1/*
2 *	linux/mm/mlock.c
3 *
4 *  (C) Copyright 1995 Linus Torvalds
5 *  (C) Copyright 2002 Christoph Hellwig
6 */
7
8#include <linux/capability.h>
9#include <linux/mman.h>
10#include <linux/mm.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/pagemap.h>
14#include <linux/pagevec.h>
15#include <linux/mempolicy.h>
16#include <linux/syscalls.h>
17#include <linux/sched.h>
18#include <linux/export.h>
19#include <linux/rmap.h>
20#include <linux/mmzone.h>
21#include <linux/hugetlb.h>
22#include <linux/memcontrol.h>
23#include <linux/mm_inline.h>
24
25#include "internal.h"
26
27int can_do_mlock(void)
28{
29	if (rlimit(RLIMIT_MEMLOCK) != 0)
30		return 1;
31	if (capable(CAP_IPC_LOCK))
32		return 1;
33	return 0;
34}
35EXPORT_SYMBOL(can_do_mlock);
36
37/*
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
41 *
42 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
46 *
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
52 */
53
54/*
55 *  LRU accounting for clear_page_mlock()
56 */
57void clear_page_mlock(struct page *page)
58{
59	if (!TestClearPageMlocked(page))
60		return;
61
62	mod_zone_page_state(page_zone(page), NR_MLOCK,
63			    -hpage_nr_pages(page));
64	count_vm_event(UNEVICTABLE_PGCLEARED);
65	if (!isolate_lru_page(page)) {
66		putback_lru_page(page);
67	} else {
68		/*
69		 * We lost the race. the page already moved to evictable list.
70		 */
71		if (PageUnevictable(page))
72			count_vm_event(UNEVICTABLE_PGSTRANDED);
73	}
74}
75
76/*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80void mlock_vma_page(struct page *page)
81{
82	/* Serialize with page migration */
83	BUG_ON(!PageLocked(page));
84
85	if (!TestSetPageMlocked(page)) {
86		mod_zone_page_state(page_zone(page), NR_MLOCK,
87				    hpage_nr_pages(page));
88		count_vm_event(UNEVICTABLE_PGMLOCKED);
89		if (!isolate_lru_page(page))
90			putback_lru_page(page);
91	}
92}
93
94/*
95 * Isolate a page from LRU with optional get_page() pin.
96 * Assumes lru_lock already held and page already pinned.
97 */
98static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
99{
100	if (PageLRU(page)) {
101		struct lruvec *lruvec;
102
103		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104		if (getpage)
105			get_page(page);
106		ClearPageLRU(page);
107		del_page_from_lru_list(page, lruvec, page_lru(page));
108		return true;
109	}
110
111	return false;
112}
113
114/*
115 * Finish munlock after successful page isolation
116 *
117 * Page must be locked. This is a wrapper for try_to_munlock()
118 * and putback_lru_page() with munlock accounting.
119 */
120static void __munlock_isolated_page(struct page *page)
121{
122	int ret = SWAP_AGAIN;
123
124	/*
125	 * Optimization: if the page was mapped just once, that's our mapping
126	 * and we don't need to check all the other vmas.
127	 */
128	if (page_mapcount(page) > 1)
129		ret = try_to_munlock(page);
130
131	/* Did try_to_unlock() succeed or punt? */
132	if (ret != SWAP_MLOCK)
133		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134
135	putback_lru_page(page);
136}
137
138/*
139 * Accounting for page isolation fail during munlock
140 *
141 * Performs accounting when page isolation fails in munlock. There is nothing
142 * else to do because it means some other task has already removed the page
143 * from the LRU. putback_lru_page() will take care of removing the page from
144 * the unevictable list, if necessary. vmscan [page_referenced()] will move
145 * the page back to the unevictable list if some other vma has it mlocked.
146 */
147static void __munlock_isolation_failed(struct page *page)
148{
149	if (PageUnevictable(page))
150		__count_vm_event(UNEVICTABLE_PGSTRANDED);
151	else
152		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
153}
154
155/**
156 * munlock_vma_page - munlock a vma page
157 * @page - page to be unlocked, either a normal page or THP page head
158 *
159 * returns the size of the page as a page mask (0 for normal page,
160 *         HPAGE_PMD_NR - 1 for THP head page)
161 *
162 * called from munlock()/munmap() path with page supposedly on the LRU.
163 * When we munlock a page, because the vma where we found the page is being
164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165 * page locked so that we can leave it on the unevictable lru list and not
166 * bother vmscan with it.  However, to walk the page's rmap list in
167 * try_to_munlock() we must isolate the page from the LRU.  If some other
168 * task has removed the page from the LRU, we won't be able to do that.
169 * So we clear the PageMlocked as we might not get another chance.  If we
170 * can't isolate the page, we leave it for putback_lru_page() and vmscan
171 * [page_referenced()/try_to_unmap()] to deal with.
172 */
173unsigned int munlock_vma_page(struct page *page)
174{
175	int nr_pages;
176	struct zone *zone = page_zone(page);
177
178	/* For try_to_munlock() and to serialize with page migration */
179	BUG_ON(!PageLocked(page));
180
181	/*
182	 * Serialize with any parallel __split_huge_page_refcount() which
183	 * might otherwise copy PageMlocked to part of the tail pages before
184	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
185	 */
186	spin_lock_irq(&zone->lru_lock);
187
188	nr_pages = hpage_nr_pages(page);
189	if (!TestClearPageMlocked(page))
190		goto unlock_out;
191
192	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
193
194	if (__munlock_isolate_lru_page(page, true)) {
195		spin_unlock_irq(&zone->lru_lock);
196		__munlock_isolated_page(page);
197		goto out;
198	}
199	__munlock_isolation_failed(page);
200
201unlock_out:
202	spin_unlock_irq(&zone->lru_lock);
203
204out:
205	return nr_pages - 1;
206}
207
208/*
209 * convert get_user_pages() return value to posix mlock() error
210 */
211static int __mlock_posix_error_return(long retval)
212{
213	if (retval == -EFAULT)
214		retval = -ENOMEM;
215	else if (retval == -ENOMEM)
216		retval = -EAGAIN;
217	return retval;
218}
219
220/*
221 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
222 *
223 * The fast path is available only for evictable pages with single mapping.
224 * Then we can bypass the per-cpu pvec and get better performance.
225 * when mapcount > 1 we need try_to_munlock() which can fail.
226 * when !page_evictable(), we need the full redo logic of putback_lru_page to
227 * avoid leaving evictable page in unevictable list.
228 *
229 * In case of success, @page is added to @pvec and @pgrescued is incremented
230 * in case that the page was previously unevictable. @page is also unlocked.
231 */
232static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
233		int *pgrescued)
234{
235	VM_BUG_ON_PAGE(PageLRU(page), page);
236	VM_BUG_ON_PAGE(!PageLocked(page), page);
237
238	if (page_mapcount(page) <= 1 && page_evictable(page)) {
239		pagevec_add(pvec, page);
240		if (TestClearPageUnevictable(page))
241			(*pgrescued)++;
242		unlock_page(page);
243		return true;
244	}
245
246	return false;
247}
248
249/*
250 * Putback multiple evictable pages to the LRU
251 *
252 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
253 * the pages might have meanwhile become unevictable but that is OK.
254 */
255static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
256{
257	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
258	/*
259	 *__pagevec_lru_add() calls release_pages() so we don't call
260	 * put_page() explicitly
261	 */
262	__pagevec_lru_add(pvec);
263	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
264}
265
266/*
267 * Munlock a batch of pages from the same zone
268 *
269 * The work is split to two main phases. First phase clears the Mlocked flag
270 * and attempts to isolate the pages, all under a single zone lru lock.
271 * The second phase finishes the munlock only for pages where isolation
272 * succeeded.
273 *
274 * Note that the pagevec may be modified during the process.
275 */
276static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
277{
278	int i;
279	int nr = pagevec_count(pvec);
280	int delta_munlocked;
281	struct pagevec pvec_putback;
282	int pgrescued = 0;
283
284	pagevec_init(&pvec_putback, 0);
285
286	/* Phase 1: page isolation */
287	spin_lock_irq(&zone->lru_lock);
288	for (i = 0; i < nr; i++) {
289		struct page *page = pvec->pages[i];
290
291		if (TestClearPageMlocked(page)) {
292			/*
293			 * We already have pin from follow_page_mask()
294			 * so we can spare the get_page() here.
295			 */
296			if (__munlock_isolate_lru_page(page, false))
297				continue;
298			else
299				__munlock_isolation_failed(page);
300		}
301
302		/*
303		 * We won't be munlocking this page in the next phase
304		 * but we still need to release the follow_page_mask()
305		 * pin. We cannot do it under lru_lock however. If it's
306		 * the last pin, __page_cache_release() would deadlock.
307		 */
308		pagevec_add(&pvec_putback, pvec->pages[i]);
309		pvec->pages[i] = NULL;
310	}
311	delta_munlocked = -nr + pagevec_count(&pvec_putback);
312	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
313	spin_unlock_irq(&zone->lru_lock);
314
315	/* Now we can release pins of pages that we are not munlocking */
316	pagevec_release(&pvec_putback);
317
318	/* Phase 2: page munlock */
319	for (i = 0; i < nr; i++) {
320		struct page *page = pvec->pages[i];
321
322		if (page) {
323			lock_page(page);
324			if (!__putback_lru_fast_prepare(page, &pvec_putback,
325					&pgrescued)) {
326				/*
327				 * Slow path. We don't want to lose the last
328				 * pin before unlock_page()
329				 */
330				get_page(page); /* for putback_lru_page() */
331				__munlock_isolated_page(page);
332				unlock_page(page);
333				put_page(page); /* from follow_page_mask() */
334			}
335		}
336	}
337
338	/*
339	 * Phase 3: page putback for pages that qualified for the fast path
340	 * This will also call put_page() to return pin from follow_page_mask()
341	 */
342	if (pagevec_count(&pvec_putback))
343		__putback_lru_fast(&pvec_putback, pgrescued);
344}
345
346/*
347 * Fill up pagevec for __munlock_pagevec using pte walk
348 *
349 * The function expects that the struct page corresponding to @start address is
350 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
351 *
352 * The rest of @pvec is filled by subsequent pages within the same pmd and same
353 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
354 * pages also get pinned.
355 *
356 * Returns the address of the next page that should be scanned. This equals
357 * @start + PAGE_SIZE when no page could be added by the pte walk.
358 */
359static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
360		struct vm_area_struct *vma, int zoneid,	unsigned long start,
361		unsigned long end)
362{
363	pte_t *pte;
364	spinlock_t *ptl;
365
366	/*
367	 * Initialize pte walk starting at the already pinned page where we
368	 * are sure that there is a pte, as it was pinned under the same
369	 * mmap_sem write op.
370	 */
371	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
372	/* Make sure we do not cross the page table boundary */
373	end = pgd_addr_end(start, end);
374	end = pud_addr_end(start, end);
375	end = pmd_addr_end(start, end);
376
377	/* The page next to the pinned page is the first we will try to get */
378	start += PAGE_SIZE;
379	while (start < end) {
380		struct page *page = NULL;
381		pte++;
382		if (pte_present(*pte))
383			page = vm_normal_page(vma, start, *pte);
384		/*
385		 * Break if page could not be obtained or the page's node+zone does not
386		 * match
387		 */
388		if (!page || page_zone_id(page) != zoneid)
389			break;
390
391		get_page(page);
392		/*
393		 * Increase the address that will be returned *before* the
394		 * eventual break due to pvec becoming full by adding the page
395		 */
396		start += PAGE_SIZE;
397		if (pagevec_add(pvec, page) == 0)
398			break;
399	}
400	pte_unmap_unlock(pte, ptl);
401	return start;
402}
403
404/*
405 * munlock_vma_pages_range() - munlock all pages in the vma range.'
406 * @vma - vma containing range to be munlock()ed.
407 * @start - start address in @vma of the range
408 * @end - end of range in @vma.
409 *
410 *  For mremap(), munmap() and exit().
411 *
412 * Called with @vma VM_LOCKED.
413 *
414 * Returns with VM_LOCKED cleared.  Callers must be prepared to
415 * deal with this.
416 *
417 * We don't save and restore VM_LOCKED here because pages are
418 * still on lru.  In unmap path, pages might be scanned by reclaim
419 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
420 * free them.  This will result in freeing mlocked pages.
421 */
422void munlock_vma_pages_range(struct vm_area_struct *vma,
423			     unsigned long start, unsigned long end)
424{
425	vma->vm_flags &= ~VM_LOCKED;
426
427	while (start < end) {
428		struct page *page = NULL;
429		unsigned int page_mask;
430		unsigned long page_increm;
431		struct pagevec pvec;
432		struct zone *zone;
433		int zoneid;
434
435		pagevec_init(&pvec, 0);
436		/*
437		 * Although FOLL_DUMP is intended for get_dump_page(),
438		 * it just so happens that its special treatment of the
439		 * ZERO_PAGE (returning an error instead of doing get_page)
440		 * suits munlock very well (and if somehow an abnormal page
441		 * has sneaked into the range, we won't oops here: great).
442		 */
443		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
444				&page_mask);
445
446		if (page && !IS_ERR(page)) {
447			if (PageTransHuge(page)) {
448				lock_page(page);
449				/*
450				 * Any THP page found by follow_page_mask() may
451				 * have gotten split before reaching
452				 * munlock_vma_page(), so we need to recompute
453				 * the page_mask here.
454				 */
455				page_mask = munlock_vma_page(page);
456				unlock_page(page);
457				put_page(page); /* follow_page_mask() */
458			} else {
459				/*
460				 * Non-huge pages are handled in batches via
461				 * pagevec. The pin from follow_page_mask()
462				 * prevents them from collapsing by THP.
463				 */
464				pagevec_add(&pvec, page);
465				zone = page_zone(page);
466				zoneid = page_zone_id(page);
467
468				/*
469				 * Try to fill the rest of pagevec using fast
470				 * pte walk. This will also update start to
471				 * the next page to process. Then munlock the
472				 * pagevec.
473				 */
474				start = __munlock_pagevec_fill(&pvec, vma,
475						zoneid, start, end);
476				__munlock_pagevec(&pvec, zone);
477				goto next;
478			}
479		}
480		/* It's a bug to munlock in the middle of a THP page */
481		VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
482		page_increm = 1 + page_mask;
483		start += page_increm * PAGE_SIZE;
484next:
485		cond_resched();
486	}
487}
488
489/*
490 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
491 *
492 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
493 * munlock is a no-op.  However, for some special vmas, we go ahead and
494 * populate the ptes.
495 *
496 * For vmas that pass the filters, merge/split as appropriate.
497 */
498static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
499	unsigned long start, unsigned long end, vm_flags_t newflags)
500{
501	struct mm_struct *mm = vma->vm_mm;
502	pgoff_t pgoff;
503	int nr_pages;
504	int ret = 0;
505	int lock = !!(newflags & VM_LOCKED);
506
507	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
508	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
509		goto out;	/* don't set VM_LOCKED,  don't count */
510
511	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
512	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
513			  vma->vm_file, pgoff, vma_policy(vma));
514	if (*prev) {
515		vma = *prev;
516		goto success;
517	}
518
519	if (start != vma->vm_start) {
520		ret = split_vma(mm, vma, start, 1);
521		if (ret)
522			goto out;
523	}
524
525	if (end != vma->vm_end) {
526		ret = split_vma(mm, vma, end, 0);
527		if (ret)
528			goto out;
529	}
530
531success:
532	/*
533	 * Keep track of amount of locked VM.
534	 */
535	nr_pages = (end - start) >> PAGE_SHIFT;
536	if (!lock)
537		nr_pages = -nr_pages;
538	mm->locked_vm += nr_pages;
539
540	/*
541	 * vm_flags is protected by the mmap_sem held in write mode.
542	 * It's okay if try_to_unmap_one unmaps a page just after we
543	 * set VM_LOCKED, populate_vma_page_range will bring it back.
544	 */
545
546	if (lock)
547		vma->vm_flags = newflags;
548	else
549		munlock_vma_pages_range(vma, start, end);
550
551out:
552	*prev = vma;
553	return ret;
554}
555
556static int do_mlock(unsigned long start, size_t len, int on)
557{
558	unsigned long nstart, end, tmp;
559	struct vm_area_struct * vma, * prev;
560	int error;
561
562	VM_BUG_ON(start & ~PAGE_MASK);
563	VM_BUG_ON(len != PAGE_ALIGN(len));
564	end = start + len;
565	if (end < start)
566		return -EINVAL;
567	if (end == start)
568		return 0;
569	vma = find_vma(current->mm, start);
570	if (!vma || vma->vm_start > start)
571		return -ENOMEM;
572
573	prev = vma->vm_prev;
574	if (start > vma->vm_start)
575		prev = vma;
576
577	for (nstart = start ; ; ) {
578		vm_flags_t newflags;
579
580		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
581
582		newflags = vma->vm_flags & ~VM_LOCKED;
583		if (on)
584			newflags |= VM_LOCKED;
585
586		tmp = vma->vm_end;
587		if (tmp > end)
588			tmp = end;
589		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
590		if (error)
591			break;
592		nstart = tmp;
593		if (nstart < prev->vm_end)
594			nstart = prev->vm_end;
595		if (nstart >= end)
596			break;
597
598		vma = prev->vm_next;
599		if (!vma || vma->vm_start != nstart) {
600			error = -ENOMEM;
601			break;
602		}
603	}
604	return error;
605}
606
607SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
608{
609	unsigned long locked;
610	unsigned long lock_limit;
611	int error = -ENOMEM;
612
613	if (!can_do_mlock())
614		return -EPERM;
615
616	lru_add_drain_all();	/* flush pagevec */
617
618	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
619	start &= PAGE_MASK;
620
621	lock_limit = rlimit(RLIMIT_MEMLOCK);
622	lock_limit >>= PAGE_SHIFT;
623	locked = len >> PAGE_SHIFT;
624
625	down_write(&current->mm->mmap_sem);
626
627	locked += current->mm->locked_vm;
628
629	/* check against resource limits */
630	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
631		error = do_mlock(start, len, 1);
632
633	up_write(&current->mm->mmap_sem);
634	if (error)
635		return error;
636
637	error = __mm_populate(start, len, 0);
638	if (error)
639		return __mlock_posix_error_return(error);
640	return 0;
641}
642
643SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
644{
645	int ret;
646
647	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
648	start &= PAGE_MASK;
649
650	down_write(&current->mm->mmap_sem);
651	ret = do_mlock(start, len, 0);
652	up_write(&current->mm->mmap_sem);
653
654	return ret;
655}
656
657static int do_mlockall(int flags)
658{
659	struct vm_area_struct * vma, * prev = NULL;
660
661	if (flags & MCL_FUTURE)
662		current->mm->def_flags |= VM_LOCKED;
663	else
664		current->mm->def_flags &= ~VM_LOCKED;
665	if (flags == MCL_FUTURE)
666		goto out;
667
668	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
669		vm_flags_t newflags;
670
671		newflags = vma->vm_flags & ~VM_LOCKED;
672		if (flags & MCL_CURRENT)
673			newflags |= VM_LOCKED;
674
675		/* Ignore errors */
676		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
677		cond_resched_rcu_qs();
678	}
679out:
680	return 0;
681}
682
683SYSCALL_DEFINE1(mlockall, int, flags)
684{
685	unsigned long lock_limit;
686	int ret = -EINVAL;
687
688	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
689		goto out;
690
691	ret = -EPERM;
692	if (!can_do_mlock())
693		goto out;
694
695	if (flags & MCL_CURRENT)
696		lru_add_drain_all();	/* flush pagevec */
697
698	lock_limit = rlimit(RLIMIT_MEMLOCK);
699	lock_limit >>= PAGE_SHIFT;
700
701	ret = -ENOMEM;
702	down_write(&current->mm->mmap_sem);
703
704	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
705	    capable(CAP_IPC_LOCK))
706		ret = do_mlockall(flags);
707	up_write(&current->mm->mmap_sem);
708	if (!ret && (flags & MCL_CURRENT))
709		mm_populate(0, TASK_SIZE);
710out:
711	return ret;
712}
713
714SYSCALL_DEFINE0(munlockall)
715{
716	int ret;
717
718	down_write(&current->mm->mmap_sem);
719	ret = do_mlockall(0);
720	up_write(&current->mm->mmap_sem);
721	return ret;
722}
723
724/*
725 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
726 * shm segments) get accounted against the user_struct instead.
727 */
728static DEFINE_SPINLOCK(shmlock_user_lock);
729
730int user_shm_lock(size_t size, struct user_struct *user)
731{
732	unsigned long lock_limit, locked;
733	int allowed = 0;
734
735	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
736	lock_limit = rlimit(RLIMIT_MEMLOCK);
737	if (lock_limit == RLIM_INFINITY)
738		allowed = 1;
739	lock_limit >>= PAGE_SHIFT;
740	spin_lock(&shmlock_user_lock);
741	if (!allowed &&
742	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
743		goto out;
744	get_uid(user);
745	user->locked_shm += locked;
746	allowed = 1;
747out:
748	spin_unlock(&shmlock_user_lock);
749	return allowed;
750}
751
752void user_shm_unlock(size_t size, struct user_struct *user)
753{
754	spin_lock(&shmlock_user_lock);
755	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
756	spin_unlock(&shmlock_user_lock);
757	free_uid(user);
758}
759