1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/rmap.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/page-isolation.h>
26#include <linux/jhash.h>
27
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/tlb.h>
31
32#include <linux/io.h>
33#include <linux/hugetlb.h>
34#include <linux/hugetlb_cgroup.h>
35#include <linux/node.h>
36#include "internal.h"
37
38int hugepages_treat_as_movable;
39
40int hugetlb_max_hstate __read_mostly;
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49__initdata LIST_HEAD(huge_boot_pages);
50
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
54static unsigned long __initdata default_hstate_size;
55
56/*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60DEFINE_SPINLOCK(hugetlb_lock);
61
62/*
63 * Serializes faults on the same logical page.  This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
67static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76	spin_unlock(&spool->lock);
77
78	/* If no pages are used, and no other handles to the subpool
79	 * remain, give up any reservations mased on minimum size and
80	 * free the subpool */
81	if (free) {
82		if (spool->min_hpages != -1)
83			hugetlb_acct_memory(spool->hstate,
84						-spool->min_hpages);
85		kfree(spool);
86	}
87}
88
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90						long min_hpages)
91{
92	struct hugepage_subpool *spool;
93
94	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95	if (!spool)
96		return NULL;
97
98	spin_lock_init(&spool->lock);
99	spool->count = 1;
100	spool->max_hpages = max_hpages;
101	spool->hstate = h;
102	spool->min_hpages = min_hpages;
103
104	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105		kfree(spool);
106		return NULL;
107	}
108	spool->rsv_hpages = min_hpages;
109
110	return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115	spin_lock(&spool->lock);
116	BUG_ON(!spool->count);
117	spool->count--;
118	unlock_or_release_subpool(spool);
119}
120
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request.  Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward).  The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130				      long delta)
131{
132	long ret = delta;
133
134	if (!spool)
135		return ret;
136
137	spin_lock(&spool->lock);
138
139	if (spool->max_hpages != -1) {		/* maximum size accounting */
140		if ((spool->used_hpages + delta) <= spool->max_hpages)
141			spool->used_hpages += delta;
142		else {
143			ret = -ENOMEM;
144			goto unlock_ret;
145		}
146	}
147
148	if (spool->min_hpages != -1) {		/* minimum size accounting */
149		if (delta > spool->rsv_hpages) {
150			/*
151			 * Asking for more reserves than those already taken on
152			 * behalf of subpool.  Return difference.
153			 */
154			ret = delta - spool->rsv_hpages;
155			spool->rsv_hpages = 0;
156		} else {
157			ret = 0;	/* reserves already accounted for */
158			spool->rsv_hpages -= delta;
159		}
160	}
161
162unlock_ret:
163	spin_unlock(&spool->lock);
164	return ret;
165}
166
167/*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174				       long delta)
175{
176	long ret = delta;
177
178	if (!spool)
179		return delta;
180
181	spin_lock(&spool->lock);
182
183	if (spool->max_hpages != -1)		/* maximum size accounting */
184		spool->used_hpages -= delta;
185
186	if (spool->min_hpages != -1) {		/* minimum size accounting */
187		if (spool->rsv_hpages + delta <= spool->min_hpages)
188			ret = 0;
189		else
190			ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192		spool->rsv_hpages += delta;
193		if (spool->rsv_hpages > spool->min_hpages)
194			spool->rsv_hpages = spool->min_hpages;
195	}
196
197	/*
198	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199	 * quota reference, free it now.
200	 */
201	unlock_or_release_subpool(spool);
202
203	return ret;
204}
205
206static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207{
208	return HUGETLBFS_SB(inode->i_sb)->spool;
209}
210
211static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212{
213	return subpool_inode(file_inode(vma->vm_file));
214}
215
216/*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 *                    across the pages in a mapping.
219 *
220 * The region data structures are embedded into a resv_map and
221 * protected by a resv_map's lock
222 */
223struct file_region {
224	struct list_head link;
225	long from;
226	long to;
227};
228
229static long region_add(struct resv_map *resv, long f, long t)
230{
231	struct list_head *head = &resv->regions;
232	struct file_region *rg, *nrg, *trg;
233
234	spin_lock(&resv->lock);
235	/* Locate the region we are either in or before. */
236	list_for_each_entry(rg, head, link)
237		if (f <= rg->to)
238			break;
239
240	/* Round our left edge to the current segment if it encloses us. */
241	if (f > rg->from)
242		f = rg->from;
243
244	/* Check for and consume any regions we now overlap with. */
245	nrg = rg;
246	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
247		if (&rg->link == head)
248			break;
249		if (rg->from > t)
250			break;
251
252		/* If this area reaches higher then extend our area to
253		 * include it completely.  If this is not the first area
254		 * which we intend to reuse, free it. */
255		if (rg->to > t)
256			t = rg->to;
257		if (rg != nrg) {
258			list_del(&rg->link);
259			kfree(rg);
260		}
261	}
262	nrg->from = f;
263	nrg->to = t;
264	spin_unlock(&resv->lock);
265	return 0;
266}
267
268static long region_chg(struct resv_map *resv, long f, long t)
269{
270	struct list_head *head = &resv->regions;
271	struct file_region *rg, *nrg = NULL;
272	long chg = 0;
273
274retry:
275	spin_lock(&resv->lock);
276	/* Locate the region we are before or in. */
277	list_for_each_entry(rg, head, link)
278		if (f <= rg->to)
279			break;
280
281	/* If we are below the current region then a new region is required.
282	 * Subtle, allocate a new region at the position but make it zero
283	 * size such that we can guarantee to record the reservation. */
284	if (&rg->link == head || t < rg->from) {
285		if (!nrg) {
286			spin_unlock(&resv->lock);
287			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
288			if (!nrg)
289				return -ENOMEM;
290
291			nrg->from = f;
292			nrg->to   = f;
293			INIT_LIST_HEAD(&nrg->link);
294			goto retry;
295		}
296
297		list_add(&nrg->link, rg->link.prev);
298		chg = t - f;
299		goto out_nrg;
300	}
301
302	/* Round our left edge to the current segment if it encloses us. */
303	if (f > rg->from)
304		f = rg->from;
305	chg = t - f;
306
307	/* Check for and consume any regions we now overlap with. */
308	list_for_each_entry(rg, rg->link.prev, link) {
309		if (&rg->link == head)
310			break;
311		if (rg->from > t)
312			goto out;
313
314		/* We overlap with this area, if it extends further than
315		 * us then we must extend ourselves.  Account for its
316		 * existing reservation. */
317		if (rg->to > t) {
318			chg += rg->to - t;
319			t = rg->to;
320		}
321		chg -= rg->to - rg->from;
322	}
323
324out:
325	spin_unlock(&resv->lock);
326	/*  We already know we raced and no longer need the new region */
327	kfree(nrg);
328	return chg;
329out_nrg:
330	spin_unlock(&resv->lock);
331	return chg;
332}
333
334static long region_truncate(struct resv_map *resv, long end)
335{
336	struct list_head *head = &resv->regions;
337	struct file_region *rg, *trg;
338	long chg = 0;
339
340	spin_lock(&resv->lock);
341	/* Locate the region we are either in or before. */
342	list_for_each_entry(rg, head, link)
343		if (end <= rg->to)
344			break;
345	if (&rg->link == head)
346		goto out;
347
348	/* If we are in the middle of a region then adjust it. */
349	if (end > rg->from) {
350		chg = rg->to - end;
351		rg->to = end;
352		rg = list_entry(rg->link.next, typeof(*rg), link);
353	}
354
355	/* Drop any remaining regions. */
356	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
357		if (&rg->link == head)
358			break;
359		chg += rg->to - rg->from;
360		list_del(&rg->link);
361		kfree(rg);
362	}
363
364out:
365	spin_unlock(&resv->lock);
366	return chg;
367}
368
369static long region_count(struct resv_map *resv, long f, long t)
370{
371	struct list_head *head = &resv->regions;
372	struct file_region *rg;
373	long chg = 0;
374
375	spin_lock(&resv->lock);
376	/* Locate each segment we overlap with, and count that overlap. */
377	list_for_each_entry(rg, head, link) {
378		long seg_from;
379		long seg_to;
380
381		if (rg->to <= f)
382			continue;
383		if (rg->from >= t)
384			break;
385
386		seg_from = max(rg->from, f);
387		seg_to = min(rg->to, t);
388
389		chg += seg_to - seg_from;
390	}
391	spin_unlock(&resv->lock);
392
393	return chg;
394}
395
396/*
397 * Convert the address within this vma to the page offset within
398 * the mapping, in pagecache page units; huge pages here.
399 */
400static pgoff_t vma_hugecache_offset(struct hstate *h,
401			struct vm_area_struct *vma, unsigned long address)
402{
403	return ((address - vma->vm_start) >> huge_page_shift(h)) +
404			(vma->vm_pgoff >> huge_page_order(h));
405}
406
407pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
408				     unsigned long address)
409{
410	return vma_hugecache_offset(hstate_vma(vma), vma, address);
411}
412
413/*
414 * Return the size of the pages allocated when backing a VMA. In the majority
415 * cases this will be same size as used by the page table entries.
416 */
417unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
418{
419	struct hstate *hstate;
420
421	if (!is_vm_hugetlb_page(vma))
422		return PAGE_SIZE;
423
424	hstate = hstate_vma(vma);
425
426	return 1UL << huge_page_shift(hstate);
427}
428EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
429
430/*
431 * Return the page size being used by the MMU to back a VMA. In the majority
432 * of cases, the page size used by the kernel matches the MMU size. On
433 * architectures where it differs, an architecture-specific version of this
434 * function is required.
435 */
436#ifndef vma_mmu_pagesize
437unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
438{
439	return vma_kernel_pagesize(vma);
440}
441#endif
442
443/*
444 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
445 * bits of the reservation map pointer, which are always clear due to
446 * alignment.
447 */
448#define HPAGE_RESV_OWNER    (1UL << 0)
449#define HPAGE_RESV_UNMAPPED (1UL << 1)
450#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
451
452/*
453 * These helpers are used to track how many pages are reserved for
454 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
455 * is guaranteed to have their future faults succeed.
456 *
457 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
458 * the reserve counters are updated with the hugetlb_lock held. It is safe
459 * to reset the VMA at fork() time as it is not in use yet and there is no
460 * chance of the global counters getting corrupted as a result of the values.
461 *
462 * The private mapping reservation is represented in a subtly different
463 * manner to a shared mapping.  A shared mapping has a region map associated
464 * with the underlying file, this region map represents the backing file
465 * pages which have ever had a reservation assigned which this persists even
466 * after the page is instantiated.  A private mapping has a region map
467 * associated with the original mmap which is attached to all VMAs which
468 * reference it, this region map represents those offsets which have consumed
469 * reservation ie. where pages have been instantiated.
470 */
471static unsigned long get_vma_private_data(struct vm_area_struct *vma)
472{
473	return (unsigned long)vma->vm_private_data;
474}
475
476static void set_vma_private_data(struct vm_area_struct *vma,
477							unsigned long value)
478{
479	vma->vm_private_data = (void *)value;
480}
481
482struct resv_map *resv_map_alloc(void)
483{
484	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
485	if (!resv_map)
486		return NULL;
487
488	kref_init(&resv_map->refs);
489	spin_lock_init(&resv_map->lock);
490	INIT_LIST_HEAD(&resv_map->regions);
491
492	return resv_map;
493}
494
495void resv_map_release(struct kref *ref)
496{
497	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
498
499	/* Clear out any active regions before we release the map. */
500	region_truncate(resv_map, 0);
501	kfree(resv_map);
502}
503
504static inline struct resv_map *inode_resv_map(struct inode *inode)
505{
506	return inode->i_mapping->private_data;
507}
508
509static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
510{
511	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
512	if (vma->vm_flags & VM_MAYSHARE) {
513		struct address_space *mapping = vma->vm_file->f_mapping;
514		struct inode *inode = mapping->host;
515
516		return inode_resv_map(inode);
517
518	} else {
519		return (struct resv_map *)(get_vma_private_data(vma) &
520							~HPAGE_RESV_MASK);
521	}
522}
523
524static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
525{
526	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
527	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
528
529	set_vma_private_data(vma, (get_vma_private_data(vma) &
530				HPAGE_RESV_MASK) | (unsigned long)map);
531}
532
533static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
534{
535	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
536	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
537
538	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
539}
540
541static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
542{
543	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
544
545	return (get_vma_private_data(vma) & flag) != 0;
546}
547
548/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
549void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
550{
551	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
552	if (!(vma->vm_flags & VM_MAYSHARE))
553		vma->vm_private_data = (void *)0;
554}
555
556/* Returns true if the VMA has associated reserve pages */
557static int vma_has_reserves(struct vm_area_struct *vma, long chg)
558{
559	if (vma->vm_flags & VM_NORESERVE) {
560		/*
561		 * This address is already reserved by other process(chg == 0),
562		 * so, we should decrement reserved count. Without decrementing,
563		 * reserve count remains after releasing inode, because this
564		 * allocated page will go into page cache and is regarded as
565		 * coming from reserved pool in releasing step.  Currently, we
566		 * don't have any other solution to deal with this situation
567		 * properly, so add work-around here.
568		 */
569		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
570			return 1;
571		else
572			return 0;
573	}
574
575	/* Shared mappings always use reserves */
576	if (vma->vm_flags & VM_MAYSHARE)
577		return 1;
578
579	/*
580	 * Only the process that called mmap() has reserves for
581	 * private mappings.
582	 */
583	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
584		return 1;
585
586	return 0;
587}
588
589static void enqueue_huge_page(struct hstate *h, struct page *page)
590{
591	int nid = page_to_nid(page);
592	list_move(&page->lru, &h->hugepage_freelists[nid]);
593	h->free_huge_pages++;
594	h->free_huge_pages_node[nid]++;
595}
596
597static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
598{
599	struct page *page;
600
601	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
602		if (!is_migrate_isolate_page(page))
603			break;
604	/*
605	 * if 'non-isolated free hugepage' not found on the list,
606	 * the allocation fails.
607	 */
608	if (&h->hugepage_freelists[nid] == &page->lru)
609		return NULL;
610	list_move(&page->lru, &h->hugepage_activelist);
611	set_page_refcounted(page);
612	h->free_huge_pages--;
613	h->free_huge_pages_node[nid]--;
614	return page;
615}
616
617/* Movability of hugepages depends on migration support. */
618static inline gfp_t htlb_alloc_mask(struct hstate *h)
619{
620	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
621		return GFP_HIGHUSER_MOVABLE;
622	else
623		return GFP_HIGHUSER;
624}
625
626static struct page *dequeue_huge_page_vma(struct hstate *h,
627				struct vm_area_struct *vma,
628				unsigned long address, int avoid_reserve,
629				long chg)
630{
631	struct page *page = NULL;
632	struct mempolicy *mpol;
633	nodemask_t *nodemask;
634	struct zonelist *zonelist;
635	struct zone *zone;
636	struct zoneref *z;
637	unsigned int cpuset_mems_cookie;
638
639	/*
640	 * A child process with MAP_PRIVATE mappings created by their parent
641	 * have no page reserves. This check ensures that reservations are
642	 * not "stolen". The child may still get SIGKILLed
643	 */
644	if (!vma_has_reserves(vma, chg) &&
645			h->free_huge_pages - h->resv_huge_pages == 0)
646		goto err;
647
648	/* If reserves cannot be used, ensure enough pages are in the pool */
649	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
650		goto err;
651
652retry_cpuset:
653	cpuset_mems_cookie = read_mems_allowed_begin();
654	zonelist = huge_zonelist(vma, address,
655					htlb_alloc_mask(h), &mpol, &nodemask);
656
657	for_each_zone_zonelist_nodemask(zone, z, zonelist,
658						MAX_NR_ZONES - 1, nodemask) {
659		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
660			page = dequeue_huge_page_node(h, zone_to_nid(zone));
661			if (page) {
662				if (avoid_reserve)
663					break;
664				if (!vma_has_reserves(vma, chg))
665					break;
666
667				SetPagePrivate(page);
668				h->resv_huge_pages--;
669				break;
670			}
671		}
672	}
673
674	mpol_cond_put(mpol);
675	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
676		goto retry_cpuset;
677	return page;
678
679err:
680	return NULL;
681}
682
683/*
684 * common helper functions for hstate_next_node_to_{alloc|free}.
685 * We may have allocated or freed a huge page based on a different
686 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
687 * be outside of *nodes_allowed.  Ensure that we use an allowed
688 * node for alloc or free.
689 */
690static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
691{
692	nid = next_node(nid, *nodes_allowed);
693	if (nid == MAX_NUMNODES)
694		nid = first_node(*nodes_allowed);
695	VM_BUG_ON(nid >= MAX_NUMNODES);
696
697	return nid;
698}
699
700static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
701{
702	if (!node_isset(nid, *nodes_allowed))
703		nid = next_node_allowed(nid, nodes_allowed);
704	return nid;
705}
706
707/*
708 * returns the previously saved node ["this node"] from which to
709 * allocate a persistent huge page for the pool and advance the
710 * next node from which to allocate, handling wrap at end of node
711 * mask.
712 */
713static int hstate_next_node_to_alloc(struct hstate *h,
714					nodemask_t *nodes_allowed)
715{
716	int nid;
717
718	VM_BUG_ON(!nodes_allowed);
719
720	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
721	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
722
723	return nid;
724}
725
726/*
727 * helper for free_pool_huge_page() - return the previously saved
728 * node ["this node"] from which to free a huge page.  Advance the
729 * next node id whether or not we find a free huge page to free so
730 * that the next attempt to free addresses the next node.
731 */
732static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
733{
734	int nid;
735
736	VM_BUG_ON(!nodes_allowed);
737
738	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
739	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
740
741	return nid;
742}
743
744#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
745	for (nr_nodes = nodes_weight(*mask);				\
746		nr_nodes > 0 &&						\
747		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
748		nr_nodes--)
749
750#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
751	for (nr_nodes = nodes_weight(*mask);				\
752		nr_nodes > 0 &&						\
753		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
754		nr_nodes--)
755
756#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
757static void destroy_compound_gigantic_page(struct page *page,
758					unsigned int order)
759{
760	int i;
761	int nr_pages = 1 << order;
762	struct page *p = page + 1;
763
764	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
765		__ClearPageTail(p);
766		set_page_refcounted(p);
767		p->first_page = NULL;
768	}
769
770	set_compound_order(page, 0);
771	__ClearPageHead(page);
772}
773
774static void free_gigantic_page(struct page *page, unsigned int order)
775{
776	free_contig_range(page_to_pfn(page), 1 << order);
777}
778
779static int __alloc_gigantic_page(unsigned long start_pfn,
780				unsigned long nr_pages)
781{
782	unsigned long end_pfn = start_pfn + nr_pages;
783	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
784}
785
786static bool pfn_range_valid_gigantic(unsigned long start_pfn,
787				unsigned long nr_pages)
788{
789	unsigned long i, end_pfn = start_pfn + nr_pages;
790	struct page *page;
791
792	for (i = start_pfn; i < end_pfn; i++) {
793		if (!pfn_valid(i))
794			return false;
795
796		page = pfn_to_page(i);
797
798		if (PageReserved(page))
799			return false;
800
801		if (page_count(page) > 0)
802			return false;
803
804		if (PageHuge(page))
805			return false;
806	}
807
808	return true;
809}
810
811static bool zone_spans_last_pfn(const struct zone *zone,
812			unsigned long start_pfn, unsigned long nr_pages)
813{
814	unsigned long last_pfn = start_pfn + nr_pages - 1;
815	return zone_spans_pfn(zone, last_pfn);
816}
817
818static struct page *alloc_gigantic_page(int nid, unsigned int order)
819{
820	unsigned long nr_pages = 1 << order;
821	unsigned long ret, pfn, flags;
822	struct zone *z;
823
824	z = NODE_DATA(nid)->node_zones;
825	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
826		spin_lock_irqsave(&z->lock, flags);
827
828		pfn = ALIGN(z->zone_start_pfn, nr_pages);
829		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
830			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
831				/*
832				 * We release the zone lock here because
833				 * alloc_contig_range() will also lock the zone
834				 * at some point. If there's an allocation
835				 * spinning on this lock, it may win the race
836				 * and cause alloc_contig_range() to fail...
837				 */
838				spin_unlock_irqrestore(&z->lock, flags);
839				ret = __alloc_gigantic_page(pfn, nr_pages);
840				if (!ret)
841					return pfn_to_page(pfn);
842				spin_lock_irqsave(&z->lock, flags);
843			}
844			pfn += nr_pages;
845		}
846
847		spin_unlock_irqrestore(&z->lock, flags);
848	}
849
850	return NULL;
851}
852
853static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
854static void prep_compound_gigantic_page(struct page *page, unsigned int order);
855
856static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
857{
858	struct page *page;
859
860	page = alloc_gigantic_page(nid, huge_page_order(h));
861	if (page) {
862		prep_compound_gigantic_page(page, huge_page_order(h));
863		prep_new_huge_page(h, page, nid);
864	}
865
866	return page;
867}
868
869static int alloc_fresh_gigantic_page(struct hstate *h,
870				nodemask_t *nodes_allowed)
871{
872	struct page *page = NULL;
873	int nr_nodes, node;
874
875	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
876		page = alloc_fresh_gigantic_page_node(h, node);
877		if (page)
878			return 1;
879	}
880
881	return 0;
882}
883
884static inline bool gigantic_page_supported(void) { return true; }
885#else
886static inline bool gigantic_page_supported(void) { return false; }
887static inline void free_gigantic_page(struct page *page, unsigned int order) { }
888static inline void destroy_compound_gigantic_page(struct page *page,
889						unsigned int order) { }
890static inline int alloc_fresh_gigantic_page(struct hstate *h,
891					nodemask_t *nodes_allowed) { return 0; }
892#endif
893
894static void update_and_free_page(struct hstate *h, struct page *page)
895{
896	int i;
897
898	if (hstate_is_gigantic(h) && !gigantic_page_supported())
899		return;
900
901	h->nr_huge_pages--;
902	h->nr_huge_pages_node[page_to_nid(page)]--;
903	for (i = 0; i < pages_per_huge_page(h); i++) {
904		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
905				1 << PG_referenced | 1 << PG_dirty |
906				1 << PG_active | 1 << PG_private |
907				1 << PG_writeback);
908	}
909	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
910	set_compound_page_dtor(page, NULL);
911	set_page_refcounted(page);
912	if (hstate_is_gigantic(h)) {
913		destroy_compound_gigantic_page(page, huge_page_order(h));
914		free_gigantic_page(page, huge_page_order(h));
915	} else {
916		arch_release_hugepage(page);
917		__free_pages(page, huge_page_order(h));
918	}
919}
920
921struct hstate *size_to_hstate(unsigned long size)
922{
923	struct hstate *h;
924
925	for_each_hstate(h) {
926		if (huge_page_size(h) == size)
927			return h;
928	}
929	return NULL;
930}
931
932/*
933 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
934 * to hstate->hugepage_activelist.)
935 *
936 * This function can be called for tail pages, but never returns true for them.
937 */
938bool page_huge_active(struct page *page)
939{
940	VM_BUG_ON_PAGE(!PageHuge(page), page);
941	return PageHead(page) && PagePrivate(&page[1]);
942}
943
944/* never called for tail page */
945static void set_page_huge_active(struct page *page)
946{
947	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
948	SetPagePrivate(&page[1]);
949}
950
951static void clear_page_huge_active(struct page *page)
952{
953	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
954	ClearPagePrivate(&page[1]);
955}
956
957void free_huge_page(struct page *page)
958{
959	/*
960	 * Can't pass hstate in here because it is called from the
961	 * compound page destructor.
962	 */
963	struct hstate *h = page_hstate(page);
964	int nid = page_to_nid(page);
965	struct hugepage_subpool *spool =
966		(struct hugepage_subpool *)page_private(page);
967	bool restore_reserve;
968
969	set_page_private(page, 0);
970	page->mapping = NULL;
971	BUG_ON(page_count(page));
972	BUG_ON(page_mapcount(page));
973	restore_reserve = PagePrivate(page);
974	ClearPagePrivate(page);
975
976	/*
977	 * A return code of zero implies that the subpool will be under its
978	 * minimum size if the reservation is not restored after page is free.
979	 * Therefore, force restore_reserve operation.
980	 */
981	if (hugepage_subpool_put_pages(spool, 1) == 0)
982		restore_reserve = true;
983
984	spin_lock(&hugetlb_lock);
985	clear_page_huge_active(page);
986	hugetlb_cgroup_uncharge_page(hstate_index(h),
987				     pages_per_huge_page(h), page);
988	if (restore_reserve)
989		h->resv_huge_pages++;
990
991	if (h->surplus_huge_pages_node[nid]) {
992		/* remove the page from active list */
993		list_del(&page->lru);
994		update_and_free_page(h, page);
995		h->surplus_huge_pages--;
996		h->surplus_huge_pages_node[nid]--;
997	} else {
998		arch_clear_hugepage_flags(page);
999		enqueue_huge_page(h, page);
1000	}
1001	spin_unlock(&hugetlb_lock);
1002}
1003
1004static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1005{
1006	INIT_LIST_HEAD(&page->lru);
1007	set_compound_page_dtor(page, free_huge_page);
1008	spin_lock(&hugetlb_lock);
1009	set_hugetlb_cgroup(page, NULL);
1010	h->nr_huge_pages++;
1011	h->nr_huge_pages_node[nid]++;
1012	spin_unlock(&hugetlb_lock);
1013	put_page(page); /* free it into the hugepage allocator */
1014}
1015
1016static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1017{
1018	int i;
1019	int nr_pages = 1 << order;
1020	struct page *p = page + 1;
1021
1022	/* we rely on prep_new_huge_page to set the destructor */
1023	set_compound_order(page, order);
1024	__SetPageHead(page);
1025	__ClearPageReserved(page);
1026	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1027		/*
1028		 * For gigantic hugepages allocated through bootmem at
1029		 * boot, it's safer to be consistent with the not-gigantic
1030		 * hugepages and clear the PG_reserved bit from all tail pages
1031		 * too.  Otherwse drivers using get_user_pages() to access tail
1032		 * pages may get the reference counting wrong if they see
1033		 * PG_reserved set on a tail page (despite the head page not
1034		 * having PG_reserved set).  Enforcing this consistency between
1035		 * head and tail pages allows drivers to optimize away a check
1036		 * on the head page when they need know if put_page() is needed
1037		 * after get_user_pages().
1038		 */
1039		__ClearPageReserved(p);
1040		set_page_count(p, 0);
1041		p->first_page = page;
1042		/* Make sure p->first_page is always valid for PageTail() */
1043		smp_wmb();
1044		__SetPageTail(p);
1045	}
1046}
1047
1048/*
1049 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1050 * transparent huge pages.  See the PageTransHuge() documentation for more
1051 * details.
1052 */
1053int PageHuge(struct page *page)
1054{
1055	if (!PageCompound(page))
1056		return 0;
1057
1058	page = compound_head(page);
1059	return get_compound_page_dtor(page) == free_huge_page;
1060}
1061EXPORT_SYMBOL_GPL(PageHuge);
1062
1063/*
1064 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1065 * normal or transparent huge pages.
1066 */
1067int PageHeadHuge(struct page *page_head)
1068{
1069	if (!PageHead(page_head))
1070		return 0;
1071
1072	return get_compound_page_dtor(page_head) == free_huge_page;
1073}
1074
1075pgoff_t __basepage_index(struct page *page)
1076{
1077	struct page *page_head = compound_head(page);
1078	pgoff_t index = page_index(page_head);
1079	unsigned long compound_idx;
1080
1081	if (!PageHuge(page_head))
1082		return page_index(page);
1083
1084	if (compound_order(page_head) >= MAX_ORDER)
1085		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1086	else
1087		compound_idx = page - page_head;
1088
1089	return (index << compound_order(page_head)) + compound_idx;
1090}
1091
1092static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1093{
1094	struct page *page;
1095
1096	page = alloc_pages_exact_node(nid,
1097		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1098						__GFP_REPEAT|__GFP_NOWARN,
1099		huge_page_order(h));
1100	if (page) {
1101		if (arch_prepare_hugepage(page)) {
1102			__free_pages(page, huge_page_order(h));
1103			return NULL;
1104		}
1105		prep_new_huge_page(h, page, nid);
1106	}
1107
1108	return page;
1109}
1110
1111static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1112{
1113	struct page *page;
1114	int nr_nodes, node;
1115	int ret = 0;
1116
1117	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1118		page = alloc_fresh_huge_page_node(h, node);
1119		if (page) {
1120			ret = 1;
1121			break;
1122		}
1123	}
1124
1125	if (ret)
1126		count_vm_event(HTLB_BUDDY_PGALLOC);
1127	else
1128		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1129
1130	return ret;
1131}
1132
1133/*
1134 * Free huge page from pool from next node to free.
1135 * Attempt to keep persistent huge pages more or less
1136 * balanced over allowed nodes.
1137 * Called with hugetlb_lock locked.
1138 */
1139static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1140							 bool acct_surplus)
1141{
1142	int nr_nodes, node;
1143	int ret = 0;
1144
1145	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1146		/*
1147		 * If we're returning unused surplus pages, only examine
1148		 * nodes with surplus pages.
1149		 */
1150		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1151		    !list_empty(&h->hugepage_freelists[node])) {
1152			struct page *page =
1153				list_entry(h->hugepage_freelists[node].next,
1154					  struct page, lru);
1155			list_del(&page->lru);
1156			h->free_huge_pages--;
1157			h->free_huge_pages_node[node]--;
1158			if (acct_surplus) {
1159				h->surplus_huge_pages--;
1160				h->surplus_huge_pages_node[node]--;
1161			}
1162			update_and_free_page(h, page);
1163			ret = 1;
1164			break;
1165		}
1166	}
1167
1168	return ret;
1169}
1170
1171/*
1172 * Dissolve a given free hugepage into free buddy pages. This function does
1173 * nothing for in-use (including surplus) hugepages.
1174 */
1175static void dissolve_free_huge_page(struct page *page)
1176{
1177	spin_lock(&hugetlb_lock);
1178	if (PageHuge(page) && !page_count(page)) {
1179		struct hstate *h = page_hstate(page);
1180		int nid = page_to_nid(page);
1181		list_del(&page->lru);
1182		h->free_huge_pages--;
1183		h->free_huge_pages_node[nid]--;
1184		update_and_free_page(h, page);
1185	}
1186	spin_unlock(&hugetlb_lock);
1187}
1188
1189/*
1190 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1191 * make specified memory blocks removable from the system.
1192 * Note that start_pfn should aligned with (minimum) hugepage size.
1193 */
1194void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1195{
1196	unsigned long pfn;
1197
1198	if (!hugepages_supported())
1199		return;
1200
1201	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1202	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1203		dissolve_free_huge_page(pfn_to_page(pfn));
1204}
1205
1206static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1207{
1208	struct page *page;
1209	unsigned int r_nid;
1210
1211	if (hstate_is_gigantic(h))
1212		return NULL;
1213
1214	/*
1215	 * Assume we will successfully allocate the surplus page to
1216	 * prevent racing processes from causing the surplus to exceed
1217	 * overcommit
1218	 *
1219	 * This however introduces a different race, where a process B
1220	 * tries to grow the static hugepage pool while alloc_pages() is
1221	 * called by process A. B will only examine the per-node
1222	 * counters in determining if surplus huge pages can be
1223	 * converted to normal huge pages in adjust_pool_surplus(). A
1224	 * won't be able to increment the per-node counter, until the
1225	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1226	 * no more huge pages can be converted from surplus to normal
1227	 * state (and doesn't try to convert again). Thus, we have a
1228	 * case where a surplus huge page exists, the pool is grown, and
1229	 * the surplus huge page still exists after, even though it
1230	 * should just have been converted to a normal huge page. This
1231	 * does not leak memory, though, as the hugepage will be freed
1232	 * once it is out of use. It also does not allow the counters to
1233	 * go out of whack in adjust_pool_surplus() as we don't modify
1234	 * the node values until we've gotten the hugepage and only the
1235	 * per-node value is checked there.
1236	 */
1237	spin_lock(&hugetlb_lock);
1238	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1239		spin_unlock(&hugetlb_lock);
1240		return NULL;
1241	} else {
1242		h->nr_huge_pages++;
1243		h->surplus_huge_pages++;
1244	}
1245	spin_unlock(&hugetlb_lock);
1246
1247	if (nid == NUMA_NO_NODE)
1248		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1249				   __GFP_REPEAT|__GFP_NOWARN,
1250				   huge_page_order(h));
1251	else
1252		page = alloc_pages_exact_node(nid,
1253			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1254			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1255
1256	if (page && arch_prepare_hugepage(page)) {
1257		__free_pages(page, huge_page_order(h));
1258		page = NULL;
1259	}
1260
1261	spin_lock(&hugetlb_lock);
1262	if (page) {
1263		INIT_LIST_HEAD(&page->lru);
1264		r_nid = page_to_nid(page);
1265		set_compound_page_dtor(page, free_huge_page);
1266		set_hugetlb_cgroup(page, NULL);
1267		/*
1268		 * We incremented the global counters already
1269		 */
1270		h->nr_huge_pages_node[r_nid]++;
1271		h->surplus_huge_pages_node[r_nid]++;
1272		__count_vm_event(HTLB_BUDDY_PGALLOC);
1273	} else {
1274		h->nr_huge_pages--;
1275		h->surplus_huge_pages--;
1276		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1277	}
1278	spin_unlock(&hugetlb_lock);
1279
1280	return page;
1281}
1282
1283/*
1284 * This allocation function is useful in the context where vma is irrelevant.
1285 * E.g. soft-offlining uses this function because it only cares physical
1286 * address of error page.
1287 */
1288struct page *alloc_huge_page_node(struct hstate *h, int nid)
1289{
1290	struct page *page = NULL;
1291
1292	spin_lock(&hugetlb_lock);
1293	if (h->free_huge_pages - h->resv_huge_pages > 0)
1294		page = dequeue_huge_page_node(h, nid);
1295	spin_unlock(&hugetlb_lock);
1296
1297	if (!page)
1298		page = alloc_buddy_huge_page(h, nid);
1299
1300	return page;
1301}
1302
1303/*
1304 * Increase the hugetlb pool such that it can accommodate a reservation
1305 * of size 'delta'.
1306 */
1307static int gather_surplus_pages(struct hstate *h, int delta)
1308{
1309	struct list_head surplus_list;
1310	struct page *page, *tmp;
1311	int ret, i;
1312	int needed, allocated;
1313	bool alloc_ok = true;
1314
1315	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1316	if (needed <= 0) {
1317		h->resv_huge_pages += delta;
1318		return 0;
1319	}
1320
1321	allocated = 0;
1322	INIT_LIST_HEAD(&surplus_list);
1323
1324	ret = -ENOMEM;
1325retry:
1326	spin_unlock(&hugetlb_lock);
1327	for (i = 0; i < needed; i++) {
1328		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1329		if (!page) {
1330			alloc_ok = false;
1331			break;
1332		}
1333		list_add(&page->lru, &surplus_list);
1334	}
1335	allocated += i;
1336
1337	/*
1338	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1339	 * because either resv_huge_pages or free_huge_pages may have changed.
1340	 */
1341	spin_lock(&hugetlb_lock);
1342	needed = (h->resv_huge_pages + delta) -
1343			(h->free_huge_pages + allocated);
1344	if (needed > 0) {
1345		if (alloc_ok)
1346			goto retry;
1347		/*
1348		 * We were not able to allocate enough pages to
1349		 * satisfy the entire reservation so we free what
1350		 * we've allocated so far.
1351		 */
1352		goto free;
1353	}
1354	/*
1355	 * The surplus_list now contains _at_least_ the number of extra pages
1356	 * needed to accommodate the reservation.  Add the appropriate number
1357	 * of pages to the hugetlb pool and free the extras back to the buddy
1358	 * allocator.  Commit the entire reservation here to prevent another
1359	 * process from stealing the pages as they are added to the pool but
1360	 * before they are reserved.
1361	 */
1362	needed += allocated;
1363	h->resv_huge_pages += delta;
1364	ret = 0;
1365
1366	/* Free the needed pages to the hugetlb pool */
1367	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1368		if ((--needed) < 0)
1369			break;
1370		/*
1371		 * This page is now managed by the hugetlb allocator and has
1372		 * no users -- drop the buddy allocator's reference.
1373		 */
1374		put_page_testzero(page);
1375		VM_BUG_ON_PAGE(page_count(page), page);
1376		enqueue_huge_page(h, page);
1377	}
1378free:
1379	spin_unlock(&hugetlb_lock);
1380
1381	/* Free unnecessary surplus pages to the buddy allocator */
1382	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1383		put_page(page);
1384	spin_lock(&hugetlb_lock);
1385
1386	return ret;
1387}
1388
1389/*
1390 * When releasing a hugetlb pool reservation, any surplus pages that were
1391 * allocated to satisfy the reservation must be explicitly freed if they were
1392 * never used.
1393 * Called with hugetlb_lock held.
1394 */
1395static void return_unused_surplus_pages(struct hstate *h,
1396					unsigned long unused_resv_pages)
1397{
1398	unsigned long nr_pages;
1399
1400	/* Uncommit the reservation */
1401	h->resv_huge_pages -= unused_resv_pages;
1402
1403	/* Cannot return gigantic pages currently */
1404	if (hstate_is_gigantic(h))
1405		return;
1406
1407	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1408
1409	/*
1410	 * We want to release as many surplus pages as possible, spread
1411	 * evenly across all nodes with memory. Iterate across these nodes
1412	 * until we can no longer free unreserved surplus pages. This occurs
1413	 * when the nodes with surplus pages have no free pages.
1414	 * free_pool_huge_page() will balance the the freed pages across the
1415	 * on-line nodes with memory and will handle the hstate accounting.
1416	 */
1417	while (nr_pages--) {
1418		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1419			break;
1420		cond_resched_lock(&hugetlb_lock);
1421	}
1422}
1423
1424/*
1425 * Determine if the huge page at addr within the vma has an associated
1426 * reservation.  Where it does not we will need to logically increase
1427 * reservation and actually increase subpool usage before an allocation
1428 * can occur.  Where any new reservation would be required the
1429 * reservation change is prepared, but not committed.  Once the page
1430 * has been allocated from the subpool and instantiated the change should
1431 * be committed via vma_commit_reservation.  No action is required on
1432 * failure.
1433 */
1434static long vma_needs_reservation(struct hstate *h,
1435			struct vm_area_struct *vma, unsigned long addr)
1436{
1437	struct resv_map *resv;
1438	pgoff_t idx;
1439	long chg;
1440
1441	resv = vma_resv_map(vma);
1442	if (!resv)
1443		return 1;
1444
1445	idx = vma_hugecache_offset(h, vma, addr);
1446	chg = region_chg(resv, idx, idx + 1);
1447
1448	if (vma->vm_flags & VM_MAYSHARE)
1449		return chg;
1450	else
1451		return chg < 0 ? chg : 0;
1452}
1453static void vma_commit_reservation(struct hstate *h,
1454			struct vm_area_struct *vma, unsigned long addr)
1455{
1456	struct resv_map *resv;
1457	pgoff_t idx;
1458
1459	resv = vma_resv_map(vma);
1460	if (!resv)
1461		return;
1462
1463	idx = vma_hugecache_offset(h, vma, addr);
1464	region_add(resv, idx, idx + 1);
1465}
1466
1467static struct page *alloc_huge_page(struct vm_area_struct *vma,
1468				    unsigned long addr, int avoid_reserve)
1469{
1470	struct hugepage_subpool *spool = subpool_vma(vma);
1471	struct hstate *h = hstate_vma(vma);
1472	struct page *page;
1473	long chg;
1474	int ret, idx;
1475	struct hugetlb_cgroup *h_cg;
1476
1477	idx = hstate_index(h);
1478	/*
1479	 * Processes that did not create the mapping will have no
1480	 * reserves and will not have accounted against subpool
1481	 * limit. Check that the subpool limit can be made before
1482	 * satisfying the allocation MAP_NORESERVE mappings may also
1483	 * need pages and subpool limit allocated allocated if no reserve
1484	 * mapping overlaps.
1485	 */
1486	chg = vma_needs_reservation(h, vma, addr);
1487	if (chg < 0)
1488		return ERR_PTR(-ENOMEM);
1489	if (chg || avoid_reserve)
1490		if (hugepage_subpool_get_pages(spool, 1) < 0)
1491			return ERR_PTR(-ENOSPC);
1492
1493	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1494	if (ret)
1495		goto out_subpool_put;
1496
1497	spin_lock(&hugetlb_lock);
1498	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1499	if (!page) {
1500		spin_unlock(&hugetlb_lock);
1501		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1502		if (!page)
1503			goto out_uncharge_cgroup;
1504
1505		spin_lock(&hugetlb_lock);
1506		list_move(&page->lru, &h->hugepage_activelist);
1507		/* Fall through */
1508	}
1509	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1510	spin_unlock(&hugetlb_lock);
1511
1512	set_page_private(page, (unsigned long)spool);
1513
1514	vma_commit_reservation(h, vma, addr);
1515	return page;
1516
1517out_uncharge_cgroup:
1518	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1519out_subpool_put:
1520	if (chg || avoid_reserve)
1521		hugepage_subpool_put_pages(spool, 1);
1522	return ERR_PTR(-ENOSPC);
1523}
1524
1525/*
1526 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1527 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1528 * where no ERR_VALUE is expected to be returned.
1529 */
1530struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1531				unsigned long addr, int avoid_reserve)
1532{
1533	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1534	if (IS_ERR(page))
1535		page = NULL;
1536	return page;
1537}
1538
1539int __weak alloc_bootmem_huge_page(struct hstate *h)
1540{
1541	struct huge_bootmem_page *m;
1542	int nr_nodes, node;
1543
1544	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1545		void *addr;
1546
1547		addr = memblock_virt_alloc_try_nid_nopanic(
1548				huge_page_size(h), huge_page_size(h),
1549				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1550		if (addr) {
1551			/*
1552			 * Use the beginning of the huge page to store the
1553			 * huge_bootmem_page struct (until gather_bootmem
1554			 * puts them into the mem_map).
1555			 */
1556			m = addr;
1557			goto found;
1558		}
1559	}
1560	return 0;
1561
1562found:
1563	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1564	/* Put them into a private list first because mem_map is not up yet */
1565	list_add(&m->list, &huge_boot_pages);
1566	m->hstate = h;
1567	return 1;
1568}
1569
1570static void __init prep_compound_huge_page(struct page *page,
1571		unsigned int order)
1572{
1573	if (unlikely(order > (MAX_ORDER - 1)))
1574		prep_compound_gigantic_page(page, order);
1575	else
1576		prep_compound_page(page, order);
1577}
1578
1579/* Put bootmem huge pages into the standard lists after mem_map is up */
1580static void __init gather_bootmem_prealloc(void)
1581{
1582	struct huge_bootmem_page *m;
1583
1584	list_for_each_entry(m, &huge_boot_pages, list) {
1585		struct hstate *h = m->hstate;
1586		struct page *page;
1587
1588#ifdef CONFIG_HIGHMEM
1589		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1590		memblock_free_late(__pa(m),
1591				   sizeof(struct huge_bootmem_page));
1592#else
1593		page = virt_to_page(m);
1594#endif
1595		WARN_ON(page_count(page) != 1);
1596		prep_compound_huge_page(page, h->order);
1597		WARN_ON(PageReserved(page));
1598		prep_new_huge_page(h, page, page_to_nid(page));
1599		/*
1600		 * If we had gigantic hugepages allocated at boot time, we need
1601		 * to restore the 'stolen' pages to totalram_pages in order to
1602		 * fix confusing memory reports from free(1) and another
1603		 * side-effects, like CommitLimit going negative.
1604		 */
1605		if (hstate_is_gigantic(h))
1606			adjust_managed_page_count(page, 1 << h->order);
1607	}
1608}
1609
1610static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1611{
1612	unsigned long i;
1613
1614	for (i = 0; i < h->max_huge_pages; ++i) {
1615		if (hstate_is_gigantic(h)) {
1616			if (!alloc_bootmem_huge_page(h))
1617				break;
1618		} else if (!alloc_fresh_huge_page(h,
1619					 &node_states[N_MEMORY]))
1620			break;
1621	}
1622	h->max_huge_pages = i;
1623}
1624
1625static void __init hugetlb_init_hstates(void)
1626{
1627	struct hstate *h;
1628
1629	for_each_hstate(h) {
1630		if (minimum_order > huge_page_order(h))
1631			minimum_order = huge_page_order(h);
1632
1633		/* oversize hugepages were init'ed in early boot */
1634		if (!hstate_is_gigantic(h))
1635			hugetlb_hstate_alloc_pages(h);
1636	}
1637	VM_BUG_ON(minimum_order == UINT_MAX);
1638}
1639
1640static char * __init memfmt(char *buf, unsigned long n)
1641{
1642	if (n >= (1UL << 30))
1643		sprintf(buf, "%lu GB", n >> 30);
1644	else if (n >= (1UL << 20))
1645		sprintf(buf, "%lu MB", n >> 20);
1646	else
1647		sprintf(buf, "%lu KB", n >> 10);
1648	return buf;
1649}
1650
1651static void __init report_hugepages(void)
1652{
1653	struct hstate *h;
1654
1655	for_each_hstate(h) {
1656		char buf[32];
1657		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1658			memfmt(buf, huge_page_size(h)),
1659			h->free_huge_pages);
1660	}
1661}
1662
1663#ifdef CONFIG_HIGHMEM
1664static void try_to_free_low(struct hstate *h, unsigned long count,
1665						nodemask_t *nodes_allowed)
1666{
1667	int i;
1668
1669	if (hstate_is_gigantic(h))
1670		return;
1671
1672	for_each_node_mask(i, *nodes_allowed) {
1673		struct page *page, *next;
1674		struct list_head *freel = &h->hugepage_freelists[i];
1675		list_for_each_entry_safe(page, next, freel, lru) {
1676			if (count >= h->nr_huge_pages)
1677				return;
1678			if (PageHighMem(page))
1679				continue;
1680			list_del(&page->lru);
1681			update_and_free_page(h, page);
1682			h->free_huge_pages--;
1683			h->free_huge_pages_node[page_to_nid(page)]--;
1684		}
1685	}
1686}
1687#else
1688static inline void try_to_free_low(struct hstate *h, unsigned long count,
1689						nodemask_t *nodes_allowed)
1690{
1691}
1692#endif
1693
1694/*
1695 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1696 * balanced by operating on them in a round-robin fashion.
1697 * Returns 1 if an adjustment was made.
1698 */
1699static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1700				int delta)
1701{
1702	int nr_nodes, node;
1703
1704	VM_BUG_ON(delta != -1 && delta != 1);
1705
1706	if (delta < 0) {
1707		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1708			if (h->surplus_huge_pages_node[node])
1709				goto found;
1710		}
1711	} else {
1712		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1713			if (h->surplus_huge_pages_node[node] <
1714					h->nr_huge_pages_node[node])
1715				goto found;
1716		}
1717	}
1718	return 0;
1719
1720found:
1721	h->surplus_huge_pages += delta;
1722	h->surplus_huge_pages_node[node] += delta;
1723	return 1;
1724}
1725
1726#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1727static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1728						nodemask_t *nodes_allowed)
1729{
1730	unsigned long min_count, ret;
1731
1732	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1733		return h->max_huge_pages;
1734
1735	/*
1736	 * Increase the pool size
1737	 * First take pages out of surplus state.  Then make up the
1738	 * remaining difference by allocating fresh huge pages.
1739	 *
1740	 * We might race with alloc_buddy_huge_page() here and be unable
1741	 * to convert a surplus huge page to a normal huge page. That is
1742	 * not critical, though, it just means the overall size of the
1743	 * pool might be one hugepage larger than it needs to be, but
1744	 * within all the constraints specified by the sysctls.
1745	 */
1746	spin_lock(&hugetlb_lock);
1747	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1748		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1749			break;
1750	}
1751
1752	while (count > persistent_huge_pages(h)) {
1753		/*
1754		 * If this allocation races such that we no longer need the
1755		 * page, free_huge_page will handle it by freeing the page
1756		 * and reducing the surplus.
1757		 */
1758		spin_unlock(&hugetlb_lock);
1759		if (hstate_is_gigantic(h))
1760			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1761		else
1762			ret = alloc_fresh_huge_page(h, nodes_allowed);
1763		spin_lock(&hugetlb_lock);
1764		if (!ret)
1765			goto out;
1766
1767		/* Bail for signals. Probably ctrl-c from user */
1768		if (signal_pending(current))
1769			goto out;
1770	}
1771
1772	/*
1773	 * Decrease the pool size
1774	 * First return free pages to the buddy allocator (being careful
1775	 * to keep enough around to satisfy reservations).  Then place
1776	 * pages into surplus state as needed so the pool will shrink
1777	 * to the desired size as pages become free.
1778	 *
1779	 * By placing pages into the surplus state independent of the
1780	 * overcommit value, we are allowing the surplus pool size to
1781	 * exceed overcommit. There are few sane options here. Since
1782	 * alloc_buddy_huge_page() is checking the global counter,
1783	 * though, we'll note that we're not allowed to exceed surplus
1784	 * and won't grow the pool anywhere else. Not until one of the
1785	 * sysctls are changed, or the surplus pages go out of use.
1786	 */
1787	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1788	min_count = max(count, min_count);
1789	try_to_free_low(h, min_count, nodes_allowed);
1790	while (min_count < persistent_huge_pages(h)) {
1791		if (!free_pool_huge_page(h, nodes_allowed, 0))
1792			break;
1793		cond_resched_lock(&hugetlb_lock);
1794	}
1795	while (count < persistent_huge_pages(h)) {
1796		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1797			break;
1798	}
1799out:
1800	ret = persistent_huge_pages(h);
1801	spin_unlock(&hugetlb_lock);
1802	return ret;
1803}
1804
1805#define HSTATE_ATTR_RO(_name) \
1806	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1807
1808#define HSTATE_ATTR(_name) \
1809	static struct kobj_attribute _name##_attr = \
1810		__ATTR(_name, 0644, _name##_show, _name##_store)
1811
1812static struct kobject *hugepages_kobj;
1813static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1814
1815static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1816
1817static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1818{
1819	int i;
1820
1821	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1822		if (hstate_kobjs[i] == kobj) {
1823			if (nidp)
1824				*nidp = NUMA_NO_NODE;
1825			return &hstates[i];
1826		}
1827
1828	return kobj_to_node_hstate(kobj, nidp);
1829}
1830
1831static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1832					struct kobj_attribute *attr, char *buf)
1833{
1834	struct hstate *h;
1835	unsigned long nr_huge_pages;
1836	int nid;
1837
1838	h = kobj_to_hstate(kobj, &nid);
1839	if (nid == NUMA_NO_NODE)
1840		nr_huge_pages = h->nr_huge_pages;
1841	else
1842		nr_huge_pages = h->nr_huge_pages_node[nid];
1843
1844	return sprintf(buf, "%lu\n", nr_huge_pages);
1845}
1846
1847static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1848					   struct hstate *h, int nid,
1849					   unsigned long count, size_t len)
1850{
1851	int err;
1852	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1853
1854	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1855		err = -EINVAL;
1856		goto out;
1857	}
1858
1859	if (nid == NUMA_NO_NODE) {
1860		/*
1861		 * global hstate attribute
1862		 */
1863		if (!(obey_mempolicy &&
1864				init_nodemask_of_mempolicy(nodes_allowed))) {
1865			NODEMASK_FREE(nodes_allowed);
1866			nodes_allowed = &node_states[N_MEMORY];
1867		}
1868	} else if (nodes_allowed) {
1869		/*
1870		 * per node hstate attribute: adjust count to global,
1871		 * but restrict alloc/free to the specified node.
1872		 */
1873		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1874		init_nodemask_of_node(nodes_allowed, nid);
1875	} else
1876		nodes_allowed = &node_states[N_MEMORY];
1877
1878	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1879
1880	if (nodes_allowed != &node_states[N_MEMORY])
1881		NODEMASK_FREE(nodes_allowed);
1882
1883	return len;
1884out:
1885	NODEMASK_FREE(nodes_allowed);
1886	return err;
1887}
1888
1889static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1890					 struct kobject *kobj, const char *buf,
1891					 size_t len)
1892{
1893	struct hstate *h;
1894	unsigned long count;
1895	int nid;
1896	int err;
1897
1898	err = kstrtoul(buf, 10, &count);
1899	if (err)
1900		return err;
1901
1902	h = kobj_to_hstate(kobj, &nid);
1903	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1904}
1905
1906static ssize_t nr_hugepages_show(struct kobject *kobj,
1907				       struct kobj_attribute *attr, char *buf)
1908{
1909	return nr_hugepages_show_common(kobj, attr, buf);
1910}
1911
1912static ssize_t nr_hugepages_store(struct kobject *kobj,
1913	       struct kobj_attribute *attr, const char *buf, size_t len)
1914{
1915	return nr_hugepages_store_common(false, kobj, buf, len);
1916}
1917HSTATE_ATTR(nr_hugepages);
1918
1919#ifdef CONFIG_NUMA
1920
1921/*
1922 * hstate attribute for optionally mempolicy-based constraint on persistent
1923 * huge page alloc/free.
1924 */
1925static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1926				       struct kobj_attribute *attr, char *buf)
1927{
1928	return nr_hugepages_show_common(kobj, attr, buf);
1929}
1930
1931static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1932	       struct kobj_attribute *attr, const char *buf, size_t len)
1933{
1934	return nr_hugepages_store_common(true, kobj, buf, len);
1935}
1936HSTATE_ATTR(nr_hugepages_mempolicy);
1937#endif
1938
1939
1940static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1941					struct kobj_attribute *attr, char *buf)
1942{
1943	struct hstate *h = kobj_to_hstate(kobj, NULL);
1944	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1945}
1946
1947static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1948		struct kobj_attribute *attr, const char *buf, size_t count)
1949{
1950	int err;
1951	unsigned long input;
1952	struct hstate *h = kobj_to_hstate(kobj, NULL);
1953
1954	if (hstate_is_gigantic(h))
1955		return -EINVAL;
1956
1957	err = kstrtoul(buf, 10, &input);
1958	if (err)
1959		return err;
1960
1961	spin_lock(&hugetlb_lock);
1962	h->nr_overcommit_huge_pages = input;
1963	spin_unlock(&hugetlb_lock);
1964
1965	return count;
1966}
1967HSTATE_ATTR(nr_overcommit_hugepages);
1968
1969static ssize_t free_hugepages_show(struct kobject *kobj,
1970					struct kobj_attribute *attr, char *buf)
1971{
1972	struct hstate *h;
1973	unsigned long free_huge_pages;
1974	int nid;
1975
1976	h = kobj_to_hstate(kobj, &nid);
1977	if (nid == NUMA_NO_NODE)
1978		free_huge_pages = h->free_huge_pages;
1979	else
1980		free_huge_pages = h->free_huge_pages_node[nid];
1981
1982	return sprintf(buf, "%lu\n", free_huge_pages);
1983}
1984HSTATE_ATTR_RO(free_hugepages);
1985
1986static ssize_t resv_hugepages_show(struct kobject *kobj,
1987					struct kobj_attribute *attr, char *buf)
1988{
1989	struct hstate *h = kobj_to_hstate(kobj, NULL);
1990	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1991}
1992HSTATE_ATTR_RO(resv_hugepages);
1993
1994static ssize_t surplus_hugepages_show(struct kobject *kobj,
1995					struct kobj_attribute *attr, char *buf)
1996{
1997	struct hstate *h;
1998	unsigned long surplus_huge_pages;
1999	int nid;
2000
2001	h = kobj_to_hstate(kobj, &nid);
2002	if (nid == NUMA_NO_NODE)
2003		surplus_huge_pages = h->surplus_huge_pages;
2004	else
2005		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2006
2007	return sprintf(buf, "%lu\n", surplus_huge_pages);
2008}
2009HSTATE_ATTR_RO(surplus_hugepages);
2010
2011static struct attribute *hstate_attrs[] = {
2012	&nr_hugepages_attr.attr,
2013	&nr_overcommit_hugepages_attr.attr,
2014	&free_hugepages_attr.attr,
2015	&resv_hugepages_attr.attr,
2016	&surplus_hugepages_attr.attr,
2017#ifdef CONFIG_NUMA
2018	&nr_hugepages_mempolicy_attr.attr,
2019#endif
2020	NULL,
2021};
2022
2023static struct attribute_group hstate_attr_group = {
2024	.attrs = hstate_attrs,
2025};
2026
2027static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2028				    struct kobject **hstate_kobjs,
2029				    struct attribute_group *hstate_attr_group)
2030{
2031	int retval;
2032	int hi = hstate_index(h);
2033
2034	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2035	if (!hstate_kobjs[hi])
2036		return -ENOMEM;
2037
2038	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2039	if (retval)
2040		kobject_put(hstate_kobjs[hi]);
2041
2042	return retval;
2043}
2044
2045static void __init hugetlb_sysfs_init(void)
2046{
2047	struct hstate *h;
2048	int err;
2049
2050	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2051	if (!hugepages_kobj)
2052		return;
2053
2054	for_each_hstate(h) {
2055		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2056					 hstate_kobjs, &hstate_attr_group);
2057		if (err)
2058			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2059	}
2060}
2061
2062#ifdef CONFIG_NUMA
2063
2064/*
2065 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2066 * with node devices in node_devices[] using a parallel array.  The array
2067 * index of a node device or _hstate == node id.
2068 * This is here to avoid any static dependency of the node device driver, in
2069 * the base kernel, on the hugetlb module.
2070 */
2071struct node_hstate {
2072	struct kobject		*hugepages_kobj;
2073	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2074};
2075struct node_hstate node_hstates[MAX_NUMNODES];
2076
2077/*
2078 * A subset of global hstate attributes for node devices
2079 */
2080static struct attribute *per_node_hstate_attrs[] = {
2081	&nr_hugepages_attr.attr,
2082	&free_hugepages_attr.attr,
2083	&surplus_hugepages_attr.attr,
2084	NULL,
2085};
2086
2087static struct attribute_group per_node_hstate_attr_group = {
2088	.attrs = per_node_hstate_attrs,
2089};
2090
2091/*
2092 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2093 * Returns node id via non-NULL nidp.
2094 */
2095static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2096{
2097	int nid;
2098
2099	for (nid = 0; nid < nr_node_ids; nid++) {
2100		struct node_hstate *nhs = &node_hstates[nid];
2101		int i;
2102		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2103			if (nhs->hstate_kobjs[i] == kobj) {
2104				if (nidp)
2105					*nidp = nid;
2106				return &hstates[i];
2107			}
2108	}
2109
2110	BUG();
2111	return NULL;
2112}
2113
2114/*
2115 * Unregister hstate attributes from a single node device.
2116 * No-op if no hstate attributes attached.
2117 */
2118static void hugetlb_unregister_node(struct node *node)
2119{
2120	struct hstate *h;
2121	struct node_hstate *nhs = &node_hstates[node->dev.id];
2122
2123	if (!nhs->hugepages_kobj)
2124		return;		/* no hstate attributes */
2125
2126	for_each_hstate(h) {
2127		int idx = hstate_index(h);
2128		if (nhs->hstate_kobjs[idx]) {
2129			kobject_put(nhs->hstate_kobjs[idx]);
2130			nhs->hstate_kobjs[idx] = NULL;
2131		}
2132	}
2133
2134	kobject_put(nhs->hugepages_kobj);
2135	nhs->hugepages_kobj = NULL;
2136}
2137
2138/*
2139 * hugetlb module exit:  unregister hstate attributes from node devices
2140 * that have them.
2141 */
2142static void hugetlb_unregister_all_nodes(void)
2143{
2144	int nid;
2145
2146	/*
2147	 * disable node device registrations.
2148	 */
2149	register_hugetlbfs_with_node(NULL, NULL);
2150
2151	/*
2152	 * remove hstate attributes from any nodes that have them.
2153	 */
2154	for (nid = 0; nid < nr_node_ids; nid++)
2155		hugetlb_unregister_node(node_devices[nid]);
2156}
2157
2158/*
2159 * Register hstate attributes for a single node device.
2160 * No-op if attributes already registered.
2161 */
2162static void hugetlb_register_node(struct node *node)
2163{
2164	struct hstate *h;
2165	struct node_hstate *nhs = &node_hstates[node->dev.id];
2166	int err;
2167
2168	if (nhs->hugepages_kobj)
2169		return;		/* already allocated */
2170
2171	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2172							&node->dev.kobj);
2173	if (!nhs->hugepages_kobj)
2174		return;
2175
2176	for_each_hstate(h) {
2177		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2178						nhs->hstate_kobjs,
2179						&per_node_hstate_attr_group);
2180		if (err) {
2181			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2182				h->name, node->dev.id);
2183			hugetlb_unregister_node(node);
2184			break;
2185		}
2186	}
2187}
2188
2189/*
2190 * hugetlb init time:  register hstate attributes for all registered node
2191 * devices of nodes that have memory.  All on-line nodes should have
2192 * registered their associated device by this time.
2193 */
2194static void __init hugetlb_register_all_nodes(void)
2195{
2196	int nid;
2197
2198	for_each_node_state(nid, N_MEMORY) {
2199		struct node *node = node_devices[nid];
2200		if (node->dev.id == nid)
2201			hugetlb_register_node(node);
2202	}
2203
2204	/*
2205	 * Let the node device driver know we're here so it can
2206	 * [un]register hstate attributes on node hotplug.
2207	 */
2208	register_hugetlbfs_with_node(hugetlb_register_node,
2209				     hugetlb_unregister_node);
2210}
2211#else	/* !CONFIG_NUMA */
2212
2213static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2214{
2215	BUG();
2216	if (nidp)
2217		*nidp = -1;
2218	return NULL;
2219}
2220
2221static void hugetlb_unregister_all_nodes(void) { }
2222
2223static void hugetlb_register_all_nodes(void) { }
2224
2225#endif
2226
2227static void __exit hugetlb_exit(void)
2228{
2229	struct hstate *h;
2230
2231	hugetlb_unregister_all_nodes();
2232
2233	for_each_hstate(h) {
2234		kobject_put(hstate_kobjs[hstate_index(h)]);
2235	}
2236
2237	kobject_put(hugepages_kobj);
2238	kfree(htlb_fault_mutex_table);
2239}
2240module_exit(hugetlb_exit);
2241
2242static int __init hugetlb_init(void)
2243{
2244	int i;
2245
2246	if (!hugepages_supported())
2247		return 0;
2248
2249	if (!size_to_hstate(default_hstate_size)) {
2250		default_hstate_size = HPAGE_SIZE;
2251		if (!size_to_hstate(default_hstate_size))
2252			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2253	}
2254	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2255	if (default_hstate_max_huge_pages)
2256		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2257
2258	hugetlb_init_hstates();
2259	gather_bootmem_prealloc();
2260	report_hugepages();
2261
2262	hugetlb_sysfs_init();
2263	hugetlb_register_all_nodes();
2264	hugetlb_cgroup_file_init();
2265
2266#ifdef CONFIG_SMP
2267	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2268#else
2269	num_fault_mutexes = 1;
2270#endif
2271	htlb_fault_mutex_table =
2272		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2273	BUG_ON(!htlb_fault_mutex_table);
2274
2275	for (i = 0; i < num_fault_mutexes; i++)
2276		mutex_init(&htlb_fault_mutex_table[i]);
2277	return 0;
2278}
2279module_init(hugetlb_init);
2280
2281/* Should be called on processing a hugepagesz=... option */
2282void __init hugetlb_add_hstate(unsigned int order)
2283{
2284	struct hstate *h;
2285	unsigned long i;
2286
2287	if (size_to_hstate(PAGE_SIZE << order)) {
2288		pr_warning("hugepagesz= specified twice, ignoring\n");
2289		return;
2290	}
2291	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2292	BUG_ON(order == 0);
2293	h = &hstates[hugetlb_max_hstate++];
2294	h->order = order;
2295	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2296	h->nr_huge_pages = 0;
2297	h->free_huge_pages = 0;
2298	for (i = 0; i < MAX_NUMNODES; ++i)
2299		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2300	INIT_LIST_HEAD(&h->hugepage_activelist);
2301	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2302	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2303	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2304					huge_page_size(h)/1024);
2305
2306	parsed_hstate = h;
2307}
2308
2309static int __init hugetlb_nrpages_setup(char *s)
2310{
2311	unsigned long *mhp;
2312	static unsigned long *last_mhp;
2313
2314	/*
2315	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2316	 * so this hugepages= parameter goes to the "default hstate".
2317	 */
2318	if (!hugetlb_max_hstate)
2319		mhp = &default_hstate_max_huge_pages;
2320	else
2321		mhp = &parsed_hstate->max_huge_pages;
2322
2323	if (mhp == last_mhp) {
2324		pr_warning("hugepages= specified twice without "
2325			   "interleaving hugepagesz=, ignoring\n");
2326		return 1;
2327	}
2328
2329	if (sscanf(s, "%lu", mhp) <= 0)
2330		*mhp = 0;
2331
2332	/*
2333	 * Global state is always initialized later in hugetlb_init.
2334	 * But we need to allocate >= MAX_ORDER hstates here early to still
2335	 * use the bootmem allocator.
2336	 */
2337	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2338		hugetlb_hstate_alloc_pages(parsed_hstate);
2339
2340	last_mhp = mhp;
2341
2342	return 1;
2343}
2344__setup("hugepages=", hugetlb_nrpages_setup);
2345
2346static int __init hugetlb_default_setup(char *s)
2347{
2348	default_hstate_size = memparse(s, &s);
2349	return 1;
2350}
2351__setup("default_hugepagesz=", hugetlb_default_setup);
2352
2353static unsigned int cpuset_mems_nr(unsigned int *array)
2354{
2355	int node;
2356	unsigned int nr = 0;
2357
2358	for_each_node_mask(node, cpuset_current_mems_allowed)
2359		nr += array[node];
2360
2361	return nr;
2362}
2363
2364#ifdef CONFIG_SYSCTL
2365static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2366			 struct ctl_table *table, int write,
2367			 void __user *buffer, size_t *length, loff_t *ppos)
2368{
2369	struct hstate *h = &default_hstate;
2370	unsigned long tmp = h->max_huge_pages;
2371	int ret;
2372
2373	if (!hugepages_supported())
2374		return -ENOTSUPP;
2375
2376	table->data = &tmp;
2377	table->maxlen = sizeof(unsigned long);
2378	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2379	if (ret)
2380		goto out;
2381
2382	if (write)
2383		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2384						  NUMA_NO_NODE, tmp, *length);
2385out:
2386	return ret;
2387}
2388
2389int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2390			  void __user *buffer, size_t *length, loff_t *ppos)
2391{
2392
2393	return hugetlb_sysctl_handler_common(false, table, write,
2394							buffer, length, ppos);
2395}
2396
2397#ifdef CONFIG_NUMA
2398int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2399			  void __user *buffer, size_t *length, loff_t *ppos)
2400{
2401	return hugetlb_sysctl_handler_common(true, table, write,
2402							buffer, length, ppos);
2403}
2404#endif /* CONFIG_NUMA */
2405
2406int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2407			void __user *buffer,
2408			size_t *length, loff_t *ppos)
2409{
2410	struct hstate *h = &default_hstate;
2411	unsigned long tmp;
2412	int ret;
2413
2414	if (!hugepages_supported())
2415		return -ENOTSUPP;
2416
2417	tmp = h->nr_overcommit_huge_pages;
2418
2419	if (write && hstate_is_gigantic(h))
2420		return -EINVAL;
2421
2422	table->data = &tmp;
2423	table->maxlen = sizeof(unsigned long);
2424	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2425	if (ret)
2426		goto out;
2427
2428	if (write) {
2429		spin_lock(&hugetlb_lock);
2430		h->nr_overcommit_huge_pages = tmp;
2431		spin_unlock(&hugetlb_lock);
2432	}
2433out:
2434	return ret;
2435}
2436
2437#endif /* CONFIG_SYSCTL */
2438
2439void hugetlb_report_meminfo(struct seq_file *m)
2440{
2441	struct hstate *h = &default_hstate;
2442	if (!hugepages_supported())
2443		return;
2444	seq_printf(m,
2445			"HugePages_Total:   %5lu\n"
2446			"HugePages_Free:    %5lu\n"
2447			"HugePages_Rsvd:    %5lu\n"
2448			"HugePages_Surp:    %5lu\n"
2449			"Hugepagesize:   %8lu kB\n",
2450			h->nr_huge_pages,
2451			h->free_huge_pages,
2452			h->resv_huge_pages,
2453			h->surplus_huge_pages,
2454			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2455}
2456
2457int hugetlb_report_node_meminfo(int nid, char *buf)
2458{
2459	struct hstate *h = &default_hstate;
2460	if (!hugepages_supported())
2461		return 0;
2462	return sprintf(buf,
2463		"Node %d HugePages_Total: %5u\n"
2464		"Node %d HugePages_Free:  %5u\n"
2465		"Node %d HugePages_Surp:  %5u\n",
2466		nid, h->nr_huge_pages_node[nid],
2467		nid, h->free_huge_pages_node[nid],
2468		nid, h->surplus_huge_pages_node[nid]);
2469}
2470
2471void hugetlb_show_meminfo(void)
2472{
2473	struct hstate *h;
2474	int nid;
2475
2476	if (!hugepages_supported())
2477		return;
2478
2479	for_each_node_state(nid, N_MEMORY)
2480		for_each_hstate(h)
2481			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2482				nid,
2483				h->nr_huge_pages_node[nid],
2484				h->free_huge_pages_node[nid],
2485				h->surplus_huge_pages_node[nid],
2486				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2487}
2488
2489/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2490unsigned long hugetlb_total_pages(void)
2491{
2492	struct hstate *h;
2493	unsigned long nr_total_pages = 0;
2494
2495	for_each_hstate(h)
2496		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2497	return nr_total_pages;
2498}
2499
2500static int hugetlb_acct_memory(struct hstate *h, long delta)
2501{
2502	int ret = -ENOMEM;
2503
2504	spin_lock(&hugetlb_lock);
2505	/*
2506	 * When cpuset is configured, it breaks the strict hugetlb page
2507	 * reservation as the accounting is done on a global variable. Such
2508	 * reservation is completely rubbish in the presence of cpuset because
2509	 * the reservation is not checked against page availability for the
2510	 * current cpuset. Application can still potentially OOM'ed by kernel
2511	 * with lack of free htlb page in cpuset that the task is in.
2512	 * Attempt to enforce strict accounting with cpuset is almost
2513	 * impossible (or too ugly) because cpuset is too fluid that
2514	 * task or memory node can be dynamically moved between cpusets.
2515	 *
2516	 * The change of semantics for shared hugetlb mapping with cpuset is
2517	 * undesirable. However, in order to preserve some of the semantics,
2518	 * we fall back to check against current free page availability as
2519	 * a best attempt and hopefully to minimize the impact of changing
2520	 * semantics that cpuset has.
2521	 */
2522	if (delta > 0) {
2523		if (gather_surplus_pages(h, delta) < 0)
2524			goto out;
2525
2526		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2527			return_unused_surplus_pages(h, delta);
2528			goto out;
2529		}
2530	}
2531
2532	ret = 0;
2533	if (delta < 0)
2534		return_unused_surplus_pages(h, (unsigned long) -delta);
2535
2536out:
2537	spin_unlock(&hugetlb_lock);
2538	return ret;
2539}
2540
2541static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2542{
2543	struct resv_map *resv = vma_resv_map(vma);
2544
2545	/*
2546	 * This new VMA should share its siblings reservation map if present.
2547	 * The VMA will only ever have a valid reservation map pointer where
2548	 * it is being copied for another still existing VMA.  As that VMA
2549	 * has a reference to the reservation map it cannot disappear until
2550	 * after this open call completes.  It is therefore safe to take a
2551	 * new reference here without additional locking.
2552	 */
2553	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2554		kref_get(&resv->refs);
2555}
2556
2557static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2558{
2559	struct hstate *h = hstate_vma(vma);
2560	struct resv_map *resv = vma_resv_map(vma);
2561	struct hugepage_subpool *spool = subpool_vma(vma);
2562	unsigned long reserve, start, end;
2563	long gbl_reserve;
2564
2565	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2566		return;
2567
2568	start = vma_hugecache_offset(h, vma, vma->vm_start);
2569	end = vma_hugecache_offset(h, vma, vma->vm_end);
2570
2571	reserve = (end - start) - region_count(resv, start, end);
2572
2573	kref_put(&resv->refs, resv_map_release);
2574
2575	if (reserve) {
2576		/*
2577		 * Decrement reserve counts.  The global reserve count may be
2578		 * adjusted if the subpool has a minimum size.
2579		 */
2580		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2581		hugetlb_acct_memory(h, -gbl_reserve);
2582	}
2583}
2584
2585/*
2586 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2587 * handle_mm_fault() to try to instantiate regular-sized pages in the
2588 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2589 * this far.
2590 */
2591static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2592{
2593	BUG();
2594	return 0;
2595}
2596
2597const struct vm_operations_struct hugetlb_vm_ops = {
2598	.fault = hugetlb_vm_op_fault,
2599	.open = hugetlb_vm_op_open,
2600	.close = hugetlb_vm_op_close,
2601};
2602
2603static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2604				int writable)
2605{
2606	pte_t entry;
2607
2608	if (writable) {
2609		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2610					 vma->vm_page_prot)));
2611	} else {
2612		entry = huge_pte_wrprotect(mk_huge_pte(page,
2613					   vma->vm_page_prot));
2614	}
2615	entry = pte_mkyoung(entry);
2616	entry = pte_mkhuge(entry);
2617	entry = arch_make_huge_pte(entry, vma, page, writable);
2618
2619	return entry;
2620}
2621
2622static void set_huge_ptep_writable(struct vm_area_struct *vma,
2623				   unsigned long address, pte_t *ptep)
2624{
2625	pte_t entry;
2626
2627	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2628	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2629		update_mmu_cache(vma, address, ptep);
2630}
2631
2632static int is_hugetlb_entry_migration(pte_t pte)
2633{
2634	swp_entry_t swp;
2635
2636	if (huge_pte_none(pte) || pte_present(pte))
2637		return 0;
2638	swp = pte_to_swp_entry(pte);
2639	if (non_swap_entry(swp) && is_migration_entry(swp))
2640		return 1;
2641	else
2642		return 0;
2643}
2644
2645static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2646{
2647	swp_entry_t swp;
2648
2649	if (huge_pte_none(pte) || pte_present(pte))
2650		return 0;
2651	swp = pte_to_swp_entry(pte);
2652	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2653		return 1;
2654	else
2655		return 0;
2656}
2657
2658int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2659			    struct vm_area_struct *vma)
2660{
2661	pte_t *src_pte, *dst_pte, entry;
2662	struct page *ptepage;
2663	unsigned long addr;
2664	int cow;
2665	struct hstate *h = hstate_vma(vma);
2666	unsigned long sz = huge_page_size(h);
2667	unsigned long mmun_start;	/* For mmu_notifiers */
2668	unsigned long mmun_end;		/* For mmu_notifiers */
2669	int ret = 0;
2670
2671	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2672
2673	mmun_start = vma->vm_start;
2674	mmun_end = vma->vm_end;
2675	if (cow)
2676		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2677
2678	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2679		spinlock_t *src_ptl, *dst_ptl;
2680		src_pte = huge_pte_offset(src, addr);
2681		if (!src_pte)
2682			continue;
2683		dst_pte = huge_pte_alloc(dst, addr, sz);
2684		if (!dst_pte) {
2685			ret = -ENOMEM;
2686			break;
2687		}
2688
2689		/* If the pagetables are shared don't copy or take references */
2690		if (dst_pte == src_pte)
2691			continue;
2692
2693		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2694		src_ptl = huge_pte_lockptr(h, src, src_pte);
2695		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2696		entry = huge_ptep_get(src_pte);
2697		if (huge_pte_none(entry)) { /* skip none entry */
2698			;
2699		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2700				    is_hugetlb_entry_hwpoisoned(entry))) {
2701			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2702
2703			if (is_write_migration_entry(swp_entry) && cow) {
2704				/*
2705				 * COW mappings require pages in both
2706				 * parent and child to be set to read.
2707				 */
2708				make_migration_entry_read(&swp_entry);
2709				entry = swp_entry_to_pte(swp_entry);
2710				set_huge_pte_at(src, addr, src_pte, entry);
2711			}
2712			set_huge_pte_at(dst, addr, dst_pte, entry);
2713		} else {
2714			if (cow) {
2715				huge_ptep_set_wrprotect(src, addr, src_pte);
2716				mmu_notifier_invalidate_range(src, mmun_start,
2717								   mmun_end);
2718			}
2719			entry = huge_ptep_get(src_pte);
2720			ptepage = pte_page(entry);
2721			get_page(ptepage);
2722			page_dup_rmap(ptepage);
2723			set_huge_pte_at(dst, addr, dst_pte, entry);
2724		}
2725		spin_unlock(src_ptl);
2726		spin_unlock(dst_ptl);
2727	}
2728
2729	if (cow)
2730		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2731
2732	return ret;
2733}
2734
2735void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2736			    unsigned long start, unsigned long end,
2737			    struct page *ref_page)
2738{
2739	int force_flush = 0;
2740	struct mm_struct *mm = vma->vm_mm;
2741	unsigned long address;
2742	pte_t *ptep;
2743	pte_t pte;
2744	spinlock_t *ptl;
2745	struct page *page;
2746	struct hstate *h = hstate_vma(vma);
2747	unsigned long sz = huge_page_size(h);
2748	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2749	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2750
2751	WARN_ON(!is_vm_hugetlb_page(vma));
2752	BUG_ON(start & ~huge_page_mask(h));
2753	BUG_ON(end & ~huge_page_mask(h));
2754
2755	tlb_start_vma(tlb, vma);
2756	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2757	address = start;
2758again:
2759	for (; address < end; address += sz) {
2760		ptep = huge_pte_offset(mm, address);
2761		if (!ptep)
2762			continue;
2763
2764		ptl = huge_pte_lock(h, mm, ptep);
2765		if (huge_pmd_unshare(mm, &address, ptep))
2766			goto unlock;
2767
2768		pte = huge_ptep_get(ptep);
2769		if (huge_pte_none(pte))
2770			goto unlock;
2771
2772		/*
2773		 * Migrating hugepage or HWPoisoned hugepage is already
2774		 * unmapped and its refcount is dropped, so just clear pte here.
2775		 */
2776		if (unlikely(!pte_present(pte))) {
2777			huge_pte_clear(mm, address, ptep);
2778			goto unlock;
2779		}
2780
2781		page = pte_page(pte);
2782		/*
2783		 * If a reference page is supplied, it is because a specific
2784		 * page is being unmapped, not a range. Ensure the page we
2785		 * are about to unmap is the actual page of interest.
2786		 */
2787		if (ref_page) {
2788			if (page != ref_page)
2789				goto unlock;
2790
2791			/*
2792			 * Mark the VMA as having unmapped its page so that
2793			 * future faults in this VMA will fail rather than
2794			 * looking like data was lost
2795			 */
2796			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2797		}
2798
2799		pte = huge_ptep_get_and_clear(mm, address, ptep);
2800		tlb_remove_tlb_entry(tlb, ptep, address);
2801		if (huge_pte_dirty(pte))
2802			set_page_dirty(page);
2803
2804		page_remove_rmap(page);
2805		force_flush = !__tlb_remove_page(tlb, page);
2806		if (force_flush) {
2807			address += sz;
2808			spin_unlock(ptl);
2809			break;
2810		}
2811		/* Bail out after unmapping reference page if supplied */
2812		if (ref_page) {
2813			spin_unlock(ptl);
2814			break;
2815		}
2816unlock:
2817		spin_unlock(ptl);
2818	}
2819	/*
2820	 * mmu_gather ran out of room to batch pages, we break out of
2821	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2822	 * and page-free while holding it.
2823	 */
2824	if (force_flush) {
2825		force_flush = 0;
2826		tlb_flush_mmu(tlb);
2827		if (address < end && !ref_page)
2828			goto again;
2829	}
2830	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2831	tlb_end_vma(tlb, vma);
2832}
2833
2834void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2835			  struct vm_area_struct *vma, unsigned long start,
2836			  unsigned long end, struct page *ref_page)
2837{
2838	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2839
2840	/*
2841	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2842	 * test will fail on a vma being torn down, and not grab a page table
2843	 * on its way out.  We're lucky that the flag has such an appropriate
2844	 * name, and can in fact be safely cleared here. We could clear it
2845	 * before the __unmap_hugepage_range above, but all that's necessary
2846	 * is to clear it before releasing the i_mmap_rwsem. This works
2847	 * because in the context this is called, the VMA is about to be
2848	 * destroyed and the i_mmap_rwsem is held.
2849	 */
2850	vma->vm_flags &= ~VM_MAYSHARE;
2851}
2852
2853void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2854			  unsigned long end, struct page *ref_page)
2855{
2856	struct mm_struct *mm;
2857	struct mmu_gather tlb;
2858
2859	mm = vma->vm_mm;
2860
2861	tlb_gather_mmu(&tlb, mm, start, end);
2862	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2863	tlb_finish_mmu(&tlb, start, end);
2864}
2865
2866/*
2867 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2868 * mappping it owns the reserve page for. The intention is to unmap the page
2869 * from other VMAs and let the children be SIGKILLed if they are faulting the
2870 * same region.
2871 */
2872static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2873			      struct page *page, unsigned long address)
2874{
2875	struct hstate *h = hstate_vma(vma);
2876	struct vm_area_struct *iter_vma;
2877	struct address_space *mapping;
2878	pgoff_t pgoff;
2879
2880	/*
2881	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2882	 * from page cache lookup which is in HPAGE_SIZE units.
2883	 */
2884	address = address & huge_page_mask(h);
2885	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2886			vma->vm_pgoff;
2887	mapping = file_inode(vma->vm_file)->i_mapping;
2888
2889	/*
2890	 * Take the mapping lock for the duration of the table walk. As
2891	 * this mapping should be shared between all the VMAs,
2892	 * __unmap_hugepage_range() is called as the lock is already held
2893	 */
2894	i_mmap_lock_write(mapping);
2895	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2896		/* Do not unmap the current VMA */
2897		if (iter_vma == vma)
2898			continue;
2899
2900		/*
2901		 * Shared VMAs have their own reserves and do not affect
2902		 * MAP_PRIVATE accounting but it is possible that a shared
2903		 * VMA is using the same page so check and skip such VMAs.
2904		 */
2905		if (iter_vma->vm_flags & VM_MAYSHARE)
2906			continue;
2907
2908		/*
2909		 * Unmap the page from other VMAs without their own reserves.
2910		 * They get marked to be SIGKILLed if they fault in these
2911		 * areas. This is because a future no-page fault on this VMA
2912		 * could insert a zeroed page instead of the data existing
2913		 * from the time of fork. This would look like data corruption
2914		 */
2915		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2916			unmap_hugepage_range(iter_vma, address,
2917					     address + huge_page_size(h), page);
2918	}
2919	i_mmap_unlock_write(mapping);
2920}
2921
2922/*
2923 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2924 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2925 * cannot race with other handlers or page migration.
2926 * Keep the pte_same checks anyway to make transition from the mutex easier.
2927 */
2928static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2929			unsigned long address, pte_t *ptep, pte_t pte,
2930			struct page *pagecache_page, spinlock_t *ptl)
2931{
2932	struct hstate *h = hstate_vma(vma);
2933	struct page *old_page, *new_page;
2934	int ret = 0, outside_reserve = 0;
2935	unsigned long mmun_start;	/* For mmu_notifiers */
2936	unsigned long mmun_end;		/* For mmu_notifiers */
2937
2938	old_page = pte_page(pte);
2939
2940retry_avoidcopy:
2941	/* If no-one else is actually using this page, avoid the copy
2942	 * and just make the page writable */
2943	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2944		page_move_anon_rmap(old_page, vma, address);
2945		set_huge_ptep_writable(vma, address, ptep);
2946		return 0;
2947	}
2948
2949	/*
2950	 * If the process that created a MAP_PRIVATE mapping is about to
2951	 * perform a COW due to a shared page count, attempt to satisfy
2952	 * the allocation without using the existing reserves. The pagecache
2953	 * page is used to determine if the reserve at this address was
2954	 * consumed or not. If reserves were used, a partial faulted mapping
2955	 * at the time of fork() could consume its reserves on COW instead
2956	 * of the full address range.
2957	 */
2958	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2959			old_page != pagecache_page)
2960		outside_reserve = 1;
2961
2962	page_cache_get(old_page);
2963
2964	/*
2965	 * Drop page table lock as buddy allocator may be called. It will
2966	 * be acquired again before returning to the caller, as expected.
2967	 */
2968	spin_unlock(ptl);
2969	new_page = alloc_huge_page(vma, address, outside_reserve);
2970
2971	if (IS_ERR(new_page)) {
2972		/*
2973		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2974		 * it is due to references held by a child and an insufficient
2975		 * huge page pool. To guarantee the original mappers
2976		 * reliability, unmap the page from child processes. The child
2977		 * may get SIGKILLed if it later faults.
2978		 */
2979		if (outside_reserve) {
2980			page_cache_release(old_page);
2981			BUG_ON(huge_pte_none(pte));
2982			unmap_ref_private(mm, vma, old_page, address);
2983			BUG_ON(huge_pte_none(pte));
2984			spin_lock(ptl);
2985			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2986			if (likely(ptep &&
2987				   pte_same(huge_ptep_get(ptep), pte)))
2988				goto retry_avoidcopy;
2989			/*
2990			 * race occurs while re-acquiring page table
2991			 * lock, and our job is done.
2992			 */
2993			return 0;
2994		}
2995
2996		ret = (PTR_ERR(new_page) == -ENOMEM) ?
2997			VM_FAULT_OOM : VM_FAULT_SIGBUS;
2998		goto out_release_old;
2999	}
3000
3001	/*
3002	 * When the original hugepage is shared one, it does not have
3003	 * anon_vma prepared.
3004	 */
3005	if (unlikely(anon_vma_prepare(vma))) {
3006		ret = VM_FAULT_OOM;
3007		goto out_release_all;
3008	}
3009
3010	copy_user_huge_page(new_page, old_page, address, vma,
3011			    pages_per_huge_page(h));
3012	__SetPageUptodate(new_page);
3013	set_page_huge_active(new_page);
3014
3015	mmun_start = address & huge_page_mask(h);
3016	mmun_end = mmun_start + huge_page_size(h);
3017	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3018
3019	/*
3020	 * Retake the page table lock to check for racing updates
3021	 * before the page tables are altered
3022	 */
3023	spin_lock(ptl);
3024	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3025	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3026		ClearPagePrivate(new_page);
3027
3028		/* Break COW */
3029		huge_ptep_clear_flush(vma, address, ptep);
3030		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3031		set_huge_pte_at(mm, address, ptep,
3032				make_huge_pte(vma, new_page, 1));
3033		page_remove_rmap(old_page);
3034		hugepage_add_new_anon_rmap(new_page, vma, address);
3035		/* Make the old page be freed below */
3036		new_page = old_page;
3037	}
3038	spin_unlock(ptl);
3039	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3040out_release_all:
3041	page_cache_release(new_page);
3042out_release_old:
3043	page_cache_release(old_page);
3044
3045	spin_lock(ptl); /* Caller expects lock to be held */
3046	return ret;
3047}
3048
3049/* Return the pagecache page at a given address within a VMA */
3050static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3051			struct vm_area_struct *vma, unsigned long address)
3052{
3053	struct address_space *mapping;
3054	pgoff_t idx;
3055
3056	mapping = vma->vm_file->f_mapping;
3057	idx = vma_hugecache_offset(h, vma, address);
3058
3059	return find_lock_page(mapping, idx);
3060}
3061
3062/*
3063 * Return whether there is a pagecache page to back given address within VMA.
3064 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3065 */
3066static bool hugetlbfs_pagecache_present(struct hstate *h,
3067			struct vm_area_struct *vma, unsigned long address)
3068{
3069	struct address_space *mapping;
3070	pgoff_t idx;
3071	struct page *page;
3072
3073	mapping = vma->vm_file->f_mapping;
3074	idx = vma_hugecache_offset(h, vma, address);
3075
3076	page = find_get_page(mapping, idx);
3077	if (page)
3078		put_page(page);
3079	return page != NULL;
3080}
3081
3082static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3083			   struct address_space *mapping, pgoff_t idx,
3084			   unsigned long address, pte_t *ptep, unsigned int flags)
3085{
3086	struct hstate *h = hstate_vma(vma);
3087	int ret = VM_FAULT_SIGBUS;
3088	int anon_rmap = 0;
3089	unsigned long size;
3090	struct page *page;
3091	pte_t new_pte;
3092	spinlock_t *ptl;
3093
3094	/*
3095	 * Currently, we are forced to kill the process in the event the
3096	 * original mapper has unmapped pages from the child due to a failed
3097	 * COW. Warn that such a situation has occurred as it may not be obvious
3098	 */
3099	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3100		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3101			   current->pid);
3102		return ret;
3103	}
3104
3105	/*
3106	 * Use page lock to guard against racing truncation
3107	 * before we get page_table_lock.
3108	 */
3109retry:
3110	page = find_lock_page(mapping, idx);
3111	if (!page) {
3112		size = i_size_read(mapping->host) >> huge_page_shift(h);
3113		if (idx >= size)
3114			goto out;
3115		page = alloc_huge_page(vma, address, 0);
3116		if (IS_ERR(page)) {
3117			ret = PTR_ERR(page);
3118			if (ret == -ENOMEM)
3119				ret = VM_FAULT_OOM;
3120			else
3121				ret = VM_FAULT_SIGBUS;
3122			goto out;
3123		}
3124		clear_huge_page(page, address, pages_per_huge_page(h));
3125		__SetPageUptodate(page);
3126		set_page_huge_active(page);
3127
3128		if (vma->vm_flags & VM_MAYSHARE) {
3129			int err;
3130			struct inode *inode = mapping->host;
3131
3132			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3133			if (err) {
3134				put_page(page);
3135				if (err == -EEXIST)
3136					goto retry;
3137				goto out;
3138			}
3139			ClearPagePrivate(page);
3140
3141			spin_lock(&inode->i_lock);
3142			inode->i_blocks += blocks_per_huge_page(h);
3143			spin_unlock(&inode->i_lock);
3144		} else {
3145			lock_page(page);
3146			if (unlikely(anon_vma_prepare(vma))) {
3147				ret = VM_FAULT_OOM;
3148				goto backout_unlocked;
3149			}
3150			anon_rmap = 1;
3151		}
3152	} else {
3153		/*
3154		 * If memory error occurs between mmap() and fault, some process
3155		 * don't have hwpoisoned swap entry for errored virtual address.
3156		 * So we need to block hugepage fault by PG_hwpoison bit check.
3157		 */
3158		if (unlikely(PageHWPoison(page))) {
3159			ret = VM_FAULT_HWPOISON |
3160				VM_FAULT_SET_HINDEX(hstate_index(h));
3161			goto backout_unlocked;
3162		}
3163	}
3164
3165	/*
3166	 * If we are going to COW a private mapping later, we examine the
3167	 * pending reservations for this page now. This will ensure that
3168	 * any allocations necessary to record that reservation occur outside
3169	 * the spinlock.
3170	 */
3171	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3172		if (vma_needs_reservation(h, vma, address) < 0) {
3173			ret = VM_FAULT_OOM;
3174			goto backout_unlocked;
3175		}
3176
3177	ptl = huge_pte_lockptr(h, mm, ptep);
3178	spin_lock(ptl);
3179	size = i_size_read(mapping->host) >> huge_page_shift(h);
3180	if (idx >= size)
3181		goto backout;
3182
3183	ret = 0;
3184	if (!huge_pte_none(huge_ptep_get(ptep)))
3185		goto backout;
3186
3187	if (anon_rmap) {
3188		ClearPagePrivate(page);
3189		hugepage_add_new_anon_rmap(page, vma, address);
3190	} else
3191		page_dup_rmap(page);
3192	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3193				&& (vma->vm_flags & VM_SHARED)));
3194	set_huge_pte_at(mm, address, ptep, new_pte);
3195
3196	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3197		/* Optimization, do the COW without a second fault */
3198		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3199	}
3200
3201	spin_unlock(ptl);
3202	unlock_page(page);
3203out:
3204	return ret;
3205
3206backout:
3207	spin_unlock(ptl);
3208backout_unlocked:
3209	unlock_page(page);
3210	put_page(page);
3211	goto out;
3212}
3213
3214#ifdef CONFIG_SMP
3215static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3216			    struct vm_area_struct *vma,
3217			    struct address_space *mapping,
3218			    pgoff_t idx, unsigned long address)
3219{
3220	unsigned long key[2];
3221	u32 hash;
3222
3223	if (vma->vm_flags & VM_SHARED) {
3224		key[0] = (unsigned long) mapping;
3225		key[1] = idx;
3226	} else {
3227		key[0] = (unsigned long) mm;
3228		key[1] = address >> huge_page_shift(h);
3229	}
3230
3231	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3232
3233	return hash & (num_fault_mutexes - 1);
3234}
3235#else
3236/*
3237 * For uniprocesor systems we always use a single mutex, so just
3238 * return 0 and avoid the hashing overhead.
3239 */
3240static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3241			    struct vm_area_struct *vma,
3242			    struct address_space *mapping,
3243			    pgoff_t idx, unsigned long address)
3244{
3245	return 0;
3246}
3247#endif
3248
3249int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3250			unsigned long address, unsigned int flags)
3251{
3252	pte_t *ptep, entry;
3253	spinlock_t *ptl;
3254	int ret;
3255	u32 hash;
3256	pgoff_t idx;
3257	struct page *page = NULL;
3258	struct page *pagecache_page = NULL;
3259	struct hstate *h = hstate_vma(vma);
3260	struct address_space *mapping;
3261	int need_wait_lock = 0;
3262
3263	address &= huge_page_mask(h);
3264
3265	ptep = huge_pte_offset(mm, address);
3266	if (ptep) {
3267		entry = huge_ptep_get(ptep);
3268		if (unlikely(is_hugetlb_entry_migration(entry))) {
3269			migration_entry_wait_huge(vma, mm, ptep);
3270			return 0;
3271		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3272			return VM_FAULT_HWPOISON_LARGE |
3273				VM_FAULT_SET_HINDEX(hstate_index(h));
3274	}
3275
3276	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3277	if (!ptep)
3278		return VM_FAULT_OOM;
3279
3280	mapping = vma->vm_file->f_mapping;
3281	idx = vma_hugecache_offset(h, vma, address);
3282
3283	/*
3284	 * Serialize hugepage allocation and instantiation, so that we don't
3285	 * get spurious allocation failures if two CPUs race to instantiate
3286	 * the same page in the page cache.
3287	 */
3288	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3289	mutex_lock(&htlb_fault_mutex_table[hash]);
3290
3291	entry = huge_ptep_get(ptep);
3292	if (huge_pte_none(entry)) {
3293		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3294		goto out_mutex;
3295	}
3296
3297	ret = 0;
3298
3299	/*
3300	 * entry could be a migration/hwpoison entry at this point, so this
3301	 * check prevents the kernel from going below assuming that we have
3302	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3303	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3304	 * handle it.
3305	 */
3306	if (!pte_present(entry))
3307		goto out_mutex;
3308
3309	/*
3310	 * If we are going to COW the mapping later, we examine the pending
3311	 * reservations for this page now. This will ensure that any
3312	 * allocations necessary to record that reservation occur outside the
3313	 * spinlock. For private mappings, we also lookup the pagecache
3314	 * page now as it is used to determine if a reservation has been
3315	 * consumed.
3316	 */
3317	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3318		if (vma_needs_reservation(h, vma, address) < 0) {
3319			ret = VM_FAULT_OOM;
3320			goto out_mutex;
3321		}
3322
3323		if (!(vma->vm_flags & VM_MAYSHARE))
3324			pagecache_page = hugetlbfs_pagecache_page(h,
3325								vma, address);
3326	}
3327
3328	ptl = huge_pte_lock(h, mm, ptep);
3329
3330	/* Check for a racing update before calling hugetlb_cow */
3331	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3332		goto out_ptl;
3333
3334	/*
3335	 * hugetlb_cow() requires page locks of pte_page(entry) and
3336	 * pagecache_page, so here we need take the former one
3337	 * when page != pagecache_page or !pagecache_page.
3338	 */
3339	page = pte_page(entry);
3340	if (page != pagecache_page)
3341		if (!trylock_page(page)) {
3342			need_wait_lock = 1;
3343			goto out_ptl;
3344		}
3345
3346	get_page(page);
3347
3348	if (flags & FAULT_FLAG_WRITE) {
3349		if (!huge_pte_write(entry)) {
3350			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3351					pagecache_page, ptl);
3352			goto out_put_page;
3353		}
3354		entry = huge_pte_mkdirty(entry);
3355	}
3356	entry = pte_mkyoung(entry);
3357	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3358						flags & FAULT_FLAG_WRITE))
3359		update_mmu_cache(vma, address, ptep);
3360out_put_page:
3361	if (page != pagecache_page)
3362		unlock_page(page);
3363	put_page(page);
3364out_ptl:
3365	spin_unlock(ptl);
3366
3367	if (pagecache_page) {
3368		unlock_page(pagecache_page);
3369		put_page(pagecache_page);
3370	}
3371out_mutex:
3372	mutex_unlock(&htlb_fault_mutex_table[hash]);
3373	/*
3374	 * Generally it's safe to hold refcount during waiting page lock. But
3375	 * here we just wait to defer the next page fault to avoid busy loop and
3376	 * the page is not used after unlocked before returning from the current
3377	 * page fault. So we are safe from accessing freed page, even if we wait
3378	 * here without taking refcount.
3379	 */
3380	if (need_wait_lock)
3381		wait_on_page_locked(page);
3382	return ret;
3383}
3384
3385long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3386			 struct page **pages, struct vm_area_struct **vmas,
3387			 unsigned long *position, unsigned long *nr_pages,
3388			 long i, unsigned int flags)
3389{
3390	unsigned long pfn_offset;
3391	unsigned long vaddr = *position;
3392	unsigned long remainder = *nr_pages;
3393	struct hstate *h = hstate_vma(vma);
3394
3395	while (vaddr < vma->vm_end && remainder) {
3396		pte_t *pte;
3397		spinlock_t *ptl = NULL;
3398		int absent;
3399		struct page *page;
3400
3401		/*
3402		 * If we have a pending SIGKILL, don't keep faulting pages and
3403		 * potentially allocating memory.
3404		 */
3405		if (unlikely(fatal_signal_pending(current))) {
3406			remainder = 0;
3407			break;
3408		}
3409
3410		/*
3411		 * Some archs (sparc64, sh*) have multiple pte_ts to
3412		 * each hugepage.  We have to make sure we get the
3413		 * first, for the page indexing below to work.
3414		 *
3415		 * Note that page table lock is not held when pte is null.
3416		 */
3417		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3418		if (pte)
3419			ptl = huge_pte_lock(h, mm, pte);
3420		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3421
3422		/*
3423		 * When coredumping, it suits get_dump_page if we just return
3424		 * an error where there's an empty slot with no huge pagecache
3425		 * to back it.  This way, we avoid allocating a hugepage, and
3426		 * the sparse dumpfile avoids allocating disk blocks, but its
3427		 * huge holes still show up with zeroes where they need to be.
3428		 */
3429		if (absent && (flags & FOLL_DUMP) &&
3430		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3431			if (pte)
3432				spin_unlock(ptl);
3433			remainder = 0;
3434			break;
3435		}
3436
3437		/*
3438		 * We need call hugetlb_fault for both hugepages under migration
3439		 * (in which case hugetlb_fault waits for the migration,) and
3440		 * hwpoisoned hugepages (in which case we need to prevent the
3441		 * caller from accessing to them.) In order to do this, we use
3442		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3443		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3444		 * both cases, and because we can't follow correct pages
3445		 * directly from any kind of swap entries.
3446		 */
3447		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3448		    ((flags & FOLL_WRITE) &&
3449		      !huge_pte_write(huge_ptep_get(pte)))) {
3450			int ret;
3451
3452			if (pte)
3453				spin_unlock(ptl);
3454			ret = hugetlb_fault(mm, vma, vaddr,
3455				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3456			if (!(ret & VM_FAULT_ERROR))
3457				continue;
3458
3459			remainder = 0;
3460			break;
3461		}
3462
3463		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3464		page = pte_page(huge_ptep_get(pte));
3465same_page:
3466		if (pages) {
3467			pages[i] = mem_map_offset(page, pfn_offset);
3468			get_page_foll(pages[i]);
3469		}
3470
3471		if (vmas)
3472			vmas[i] = vma;
3473
3474		vaddr += PAGE_SIZE;
3475		++pfn_offset;
3476		--remainder;
3477		++i;
3478		if (vaddr < vma->vm_end && remainder &&
3479				pfn_offset < pages_per_huge_page(h)) {
3480			/*
3481			 * We use pfn_offset to avoid touching the pageframes
3482			 * of this compound page.
3483			 */
3484			goto same_page;
3485		}
3486		spin_unlock(ptl);
3487	}
3488	*nr_pages = remainder;
3489	*position = vaddr;
3490
3491	return i ? i : -EFAULT;
3492}
3493
3494unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3495		unsigned long address, unsigned long end, pgprot_t newprot)
3496{
3497	struct mm_struct *mm = vma->vm_mm;
3498	unsigned long start = address;
3499	pte_t *ptep;
3500	pte_t pte;
3501	struct hstate *h = hstate_vma(vma);
3502	unsigned long pages = 0;
3503
3504	BUG_ON(address >= end);
3505	flush_cache_range(vma, address, end);
3506
3507	mmu_notifier_invalidate_range_start(mm, start, end);
3508	i_mmap_lock_write(vma->vm_file->f_mapping);
3509	for (; address < end; address += huge_page_size(h)) {
3510		spinlock_t *ptl;
3511		ptep = huge_pte_offset(mm, address);
3512		if (!ptep)
3513			continue;
3514		ptl = huge_pte_lock(h, mm, ptep);
3515		if (huge_pmd_unshare(mm, &address, ptep)) {
3516			pages++;
3517			spin_unlock(ptl);
3518			continue;
3519		}
3520		pte = huge_ptep_get(ptep);
3521		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3522			spin_unlock(ptl);
3523			continue;
3524		}
3525		if (unlikely(is_hugetlb_entry_migration(pte))) {
3526			swp_entry_t entry = pte_to_swp_entry(pte);
3527
3528			if (is_write_migration_entry(entry)) {
3529				pte_t newpte;
3530
3531				make_migration_entry_read(&entry);
3532				newpte = swp_entry_to_pte(entry);
3533				set_huge_pte_at(mm, address, ptep, newpte);
3534				pages++;
3535			}
3536			spin_unlock(ptl);
3537			continue;
3538		}
3539		if (!huge_pte_none(pte)) {
3540			pte = huge_ptep_get_and_clear(mm, address, ptep);
3541			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3542			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3543			set_huge_pte_at(mm, address, ptep, pte);
3544			pages++;
3545		}
3546		spin_unlock(ptl);
3547	}
3548	/*
3549	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3550	 * may have cleared our pud entry and done put_page on the page table:
3551	 * once we release i_mmap_rwsem, another task can do the final put_page
3552	 * and that page table be reused and filled with junk.
3553	 */
3554	flush_tlb_range(vma, start, end);
3555	mmu_notifier_invalidate_range(mm, start, end);
3556	i_mmap_unlock_write(vma->vm_file->f_mapping);
3557	mmu_notifier_invalidate_range_end(mm, start, end);
3558
3559	return pages << h->order;
3560}
3561
3562int hugetlb_reserve_pages(struct inode *inode,
3563					long from, long to,
3564					struct vm_area_struct *vma,
3565					vm_flags_t vm_flags)
3566{
3567	long ret, chg;
3568	struct hstate *h = hstate_inode(inode);
3569	struct hugepage_subpool *spool = subpool_inode(inode);
3570	struct resv_map *resv_map;
3571	long gbl_reserve;
3572
3573	/*
3574	 * Only apply hugepage reservation if asked. At fault time, an
3575	 * attempt will be made for VM_NORESERVE to allocate a page
3576	 * without using reserves
3577	 */
3578	if (vm_flags & VM_NORESERVE)
3579		return 0;
3580
3581	/*
3582	 * Shared mappings base their reservation on the number of pages that
3583	 * are already allocated on behalf of the file. Private mappings need
3584	 * to reserve the full area even if read-only as mprotect() may be
3585	 * called to make the mapping read-write. Assume !vma is a shm mapping
3586	 */
3587	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3588		resv_map = inode_resv_map(inode);
3589
3590		chg = region_chg(resv_map, from, to);
3591
3592	} else {
3593		resv_map = resv_map_alloc();
3594		if (!resv_map)
3595			return -ENOMEM;
3596
3597		chg = to - from;
3598
3599		set_vma_resv_map(vma, resv_map);
3600		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3601	}
3602
3603	if (chg < 0) {
3604		ret = chg;
3605		goto out_err;
3606	}
3607
3608	/*
3609	 * There must be enough pages in the subpool for the mapping. If
3610	 * the subpool has a minimum size, there may be some global
3611	 * reservations already in place (gbl_reserve).
3612	 */
3613	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3614	if (gbl_reserve < 0) {
3615		ret = -ENOSPC;
3616		goto out_err;
3617	}
3618
3619	/*
3620	 * Check enough hugepages are available for the reservation.
3621	 * Hand the pages back to the subpool if there are not
3622	 */
3623	ret = hugetlb_acct_memory(h, gbl_reserve);
3624	if (ret < 0) {
3625		/* put back original number of pages, chg */
3626		(void)hugepage_subpool_put_pages(spool, chg);
3627		goto out_err;
3628	}
3629
3630	/*
3631	 * Account for the reservations made. Shared mappings record regions
3632	 * that have reservations as they are shared by multiple VMAs.
3633	 * When the last VMA disappears, the region map says how much
3634	 * the reservation was and the page cache tells how much of
3635	 * the reservation was consumed. Private mappings are per-VMA and
3636	 * only the consumed reservations are tracked. When the VMA
3637	 * disappears, the original reservation is the VMA size and the
3638	 * consumed reservations are stored in the map. Hence, nothing
3639	 * else has to be done for private mappings here
3640	 */
3641	if (!vma || vma->vm_flags & VM_MAYSHARE)
3642		region_add(resv_map, from, to);
3643	return 0;
3644out_err:
3645	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3646		kref_put(&resv_map->refs, resv_map_release);
3647	return ret;
3648}
3649
3650void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3651{
3652	struct hstate *h = hstate_inode(inode);
3653	struct resv_map *resv_map = inode_resv_map(inode);
3654	long chg = 0;
3655	struct hugepage_subpool *spool = subpool_inode(inode);
3656	long gbl_reserve;
3657
3658	if (resv_map)
3659		chg = region_truncate(resv_map, offset);
3660	spin_lock(&inode->i_lock);
3661	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3662	spin_unlock(&inode->i_lock);
3663
3664	/*
3665	 * If the subpool has a minimum size, the number of global
3666	 * reservations to be released may be adjusted.
3667	 */
3668	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3669	hugetlb_acct_memory(h, -gbl_reserve);
3670}
3671
3672#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3673static unsigned long page_table_shareable(struct vm_area_struct *svma,
3674				struct vm_area_struct *vma,
3675				unsigned long addr, pgoff_t idx)
3676{
3677	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3678				svma->vm_start;
3679	unsigned long sbase = saddr & PUD_MASK;
3680	unsigned long s_end = sbase + PUD_SIZE;
3681
3682	/* Allow segments to share if only one is marked locked */
3683	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3684	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3685
3686	/*
3687	 * match the virtual addresses, permission and the alignment of the
3688	 * page table page.
3689	 */
3690	if (pmd_index(addr) != pmd_index(saddr) ||
3691	    vm_flags != svm_flags ||
3692	    sbase < svma->vm_start || svma->vm_end < s_end)
3693		return 0;
3694
3695	return saddr;
3696}
3697
3698static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3699{
3700	unsigned long base = addr & PUD_MASK;
3701	unsigned long end = base + PUD_SIZE;
3702
3703	/*
3704	 * check on proper vm_flags and page table alignment
3705	 */
3706	if (vma->vm_flags & VM_MAYSHARE &&
3707	    vma->vm_start <= base && end <= vma->vm_end)
3708		return 1;
3709	return 0;
3710}
3711
3712/*
3713 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3714 * and returns the corresponding pte. While this is not necessary for the
3715 * !shared pmd case because we can allocate the pmd later as well, it makes the
3716 * code much cleaner. pmd allocation is essential for the shared case because
3717 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3718 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3719 * bad pmd for sharing.
3720 */
3721pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3722{
3723	struct vm_area_struct *vma = find_vma(mm, addr);
3724	struct address_space *mapping = vma->vm_file->f_mapping;
3725	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3726			vma->vm_pgoff;
3727	struct vm_area_struct *svma;
3728	unsigned long saddr;
3729	pte_t *spte = NULL;
3730	pte_t *pte;
3731	spinlock_t *ptl;
3732
3733	if (!vma_shareable(vma, addr))
3734		return (pte_t *)pmd_alloc(mm, pud, addr);
3735
3736	i_mmap_lock_write(mapping);
3737	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3738		if (svma == vma)
3739			continue;
3740
3741		saddr = page_table_shareable(svma, vma, addr, idx);
3742		if (saddr) {
3743			spte = huge_pte_offset(svma->vm_mm, saddr);
3744			if (spte) {
3745				mm_inc_nr_pmds(mm);
3746				get_page(virt_to_page(spte));
3747				break;
3748			}
3749		}
3750	}
3751
3752	if (!spte)
3753		goto out;
3754
3755	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3756	spin_lock(ptl);
3757	if (pud_none(*pud)) {
3758		pud_populate(mm, pud,
3759				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3760	} else {
3761		put_page(virt_to_page(spte));
3762		mm_inc_nr_pmds(mm);
3763	}
3764	spin_unlock(ptl);
3765out:
3766	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3767	i_mmap_unlock_write(mapping);
3768	return pte;
3769}
3770
3771/*
3772 * unmap huge page backed by shared pte.
3773 *
3774 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3775 * indicated by page_count > 1, unmap is achieved by clearing pud and
3776 * decrementing the ref count. If count == 1, the pte page is not shared.
3777 *
3778 * called with page table lock held.
3779 *
3780 * returns: 1 successfully unmapped a shared pte page
3781 *	    0 the underlying pte page is not shared, or it is the last user
3782 */
3783int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3784{
3785	pgd_t *pgd = pgd_offset(mm, *addr);
3786	pud_t *pud = pud_offset(pgd, *addr);
3787
3788	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3789	if (page_count(virt_to_page(ptep)) == 1)
3790		return 0;
3791
3792	pud_clear(pud);
3793	put_page(virt_to_page(ptep));
3794	mm_dec_nr_pmds(mm);
3795	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3796	return 1;
3797}
3798#define want_pmd_share()	(1)
3799#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3800pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3801{
3802	return NULL;
3803}
3804#define want_pmd_share()	(0)
3805#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3806
3807#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3808pte_t *huge_pte_alloc(struct mm_struct *mm,
3809			unsigned long addr, unsigned long sz)
3810{
3811	pgd_t *pgd;
3812	pud_t *pud;
3813	pte_t *pte = NULL;
3814
3815	pgd = pgd_offset(mm, addr);
3816	pud = pud_alloc(mm, pgd, addr);
3817	if (pud) {
3818		if (sz == PUD_SIZE) {
3819			pte = (pte_t *)pud;
3820		} else {
3821			BUG_ON(sz != PMD_SIZE);
3822			if (want_pmd_share() && pud_none(*pud))
3823				pte = huge_pmd_share(mm, addr, pud);
3824			else
3825				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3826		}
3827	}
3828	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3829
3830	return pte;
3831}
3832
3833pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3834{
3835	pgd_t *pgd;
3836	pud_t *pud;
3837	pmd_t *pmd = NULL;
3838
3839	pgd = pgd_offset(mm, addr);
3840	if (pgd_present(*pgd)) {
3841		pud = pud_offset(pgd, addr);
3842		if (pud_present(*pud)) {
3843			if (pud_huge(*pud))
3844				return (pte_t *)pud;
3845			pmd = pmd_offset(pud, addr);
3846		}
3847	}
3848	return (pte_t *) pmd;
3849}
3850
3851#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3852
3853/*
3854 * These functions are overwritable if your architecture needs its own
3855 * behavior.
3856 */
3857struct page * __weak
3858follow_huge_addr(struct mm_struct *mm, unsigned long address,
3859			      int write)
3860{
3861	return ERR_PTR(-EINVAL);
3862}
3863
3864struct page * __weak
3865follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3866		pmd_t *pmd, int flags)
3867{
3868	struct page *page = NULL;
3869	spinlock_t *ptl;
3870retry:
3871	ptl = pmd_lockptr(mm, pmd);
3872	spin_lock(ptl);
3873	/*
3874	 * make sure that the address range covered by this pmd is not
3875	 * unmapped from other threads.
3876	 */
3877	if (!pmd_huge(*pmd))
3878		goto out;
3879	if (pmd_present(*pmd)) {
3880		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3881		if (flags & FOLL_GET)
3882			get_page(page);
3883	} else {
3884		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3885			spin_unlock(ptl);
3886			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
3887			goto retry;
3888		}
3889		/*
3890		 * hwpoisoned entry is treated as no_page_table in
3891		 * follow_page_mask().
3892		 */
3893	}
3894out:
3895	spin_unlock(ptl);
3896	return page;
3897}
3898
3899struct page * __weak
3900follow_huge_pud(struct mm_struct *mm, unsigned long address,
3901		pud_t *pud, int flags)
3902{
3903	if (flags & FOLL_GET)
3904		return NULL;
3905
3906	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3907}
3908
3909#ifdef CONFIG_MEMORY_FAILURE
3910
3911/*
3912 * This function is called from memory failure code.
3913 * Assume the caller holds page lock of the head page.
3914 */
3915int dequeue_hwpoisoned_huge_page(struct page *hpage)
3916{
3917	struct hstate *h = page_hstate(hpage);
3918	int nid = page_to_nid(hpage);
3919	int ret = -EBUSY;
3920
3921	spin_lock(&hugetlb_lock);
3922	/*
3923	 * Just checking !page_huge_active is not enough, because that could be
3924	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3925	 */
3926	if (!page_huge_active(hpage) && !page_count(hpage)) {
3927		/*
3928		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3929		 * but dangling hpage->lru can trigger list-debug warnings
3930		 * (this happens when we call unpoison_memory() on it),
3931		 * so let it point to itself with list_del_init().
3932		 */
3933		list_del_init(&hpage->lru);
3934		set_page_refcounted(hpage);
3935		h->free_huge_pages--;
3936		h->free_huge_pages_node[nid]--;
3937		ret = 0;
3938	}
3939	spin_unlock(&hugetlb_lock);
3940	return ret;
3941}
3942#endif
3943
3944bool isolate_huge_page(struct page *page, struct list_head *list)
3945{
3946	bool ret = true;
3947
3948	VM_BUG_ON_PAGE(!PageHead(page), page);
3949	spin_lock(&hugetlb_lock);
3950	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3951		ret = false;
3952		goto unlock;
3953	}
3954	clear_page_huge_active(page);
3955	list_move_tail(&page->lru, list);
3956unlock:
3957	spin_unlock(&hugetlb_lock);
3958	return ret;
3959}
3960
3961void putback_active_hugepage(struct page *page)
3962{
3963	VM_BUG_ON_PAGE(!PageHead(page), page);
3964	spin_lock(&hugetlb_lock);
3965	set_page_huge_active(page);
3966	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3967	spin_unlock(&hugetlb_lock);
3968	put_page(page);
3969}
3970