1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 
50 #include "internal.h"
51 
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)	(0)
54 #endif
55 
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)		(addr)
58 #endif
59 
60 static void unmap_region(struct mm_struct *mm,
61 		struct vm_area_struct *vma, struct vm_area_struct *prev,
62 		unsigned long start, unsigned long end);
63 
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type	prot
69  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
70  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
71  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
72  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
73  *
74  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
75  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
76  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83 
vm_get_page_prot(unsigned long vm_flags)84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 	return __pgprot(pgprot_val(protection_map[vm_flags &
87 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96 
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100 	unsigned long vm_flags = vma->vm_flags;
101 
102 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103 	if (vma_wants_writenotify(vma)) {
104 		vm_flags &= ~VM_SHARED;
105 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106 						     vm_flags);
107 	}
108 }
109 
110 
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122 
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
vm_memory_committed(void)131 unsigned long vm_memory_committed(void)
132 {
133 	return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136 
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155 	long free, allowed, reserve;
156 
157 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158 			-(s64)vm_committed_as_batch * num_online_cpus(),
159 			"memory commitment underflow");
160 
161 	vm_acct_memory(pages);
162 
163 	/*
164 	 * Sometimes we want to use more memory than we have
165 	 */
166 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167 		return 0;
168 
169 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170 		free = global_page_state(NR_FREE_PAGES);
171 		free += global_page_state(NR_FILE_PAGES);
172 
173 		/*
174 		 * shmem pages shouldn't be counted as free in this
175 		 * case, they can't be purged, only swapped out, and
176 		 * that won't affect the overall amount of available
177 		 * memory in the system.
178 		 */
179 		free -= global_page_state(NR_SHMEM);
180 
181 		free += get_nr_swap_pages();
182 
183 		/*
184 		 * Any slabs which are created with the
185 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 		 * which are reclaimable, under pressure.  The dentry
187 		 * cache and most inode caches should fall into this
188 		 */
189 		free += global_page_state(NR_SLAB_RECLAIMABLE);
190 
191 		/*
192 		 * Leave reserved pages. The pages are not for anonymous pages.
193 		 */
194 		if (free <= totalreserve_pages)
195 			goto error;
196 		else
197 			free -= totalreserve_pages;
198 
199 		/*
200 		 * Reserve some for root
201 		 */
202 		if (!cap_sys_admin)
203 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204 
205 		if (free > pages)
206 			return 0;
207 
208 		goto error;
209 	}
210 
211 	allowed = vm_commit_limit();
212 	/*
213 	 * Reserve some for root
214 	 */
215 	if (!cap_sys_admin)
216 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217 
218 	/*
219 	 * Don't let a single process grow so big a user can't recover
220 	 */
221 	if (mm) {
222 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223 		allowed -= min_t(long, mm->total_vm / 32, reserve);
224 	}
225 
226 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227 		return 0;
228 error:
229 	vm_unacct_memory(pages);
230 
231 	return -ENOMEM;
232 }
233 
234 /*
235  * Requires inode->i_mapping->i_mmap_rwsem
236  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238 		struct file *file, struct address_space *mapping)
239 {
240 	if (vma->vm_flags & VM_DENYWRITE)
241 		atomic_inc(&file_inode(file)->i_writecount);
242 	if (vma->vm_flags & VM_SHARED)
243 		mapping_unmap_writable(mapping);
244 
245 	flush_dcache_mmap_lock(mapping);
246 	vma_interval_tree_remove(vma, &mapping->i_mmap);
247 	flush_dcache_mmap_unlock(mapping);
248 }
249 
250 /*
251  * Unlink a file-based vm structure from its interval tree, to hide
252  * vma from rmap and vmtruncate before freeing its page tables.
253  */
unlink_file_vma(struct vm_area_struct * vma)254 void unlink_file_vma(struct vm_area_struct *vma)
255 {
256 	struct file *file = vma->vm_file;
257 
258 	if (file) {
259 		struct address_space *mapping = file->f_mapping;
260 		i_mmap_lock_write(mapping);
261 		__remove_shared_vm_struct(vma, file, mapping);
262 		i_mmap_unlock_write(mapping);
263 	}
264 }
265 
266 /*
267  * Close a vm structure and free it, returning the next.
268  */
remove_vma(struct vm_area_struct * vma)269 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
270 {
271 	struct vm_area_struct *next = vma->vm_next;
272 
273 	might_sleep();
274 	if (vma->vm_ops && vma->vm_ops->close)
275 		vma->vm_ops->close(vma);
276 	if (vma->vm_file)
277 		fput(vma->vm_file);
278 	mpol_put(vma_policy(vma));
279 	kmem_cache_free(vm_area_cachep, vma);
280 	return next;
281 }
282 
283 static unsigned long do_brk(unsigned long addr, unsigned long len);
284 
SYSCALL_DEFINE1(brk,unsigned long,brk)285 SYSCALL_DEFINE1(brk, unsigned long, brk)
286 {
287 	unsigned long retval;
288 	unsigned long newbrk, oldbrk;
289 	struct mm_struct *mm = current->mm;
290 	unsigned long min_brk;
291 	bool populate;
292 
293 	down_write(&mm->mmap_sem);
294 
295 #ifdef CONFIG_COMPAT_BRK
296 	/*
297 	 * CONFIG_COMPAT_BRK can still be overridden by setting
298 	 * randomize_va_space to 2, which will still cause mm->start_brk
299 	 * to be arbitrarily shifted
300 	 */
301 	if (current->brk_randomized)
302 		min_brk = mm->start_brk;
303 	else
304 		min_brk = mm->end_data;
305 #else
306 	min_brk = mm->start_brk;
307 #endif
308 	if (brk < min_brk)
309 		goto out;
310 
311 	/*
312 	 * Check against rlimit here. If this check is done later after the test
313 	 * of oldbrk with newbrk then it can escape the test and let the data
314 	 * segment grow beyond its set limit the in case where the limit is
315 	 * not page aligned -Ram Gupta
316 	 */
317 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
318 			      mm->end_data, mm->start_data))
319 		goto out;
320 
321 	newbrk = PAGE_ALIGN(brk);
322 	oldbrk = PAGE_ALIGN(mm->brk);
323 	if (oldbrk == newbrk)
324 		goto set_brk;
325 
326 	/* Always allow shrinking brk. */
327 	if (brk <= mm->brk) {
328 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
329 			goto set_brk;
330 		goto out;
331 	}
332 
333 	/* Check against existing mmap mappings. */
334 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
335 		goto out;
336 
337 	/* Ok, looks good - let it rip. */
338 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
339 		goto out;
340 
341 set_brk:
342 	mm->brk = brk;
343 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
344 	up_write(&mm->mmap_sem);
345 	if (populate)
346 		mm_populate(oldbrk, newbrk - oldbrk);
347 	return brk;
348 
349 out:
350 	retval = mm->brk;
351 	up_write(&mm->mmap_sem);
352 	return retval;
353 }
354 
vma_compute_subtree_gap(struct vm_area_struct * vma)355 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
356 {
357 	unsigned long max, subtree_gap;
358 	max = vma->vm_start;
359 	if (vma->vm_prev)
360 		max -= vma->vm_prev->vm_end;
361 	if (vma->vm_rb.rb_left) {
362 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
363 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
364 		if (subtree_gap > max)
365 			max = subtree_gap;
366 	}
367 	if (vma->vm_rb.rb_right) {
368 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
369 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
370 		if (subtree_gap > max)
371 			max = subtree_gap;
372 	}
373 	return max;
374 }
375 
376 #ifdef CONFIG_DEBUG_VM_RB
browse_rb(struct rb_root * root)377 static int browse_rb(struct rb_root *root)
378 {
379 	int i = 0, j, bug = 0;
380 	struct rb_node *nd, *pn = NULL;
381 	unsigned long prev = 0, pend = 0;
382 
383 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 		struct vm_area_struct *vma;
385 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 		if (vma->vm_start < prev) {
387 			pr_emerg("vm_start %lx < prev %lx\n",
388 				  vma->vm_start, prev);
389 			bug = 1;
390 		}
391 		if (vma->vm_start < pend) {
392 			pr_emerg("vm_start %lx < pend %lx\n",
393 				  vma->vm_start, pend);
394 			bug = 1;
395 		}
396 		if (vma->vm_start > vma->vm_end) {
397 			pr_emerg("vm_start %lx > vm_end %lx\n",
398 				  vma->vm_start, vma->vm_end);
399 			bug = 1;
400 		}
401 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
402 			pr_emerg("free gap %lx, correct %lx\n",
403 			       vma->rb_subtree_gap,
404 			       vma_compute_subtree_gap(vma));
405 			bug = 1;
406 		}
407 		i++;
408 		pn = nd;
409 		prev = vma->vm_start;
410 		pend = vma->vm_end;
411 	}
412 	j = 0;
413 	for (nd = pn; nd; nd = rb_prev(nd))
414 		j++;
415 	if (i != j) {
416 		pr_emerg("backwards %d, forwards %d\n", j, i);
417 		bug = 1;
418 	}
419 	return bug ? -1 : i;
420 }
421 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)422 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
423 {
424 	struct rb_node *nd;
425 
426 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
427 		struct vm_area_struct *vma;
428 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
429 		VM_BUG_ON_VMA(vma != ignore &&
430 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
431 			vma);
432 	}
433 }
434 
validate_mm(struct mm_struct * mm)435 static void validate_mm(struct mm_struct *mm)
436 {
437 	int bug = 0;
438 	int i = 0;
439 	unsigned long highest_address = 0;
440 	struct vm_area_struct *vma = mm->mmap;
441 
442 	while (vma) {
443 		struct anon_vma *anon_vma = vma->anon_vma;
444 		struct anon_vma_chain *avc;
445 
446 		if (anon_vma) {
447 			anon_vma_lock_read(anon_vma);
448 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
449 				anon_vma_interval_tree_verify(avc);
450 			anon_vma_unlock_read(anon_vma);
451 		}
452 
453 		highest_address = vma->vm_end;
454 		vma = vma->vm_next;
455 		i++;
456 	}
457 	if (i != mm->map_count) {
458 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
459 		bug = 1;
460 	}
461 	if (highest_address != mm->highest_vm_end) {
462 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
463 			  mm->highest_vm_end, highest_address);
464 		bug = 1;
465 	}
466 	i = browse_rb(&mm->mm_rb);
467 	if (i != mm->map_count) {
468 		if (i != -1)
469 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
470 		bug = 1;
471 	}
472 	VM_BUG_ON_MM(bug, mm);
473 }
474 #else
475 #define validate_mm_rb(root, ignore) do { } while (0)
476 #define validate_mm(mm) do { } while (0)
477 #endif
478 
RB_DECLARE_CALLBACKS(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_subtree_gap)479 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
480 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
481 
482 /*
483  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
484  * vma->vm_prev->vm_end values changed, without modifying the vma's position
485  * in the rbtree.
486  */
487 static void vma_gap_update(struct vm_area_struct *vma)
488 {
489 	/*
490 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
491 	 * function that does exacltly what we want.
492 	 */
493 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
494 }
495 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)496 static inline void vma_rb_insert(struct vm_area_struct *vma,
497 				 struct rb_root *root)
498 {
499 	/* All rb_subtree_gap values must be consistent prior to insertion */
500 	validate_mm_rb(root, NULL);
501 
502 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
503 }
504 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)505 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
506 {
507 	/*
508 	 * All rb_subtree_gap values must be consistent prior to erase,
509 	 * with the possible exception of the vma being erased.
510 	 */
511 	validate_mm_rb(root, vma);
512 
513 	/*
514 	 * Note rb_erase_augmented is a fairly large inline function,
515 	 * so make sure we instantiate it only once with our desired
516 	 * augmented rbtree callbacks.
517 	 */
518 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
519 }
520 
521 /*
522  * vma has some anon_vma assigned, and is already inserted on that
523  * anon_vma's interval trees.
524  *
525  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
526  * vma must be removed from the anon_vma's interval trees using
527  * anon_vma_interval_tree_pre_update_vma().
528  *
529  * After the update, the vma will be reinserted using
530  * anon_vma_interval_tree_post_update_vma().
531  *
532  * The entire update must be protected by exclusive mmap_sem and by
533  * the root anon_vma's mutex.
534  */
535 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)536 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
537 {
538 	struct anon_vma_chain *avc;
539 
540 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
541 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
542 }
543 
544 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)545 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
546 {
547 	struct anon_vma_chain *avc;
548 
549 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
550 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
551 }
552 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)553 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
554 		unsigned long end, struct vm_area_struct **pprev,
555 		struct rb_node ***rb_link, struct rb_node **rb_parent)
556 {
557 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
558 
559 	__rb_link = &mm->mm_rb.rb_node;
560 	rb_prev = __rb_parent = NULL;
561 
562 	while (*__rb_link) {
563 		struct vm_area_struct *vma_tmp;
564 
565 		__rb_parent = *__rb_link;
566 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
567 
568 		if (vma_tmp->vm_end > addr) {
569 			/* Fail if an existing vma overlaps the area */
570 			if (vma_tmp->vm_start < end)
571 				return -ENOMEM;
572 			__rb_link = &__rb_parent->rb_left;
573 		} else {
574 			rb_prev = __rb_parent;
575 			__rb_link = &__rb_parent->rb_right;
576 		}
577 	}
578 
579 	*pprev = NULL;
580 	if (rb_prev)
581 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
582 	*rb_link = __rb_link;
583 	*rb_parent = __rb_parent;
584 	return 0;
585 }
586 
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)587 static unsigned long count_vma_pages_range(struct mm_struct *mm,
588 		unsigned long addr, unsigned long end)
589 {
590 	unsigned long nr_pages = 0;
591 	struct vm_area_struct *vma;
592 
593 	/* Find first overlaping mapping */
594 	vma = find_vma_intersection(mm, addr, end);
595 	if (!vma)
596 		return 0;
597 
598 	nr_pages = (min(end, vma->vm_end) -
599 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
600 
601 	/* Iterate over the rest of the overlaps */
602 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
603 		unsigned long overlap_len;
604 
605 		if (vma->vm_start > end)
606 			break;
607 
608 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
609 		nr_pages += overlap_len >> PAGE_SHIFT;
610 	}
611 
612 	return nr_pages;
613 }
614 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)615 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
616 		struct rb_node **rb_link, struct rb_node *rb_parent)
617 {
618 	/* Update tracking information for the gap following the new vma. */
619 	if (vma->vm_next)
620 		vma_gap_update(vma->vm_next);
621 	else
622 		mm->highest_vm_end = vma->vm_end;
623 
624 	/*
625 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
626 	 * correct insertion point for that vma. As a result, we could not
627 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
628 	 * So, we first insert the vma with a zero rb_subtree_gap value
629 	 * (to be consistent with what we did on the way down), and then
630 	 * immediately update the gap to the correct value. Finally we
631 	 * rebalance the rbtree after all augmented values have been set.
632 	 */
633 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
634 	vma->rb_subtree_gap = 0;
635 	vma_gap_update(vma);
636 	vma_rb_insert(vma, &mm->mm_rb);
637 }
638 
__vma_link_file(struct vm_area_struct * vma)639 static void __vma_link_file(struct vm_area_struct *vma)
640 {
641 	struct file *file;
642 
643 	file = vma->vm_file;
644 	if (file) {
645 		struct address_space *mapping = file->f_mapping;
646 
647 		if (vma->vm_flags & VM_DENYWRITE)
648 			atomic_dec(&file_inode(file)->i_writecount);
649 		if (vma->vm_flags & VM_SHARED)
650 			atomic_inc(&mapping->i_mmap_writable);
651 
652 		flush_dcache_mmap_lock(mapping);
653 		vma_interval_tree_insert(vma, &mapping->i_mmap);
654 		flush_dcache_mmap_unlock(mapping);
655 	}
656 }
657 
658 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)659 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
660 	struct vm_area_struct *prev, struct rb_node **rb_link,
661 	struct rb_node *rb_parent)
662 {
663 	__vma_link_list(mm, vma, prev, rb_parent);
664 	__vma_link_rb(mm, vma, rb_link, rb_parent);
665 }
666 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)667 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
668 			struct vm_area_struct *prev, struct rb_node **rb_link,
669 			struct rb_node *rb_parent)
670 {
671 	struct address_space *mapping = NULL;
672 
673 	if (vma->vm_file) {
674 		mapping = vma->vm_file->f_mapping;
675 		i_mmap_lock_write(mapping);
676 	}
677 
678 	__vma_link(mm, vma, prev, rb_link, rb_parent);
679 	__vma_link_file(vma);
680 
681 	if (mapping)
682 		i_mmap_unlock_write(mapping);
683 
684 	mm->map_count++;
685 	validate_mm(mm);
686 }
687 
688 /*
689  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
690  * mm's list and rbtree.  It has already been inserted into the interval tree.
691  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)692 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
693 {
694 	struct vm_area_struct *prev;
695 	struct rb_node **rb_link, *rb_parent;
696 
697 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
698 			   &prev, &rb_link, &rb_parent))
699 		BUG();
700 	__vma_link(mm, vma, prev, rb_link, rb_parent);
701 	mm->map_count++;
702 }
703 
704 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)705 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
706 		struct vm_area_struct *prev)
707 {
708 	struct vm_area_struct *next;
709 
710 	vma_rb_erase(vma, &mm->mm_rb);
711 	prev->vm_next = next = vma->vm_next;
712 	if (next)
713 		next->vm_prev = prev;
714 
715 	/* Kill the cache */
716 	vmacache_invalidate(mm);
717 }
718 
719 /*
720  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
721  * is already present in an i_mmap tree without adjusting the tree.
722  * The following helper function should be used when such adjustments
723  * are necessary.  The "insert" vma (if any) is to be inserted
724  * before we drop the necessary locks.
725  */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)726 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
727 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
728 {
729 	struct mm_struct *mm = vma->vm_mm;
730 	struct vm_area_struct *next = vma->vm_next;
731 	struct vm_area_struct *importer = NULL;
732 	struct address_space *mapping = NULL;
733 	struct rb_root *root = NULL;
734 	struct anon_vma *anon_vma = NULL;
735 	struct file *file = vma->vm_file;
736 	bool start_changed = false, end_changed = false;
737 	long adjust_next = 0;
738 	int remove_next = 0;
739 
740 	if (next && !insert) {
741 		struct vm_area_struct *exporter = NULL;
742 
743 		if (end >= next->vm_end) {
744 			/*
745 			 * vma expands, overlapping all the next, and
746 			 * perhaps the one after too (mprotect case 6).
747 			 */
748 again:			remove_next = 1 + (end > next->vm_end);
749 			end = next->vm_end;
750 			exporter = next;
751 			importer = vma;
752 		} else if (end > next->vm_start) {
753 			/*
754 			 * vma expands, overlapping part of the next:
755 			 * mprotect case 5 shifting the boundary up.
756 			 */
757 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
758 			exporter = next;
759 			importer = vma;
760 		} else if (end < vma->vm_end) {
761 			/*
762 			 * vma shrinks, and !insert tells it's not
763 			 * split_vma inserting another: so it must be
764 			 * mprotect case 4 shifting the boundary down.
765 			 */
766 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
767 			exporter = vma;
768 			importer = next;
769 		}
770 
771 		/*
772 		 * Easily overlooked: when mprotect shifts the boundary,
773 		 * make sure the expanding vma has anon_vma set if the
774 		 * shrinking vma had, to cover any anon pages imported.
775 		 */
776 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
777 			int error;
778 
779 			importer->anon_vma = exporter->anon_vma;
780 			error = anon_vma_clone(importer, exporter);
781 			if (error)
782 				return error;
783 		}
784 	}
785 
786 	if (file) {
787 		mapping = file->f_mapping;
788 		root = &mapping->i_mmap;
789 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
790 
791 		if (adjust_next)
792 			uprobe_munmap(next, next->vm_start, next->vm_end);
793 
794 		i_mmap_lock_write(mapping);
795 		if (insert) {
796 			/*
797 			 * Put into interval tree now, so instantiated pages
798 			 * are visible to arm/parisc __flush_dcache_page
799 			 * throughout; but we cannot insert into address
800 			 * space until vma start or end is updated.
801 			 */
802 			__vma_link_file(insert);
803 		}
804 	}
805 
806 	vma_adjust_trans_huge(vma, start, end, adjust_next);
807 
808 	anon_vma = vma->anon_vma;
809 	if (!anon_vma && adjust_next)
810 		anon_vma = next->anon_vma;
811 	if (anon_vma) {
812 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
813 			  anon_vma != next->anon_vma, next);
814 		anon_vma_lock_write(anon_vma);
815 		anon_vma_interval_tree_pre_update_vma(vma);
816 		if (adjust_next)
817 			anon_vma_interval_tree_pre_update_vma(next);
818 	}
819 
820 	if (root) {
821 		flush_dcache_mmap_lock(mapping);
822 		vma_interval_tree_remove(vma, root);
823 		if (adjust_next)
824 			vma_interval_tree_remove(next, root);
825 	}
826 
827 	if (start != vma->vm_start) {
828 		vma->vm_start = start;
829 		start_changed = true;
830 	}
831 	if (end != vma->vm_end) {
832 		vma->vm_end = end;
833 		end_changed = true;
834 	}
835 	vma->vm_pgoff = pgoff;
836 	if (adjust_next) {
837 		next->vm_start += adjust_next << PAGE_SHIFT;
838 		next->vm_pgoff += adjust_next;
839 	}
840 
841 	if (root) {
842 		if (adjust_next)
843 			vma_interval_tree_insert(next, root);
844 		vma_interval_tree_insert(vma, root);
845 		flush_dcache_mmap_unlock(mapping);
846 	}
847 
848 	if (remove_next) {
849 		/*
850 		 * vma_merge has merged next into vma, and needs
851 		 * us to remove next before dropping the locks.
852 		 */
853 		__vma_unlink(mm, next, vma);
854 		if (file)
855 			__remove_shared_vm_struct(next, file, mapping);
856 	} else if (insert) {
857 		/*
858 		 * split_vma has split insert from vma, and needs
859 		 * us to insert it before dropping the locks
860 		 * (it may either follow vma or precede it).
861 		 */
862 		__insert_vm_struct(mm, insert);
863 	} else {
864 		if (start_changed)
865 			vma_gap_update(vma);
866 		if (end_changed) {
867 			if (!next)
868 				mm->highest_vm_end = end;
869 			else if (!adjust_next)
870 				vma_gap_update(next);
871 		}
872 	}
873 
874 	if (anon_vma) {
875 		anon_vma_interval_tree_post_update_vma(vma);
876 		if (adjust_next)
877 			anon_vma_interval_tree_post_update_vma(next);
878 		anon_vma_unlock_write(anon_vma);
879 	}
880 	if (mapping)
881 		i_mmap_unlock_write(mapping);
882 
883 	if (root) {
884 		uprobe_mmap(vma);
885 
886 		if (adjust_next)
887 			uprobe_mmap(next);
888 	}
889 
890 	if (remove_next) {
891 		if (file) {
892 			uprobe_munmap(next, next->vm_start, next->vm_end);
893 			fput(file);
894 		}
895 		if (next->anon_vma)
896 			anon_vma_merge(vma, next);
897 		mm->map_count--;
898 		mpol_put(vma_policy(next));
899 		kmem_cache_free(vm_area_cachep, next);
900 		/*
901 		 * In mprotect's case 6 (see comments on vma_merge),
902 		 * we must remove another next too. It would clutter
903 		 * up the code too much to do both in one go.
904 		 */
905 		next = vma->vm_next;
906 		if (remove_next == 2)
907 			goto again;
908 		else if (next)
909 			vma_gap_update(next);
910 		else
911 			mm->highest_vm_end = end;
912 	}
913 	if (insert && file)
914 		uprobe_mmap(insert);
915 
916 	validate_mm(mm);
917 
918 	return 0;
919 }
920 
921 /*
922  * If the vma has a ->close operation then the driver probably needs to release
923  * per-vma resources, so we don't attempt to merge those.
924  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags)925 static inline int is_mergeable_vma(struct vm_area_struct *vma,
926 			struct file *file, unsigned long vm_flags)
927 {
928 	/*
929 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
930 	 * match the flags but dirty bit -- the caller should mark
931 	 * merged VMA as dirty. If dirty bit won't be excluded from
932 	 * comparison, we increase pressue on the memory system forcing
933 	 * the kernel to generate new VMAs when old one could be
934 	 * extended instead.
935 	 */
936 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
937 		return 0;
938 	if (vma->vm_file != file)
939 		return 0;
940 	if (vma->vm_ops && vma->vm_ops->close)
941 		return 0;
942 	return 1;
943 }
944 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)945 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
946 					struct anon_vma *anon_vma2,
947 					struct vm_area_struct *vma)
948 {
949 	/*
950 	 * The list_is_singular() test is to avoid merging VMA cloned from
951 	 * parents. This can improve scalability caused by anon_vma lock.
952 	 */
953 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
954 		list_is_singular(&vma->anon_vma_chain)))
955 		return 1;
956 	return anon_vma1 == anon_vma2;
957 }
958 
959 /*
960  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
961  * in front of (at a lower virtual address and file offset than) the vma.
962  *
963  * We cannot merge two vmas if they have differently assigned (non-NULL)
964  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
965  *
966  * We don't check here for the merged mmap wrapping around the end of pagecache
967  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
968  * wrap, nor mmaps which cover the final page at index -1UL.
969  */
970 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)971 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
972 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
973 {
974 	if (is_mergeable_vma(vma, file, vm_flags) &&
975 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
976 		if (vma->vm_pgoff == vm_pgoff)
977 			return 1;
978 	}
979 	return 0;
980 }
981 
982 /*
983  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
984  * beyond (at a higher virtual address and file offset than) the vma.
985  *
986  * We cannot merge two vmas if they have differently assigned (non-NULL)
987  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
988  */
989 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)990 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
991 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
992 {
993 	if (is_mergeable_vma(vma, file, vm_flags) &&
994 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
995 		pgoff_t vm_pglen;
996 		vm_pglen = vma_pages(vma);
997 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
998 			return 1;
999 	}
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1005  * whether that can be merged with its predecessor or its successor.
1006  * Or both (it neatly fills a hole).
1007  *
1008  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1009  * certain not to be mapped by the time vma_merge is called; but when
1010  * called for mprotect, it is certain to be already mapped (either at
1011  * an offset within prev, or at the start of next), and the flags of
1012  * this area are about to be changed to vm_flags - and the no-change
1013  * case has already been eliminated.
1014  *
1015  * The following mprotect cases have to be considered, where AAAA is
1016  * the area passed down from mprotect_fixup, never extending beyond one
1017  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1018  *
1019  *     AAAA             AAAA                AAAA          AAAA
1020  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1021  *    cannot merge    might become    might become    might become
1022  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1023  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1024  *    mremap move:                                    PPPPNNNNNNNN 8
1025  *        AAAA
1026  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1027  *    might become    case 1 below    case 2 below    case 3 below
1028  *
1029  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1030  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1031  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy)1032 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1033 			struct vm_area_struct *prev, unsigned long addr,
1034 			unsigned long end, unsigned long vm_flags,
1035 			struct anon_vma *anon_vma, struct file *file,
1036 			pgoff_t pgoff, struct mempolicy *policy)
1037 {
1038 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1039 	struct vm_area_struct *area, *next;
1040 	int err;
1041 
1042 	/*
1043 	 * We later require that vma->vm_flags == vm_flags,
1044 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1045 	 */
1046 	if (vm_flags & VM_SPECIAL)
1047 		return NULL;
1048 
1049 	if (prev)
1050 		next = prev->vm_next;
1051 	else
1052 		next = mm->mmap;
1053 	area = next;
1054 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1055 		next = next->vm_next;
1056 
1057 	/*
1058 	 * Can it merge with the predecessor?
1059 	 */
1060 	if (prev && prev->vm_end == addr &&
1061 			mpol_equal(vma_policy(prev), policy) &&
1062 			can_vma_merge_after(prev, vm_flags,
1063 						anon_vma, file, pgoff)) {
1064 		/*
1065 		 * OK, it can.  Can we now merge in the successor as well?
1066 		 */
1067 		if (next && end == next->vm_start &&
1068 				mpol_equal(policy, vma_policy(next)) &&
1069 				can_vma_merge_before(next, vm_flags,
1070 					anon_vma, file, pgoff+pglen) &&
1071 				is_mergeable_anon_vma(prev->anon_vma,
1072 						      next->anon_vma, NULL)) {
1073 							/* cases 1, 6 */
1074 			err = vma_adjust(prev, prev->vm_start,
1075 				next->vm_end, prev->vm_pgoff, NULL);
1076 		} else					/* cases 2, 5, 7 */
1077 			err = vma_adjust(prev, prev->vm_start,
1078 				end, prev->vm_pgoff, NULL);
1079 		if (err)
1080 			return NULL;
1081 		khugepaged_enter_vma_merge(prev, vm_flags);
1082 		return prev;
1083 	}
1084 
1085 	/*
1086 	 * Can this new request be merged in front of next?
1087 	 */
1088 	if (next && end == next->vm_start &&
1089 			mpol_equal(policy, vma_policy(next)) &&
1090 			can_vma_merge_before(next, vm_flags,
1091 					anon_vma, file, pgoff+pglen)) {
1092 		if (prev && addr < prev->vm_end)	/* case 4 */
1093 			err = vma_adjust(prev, prev->vm_start,
1094 				addr, prev->vm_pgoff, NULL);
1095 		else					/* cases 3, 8 */
1096 			err = vma_adjust(area, addr, next->vm_end,
1097 				next->vm_pgoff - pglen, NULL);
1098 		if (err)
1099 			return NULL;
1100 		khugepaged_enter_vma_merge(area, vm_flags);
1101 		return area;
1102 	}
1103 
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * Rough compatbility check to quickly see if it's even worth looking
1109  * at sharing an anon_vma.
1110  *
1111  * They need to have the same vm_file, and the flags can only differ
1112  * in things that mprotect may change.
1113  *
1114  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1115  * we can merge the two vma's. For example, we refuse to merge a vma if
1116  * there is a vm_ops->close() function, because that indicates that the
1117  * driver is doing some kind of reference counting. But that doesn't
1118  * really matter for the anon_vma sharing case.
1119  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1120 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1121 {
1122 	return a->vm_end == b->vm_start &&
1123 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1124 		a->vm_file == b->vm_file &&
1125 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1126 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1127 }
1128 
1129 /*
1130  * Do some basic sanity checking to see if we can re-use the anon_vma
1131  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1132  * the same as 'old', the other will be the new one that is trying
1133  * to share the anon_vma.
1134  *
1135  * NOTE! This runs with mm_sem held for reading, so it is possible that
1136  * the anon_vma of 'old' is concurrently in the process of being set up
1137  * by another page fault trying to merge _that_. But that's ok: if it
1138  * is being set up, that automatically means that it will be a singleton
1139  * acceptable for merging, so we can do all of this optimistically. But
1140  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1141  *
1142  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1143  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1144  * is to return an anon_vma that is "complex" due to having gone through
1145  * a fork).
1146  *
1147  * We also make sure that the two vma's are compatible (adjacent,
1148  * and with the same memory policies). That's all stable, even with just
1149  * a read lock on the mm_sem.
1150  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1151 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1152 {
1153 	if (anon_vma_compatible(a, b)) {
1154 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1155 
1156 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1157 			return anon_vma;
1158 	}
1159 	return NULL;
1160 }
1161 
1162 /*
1163  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1164  * neighbouring vmas for a suitable anon_vma, before it goes off
1165  * to allocate a new anon_vma.  It checks because a repetitive
1166  * sequence of mprotects and faults may otherwise lead to distinct
1167  * anon_vmas being allocated, preventing vma merge in subsequent
1168  * mprotect.
1169  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1170 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1171 {
1172 	struct anon_vma *anon_vma;
1173 	struct vm_area_struct *near;
1174 
1175 	near = vma->vm_next;
1176 	if (!near)
1177 		goto try_prev;
1178 
1179 	anon_vma = reusable_anon_vma(near, vma, near);
1180 	if (anon_vma)
1181 		return anon_vma;
1182 try_prev:
1183 	near = vma->vm_prev;
1184 	if (!near)
1185 		goto none;
1186 
1187 	anon_vma = reusable_anon_vma(near, near, vma);
1188 	if (anon_vma)
1189 		return anon_vma;
1190 none:
1191 	/*
1192 	 * There's no absolute need to look only at touching neighbours:
1193 	 * we could search further afield for "compatible" anon_vmas.
1194 	 * But it would probably just be a waste of time searching,
1195 	 * or lead to too many vmas hanging off the same anon_vma.
1196 	 * We're trying to allow mprotect remerging later on,
1197 	 * not trying to minimize memory used for anon_vmas.
1198 	 */
1199 	return NULL;
1200 }
1201 
1202 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1203 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1204 						struct file *file, long pages)
1205 {
1206 	const unsigned long stack_flags
1207 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1208 
1209 	mm->total_vm += pages;
1210 
1211 	if (file) {
1212 		mm->shared_vm += pages;
1213 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1214 			mm->exec_vm += pages;
1215 	} else if (flags & stack_flags)
1216 		mm->stack_vm += pages;
1217 }
1218 #endif /* CONFIG_PROC_FS */
1219 
1220 /*
1221  * If a hint addr is less than mmap_min_addr change hint to be as
1222  * low as possible but still greater than mmap_min_addr
1223  */
round_hint_to_min(unsigned long hint)1224 static inline unsigned long round_hint_to_min(unsigned long hint)
1225 {
1226 	hint &= PAGE_MASK;
1227 	if (((void *)hint != NULL) &&
1228 	    (hint < mmap_min_addr))
1229 		return PAGE_ALIGN(mmap_min_addr);
1230 	return hint;
1231 }
1232 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1233 static inline int mlock_future_check(struct mm_struct *mm,
1234 				     unsigned long flags,
1235 				     unsigned long len)
1236 {
1237 	unsigned long locked, lock_limit;
1238 
1239 	/*  mlock MCL_FUTURE? */
1240 	if (flags & VM_LOCKED) {
1241 		locked = len >> PAGE_SHIFT;
1242 		locked += mm->locked_vm;
1243 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1244 		lock_limit >>= PAGE_SHIFT;
1245 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1246 			return -EAGAIN;
1247 	}
1248 	return 0;
1249 }
1250 
1251 /*
1252  * The caller must hold down_write(&current->mm->mmap_sem).
1253  */
1254 
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate)1255 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1256 			unsigned long len, unsigned long prot,
1257 			unsigned long flags, unsigned long pgoff,
1258 			unsigned long *populate)
1259 {
1260 	struct mm_struct *mm = current->mm;
1261 	vm_flags_t vm_flags;
1262 
1263 	*populate = 0;
1264 
1265 	/*
1266 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1267 	 *
1268 	 * (the exception is when the underlying filesystem is noexec
1269 	 *  mounted, in which case we dont add PROT_EXEC.)
1270 	 */
1271 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1272 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1273 			prot |= PROT_EXEC;
1274 
1275 	if (!len)
1276 		return -EINVAL;
1277 
1278 	if (!(flags & MAP_FIXED))
1279 		addr = round_hint_to_min(addr);
1280 
1281 	/* Careful about overflows.. */
1282 	len = PAGE_ALIGN(len);
1283 	if (!len)
1284 		return -ENOMEM;
1285 
1286 	/* offset overflow? */
1287 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1288 		return -EOVERFLOW;
1289 
1290 	/* Too many mappings? */
1291 	if (mm->map_count > sysctl_max_map_count)
1292 		return -ENOMEM;
1293 
1294 	/* Obtain the address to map to. we verify (or select) it and ensure
1295 	 * that it represents a valid section of the address space.
1296 	 */
1297 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1298 	if (addr & ~PAGE_MASK)
1299 		return addr;
1300 
1301 	/* Do simple checking here so the lower-level routines won't have
1302 	 * to. we assume access permissions have been handled by the open
1303 	 * of the memory object, so we don't do any here.
1304 	 */
1305 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1306 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1307 
1308 	if (flags & MAP_LOCKED)
1309 		if (!can_do_mlock())
1310 			return -EPERM;
1311 
1312 	if (mlock_future_check(mm, vm_flags, len))
1313 		return -EAGAIN;
1314 
1315 	if (file) {
1316 		struct inode *inode = file_inode(file);
1317 
1318 		switch (flags & MAP_TYPE) {
1319 		case MAP_SHARED:
1320 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1321 				return -EACCES;
1322 
1323 			/*
1324 			 * Make sure we don't allow writing to an append-only
1325 			 * file..
1326 			 */
1327 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1328 				return -EACCES;
1329 
1330 			/*
1331 			 * Make sure there are no mandatory locks on the file.
1332 			 */
1333 			if (locks_verify_locked(file))
1334 				return -EAGAIN;
1335 
1336 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1337 			if (!(file->f_mode & FMODE_WRITE))
1338 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1339 
1340 			/* fall through */
1341 		case MAP_PRIVATE:
1342 			if (!(file->f_mode & FMODE_READ))
1343 				return -EACCES;
1344 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1345 				if (vm_flags & VM_EXEC)
1346 					return -EPERM;
1347 				vm_flags &= ~VM_MAYEXEC;
1348 			}
1349 
1350 			if (!file->f_op->mmap)
1351 				return -ENODEV;
1352 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1353 				return -EINVAL;
1354 			break;
1355 
1356 		default:
1357 			return -EINVAL;
1358 		}
1359 	} else {
1360 		switch (flags & MAP_TYPE) {
1361 		case MAP_SHARED:
1362 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1363 				return -EINVAL;
1364 			/*
1365 			 * Ignore pgoff.
1366 			 */
1367 			pgoff = 0;
1368 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1369 			break;
1370 		case MAP_PRIVATE:
1371 			/*
1372 			 * Set pgoff according to addr for anon_vma.
1373 			 */
1374 			pgoff = addr >> PAGE_SHIFT;
1375 			break;
1376 		default:
1377 			return -EINVAL;
1378 		}
1379 	}
1380 
1381 	/*
1382 	 * Set 'VM_NORESERVE' if we should not account for the
1383 	 * memory use of this mapping.
1384 	 */
1385 	if (flags & MAP_NORESERVE) {
1386 		/* We honor MAP_NORESERVE if allowed to overcommit */
1387 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1388 			vm_flags |= VM_NORESERVE;
1389 
1390 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1391 		if (file && is_file_hugepages(file))
1392 			vm_flags |= VM_NORESERVE;
1393 	}
1394 
1395 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1396 	if (!IS_ERR_VALUE(addr) &&
1397 	    ((vm_flags & VM_LOCKED) ||
1398 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1399 		*populate = len;
1400 	return addr;
1401 }
1402 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1403 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1404 		unsigned long, prot, unsigned long, flags,
1405 		unsigned long, fd, unsigned long, pgoff)
1406 {
1407 	struct file *file = NULL;
1408 	unsigned long retval = -EBADF;
1409 
1410 	if (!(flags & MAP_ANONYMOUS)) {
1411 		audit_mmap_fd(fd, flags);
1412 		file = fget(fd);
1413 		if (!file)
1414 			goto out;
1415 		if (is_file_hugepages(file))
1416 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1417 		retval = -EINVAL;
1418 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1419 			goto out_fput;
1420 	} else if (flags & MAP_HUGETLB) {
1421 		struct user_struct *user = NULL;
1422 		struct hstate *hs;
1423 
1424 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1425 		if (!hs)
1426 			return -EINVAL;
1427 
1428 		len = ALIGN(len, huge_page_size(hs));
1429 		/*
1430 		 * VM_NORESERVE is used because the reservations will be
1431 		 * taken when vm_ops->mmap() is called
1432 		 * A dummy user value is used because we are not locking
1433 		 * memory so no accounting is necessary
1434 		 */
1435 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1436 				VM_NORESERVE,
1437 				&user, HUGETLB_ANONHUGE_INODE,
1438 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1439 		if (IS_ERR(file))
1440 			return PTR_ERR(file);
1441 	}
1442 
1443 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1444 
1445 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1446 out_fput:
1447 	if (file)
1448 		fput(file);
1449 out:
1450 	return retval;
1451 }
1452 
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct {
1455 	unsigned long addr;
1456 	unsigned long len;
1457 	unsigned long prot;
1458 	unsigned long flags;
1459 	unsigned long fd;
1460 	unsigned long offset;
1461 };
1462 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1463 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1464 {
1465 	struct mmap_arg_struct a;
1466 
1467 	if (copy_from_user(&a, arg, sizeof(a)))
1468 		return -EFAULT;
1469 	if (a.offset & ~PAGE_MASK)
1470 		return -EINVAL;
1471 
1472 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1473 			      a.offset >> PAGE_SHIFT);
1474 }
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1476 
1477 /*
1478  * Some shared mappigns will want the pages marked read-only
1479  * to track write events. If so, we'll downgrade vm_page_prot
1480  * to the private version (using protection_map[] without the
1481  * VM_SHARED bit).
1482  */
vma_wants_writenotify(struct vm_area_struct * vma)1483 int vma_wants_writenotify(struct vm_area_struct *vma)
1484 {
1485 	vm_flags_t vm_flags = vma->vm_flags;
1486 
1487 	/* If it was private or non-writable, the write bit is already clear */
1488 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1489 		return 0;
1490 
1491 	/* The backer wishes to know when pages are first written to? */
1492 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1493 		return 1;
1494 
1495 	/* The open routine did something to the protections that pgprot_modify
1496 	 * won't preserve? */
1497 	if (pgprot_val(vma->vm_page_prot) !=
1498 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1499 		return 0;
1500 
1501 	/* Do we need to track softdirty? */
1502 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1503 		return 1;
1504 
1505 	/* Specialty mapping? */
1506 	if (vm_flags & VM_PFNMAP)
1507 		return 0;
1508 
1509 	/* Can the mapping track the dirty pages? */
1510 	return vma->vm_file && vma->vm_file->f_mapping &&
1511 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1512 }
1513 
1514 /*
1515  * We account for memory if it's a private writeable mapping,
1516  * not hugepages and VM_NORESERVE wasn't set.
1517  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1518 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1519 {
1520 	/*
1521 	 * hugetlb has its own accounting separate from the core VM
1522 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1523 	 */
1524 	if (file && is_file_hugepages(file))
1525 		return 0;
1526 
1527 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1528 }
1529 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff)1530 unsigned long mmap_region(struct file *file, unsigned long addr,
1531 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1532 {
1533 	struct mm_struct *mm = current->mm;
1534 	struct vm_area_struct *vma, *prev;
1535 	int error;
1536 	struct rb_node **rb_link, *rb_parent;
1537 	unsigned long charged = 0;
1538 
1539 	/* Check against address space limit. */
1540 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1541 		unsigned long nr_pages;
1542 
1543 		/*
1544 		 * MAP_FIXED may remove pages of mappings that intersects with
1545 		 * requested mapping. Account for the pages it would unmap.
1546 		 */
1547 		if (!(vm_flags & MAP_FIXED))
1548 			return -ENOMEM;
1549 
1550 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1551 
1552 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1553 			return -ENOMEM;
1554 	}
1555 
1556 	/* Clear old maps */
1557 	error = -ENOMEM;
1558 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1559 			      &rb_parent)) {
1560 		if (do_munmap(mm, addr, len))
1561 			return -ENOMEM;
1562 	}
1563 
1564 	/*
1565 	 * Private writable mapping: check memory availability
1566 	 */
1567 	if (accountable_mapping(file, vm_flags)) {
1568 		charged = len >> PAGE_SHIFT;
1569 		if (security_vm_enough_memory_mm(mm, charged))
1570 			return -ENOMEM;
1571 		vm_flags |= VM_ACCOUNT;
1572 	}
1573 
1574 	/*
1575 	 * Can we just expand an old mapping?
1576 	 */
1577 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1578 			NULL);
1579 	if (vma)
1580 		goto out;
1581 
1582 	/*
1583 	 * Determine the object being mapped and call the appropriate
1584 	 * specific mapper. the address has already been validated, but
1585 	 * not unmapped, but the maps are removed from the list.
1586 	 */
1587 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1588 	if (!vma) {
1589 		error = -ENOMEM;
1590 		goto unacct_error;
1591 	}
1592 
1593 	vma->vm_mm = mm;
1594 	vma->vm_start = addr;
1595 	vma->vm_end = addr + len;
1596 	vma->vm_flags = vm_flags;
1597 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1598 	vma->vm_pgoff = pgoff;
1599 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1600 
1601 	if (file) {
1602 		if (vm_flags & VM_DENYWRITE) {
1603 			error = deny_write_access(file);
1604 			if (error)
1605 				goto free_vma;
1606 		}
1607 		if (vm_flags & VM_SHARED) {
1608 			error = mapping_map_writable(file->f_mapping);
1609 			if (error)
1610 				goto allow_write_and_free_vma;
1611 		}
1612 
1613 		/* ->mmap() can change vma->vm_file, but must guarantee that
1614 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1615 		 * and map writably if VM_SHARED is set. This usually means the
1616 		 * new file must not have been exposed to user-space, yet.
1617 		 */
1618 		vma->vm_file = get_file(file);
1619 		error = file->f_op->mmap(file, vma);
1620 		if (error)
1621 			goto unmap_and_free_vma;
1622 
1623 		/* Can addr have changed??
1624 		 *
1625 		 * Answer: Yes, several device drivers can do it in their
1626 		 *         f_op->mmap method. -DaveM
1627 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1628 		 *      be updated for vma_link()
1629 		 */
1630 		WARN_ON_ONCE(addr != vma->vm_start);
1631 
1632 		addr = vma->vm_start;
1633 		vm_flags = vma->vm_flags;
1634 	} else if (vm_flags & VM_SHARED) {
1635 		error = shmem_zero_setup(vma);
1636 		if (error)
1637 			goto free_vma;
1638 	}
1639 
1640 	vma_link(mm, vma, prev, rb_link, rb_parent);
1641 	/* Once vma denies write, undo our temporary denial count */
1642 	if (file) {
1643 		if (vm_flags & VM_SHARED)
1644 			mapping_unmap_writable(file->f_mapping);
1645 		if (vm_flags & VM_DENYWRITE)
1646 			allow_write_access(file);
1647 	}
1648 	file = vma->vm_file;
1649 out:
1650 	perf_event_mmap(vma);
1651 
1652 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1653 	if (vm_flags & VM_LOCKED) {
1654 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1655 					vma == get_gate_vma(current->mm)))
1656 			mm->locked_vm += (len >> PAGE_SHIFT);
1657 		else
1658 			vma->vm_flags &= ~VM_LOCKED;
1659 	}
1660 
1661 	if (file)
1662 		uprobe_mmap(vma);
1663 
1664 	/*
1665 	 * New (or expanded) vma always get soft dirty status.
1666 	 * Otherwise user-space soft-dirty page tracker won't
1667 	 * be able to distinguish situation when vma area unmapped,
1668 	 * then new mapped in-place (which must be aimed as
1669 	 * a completely new data area).
1670 	 */
1671 	vma->vm_flags |= VM_SOFTDIRTY;
1672 
1673 	vma_set_page_prot(vma);
1674 
1675 	return addr;
1676 
1677 unmap_and_free_vma:
1678 	vma->vm_file = NULL;
1679 	fput(file);
1680 
1681 	/* Undo any partial mapping done by a device driver. */
1682 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1683 	charged = 0;
1684 	if (vm_flags & VM_SHARED)
1685 		mapping_unmap_writable(file->f_mapping);
1686 allow_write_and_free_vma:
1687 	if (vm_flags & VM_DENYWRITE)
1688 		allow_write_access(file);
1689 free_vma:
1690 	kmem_cache_free(vm_area_cachep, vma);
1691 unacct_error:
1692 	if (charged)
1693 		vm_unacct_memory(charged);
1694 	return error;
1695 }
1696 
unmapped_area(struct vm_unmapped_area_info * info)1697 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1698 {
1699 	/*
1700 	 * We implement the search by looking for an rbtree node that
1701 	 * immediately follows a suitable gap. That is,
1702 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1703 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1704 	 * - gap_end - gap_start >= length
1705 	 */
1706 
1707 	struct mm_struct *mm = current->mm;
1708 	struct vm_area_struct *vma;
1709 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1710 
1711 	/* Adjust search length to account for worst case alignment overhead */
1712 	length = info->length + info->align_mask;
1713 	if (length < info->length)
1714 		return -ENOMEM;
1715 
1716 	/* Adjust search limits by the desired length */
1717 	if (info->high_limit < length)
1718 		return -ENOMEM;
1719 	high_limit = info->high_limit - length;
1720 
1721 	if (info->low_limit > high_limit)
1722 		return -ENOMEM;
1723 	low_limit = info->low_limit + length;
1724 
1725 	/* Check if rbtree root looks promising */
1726 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1727 		goto check_highest;
1728 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1729 	if (vma->rb_subtree_gap < length)
1730 		goto check_highest;
1731 
1732 	while (true) {
1733 		/* Visit left subtree if it looks promising */
1734 		gap_end = vma->vm_start;
1735 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1736 			struct vm_area_struct *left =
1737 				rb_entry(vma->vm_rb.rb_left,
1738 					 struct vm_area_struct, vm_rb);
1739 			if (left->rb_subtree_gap >= length) {
1740 				vma = left;
1741 				continue;
1742 			}
1743 		}
1744 
1745 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1746 check_current:
1747 		/* Check if current node has a suitable gap */
1748 		if (gap_start > high_limit)
1749 			return -ENOMEM;
1750 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1751 			goto found;
1752 
1753 		/* Visit right subtree if it looks promising */
1754 		if (vma->vm_rb.rb_right) {
1755 			struct vm_area_struct *right =
1756 				rb_entry(vma->vm_rb.rb_right,
1757 					 struct vm_area_struct, vm_rb);
1758 			if (right->rb_subtree_gap >= length) {
1759 				vma = right;
1760 				continue;
1761 			}
1762 		}
1763 
1764 		/* Go back up the rbtree to find next candidate node */
1765 		while (true) {
1766 			struct rb_node *prev = &vma->vm_rb;
1767 			if (!rb_parent(prev))
1768 				goto check_highest;
1769 			vma = rb_entry(rb_parent(prev),
1770 				       struct vm_area_struct, vm_rb);
1771 			if (prev == vma->vm_rb.rb_left) {
1772 				gap_start = vma->vm_prev->vm_end;
1773 				gap_end = vma->vm_start;
1774 				goto check_current;
1775 			}
1776 		}
1777 	}
1778 
1779 check_highest:
1780 	/* Check highest gap, which does not precede any rbtree node */
1781 	gap_start = mm->highest_vm_end;
1782 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1783 	if (gap_start > high_limit)
1784 		return -ENOMEM;
1785 
1786 found:
1787 	/* We found a suitable gap. Clip it with the original low_limit. */
1788 	if (gap_start < info->low_limit)
1789 		gap_start = info->low_limit;
1790 
1791 	/* Adjust gap address to the desired alignment */
1792 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1793 
1794 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1795 	VM_BUG_ON(gap_start + info->length > gap_end);
1796 	return gap_start;
1797 }
1798 
unmapped_area_topdown(struct vm_unmapped_area_info * info)1799 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1800 {
1801 	struct mm_struct *mm = current->mm;
1802 	struct vm_area_struct *vma;
1803 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1804 
1805 	/* Adjust search length to account for worst case alignment overhead */
1806 	length = info->length + info->align_mask;
1807 	if (length < info->length)
1808 		return -ENOMEM;
1809 
1810 	/*
1811 	 * Adjust search limits by the desired length.
1812 	 * See implementation comment at top of unmapped_area().
1813 	 */
1814 	gap_end = info->high_limit;
1815 	if (gap_end < length)
1816 		return -ENOMEM;
1817 	high_limit = gap_end - length;
1818 
1819 	if (info->low_limit > high_limit)
1820 		return -ENOMEM;
1821 	low_limit = info->low_limit + length;
1822 
1823 	/* Check highest gap, which does not precede any rbtree node */
1824 	gap_start = mm->highest_vm_end;
1825 	if (gap_start <= high_limit)
1826 		goto found_highest;
1827 
1828 	/* Check if rbtree root looks promising */
1829 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1830 		return -ENOMEM;
1831 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1832 	if (vma->rb_subtree_gap < length)
1833 		return -ENOMEM;
1834 
1835 	while (true) {
1836 		/* Visit right subtree if it looks promising */
1837 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1838 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1839 			struct vm_area_struct *right =
1840 				rb_entry(vma->vm_rb.rb_right,
1841 					 struct vm_area_struct, vm_rb);
1842 			if (right->rb_subtree_gap >= length) {
1843 				vma = right;
1844 				continue;
1845 			}
1846 		}
1847 
1848 check_current:
1849 		/* Check if current node has a suitable gap */
1850 		gap_end = vma->vm_start;
1851 		if (gap_end < low_limit)
1852 			return -ENOMEM;
1853 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1854 			goto found;
1855 
1856 		/* Visit left subtree if it looks promising */
1857 		if (vma->vm_rb.rb_left) {
1858 			struct vm_area_struct *left =
1859 				rb_entry(vma->vm_rb.rb_left,
1860 					 struct vm_area_struct, vm_rb);
1861 			if (left->rb_subtree_gap >= length) {
1862 				vma = left;
1863 				continue;
1864 			}
1865 		}
1866 
1867 		/* Go back up the rbtree to find next candidate node */
1868 		while (true) {
1869 			struct rb_node *prev = &vma->vm_rb;
1870 			if (!rb_parent(prev))
1871 				return -ENOMEM;
1872 			vma = rb_entry(rb_parent(prev),
1873 				       struct vm_area_struct, vm_rb);
1874 			if (prev == vma->vm_rb.rb_right) {
1875 				gap_start = vma->vm_prev ?
1876 					vma->vm_prev->vm_end : 0;
1877 				goto check_current;
1878 			}
1879 		}
1880 	}
1881 
1882 found:
1883 	/* We found a suitable gap. Clip it with the original high_limit. */
1884 	if (gap_end > info->high_limit)
1885 		gap_end = info->high_limit;
1886 
1887 found_highest:
1888 	/* Compute highest gap address at the desired alignment */
1889 	gap_end -= info->length;
1890 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1891 
1892 	VM_BUG_ON(gap_end < info->low_limit);
1893 	VM_BUG_ON(gap_end < gap_start);
1894 	return gap_end;
1895 }
1896 
1897 /* Get an address range which is currently unmapped.
1898  * For shmat() with addr=0.
1899  *
1900  * Ugly calling convention alert:
1901  * Return value with the low bits set means error value,
1902  * ie
1903  *	if (ret & ~PAGE_MASK)
1904  *		error = ret;
1905  *
1906  * This function "knows" that -ENOMEM has the bits set.
1907  */
1908 #ifndef HAVE_ARCH_UNMAPPED_AREA
1909 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1910 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1911 		unsigned long len, unsigned long pgoff, unsigned long flags)
1912 {
1913 	struct mm_struct *mm = current->mm;
1914 	struct vm_area_struct *vma;
1915 	struct vm_unmapped_area_info info;
1916 
1917 	if (len > TASK_SIZE - mmap_min_addr)
1918 		return -ENOMEM;
1919 
1920 	if (flags & MAP_FIXED)
1921 		return addr;
1922 
1923 	if (addr) {
1924 		addr = PAGE_ALIGN(addr);
1925 		vma = find_vma(mm, addr);
1926 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1927 		    (!vma || addr + len <= vma->vm_start))
1928 			return addr;
1929 	}
1930 
1931 	info.flags = 0;
1932 	info.length = len;
1933 	info.low_limit = mm->mmap_base;
1934 	info.high_limit = TASK_SIZE;
1935 	info.align_mask = 0;
1936 	return vm_unmapped_area(&info);
1937 }
1938 #endif
1939 
1940 /*
1941  * This mmap-allocator allocates new areas top-down from below the
1942  * stack's low limit (the base):
1943  */
1944 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1945 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)1946 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1947 			  const unsigned long len, const unsigned long pgoff,
1948 			  const unsigned long flags)
1949 {
1950 	struct vm_area_struct *vma;
1951 	struct mm_struct *mm = current->mm;
1952 	unsigned long addr = addr0;
1953 	struct vm_unmapped_area_info info;
1954 
1955 	/* requested length too big for entire address space */
1956 	if (len > TASK_SIZE - mmap_min_addr)
1957 		return -ENOMEM;
1958 
1959 	if (flags & MAP_FIXED)
1960 		return addr;
1961 
1962 	/* requesting a specific address */
1963 	if (addr) {
1964 		addr = PAGE_ALIGN(addr);
1965 		vma = find_vma(mm, addr);
1966 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1967 				(!vma || addr + len <= vma->vm_start))
1968 			return addr;
1969 	}
1970 
1971 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1972 	info.length = len;
1973 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1974 	info.high_limit = mm->mmap_base;
1975 	info.align_mask = 0;
1976 	addr = vm_unmapped_area(&info);
1977 
1978 	/*
1979 	 * A failed mmap() very likely causes application failure,
1980 	 * so fall back to the bottom-up function here. This scenario
1981 	 * can happen with large stack limits and large mmap()
1982 	 * allocations.
1983 	 */
1984 	if (addr & ~PAGE_MASK) {
1985 		VM_BUG_ON(addr != -ENOMEM);
1986 		info.flags = 0;
1987 		info.low_limit = TASK_UNMAPPED_BASE;
1988 		info.high_limit = TASK_SIZE;
1989 		addr = vm_unmapped_area(&info);
1990 	}
1991 
1992 	return addr;
1993 }
1994 #endif
1995 
1996 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1997 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1998 		unsigned long pgoff, unsigned long flags)
1999 {
2000 	unsigned long (*get_area)(struct file *, unsigned long,
2001 				  unsigned long, unsigned long, unsigned long);
2002 
2003 	unsigned long error = arch_mmap_check(addr, len, flags);
2004 	if (error)
2005 		return error;
2006 
2007 	/* Careful about overflows.. */
2008 	if (len > TASK_SIZE)
2009 		return -ENOMEM;
2010 
2011 	get_area = current->mm->get_unmapped_area;
2012 	if (file && file->f_op->get_unmapped_area)
2013 		get_area = file->f_op->get_unmapped_area;
2014 	addr = get_area(file, addr, len, pgoff, flags);
2015 	if (IS_ERR_VALUE(addr))
2016 		return addr;
2017 
2018 	if (addr > TASK_SIZE - len)
2019 		return -ENOMEM;
2020 	if (addr & ~PAGE_MASK)
2021 		return -EINVAL;
2022 
2023 	addr = arch_rebalance_pgtables(addr, len);
2024 	error = security_mmap_addr(addr);
2025 	return error ? error : addr;
2026 }
2027 
2028 EXPORT_SYMBOL(get_unmapped_area);
2029 
2030 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2031 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2032 {
2033 	struct rb_node *rb_node;
2034 	struct vm_area_struct *vma;
2035 
2036 	/* Check the cache first. */
2037 	vma = vmacache_find(mm, addr);
2038 	if (likely(vma))
2039 		return vma;
2040 
2041 	rb_node = mm->mm_rb.rb_node;
2042 	vma = NULL;
2043 
2044 	while (rb_node) {
2045 		struct vm_area_struct *tmp;
2046 
2047 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2048 
2049 		if (tmp->vm_end > addr) {
2050 			vma = tmp;
2051 			if (tmp->vm_start <= addr)
2052 				break;
2053 			rb_node = rb_node->rb_left;
2054 		} else
2055 			rb_node = rb_node->rb_right;
2056 	}
2057 
2058 	if (vma)
2059 		vmacache_update(addr, vma);
2060 	return vma;
2061 }
2062 
2063 EXPORT_SYMBOL(find_vma);
2064 
2065 /*
2066  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2067  */
2068 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2069 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2070 			struct vm_area_struct **pprev)
2071 {
2072 	struct vm_area_struct *vma;
2073 
2074 	vma = find_vma(mm, addr);
2075 	if (vma) {
2076 		*pprev = vma->vm_prev;
2077 	} else {
2078 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2079 		*pprev = NULL;
2080 		while (rb_node) {
2081 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2082 			rb_node = rb_node->rb_right;
2083 		}
2084 	}
2085 	return vma;
2086 }
2087 
2088 /*
2089  * Verify that the stack growth is acceptable and
2090  * update accounting. This is shared with both the
2091  * grow-up and grow-down cases.
2092  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2093 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2094 {
2095 	struct mm_struct *mm = vma->vm_mm;
2096 	struct rlimit *rlim = current->signal->rlim;
2097 	unsigned long new_start, actual_size;
2098 
2099 	/* address space limit tests */
2100 	if (!may_expand_vm(mm, grow))
2101 		return -ENOMEM;
2102 
2103 	/* Stack limit test */
2104 	actual_size = size;
2105 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2106 		actual_size -= PAGE_SIZE;
2107 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2108 		return -ENOMEM;
2109 
2110 	/* mlock limit tests */
2111 	if (vma->vm_flags & VM_LOCKED) {
2112 		unsigned long locked;
2113 		unsigned long limit;
2114 		locked = mm->locked_vm + grow;
2115 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2116 		limit >>= PAGE_SHIFT;
2117 		if (locked > limit && !capable(CAP_IPC_LOCK))
2118 			return -ENOMEM;
2119 	}
2120 
2121 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2122 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2123 			vma->vm_end - size;
2124 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2125 		return -EFAULT;
2126 
2127 	/*
2128 	 * Overcommit..  This must be the final test, as it will
2129 	 * update security statistics.
2130 	 */
2131 	if (security_vm_enough_memory_mm(mm, grow))
2132 		return -ENOMEM;
2133 
2134 	/* Ok, everything looks good - let it rip */
2135 	if (vma->vm_flags & VM_LOCKED)
2136 		mm->locked_vm += grow;
2137 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2138 	return 0;
2139 }
2140 
2141 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2142 /*
2143  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2144  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2145  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2146 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2147 {
2148 	int error = 0;
2149 
2150 	if (!(vma->vm_flags & VM_GROWSUP))
2151 		return -EFAULT;
2152 
2153 	/* Guard against wrapping around to address 0. */
2154 	if (address < PAGE_ALIGN(address+4))
2155 		address = PAGE_ALIGN(address+4);
2156 	else
2157 		return -ENOMEM;
2158 
2159 	/* We must make sure the anon_vma is allocated. */
2160 	if (unlikely(anon_vma_prepare(vma)))
2161 		return -ENOMEM;
2162 
2163 	/*
2164 	 * vma->vm_start/vm_end cannot change under us because the caller
2165 	 * is required to hold the mmap_sem in read mode.  We need the
2166 	 * anon_vma lock to serialize against concurrent expand_stacks.
2167 	 */
2168 	anon_vma_lock_write(vma->anon_vma);
2169 
2170 	/* Somebody else might have raced and expanded it already */
2171 	if (address > vma->vm_end) {
2172 		unsigned long size, grow;
2173 
2174 		size = address - vma->vm_start;
2175 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2176 
2177 		error = -ENOMEM;
2178 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2179 			error = acct_stack_growth(vma, size, grow);
2180 			if (!error) {
2181 				/*
2182 				 * vma_gap_update() doesn't support concurrent
2183 				 * updates, but we only hold a shared mmap_sem
2184 				 * lock here, so we need to protect against
2185 				 * concurrent vma expansions.
2186 				 * anon_vma_lock_write() doesn't help here, as
2187 				 * we don't guarantee that all growable vmas
2188 				 * in a mm share the same root anon vma.
2189 				 * So, we reuse mm->page_table_lock to guard
2190 				 * against concurrent vma expansions.
2191 				 */
2192 				spin_lock(&vma->vm_mm->page_table_lock);
2193 				anon_vma_interval_tree_pre_update_vma(vma);
2194 				vma->vm_end = address;
2195 				anon_vma_interval_tree_post_update_vma(vma);
2196 				if (vma->vm_next)
2197 					vma_gap_update(vma->vm_next);
2198 				else
2199 					vma->vm_mm->highest_vm_end = address;
2200 				spin_unlock(&vma->vm_mm->page_table_lock);
2201 
2202 				perf_event_mmap(vma);
2203 			}
2204 		}
2205 	}
2206 	anon_vma_unlock_write(vma->anon_vma);
2207 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2208 	validate_mm(vma->vm_mm);
2209 	return error;
2210 }
2211 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2212 
2213 /*
2214  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2215  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2216 int expand_downwards(struct vm_area_struct *vma,
2217 				   unsigned long address)
2218 {
2219 	int error;
2220 
2221 	address &= PAGE_MASK;
2222 	error = security_mmap_addr(address);
2223 	if (error)
2224 		return error;
2225 
2226 	/* We must make sure the anon_vma is allocated. */
2227 	if (unlikely(anon_vma_prepare(vma)))
2228 		return -ENOMEM;
2229 
2230 	/*
2231 	 * vma->vm_start/vm_end cannot change under us because the caller
2232 	 * is required to hold the mmap_sem in read mode.  We need the
2233 	 * anon_vma lock to serialize against concurrent expand_stacks.
2234 	 */
2235 	anon_vma_lock_write(vma->anon_vma);
2236 
2237 	/* Somebody else might have raced and expanded it already */
2238 	if (address < vma->vm_start) {
2239 		unsigned long size, grow;
2240 
2241 		size = vma->vm_end - address;
2242 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2243 
2244 		error = -ENOMEM;
2245 		if (grow <= vma->vm_pgoff) {
2246 			error = acct_stack_growth(vma, size, grow);
2247 			if (!error) {
2248 				/*
2249 				 * vma_gap_update() doesn't support concurrent
2250 				 * updates, but we only hold a shared mmap_sem
2251 				 * lock here, so we need to protect against
2252 				 * concurrent vma expansions.
2253 				 * anon_vma_lock_write() doesn't help here, as
2254 				 * we don't guarantee that all growable vmas
2255 				 * in a mm share the same root anon vma.
2256 				 * So, we reuse mm->page_table_lock to guard
2257 				 * against concurrent vma expansions.
2258 				 */
2259 				spin_lock(&vma->vm_mm->page_table_lock);
2260 				anon_vma_interval_tree_pre_update_vma(vma);
2261 				vma->vm_start = address;
2262 				vma->vm_pgoff -= grow;
2263 				anon_vma_interval_tree_post_update_vma(vma);
2264 				vma_gap_update(vma);
2265 				spin_unlock(&vma->vm_mm->page_table_lock);
2266 
2267 				perf_event_mmap(vma);
2268 			}
2269 		}
2270 	}
2271 	anon_vma_unlock_write(vma->anon_vma);
2272 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2273 	validate_mm(vma->vm_mm);
2274 	return error;
2275 }
2276 
2277 /*
2278  * Note how expand_stack() refuses to expand the stack all the way to
2279  * abut the next virtual mapping, *unless* that mapping itself is also
2280  * a stack mapping. We want to leave room for a guard page, after all
2281  * (the guard page itself is not added here, that is done by the
2282  * actual page faulting logic)
2283  *
2284  * This matches the behavior of the guard page logic (see mm/memory.c:
2285  * check_stack_guard_page()), which only allows the guard page to be
2286  * removed under these circumstances.
2287  */
2288 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2289 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2290 {
2291 	struct vm_area_struct *next;
2292 
2293 	address &= PAGE_MASK;
2294 	next = vma->vm_next;
2295 	if (next && next->vm_start == address + PAGE_SIZE) {
2296 		if (!(next->vm_flags & VM_GROWSUP))
2297 			return -ENOMEM;
2298 	}
2299 	return expand_upwards(vma, address);
2300 }
2301 
2302 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2303 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2304 {
2305 	struct vm_area_struct *vma, *prev;
2306 
2307 	addr &= PAGE_MASK;
2308 	vma = find_vma_prev(mm, addr, &prev);
2309 	if (vma && (vma->vm_start <= addr))
2310 		return vma;
2311 	if (!prev || expand_stack(prev, addr))
2312 		return NULL;
2313 	if (prev->vm_flags & VM_LOCKED)
2314 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2315 	return prev;
2316 }
2317 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2318 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2319 {
2320 	struct vm_area_struct *prev;
2321 
2322 	address &= PAGE_MASK;
2323 	prev = vma->vm_prev;
2324 	if (prev && prev->vm_end == address) {
2325 		if (!(prev->vm_flags & VM_GROWSDOWN))
2326 			return -ENOMEM;
2327 	}
2328 	return expand_downwards(vma, address);
2329 }
2330 
2331 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2332 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2333 {
2334 	struct vm_area_struct *vma;
2335 	unsigned long start;
2336 
2337 	addr &= PAGE_MASK;
2338 	vma = find_vma(mm, addr);
2339 	if (!vma)
2340 		return NULL;
2341 	if (vma->vm_start <= addr)
2342 		return vma;
2343 	if (!(vma->vm_flags & VM_GROWSDOWN))
2344 		return NULL;
2345 	start = vma->vm_start;
2346 	if (expand_stack(vma, addr))
2347 		return NULL;
2348 	if (vma->vm_flags & VM_LOCKED)
2349 		populate_vma_page_range(vma, addr, start, NULL);
2350 	return vma;
2351 }
2352 #endif
2353 
2354 EXPORT_SYMBOL_GPL(find_extend_vma);
2355 
2356 /*
2357  * Ok - we have the memory areas we should free on the vma list,
2358  * so release them, and do the vma updates.
2359  *
2360  * Called with the mm semaphore held.
2361  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2362 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2363 {
2364 	unsigned long nr_accounted = 0;
2365 
2366 	/* Update high watermark before we lower total_vm */
2367 	update_hiwater_vm(mm);
2368 	do {
2369 		long nrpages = vma_pages(vma);
2370 
2371 		if (vma->vm_flags & VM_ACCOUNT)
2372 			nr_accounted += nrpages;
2373 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2374 		vma = remove_vma(vma);
2375 	} while (vma);
2376 	vm_unacct_memory(nr_accounted);
2377 	validate_mm(mm);
2378 }
2379 
2380 /*
2381  * Get rid of page table information in the indicated region.
2382  *
2383  * Called with the mm semaphore held.
2384  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2385 static void unmap_region(struct mm_struct *mm,
2386 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2387 		unsigned long start, unsigned long end)
2388 {
2389 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2390 	struct mmu_gather tlb;
2391 
2392 	lru_add_drain();
2393 	tlb_gather_mmu(&tlb, mm, start, end);
2394 	update_hiwater_rss(mm);
2395 	unmap_vmas(&tlb, vma, start, end);
2396 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2397 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2398 	tlb_finish_mmu(&tlb, start, end);
2399 }
2400 
2401 /*
2402  * Create a list of vma's touched by the unmap, removing them from the mm's
2403  * vma list as we go..
2404  */
2405 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2406 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2407 	struct vm_area_struct *prev, unsigned long end)
2408 {
2409 	struct vm_area_struct **insertion_point;
2410 	struct vm_area_struct *tail_vma = NULL;
2411 
2412 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2413 	vma->vm_prev = NULL;
2414 	do {
2415 		vma_rb_erase(vma, &mm->mm_rb);
2416 		mm->map_count--;
2417 		tail_vma = vma;
2418 		vma = vma->vm_next;
2419 	} while (vma && vma->vm_start < end);
2420 	*insertion_point = vma;
2421 	if (vma) {
2422 		vma->vm_prev = prev;
2423 		vma_gap_update(vma);
2424 	} else
2425 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2426 	tail_vma->vm_next = NULL;
2427 
2428 	/* Kill the cache */
2429 	vmacache_invalidate(mm);
2430 }
2431 
2432 /*
2433  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2434  * munmap path where it doesn't make sense to fail.
2435  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2436 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2437 	      unsigned long addr, int new_below)
2438 {
2439 	struct vm_area_struct *new;
2440 	int err = -ENOMEM;
2441 
2442 	if (is_vm_hugetlb_page(vma) && (addr &
2443 					~(huge_page_mask(hstate_vma(vma)))))
2444 		return -EINVAL;
2445 
2446 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2447 	if (!new)
2448 		goto out_err;
2449 
2450 	/* most fields are the same, copy all, and then fixup */
2451 	*new = *vma;
2452 
2453 	INIT_LIST_HEAD(&new->anon_vma_chain);
2454 
2455 	if (new_below)
2456 		new->vm_end = addr;
2457 	else {
2458 		new->vm_start = addr;
2459 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2460 	}
2461 
2462 	err = vma_dup_policy(vma, new);
2463 	if (err)
2464 		goto out_free_vma;
2465 
2466 	err = anon_vma_clone(new, vma);
2467 	if (err)
2468 		goto out_free_mpol;
2469 
2470 	if (new->vm_file)
2471 		get_file(new->vm_file);
2472 
2473 	if (new->vm_ops && new->vm_ops->open)
2474 		new->vm_ops->open(new);
2475 
2476 	if (new_below)
2477 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2478 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2479 	else
2480 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2481 
2482 	/* Success. */
2483 	if (!err)
2484 		return 0;
2485 
2486 	/* Clean everything up if vma_adjust failed. */
2487 	if (new->vm_ops && new->vm_ops->close)
2488 		new->vm_ops->close(new);
2489 	if (new->vm_file)
2490 		fput(new->vm_file);
2491 	unlink_anon_vmas(new);
2492  out_free_mpol:
2493 	mpol_put(vma_policy(new));
2494  out_free_vma:
2495 	kmem_cache_free(vm_area_cachep, new);
2496  out_err:
2497 	return err;
2498 }
2499 
2500 /*
2501  * Split a vma into two pieces at address 'addr', a new vma is allocated
2502  * either for the first part or the tail.
2503  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2504 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2505 	      unsigned long addr, int new_below)
2506 {
2507 	if (mm->map_count >= sysctl_max_map_count)
2508 		return -ENOMEM;
2509 
2510 	return __split_vma(mm, vma, addr, new_below);
2511 }
2512 
2513 /* Munmap is split into 2 main parts -- this part which finds
2514  * what needs doing, and the areas themselves, which do the
2515  * work.  This now handles partial unmappings.
2516  * Jeremy Fitzhardinge <jeremy@goop.org>
2517  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)2518 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2519 {
2520 	unsigned long end;
2521 	struct vm_area_struct *vma, *prev, *last;
2522 
2523 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2524 		return -EINVAL;
2525 
2526 	len = PAGE_ALIGN(len);
2527 	if (len == 0)
2528 		return -EINVAL;
2529 
2530 	/* Find the first overlapping VMA */
2531 	vma = find_vma(mm, start);
2532 	if (!vma)
2533 		return 0;
2534 	prev = vma->vm_prev;
2535 	/* we have  start < vma->vm_end  */
2536 
2537 	/* if it doesn't overlap, we have nothing.. */
2538 	end = start + len;
2539 	if (vma->vm_start >= end)
2540 		return 0;
2541 
2542 	/*
2543 	 * If we need to split any vma, do it now to save pain later.
2544 	 *
2545 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2546 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2547 	 * places tmp vma above, and higher split_vma places tmp vma below.
2548 	 */
2549 	if (start > vma->vm_start) {
2550 		int error;
2551 
2552 		/*
2553 		 * Make sure that map_count on return from munmap() will
2554 		 * not exceed its limit; but let map_count go just above
2555 		 * its limit temporarily, to help free resources as expected.
2556 		 */
2557 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2558 			return -ENOMEM;
2559 
2560 		error = __split_vma(mm, vma, start, 0);
2561 		if (error)
2562 			return error;
2563 		prev = vma;
2564 	}
2565 
2566 	/* Does it split the last one? */
2567 	last = find_vma(mm, end);
2568 	if (last && end > last->vm_start) {
2569 		int error = __split_vma(mm, last, end, 1);
2570 		if (error)
2571 			return error;
2572 	}
2573 	vma = prev ? prev->vm_next : mm->mmap;
2574 
2575 	/*
2576 	 * unlock any mlock()ed ranges before detaching vmas
2577 	 */
2578 	if (mm->locked_vm) {
2579 		struct vm_area_struct *tmp = vma;
2580 		while (tmp && tmp->vm_start < end) {
2581 			if (tmp->vm_flags & VM_LOCKED) {
2582 				mm->locked_vm -= vma_pages(tmp);
2583 				munlock_vma_pages_all(tmp);
2584 			}
2585 			tmp = tmp->vm_next;
2586 		}
2587 	}
2588 
2589 	/*
2590 	 * Remove the vma's, and unmap the actual pages
2591 	 */
2592 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2593 	unmap_region(mm, vma, prev, start, end);
2594 
2595 	arch_unmap(mm, vma, start, end);
2596 
2597 	/* Fix up all other VM information */
2598 	remove_vma_list(mm, vma);
2599 
2600 	return 0;
2601 }
2602 
vm_munmap(unsigned long start,size_t len)2603 int vm_munmap(unsigned long start, size_t len)
2604 {
2605 	int ret;
2606 	struct mm_struct *mm = current->mm;
2607 
2608 	down_write(&mm->mmap_sem);
2609 	ret = do_munmap(mm, start, len);
2610 	up_write(&mm->mmap_sem);
2611 	return ret;
2612 }
2613 EXPORT_SYMBOL(vm_munmap);
2614 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2615 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2616 {
2617 	profile_munmap(addr);
2618 	return vm_munmap(addr, len);
2619 }
2620 
2621 
2622 /*
2623  * Emulation of deprecated remap_file_pages() syscall.
2624  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2625 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2626 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2627 {
2628 
2629 	struct mm_struct *mm = current->mm;
2630 	struct vm_area_struct *vma;
2631 	unsigned long populate = 0;
2632 	unsigned long ret = -EINVAL;
2633 	struct file *file;
2634 
2635 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2636 			"See Documentation/vm/remap_file_pages.txt.\n",
2637 			current->comm, current->pid);
2638 
2639 	if (prot)
2640 		return ret;
2641 	start = start & PAGE_MASK;
2642 	size = size & PAGE_MASK;
2643 
2644 	if (start + size <= start)
2645 		return ret;
2646 
2647 	/* Does pgoff wrap? */
2648 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2649 		return ret;
2650 
2651 	down_write(&mm->mmap_sem);
2652 	vma = find_vma(mm, start);
2653 
2654 	if (!vma || !(vma->vm_flags & VM_SHARED))
2655 		goto out;
2656 
2657 	if (start < vma->vm_start)
2658 		goto out;
2659 
2660 	if (start + size > vma->vm_end) {
2661 		struct vm_area_struct *next;
2662 
2663 		for (next = vma->vm_next; next; next = next->vm_next) {
2664 			/* hole between vmas ? */
2665 			if (next->vm_start != next->vm_prev->vm_end)
2666 				goto out;
2667 
2668 			if (next->vm_file != vma->vm_file)
2669 				goto out;
2670 
2671 			if (next->vm_flags != vma->vm_flags)
2672 				goto out;
2673 
2674 			if (start + size <= next->vm_end)
2675 				break;
2676 		}
2677 
2678 		if (!next)
2679 			goto out;
2680 	}
2681 
2682 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2683 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2684 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2685 
2686 	flags &= MAP_NONBLOCK;
2687 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2688 	if (vma->vm_flags & VM_LOCKED) {
2689 		struct vm_area_struct *tmp;
2690 		flags |= MAP_LOCKED;
2691 
2692 		/* drop PG_Mlocked flag for over-mapped range */
2693 		for (tmp = vma; tmp->vm_start >= start + size;
2694 				tmp = tmp->vm_next) {
2695 			munlock_vma_pages_range(tmp,
2696 					max(tmp->vm_start, start),
2697 					min(tmp->vm_end, start + size));
2698 		}
2699 	}
2700 
2701 	file = get_file(vma->vm_file);
2702 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2703 			prot, flags, pgoff, &populate);
2704 	fput(file);
2705 out:
2706 	up_write(&mm->mmap_sem);
2707 	if (populate)
2708 		mm_populate(ret, populate);
2709 	if (!IS_ERR_VALUE(ret))
2710 		ret = 0;
2711 	return ret;
2712 }
2713 
verify_mm_writelocked(struct mm_struct * mm)2714 static inline void verify_mm_writelocked(struct mm_struct *mm)
2715 {
2716 #ifdef CONFIG_DEBUG_VM
2717 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2718 		WARN_ON(1);
2719 		up_read(&mm->mmap_sem);
2720 	}
2721 #endif
2722 }
2723 
2724 /*
2725  *  this is really a simplified "do_mmap".  it only handles
2726  *  anonymous maps.  eventually we may be able to do some
2727  *  brk-specific accounting here.
2728  */
do_brk(unsigned long addr,unsigned long len)2729 static unsigned long do_brk(unsigned long addr, unsigned long len)
2730 {
2731 	struct mm_struct *mm = current->mm;
2732 	struct vm_area_struct *vma, *prev;
2733 	unsigned long flags;
2734 	struct rb_node **rb_link, *rb_parent;
2735 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2736 	int error;
2737 
2738 	len = PAGE_ALIGN(len);
2739 	if (!len)
2740 		return addr;
2741 
2742 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2743 
2744 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2745 	if (error & ~PAGE_MASK)
2746 		return error;
2747 
2748 	error = mlock_future_check(mm, mm->def_flags, len);
2749 	if (error)
2750 		return error;
2751 
2752 	/*
2753 	 * mm->mmap_sem is required to protect against another thread
2754 	 * changing the mappings in case we sleep.
2755 	 */
2756 	verify_mm_writelocked(mm);
2757 
2758 	/*
2759 	 * Clear old maps.  this also does some error checking for us
2760 	 */
2761 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2762 			      &rb_parent)) {
2763 		if (do_munmap(mm, addr, len))
2764 			return -ENOMEM;
2765 	}
2766 
2767 	/* Check against address space limits *after* clearing old maps... */
2768 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2769 		return -ENOMEM;
2770 
2771 	if (mm->map_count > sysctl_max_map_count)
2772 		return -ENOMEM;
2773 
2774 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2775 		return -ENOMEM;
2776 
2777 	/* Can we just expand an old private anonymous mapping? */
2778 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2779 					NULL, NULL, pgoff, NULL);
2780 	if (vma)
2781 		goto out;
2782 
2783 	/*
2784 	 * create a vma struct for an anonymous mapping
2785 	 */
2786 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2787 	if (!vma) {
2788 		vm_unacct_memory(len >> PAGE_SHIFT);
2789 		return -ENOMEM;
2790 	}
2791 
2792 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2793 	vma->vm_mm = mm;
2794 	vma->vm_start = addr;
2795 	vma->vm_end = addr + len;
2796 	vma->vm_pgoff = pgoff;
2797 	vma->vm_flags = flags;
2798 	vma->vm_page_prot = vm_get_page_prot(flags);
2799 	vma_link(mm, vma, prev, rb_link, rb_parent);
2800 out:
2801 	perf_event_mmap(vma);
2802 	mm->total_vm += len >> PAGE_SHIFT;
2803 	if (flags & VM_LOCKED)
2804 		mm->locked_vm += (len >> PAGE_SHIFT);
2805 	vma->vm_flags |= VM_SOFTDIRTY;
2806 	return addr;
2807 }
2808 
vm_brk(unsigned long addr,unsigned long len)2809 unsigned long vm_brk(unsigned long addr, unsigned long len)
2810 {
2811 	struct mm_struct *mm = current->mm;
2812 	unsigned long ret;
2813 	bool populate;
2814 
2815 	down_write(&mm->mmap_sem);
2816 	ret = do_brk(addr, len);
2817 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2818 	up_write(&mm->mmap_sem);
2819 	if (populate)
2820 		mm_populate(addr, len);
2821 	return ret;
2822 }
2823 EXPORT_SYMBOL(vm_brk);
2824 
2825 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2826 void exit_mmap(struct mm_struct *mm)
2827 {
2828 	struct mmu_gather tlb;
2829 	struct vm_area_struct *vma;
2830 	unsigned long nr_accounted = 0;
2831 
2832 	/* mm's last user has gone, and its about to be pulled down */
2833 	mmu_notifier_release(mm);
2834 
2835 	if (mm->locked_vm) {
2836 		vma = mm->mmap;
2837 		while (vma) {
2838 			if (vma->vm_flags & VM_LOCKED)
2839 				munlock_vma_pages_all(vma);
2840 			vma = vma->vm_next;
2841 		}
2842 	}
2843 
2844 	arch_exit_mmap(mm);
2845 
2846 	vma = mm->mmap;
2847 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2848 		return;
2849 
2850 	lru_add_drain();
2851 	flush_cache_mm(mm);
2852 	tlb_gather_mmu(&tlb, mm, 0, -1);
2853 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2854 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2855 	unmap_vmas(&tlb, vma, 0, -1);
2856 
2857 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2858 	tlb_finish_mmu(&tlb, 0, -1);
2859 
2860 	/*
2861 	 * Walk the list again, actually closing and freeing it,
2862 	 * with preemption enabled, without holding any MM locks.
2863 	 */
2864 	while (vma) {
2865 		if (vma->vm_flags & VM_ACCOUNT)
2866 			nr_accounted += vma_pages(vma);
2867 		vma = remove_vma(vma);
2868 	}
2869 	vm_unacct_memory(nr_accounted);
2870 }
2871 
2872 /* Insert vm structure into process list sorted by address
2873  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2874  * then i_mmap_rwsem is taken here.
2875  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2876 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2877 {
2878 	struct vm_area_struct *prev;
2879 	struct rb_node **rb_link, *rb_parent;
2880 
2881 	/*
2882 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2883 	 * until its first write fault, when page's anon_vma and index
2884 	 * are set.  But now set the vm_pgoff it will almost certainly
2885 	 * end up with (unless mremap moves it elsewhere before that
2886 	 * first wfault), so /proc/pid/maps tells a consistent story.
2887 	 *
2888 	 * By setting it to reflect the virtual start address of the
2889 	 * vma, merges and splits can happen in a seamless way, just
2890 	 * using the existing file pgoff checks and manipulations.
2891 	 * Similarly in do_mmap_pgoff and in do_brk.
2892 	 */
2893 	if (!vma->vm_file) {
2894 		BUG_ON(vma->anon_vma);
2895 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2896 	}
2897 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2898 			   &prev, &rb_link, &rb_parent))
2899 		return -ENOMEM;
2900 	if ((vma->vm_flags & VM_ACCOUNT) &&
2901 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2902 		return -ENOMEM;
2903 
2904 	vma_link(mm, vma, prev, rb_link, rb_parent);
2905 	return 0;
2906 }
2907 
2908 /*
2909  * Copy the vma structure to a new location in the same mm,
2910  * prior to moving page table entries, to effect an mremap move.
2911  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)2912 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2913 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2914 	bool *need_rmap_locks)
2915 {
2916 	struct vm_area_struct *vma = *vmap;
2917 	unsigned long vma_start = vma->vm_start;
2918 	struct mm_struct *mm = vma->vm_mm;
2919 	struct vm_area_struct *new_vma, *prev;
2920 	struct rb_node **rb_link, *rb_parent;
2921 	bool faulted_in_anon_vma = true;
2922 
2923 	/*
2924 	 * If anonymous vma has not yet been faulted, update new pgoff
2925 	 * to match new location, to increase its chance of merging.
2926 	 */
2927 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2928 		pgoff = addr >> PAGE_SHIFT;
2929 		faulted_in_anon_vma = false;
2930 	}
2931 
2932 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2933 		return NULL;	/* should never get here */
2934 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2935 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2936 	if (new_vma) {
2937 		/*
2938 		 * Source vma may have been merged into new_vma
2939 		 */
2940 		if (unlikely(vma_start >= new_vma->vm_start &&
2941 			     vma_start < new_vma->vm_end)) {
2942 			/*
2943 			 * The only way we can get a vma_merge with
2944 			 * self during an mremap is if the vma hasn't
2945 			 * been faulted in yet and we were allowed to
2946 			 * reset the dst vma->vm_pgoff to the
2947 			 * destination address of the mremap to allow
2948 			 * the merge to happen. mremap must change the
2949 			 * vm_pgoff linearity between src and dst vmas
2950 			 * (in turn preventing a vma_merge) to be
2951 			 * safe. It is only safe to keep the vm_pgoff
2952 			 * linear if there are no pages mapped yet.
2953 			 */
2954 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2955 			*vmap = vma = new_vma;
2956 		}
2957 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2958 	} else {
2959 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2960 		if (new_vma) {
2961 			*new_vma = *vma;
2962 			new_vma->vm_start = addr;
2963 			new_vma->vm_end = addr + len;
2964 			new_vma->vm_pgoff = pgoff;
2965 			if (vma_dup_policy(vma, new_vma))
2966 				goto out_free_vma;
2967 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2968 			if (anon_vma_clone(new_vma, vma))
2969 				goto out_free_mempol;
2970 			if (new_vma->vm_file)
2971 				get_file(new_vma->vm_file);
2972 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2973 				new_vma->vm_ops->open(new_vma);
2974 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2975 			*need_rmap_locks = false;
2976 		}
2977 	}
2978 	return new_vma;
2979 
2980  out_free_mempol:
2981 	mpol_put(vma_policy(new_vma));
2982  out_free_vma:
2983 	kmem_cache_free(vm_area_cachep, new_vma);
2984 	return NULL;
2985 }
2986 
2987 /*
2988  * Return true if the calling process may expand its vm space by the passed
2989  * number of pages
2990  */
may_expand_vm(struct mm_struct * mm,unsigned long npages)2991 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2992 {
2993 	unsigned long cur = mm->total_vm;	/* pages */
2994 	unsigned long lim;
2995 
2996 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2997 
2998 	if (cur + npages > lim)
2999 		return 0;
3000 	return 1;
3001 }
3002 
3003 static int special_mapping_fault(struct vm_area_struct *vma,
3004 				 struct vm_fault *vmf);
3005 
3006 /*
3007  * Having a close hook prevents vma merging regardless of flags.
3008  */
special_mapping_close(struct vm_area_struct * vma)3009 static void special_mapping_close(struct vm_area_struct *vma)
3010 {
3011 }
3012 
special_mapping_name(struct vm_area_struct * vma)3013 static const char *special_mapping_name(struct vm_area_struct *vma)
3014 {
3015 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3016 }
3017 
3018 static const struct vm_operations_struct special_mapping_vmops = {
3019 	.close = special_mapping_close,
3020 	.fault = special_mapping_fault,
3021 	.name = special_mapping_name,
3022 };
3023 
3024 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3025 	.close = special_mapping_close,
3026 	.fault = special_mapping_fault,
3027 };
3028 
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3029 static int special_mapping_fault(struct vm_area_struct *vma,
3030 				struct vm_fault *vmf)
3031 {
3032 	pgoff_t pgoff;
3033 	struct page **pages;
3034 
3035 	/*
3036 	 * special mappings have no vm_file, and in that case, the mm
3037 	 * uses vm_pgoff internally. So we have to subtract it from here.
3038 	 * We are allowed to do this because we are the mm; do not copy
3039 	 * this code into drivers!
3040 	 */
3041 	pgoff = vmf->pgoff - vma->vm_pgoff;
3042 
3043 	if (vma->vm_ops == &legacy_special_mapping_vmops)
3044 		pages = vma->vm_private_data;
3045 	else
3046 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3047 			pages;
3048 
3049 	for (; pgoff && *pages; ++pages)
3050 		pgoff--;
3051 
3052 	if (*pages) {
3053 		struct page *page = *pages;
3054 		get_page(page);
3055 		vmf->page = page;
3056 		return 0;
3057 	}
3058 
3059 	return VM_FAULT_SIGBUS;
3060 }
3061 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_operations_struct * ops,void * priv)3062 static struct vm_area_struct *__install_special_mapping(
3063 	struct mm_struct *mm,
3064 	unsigned long addr, unsigned long len,
3065 	unsigned long vm_flags, const struct vm_operations_struct *ops,
3066 	void *priv)
3067 {
3068 	int ret;
3069 	struct vm_area_struct *vma;
3070 
3071 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3072 	if (unlikely(vma == NULL))
3073 		return ERR_PTR(-ENOMEM);
3074 
3075 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3076 	vma->vm_mm = mm;
3077 	vma->vm_start = addr;
3078 	vma->vm_end = addr + len;
3079 
3080 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3081 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3082 
3083 	vma->vm_ops = ops;
3084 	vma->vm_private_data = priv;
3085 
3086 	ret = insert_vm_struct(mm, vma);
3087 	if (ret)
3088 		goto out;
3089 
3090 	mm->total_vm += len >> PAGE_SHIFT;
3091 
3092 	perf_event_mmap(vma);
3093 
3094 	return vma;
3095 
3096 out:
3097 	kmem_cache_free(vm_area_cachep, vma);
3098 	return ERR_PTR(ret);
3099 }
3100 
3101 /*
3102  * Called with mm->mmap_sem held for writing.
3103  * Insert a new vma covering the given region, with the given flags.
3104  * Its pages are supplied by the given array of struct page *.
3105  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3106  * The region past the last page supplied will always produce SIGBUS.
3107  * The array pointer and the pages it points to are assumed to stay alive
3108  * for as long as this mapping might exist.
3109  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3110 struct vm_area_struct *_install_special_mapping(
3111 	struct mm_struct *mm,
3112 	unsigned long addr, unsigned long len,
3113 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3114 {
3115 	return __install_special_mapping(mm, addr, len, vm_flags,
3116 					 &special_mapping_vmops, (void *)spec);
3117 }
3118 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3119 int install_special_mapping(struct mm_struct *mm,
3120 			    unsigned long addr, unsigned long len,
3121 			    unsigned long vm_flags, struct page **pages)
3122 {
3123 	struct vm_area_struct *vma = __install_special_mapping(
3124 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3125 		(void *)pages);
3126 
3127 	return PTR_ERR_OR_ZERO(vma);
3128 }
3129 
3130 static DEFINE_MUTEX(mm_all_locks_mutex);
3131 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3132 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3133 {
3134 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3135 		/*
3136 		 * The LSB of head.next can't change from under us
3137 		 * because we hold the mm_all_locks_mutex.
3138 		 */
3139 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3140 		/*
3141 		 * We can safely modify head.next after taking the
3142 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3143 		 * the same anon_vma we won't take it again.
3144 		 *
3145 		 * No need of atomic instructions here, head.next
3146 		 * can't change from under us thanks to the
3147 		 * anon_vma->root->rwsem.
3148 		 */
3149 		if (__test_and_set_bit(0, (unsigned long *)
3150 				       &anon_vma->root->rb_root.rb_node))
3151 			BUG();
3152 	}
3153 }
3154 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3155 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3156 {
3157 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3158 		/*
3159 		 * AS_MM_ALL_LOCKS can't change from under us because
3160 		 * we hold the mm_all_locks_mutex.
3161 		 *
3162 		 * Operations on ->flags have to be atomic because
3163 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3164 		 * mm_all_locks_mutex, there may be other cpus
3165 		 * changing other bitflags in parallel to us.
3166 		 */
3167 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3168 			BUG();
3169 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3170 	}
3171 }
3172 
3173 /*
3174  * This operation locks against the VM for all pte/vma/mm related
3175  * operations that could ever happen on a certain mm. This includes
3176  * vmtruncate, try_to_unmap, and all page faults.
3177  *
3178  * The caller must take the mmap_sem in write mode before calling
3179  * mm_take_all_locks(). The caller isn't allowed to release the
3180  * mmap_sem until mm_drop_all_locks() returns.
3181  *
3182  * mmap_sem in write mode is required in order to block all operations
3183  * that could modify pagetables and free pages without need of
3184  * altering the vma layout. It's also needed in write mode to avoid new
3185  * anon_vmas to be associated with existing vmas.
3186  *
3187  * A single task can't take more than one mm_take_all_locks() in a row
3188  * or it would deadlock.
3189  *
3190  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3191  * mapping->flags avoid to take the same lock twice, if more than one
3192  * vma in this mm is backed by the same anon_vma or address_space.
3193  *
3194  * We can take all the locks in random order because the VM code
3195  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3196  * takes more than one of them in a row. Secondly we're protected
3197  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3198  *
3199  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3200  * that may have to take thousand of locks.
3201  *
3202  * mm_take_all_locks() can fail if it's interrupted by signals.
3203  */
mm_take_all_locks(struct mm_struct * mm)3204 int mm_take_all_locks(struct mm_struct *mm)
3205 {
3206 	struct vm_area_struct *vma;
3207 	struct anon_vma_chain *avc;
3208 
3209 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3210 
3211 	mutex_lock(&mm_all_locks_mutex);
3212 
3213 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3214 		if (signal_pending(current))
3215 			goto out_unlock;
3216 		if (vma->vm_file && vma->vm_file->f_mapping)
3217 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3218 	}
3219 
3220 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3221 		if (signal_pending(current))
3222 			goto out_unlock;
3223 		if (vma->anon_vma)
3224 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3225 				vm_lock_anon_vma(mm, avc->anon_vma);
3226 	}
3227 
3228 	return 0;
3229 
3230 out_unlock:
3231 	mm_drop_all_locks(mm);
3232 	return -EINTR;
3233 }
3234 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3235 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3236 {
3237 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3238 		/*
3239 		 * The LSB of head.next can't change to 0 from under
3240 		 * us because we hold the mm_all_locks_mutex.
3241 		 *
3242 		 * We must however clear the bitflag before unlocking
3243 		 * the vma so the users using the anon_vma->rb_root will
3244 		 * never see our bitflag.
3245 		 *
3246 		 * No need of atomic instructions here, head.next
3247 		 * can't change from under us until we release the
3248 		 * anon_vma->root->rwsem.
3249 		 */
3250 		if (!__test_and_clear_bit(0, (unsigned long *)
3251 					  &anon_vma->root->rb_root.rb_node))
3252 			BUG();
3253 		anon_vma_unlock_write(anon_vma);
3254 	}
3255 }
3256 
vm_unlock_mapping(struct address_space * mapping)3257 static void vm_unlock_mapping(struct address_space *mapping)
3258 {
3259 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3260 		/*
3261 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3262 		 * because we hold the mm_all_locks_mutex.
3263 		 */
3264 		i_mmap_unlock_write(mapping);
3265 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3266 					&mapping->flags))
3267 			BUG();
3268 	}
3269 }
3270 
3271 /*
3272  * The mmap_sem cannot be released by the caller until
3273  * mm_drop_all_locks() returns.
3274  */
mm_drop_all_locks(struct mm_struct * mm)3275 void mm_drop_all_locks(struct mm_struct *mm)
3276 {
3277 	struct vm_area_struct *vma;
3278 	struct anon_vma_chain *avc;
3279 
3280 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3281 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3282 
3283 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3284 		if (vma->anon_vma)
3285 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3286 				vm_unlock_anon_vma(avc->anon_vma);
3287 		if (vma->vm_file && vma->vm_file->f_mapping)
3288 			vm_unlock_mapping(vma->vm_file->f_mapping);
3289 	}
3290 
3291 	mutex_unlock(&mm_all_locks_mutex);
3292 }
3293 
3294 /*
3295  * initialise the VMA slab
3296  */
mmap_init(void)3297 void __init mmap_init(void)
3298 {
3299 	int ret;
3300 
3301 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3302 	VM_BUG_ON(ret);
3303 }
3304 
3305 /*
3306  * Initialise sysctl_user_reserve_kbytes.
3307  *
3308  * This is intended to prevent a user from starting a single memory hogging
3309  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3310  * mode.
3311  *
3312  * The default value is min(3% of free memory, 128MB)
3313  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3314  */
init_user_reserve(void)3315 static int init_user_reserve(void)
3316 {
3317 	unsigned long free_kbytes;
3318 
3319 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3320 
3321 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3322 	return 0;
3323 }
3324 subsys_initcall(init_user_reserve);
3325 
3326 /*
3327  * Initialise sysctl_admin_reserve_kbytes.
3328  *
3329  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3330  * to log in and kill a memory hogging process.
3331  *
3332  * Systems with more than 256MB will reserve 8MB, enough to recover
3333  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3334  * only reserve 3% of free pages by default.
3335  */
init_admin_reserve(void)3336 static int init_admin_reserve(void)
3337 {
3338 	unsigned long free_kbytes;
3339 
3340 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3341 
3342 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3343 	return 0;
3344 }
3345 subsys_initcall(init_admin_reserve);
3346 
3347 /*
3348  * Reinititalise user and admin reserves if memory is added or removed.
3349  *
3350  * The default user reserve max is 128MB, and the default max for the
3351  * admin reserve is 8MB. These are usually, but not always, enough to
3352  * enable recovery from a memory hogging process using login/sshd, a shell,
3353  * and tools like top. It may make sense to increase or even disable the
3354  * reserve depending on the existence of swap or variations in the recovery
3355  * tools. So, the admin may have changed them.
3356  *
3357  * If memory is added and the reserves have been eliminated or increased above
3358  * the default max, then we'll trust the admin.
3359  *
3360  * If memory is removed and there isn't enough free memory, then we
3361  * need to reset the reserves.
3362  *
3363  * Otherwise keep the reserve set by the admin.
3364  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3365 static int reserve_mem_notifier(struct notifier_block *nb,
3366 			     unsigned long action, void *data)
3367 {
3368 	unsigned long tmp, free_kbytes;
3369 
3370 	switch (action) {
3371 	case MEM_ONLINE:
3372 		/* Default max is 128MB. Leave alone if modified by operator. */
3373 		tmp = sysctl_user_reserve_kbytes;
3374 		if (0 < tmp && tmp < (1UL << 17))
3375 			init_user_reserve();
3376 
3377 		/* Default max is 8MB.  Leave alone if modified by operator. */
3378 		tmp = sysctl_admin_reserve_kbytes;
3379 		if (0 < tmp && tmp < (1UL << 13))
3380 			init_admin_reserve();
3381 
3382 		break;
3383 	case MEM_OFFLINE:
3384 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3385 
3386 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3387 			init_user_reserve();
3388 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3389 				sysctl_user_reserve_kbytes);
3390 		}
3391 
3392 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3393 			init_admin_reserve();
3394 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3395 				sysctl_admin_reserve_kbytes);
3396 		}
3397 		break;
3398 	default:
3399 		break;
3400 	}
3401 	return NOTIFY_OK;
3402 }
3403 
3404 static struct notifier_block reserve_mem_nb = {
3405 	.notifier_call = reserve_mem_notifier,
3406 };
3407 
init_reserve_notifier(void)3408 static int __meminit init_reserve_notifier(void)
3409 {
3410 	if (register_hotmemory_notifier(&reserve_mem_nb))
3411 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3412 
3413 	return 0;
3414 }
3415 subsys_initcall(init_reserve_notifier);
3416