bool vli_is_zero(const u64 *vli)
76{
77	int i;
78
79	for (i = 0; i < NUM_ECC_DIGITS; i++) {
80		if (vli[i])
81			return false;
82	}
83
84	return true;
85}
86
87/* Returns nonzero if bit bit of vli is set. */
88static u64 vli_test_bit(const u64 *vli, unsigned int bit)
89{
90	return (vli[bit / 64] & ((u64) 1 << (bit % 64)));
91}
92
93/* Counts the number of 64-bit "digits" in vli. */
94static unsigned int vli_num_digits(const u64 *vli)
95{
96	int i;
97
98	/* Search from the end until we find a non-zero digit.
99	 * We do it in reverse because we expect that most digits will
100	 * be nonzero.
101	 */
102	for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--);
103
104	return (i + 1);
105}
106
107/* Counts the number of bits required for vli. */
108static unsigned int vli_num_bits(const u64 *vli)
109{
110	unsigned int i, num_digits;
111	u64 digit;
112
113	num_digits = vli_num_digits(vli);
114	if (num_digits == 0)
115		return 0;
116
117	digit = vli[num_digits - 1];
118	for (i = 0; digit; i++)
119		digit >>= 1;
120
121	return ((num_digits - 1) * 64 + i);
122}
123
124/* Sets dest = src. */
125static void vli_set(u64 *dest, const u64 *src)
126{
127	int i;
128
129	for (i = 0; i < NUM_ECC_DIGITS; i++)
130		dest[i] = src[i];
131}
132
133/* Returns sign of left - right. */
134static int vli_cmp(const u64 *left, const u64 *right)
135{
136    int i;
137
138    for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) {
139	    if (left[i] > right[i])
140		    return 1;
141	    else if (left[i] < right[i])
142		    return -1;
143    }
144
145    return 0;
146}
147
148/* Computes result = in << c, returning carry. Can modify in place
149 * (if result == in). 0 < shift < 64.
150 */
151static u64 vli_lshift(u64 *result, const u64 *in,
152			   unsigned int shift)
153{
154	u64 carry = 0;
155	int i;
156
157	for (i = 0; i < NUM_ECC_DIGITS; i++) {
158		u64 temp = in[i];
159
160		result[i] = (temp << shift) | carry;
161		carry = temp >> (64 - shift);
162	}
163
164	return carry;
165}
166
167/* Computes vli = vli >> 1. */
168static void vli_rshift1(u64 *vli)
169{
170	u64 *end = vli;
171	u64 carry = 0;
172
173	vli += NUM_ECC_DIGITS;
174
175	while (vli-- > end) {
176		u64 temp = *vli;
177		*vli = (temp >> 1) | carry;
178		carry = temp << 63;
179	}
180}
181
182/* Computes result = left + right, returning carry. Can modify in place. */
183static u64 vli_add(u64 *result, const u64 *left,
184			const u64 *right)
185{
186	u64 carry = 0;
187	int i;
188
189	for (i = 0; i < NUM_ECC_DIGITS; i++) {
190		u64 sum;
191
192		sum = left[i] + right[i] + carry;
193		if (sum != left[i])
194			carry = (sum < left[i]);
195
196		result[i] = sum;
197	}
198
199	return carry;
200}
201
202/* Computes result = left - right, returning borrow. Can modify in place. */
203static u64 vli_sub(u64 *result, const u64 *left, const u64 *right)
204{
205	u64 borrow = 0;
206	int i;
207
208	for (i = 0; i < NUM_ECC_DIGITS; i++) {
209		u64 diff;
210
211		diff = left[i] - right[i] - borrow;
212		if (diff != left[i])
213			borrow = (diff > left[i]);
214
215		result[i] = diff;
216	}
217
218	return borrow;
219}
220
221static uint128_t mul_64_64(u64 left, u64 right)
222{
223	u64 a0 = left & 0xffffffffull;
224	u64 a1 = left >> 32;
225	u64 b0 = right & 0xffffffffull;
226	u64 b1 = right >> 32;
227	u64 m0 = a0 * b0;
228	u64 m1 = a0 * b1;
229	u64 m2 = a1 * b0;
230	u64 m3 = a1 * b1;
231	uint128_t result;
232
233	m2 += (m0 >> 32);
234	m2 += m1;
235
236	/* Overflow */
237	if (m2 < m1)
238		m3 += 0x100000000ull;
239
240	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
241	result.m_high = m3 + (m2 >> 32);
242
243	return result;
244}
245
246static uint128_t add_128_128(uint128_t a, uint128_t b)
247{
248	uint128_t result;
249
250	result.m_low = a.m_low + b.m_low;
251	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
252
253	return result;
254}
255
256static void vli_mult(u64 *result, const u64 *left, const u64 *right)
257{
258	uint128_t r01 = { 0, 0 };
259	u64 r2 = 0;
260	unsigned int i, k;
261
262	/* Compute each digit of result in sequence, maintaining the
263	 * carries.
264	 */
265	for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
266		unsigned int min;
267
268		if (k < NUM_ECC_DIGITS)
269			min = 0;
270		else
271			min = (k + 1) - NUM_ECC_DIGITS;
272
273		for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) {
274			uint128_t product;
275
276			product = mul_64_64(left[i], right[k - i]);
277
278			r01 = add_128_128(r01, product);
279			r2 += (r01.m_high < product.m_high);
280		}
281
282		result[k] = r01.m_low;
283		r01.m_low = r01.m_high;
284		r01.m_high = r2;
285		r2 = 0;
286	}
287
288	result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
289}
290
291static void vli_square(u64 *result, const u64 *left)
292{
293	uint128_t r01 = { 0, 0 };
294	u64 r2 = 0;
295	int i, k;
296
297	for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
298		unsigned int min;
299
300		if (k < NUM_ECC_DIGITS)
301			min = 0;
302		else
303			min = (k + 1) - NUM_ECC_DIGITS;
304
305		for (i = min; i <= k && i <= k - i; i++) {
306			uint128_t product;
307
308			product = mul_64_64(left[i], left[k - i]);
309
310			if (i < k - i) {
311				r2 += product.m_high >> 63;
312				product.m_high = (product.m_high << 1) |
313						 (product.m_low >> 63);
314				product.m_low <<= 1;
315			}
316
317			r01 = add_128_128(r01, product);
318			r2 += (r01.m_high < product.m_high);
319		}
320
321		result[k] = r01.m_low;
322		r01.m_low = r01.m_high;
323		r01.m_high = r2;
324		r2 = 0;
325	}
326
327	result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
328}
329
330/* Computes result = (left + right) % mod.
331 * Assumes that left < mod and right < mod, result != mod.
332 */
333static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
334			const u64 *mod)
335{
336	u64 carry;
337
338	carry = vli_add(result, left, right);
339
340	/* result > mod (result = mod + remainder), so subtract mod to
341	 * get remainder.
342	 */
343	if (carry || vli_cmp(result, mod) >= 0)
344		vli_sub(result, result, mod);
345}
346
347/* Computes result = (left - right) % mod.
348 * Assumes that left < mod and right < mod, result != mod.
349 */
350static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
351			const u64 *mod)
352{
353	u64 borrow = vli_sub(result, left, right);
354
355	/* In this case, p_result == -diff == (max int) - diff.
356	 * Since -x % d == d - x, we can get the correct result from
357	 * result + mod (with overflow).
358	 */
359	if (borrow)
360		vli_add(result, result, mod);
361}
362
363/* Computes result = product % curve_p
364   from http://www.nsa.gov/ia/_files/nist-routines.pdf */
365static void vli_mmod_fast(u64 *result, const u64 *product)
366{
367	u64 tmp[NUM_ECC_DIGITS];
368	int carry;
369
370	/* t */
371	vli_set(result, product);
372
373	/* s1 */
374	tmp[0] = 0;
375	tmp[1] = product[5] & 0xffffffff00000000ull;
376	tmp[2] = product[6];
377	tmp[3] = product[7];
378	carry = vli_lshift(tmp, tmp, 1);
379	carry += vli_add(result, result, tmp);
380
381	/* s2 */
382	tmp[1] = product[6] << 32;
383	tmp[2] = (product[6] >> 32) | (product[7] << 32);
384	tmp[3] = product[7] >> 32;
385	carry += vli_lshift(tmp, tmp, 1);
386	carry += vli_add(result, result, tmp);
387
388	/* s3 */
389	tmp[0] = product[4];
390	tmp[1] = product[5] & 0xffffffff;
391	tmp[2] = 0;
392	tmp[3] = product[7];
393	carry += vli_add(result, result, tmp);
394
395	/* s4 */
396	tmp[0] = (product[4] >> 32) | (product[5] << 32);
397	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
398	tmp[2] = product[7];
399	tmp[3] = (product[6] >> 32) | (product[4] << 32);
400	carry += vli_add(result, result, tmp);
401
402	/* d1 */
403	tmp[0] = (product[5] >> 32) | (product[6] << 32);
404	tmp[1] = (product[6] >> 32);
405	tmp[2] = 0;
406	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
407	carry -= vli_sub(result, result, tmp);
408
409	/* d2 */
410	tmp[0] = product[6];
411	tmp[1] = product[7];
412	tmp[2] = 0;
413	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
414	carry -= vli_sub(result, result, tmp);
415
416	/* d3 */
417	tmp[0] = (product[6] >> 32) | (product[7] << 32);
418	tmp[1] = (product[7] >> 32) | (product[4] << 32);
419	tmp[2] = (product[4] >> 32) | (product[5] << 32);
420	tmp[3] = (product[6] << 32);
421	carry -= vli_sub(result, result, tmp);
422
423	/* d4 */
424	tmp[0] = product[7];
425	tmp[1] = product[4] & 0xffffffff00000000ull;
426	tmp[2] = product[5];
427	tmp[3] = product[6] & 0xffffffff00000000ull;
428	carry -= vli_sub(result, result, tmp);
429
430	if (carry < 0) {
431		do {
432			carry += vli_add(result, result, curve_p);
433		} while (carry < 0);
434	} else {
435		while (carry || vli_cmp(curve_p, result) != 1)
436			carry -= vli_sub(result, result, curve_p);
437	}
438}
439
440/* Computes result = (left * right) % curve_p. */
441static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right)
442{
443	u64 product[2 * NUM_ECC_DIGITS];
444
445	vli_mult(product, left, right);
446	vli_mmod_fast(result, product);
447}
448
449/* Computes result = left^2 % curve_p. */
450static void vli_mod_square_fast(u64 *result, const u64 *left)
451{
452	u64 product[2 * NUM_ECC_DIGITS];
453
454	vli_square(product, left);
455	vli_mmod_fast(result, product);
456}
457
458#define EVEN(vli) (!(vli[0] & 1))
459/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
460 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
461 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
462 */
463static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod)
464{
465	u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS];
466	u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS];
467	u64 carry;
468	int cmp_result;
469
470	if (vli_is_zero(input)) {
471		vli_clear(result);
472		return;
473	}
474
475	vli_set(a, input);
476	vli_set(b, mod);
477	vli_clear(u);
478	u[0] = 1;
479	vli_clear(v);
480
481	while ((cmp_result = vli_cmp(a, b)) != 0) {
482		carry = 0;
483
484		if (EVEN(a)) {
485			vli_rshift1(a);
486
487			if (!EVEN(u))
488				carry = vli_add(u, u, mod);
489
490			vli_rshift1(u);
491			if (carry)
492				u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
493		} else if (EVEN(b)) {
494			vli_rshift1(b);
495
496			if (!EVEN(v))
497				carry = vli_add(v, v, mod);
498
499			vli_rshift1(v);
500			if (carry)
501				v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
502		} else if (cmp_result > 0) {
503			vli_sub(a, a, b);
504			vli_rshift1(a);
505
506			if (vli_cmp(u, v) < 0)
507				vli_add(u, u, mod);
508
509			vli_sub(u, u, v);
510			if (!EVEN(u))
511				carry = vli_add(u, u, mod);
512
513			vli_rshift1(u);
514			if (carry)
515				u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
516		} else {
517			vli_sub(b, b, a);
518			vli_rshift1(b);
519
520			if (vli_cmp(v, u) < 0)
521				vli_add(v, v, mod);
522
523			vli_sub(v, v, u);
524			if (!EVEN(v))
525				carry = vli_add(v, v, mod);
526
527			vli_rshift1(v);
528			if (carry)
529				v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
530		}
531	}
532
533	vli_set(result, u);
534}
535
536/* ------ Point operations ------ */
537
538/* Returns true if p_point is the point at infinity, false otherwise. */
539static bool ecc_point_is_zero(const struct ecc_point *point)
540{
541	return (vli_is_zero(point->x) && vli_is_zero(point->y));
542}
543
544/* Point multiplication algorithm using Montgomery's ladder with co-Z
545 * coordinates. From http://eprint.iacr.org/2011/338.pdf
546 */
547
548/* Double in place */
549static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1)
550{
551	/* t1 = x, t2 = y, t3 = z */
552	u64 t4[NUM_ECC_DIGITS];
553	u64 t5[NUM_ECC_DIGITS];
554
555	if (vli_is_zero(z1))
556		return;
557
558	vli_mod_square_fast(t4, y1);   /* t4 = y1^2 */
559	vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */
560	vli_mod_square_fast(t4, t4);   /* t4 = y1^4 */
561	vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */
562	vli_mod_square_fast(z1, z1);   /* t3 = z1^2 */
563
564	vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */
565	vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */
566	vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */
567	vli_mod_mult_fast(x1, x1, z1);    /* t1 = x1^2 - z1^4 */
568
569	vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
570	vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
571	if (vli_test_bit(x1, 0)) {
572		u64 carry = vli_add(x1, x1, curve_p);
573		vli_rshift1(x1);
574		x1[NUM_ECC_DIGITS - 1] |= carry << 63;
575	} else {
576		vli_rshift1(x1);
577	}
578	/* t1 = 3/2*(x1^2 - z1^4) = B */
579
580	vli_mod_square_fast(z1, x1);      /* t3 = B^2 */
581	vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */
582	vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */
583	vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */
584	vli_mod_mult_fast(x1, x1, t5);    /* t1 = B * (A - x3) */
585	vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */
586
587	vli_set(x1, z1);
588	vli_set(z1, y1);
589	vli_set(y1, t4);
590}
591
592/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
593static void apply_z(u64 *x1, u64 *y1, u64 *z)
594{
595	u64 t1[NUM_ECC_DIGITS];
596
597	vli_mod_square_fast(t1, z);    /* z^2 */
598	vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */
599	vli_mod_mult_fast(t1, t1, z);  /* z^3 */
600	vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */
601}
602
603/* P = (x1, y1) => 2P, (x2, y2) => P' */
604static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
605				u64 *p_initial_z)
606{
607	u64 z[NUM_ECC_DIGITS];
608
609	vli_set(x2, x1);
610	vli_set(y2, y1);
611
612	vli_clear(z);
613	z[0] = 1;
614
615	if (p_initial_z)
616		vli_set(z, p_initial_z);
617
618	apply_z(x1, y1, z);
619
620	ecc_point_double_jacobian(x1, y1, z);
621
622	apply_z(x2, y2, z);
623}
624
625/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
626 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
627 * or P => P', Q => P + Q
628 */
629static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
630{
631	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
632	u64 t5[NUM_ECC_DIGITS];
633
634	vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
635	vli_mod_square_fast(t5, t5);      /* t5 = (x2 - x1)^2 = A */
636	vli_mod_mult_fast(x1, x1, t5);    /* t1 = x1*A = B */
637	vli_mod_mult_fast(x2, x2, t5);    /* t3 = x2*A = C */
638	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
639	vli_mod_square_fast(t5, y2);      /* t5 = (y2 - y1)^2 = D */
640
641	vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */
642	vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */
643	vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */
644	vli_mod_mult_fast(y1, y1, x2);    /* t2 = y1*(C - B) */
645	vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */
646	vli_mod_mult_fast(y2, y2, x2);    /* t4 = (y2 - y1)*(B - x3) */
647	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
648
649	vli_set(x2, t5);
650}
651
652/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
653 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
654 * or P => P - Q, Q => P + Q
655 */
656static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
657{
658	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
659	u64 t5[NUM_ECC_DIGITS];
660	u64 t6[NUM_ECC_DIGITS];
661	u64 t7[NUM_ECC_DIGITS];
662
663	vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
664	vli_mod_square_fast(t5, t5);      /* t5 = (x2 - x1)^2 = A */
665	vli_mod_mult_fast(x1, x1, t5);    /* t1 = x1*A = B */
666	vli_mod_mult_fast(x2, x2, t5);    /* t3 = x2*A = C */
667	vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */
668	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
669
670	vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */
671	vli_mod_mult_fast(y1, y1, t6);    /* t2 = y1 * (C - B) */
672	vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */
673	vli_mod_square_fast(x2, y2);      /* t3 = (y2 - y1)^2 */
674	vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */
675
676	vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */
677	vli_mod_mult_fast(y2, y2, t7);    /* t4 = (y2 - y1)*(B - x3) */
678	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
679
680	vli_mod_square_fast(t7, t5);      /* t7 = (y2 + y1)^2 = F */
681	vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */
682	vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */
683	vli_mod_mult_fast(t6, t6, t5);    /* t6 = (y2 + y1)*(x3' - B) */
684	vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */
685
686	vli_set(x1, t7);
687}
688
689static void ecc_point_mult(struct ecc_point *result,
690			   const struct ecc_point *point, u64 *scalar,
691			   u64 *initial_z, int num_bits)
692{
693	/* R0 and R1 */
694	u64 rx[2][NUM_ECC_DIGITS];
695	u64 ry[2][NUM_ECC_DIGITS];
696	u64 z[NUM_ECC_DIGITS];
697	int i, nb;
698
699	vli_set(rx[1], point->x);
700	vli_set(ry[1], point->y);
701
702	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z);
703
704	for (i = num_bits - 2; i > 0; i--) {
705		nb = !vli_test_bit(scalar, i);
706		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
707		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
708	}
709
710	nb = !vli_test_bit(scalar, 0);
711	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
712
713	/* Find final 1/Z value. */
714	vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */
715	vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */
716	vli_mod_mult_fast(z, z, point->x);   /* xP * Yb * (X1 - X0) */
717	vli_mod_inv(z, z, curve_p);          /* 1 / (xP * Yb * (X1 - X0)) */
718	vli_mod_mult_fast(z, z, point->y);   /* yP / (xP * Yb * (X1 - X0)) */
719	vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
720	/* End 1/Z calculation */
721
722	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
723
724	apply_z(rx[0], ry[0], z);
725
726	vli_set(result->x, rx[0]);
727	vli_set(result->y, ry[0]);
728}
729
730static void ecc_bytes2native(const u8 bytes[ECC_BYTES],
731			     u64 native[NUM_ECC_DIGITS])
732{
733	int i;
734
735	for (i = 0; i < NUM_ECC_DIGITS; i++) {
736		const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
737
738		native[NUM_ECC_DIGITS - 1 - i] =
739				((u64) digit[0] << 0) |
740				((u64) digit[1] << 8) |
741				((u64) digit[2] << 16) |
742				((u64) digit[3] << 24) |
743				((u64) digit[4] << 32) |
744				((u64) digit[5] << 40) |
745				((u64) digit[6] << 48) |
746				((u64) digit[7] << 56);
747	}
748}
749
750static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS],
751			     u8 bytes[ECC_BYTES])
752{
753	int i;
754
755	for (i = 0; i < NUM_ECC_DIGITS; i++) {
756		u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
757
758		digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0;
759		digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8;
760		digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16;
761		digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24;
762		digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32;
763		digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40;
764		digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48;
765		digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56;
766	}
767}
768
769bool ecc_make_key(u8 public_key[64], u8 private_key[32])
770{
771	struct ecc_point pk;
772	u64 priv[NUM_ECC_DIGITS];
773	unsigned int tries = 0;
774
775	do {
776		if (tries++ >= MAX_TRIES)
777			return false;
778
779		get_random_bytes(priv, ECC_BYTES);
780
781		if (vli_is_zero(priv))
782			continue;
783
784		/* Make sure the private key is in the range [1, n-1]. */
785		if (vli_cmp(curve_n, priv) != 1)
786			continue;
787
788		ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv));
789	} while (ecc_point_is_zero(&pk));
790
791	ecc_native2bytes(priv, private_key);
792	ecc_native2bytes(pk.x, public_key);
793	ecc_native2bytes(pk.y, &public_key[32]);
794
795	return true;
796}
797
798bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32],
799		        u8 secret[32])
800{
801	u64 priv[NUM_ECC_DIGITS];
802	u64 rand[NUM_ECC_DIGITS];
803	struct ecc_point product, pk;
804
805	get_random_bytes(rand, ECC_BYTES);
806
807	ecc_bytes2native(public_key, pk.x);
808	ecc_bytes2native(&public_key[32], pk.y);
809	ecc_bytes2native(private_key, priv);
810
811	ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv));
812
813	ecc_native2bytes(product.x, secret);
814
815	return !ecc_point_is_zero(&product);
816}
817