1/*
2 *  Copyright (C) 2009  Red Hat, Inc.
3 *
4 *  This work is licensed under the terms of the GNU GPL, version 2. See
5 *  the COPYING file in the top-level directory.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
17#include <linux/shrinker.h>
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
21#include <linux/freezer.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/migrate.h>
25#include <linux/hashtable.h>
26
27#include <asm/tlb.h>
28#include <asm/pgalloc.h>
29#include "internal.h"
30
31/*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39unsigned long transparent_hugepage_flags __read_mostly =
40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
42#endif
43#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45#endif
46	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50/* default scan 8*512 pte (or vmas) every 30 second */
51static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52static unsigned int khugepaged_pages_collapsed;
53static unsigned int khugepaged_full_scans;
54static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55/* during fragmentation poll the hugepage allocator once every minute */
56static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57static struct task_struct *khugepaged_thread __read_mostly;
58static DEFINE_MUTEX(khugepaged_mutex);
59static DEFINE_SPINLOCK(khugepaged_mm_lock);
60static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61/*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68static int khugepaged(void *none);
69static int khugepaged_slab_init(void);
70static void khugepaged_slab_exit(void);
71
72#define MM_SLOTS_HASH_BITS 10
73static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74
75static struct kmem_cache *mm_slot_cache __read_mostly;
76
77/**
78 * struct mm_slot - hash lookup from mm to mm_slot
79 * @hash: hash collision list
80 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
81 * @mm: the mm that this information is valid for
82 */
83struct mm_slot {
84	struct hlist_node hash;
85	struct list_head mm_node;
86	struct mm_struct *mm;
87};
88
89/**
90 * struct khugepaged_scan - cursor for scanning
91 * @mm_head: the head of the mm list to scan
92 * @mm_slot: the current mm_slot we are scanning
93 * @address: the next address inside that to be scanned
94 *
95 * There is only the one khugepaged_scan instance of this cursor structure.
96 */
97struct khugepaged_scan {
98	struct list_head mm_head;
99	struct mm_slot *mm_slot;
100	unsigned long address;
101};
102static struct khugepaged_scan khugepaged_scan = {
103	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104};
105
106
107static int set_recommended_min_free_kbytes(void)
108{
109	struct zone *zone;
110	int nr_zones = 0;
111	unsigned long recommended_min;
112
113	for_each_populated_zone(zone)
114		nr_zones++;
115
116	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117	recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119	/*
120	 * Make sure that on average at least two pageblocks are almost free
121	 * of another type, one for a migratetype to fall back to and a
122	 * second to avoid subsequent fallbacks of other types There are 3
123	 * MIGRATE_TYPES we care about.
124	 */
125	recommended_min += pageblock_nr_pages * nr_zones *
126			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128	/* don't ever allow to reserve more than 5% of the lowmem */
129	recommended_min = min(recommended_min,
130			      (unsigned long) nr_free_buffer_pages() / 20);
131	recommended_min <<= (PAGE_SHIFT-10);
132
133	if (recommended_min > min_free_kbytes) {
134		if (user_min_free_kbytes >= 0)
135			pr_info("raising min_free_kbytes from %d to %lu "
136				"to help transparent hugepage allocations\n",
137				min_free_kbytes, recommended_min);
138
139		min_free_kbytes = recommended_min;
140	}
141	setup_per_zone_wmarks();
142	return 0;
143}
144
145static int start_stop_khugepaged(void)
146{
147	int err = 0;
148	if (khugepaged_enabled()) {
149		if (!khugepaged_thread)
150			khugepaged_thread = kthread_run(khugepaged, NULL,
151							"khugepaged");
152		if (unlikely(IS_ERR(khugepaged_thread))) {
153			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
154			err = PTR_ERR(khugepaged_thread);
155			khugepaged_thread = NULL;
156			goto fail;
157		}
158
159		if (!list_empty(&khugepaged_scan.mm_head))
160			wake_up_interruptible(&khugepaged_wait);
161
162		set_recommended_min_free_kbytes();
163	} else if (khugepaged_thread) {
164		kthread_stop(khugepaged_thread);
165		khugepaged_thread = NULL;
166	}
167fail:
168	return err;
169}
170
171static atomic_t huge_zero_refcount;
172struct page *huge_zero_page __read_mostly;
173
174static inline bool is_huge_zero_pmd(pmd_t pmd)
175{
176	return is_huge_zero_page(pmd_page(pmd));
177}
178
179static struct page *get_huge_zero_page(void)
180{
181	struct page *zero_page;
182retry:
183	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184		return READ_ONCE(huge_zero_page);
185
186	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187			HPAGE_PMD_ORDER);
188	if (!zero_page) {
189		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190		return NULL;
191	}
192	count_vm_event(THP_ZERO_PAGE_ALLOC);
193	preempt_disable();
194	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195		preempt_enable();
196		__free_pages(zero_page, compound_order(zero_page));
197		goto retry;
198	}
199
200	/* We take additional reference here. It will be put back by shrinker */
201	atomic_set(&huge_zero_refcount, 2);
202	preempt_enable();
203	return READ_ONCE(huge_zero_page);
204}
205
206static void put_huge_zero_page(void)
207{
208	/*
209	 * Counter should never go to zero here. Only shrinker can put
210	 * last reference.
211	 */
212	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213}
214
215static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216					struct shrink_control *sc)
217{
218	/* we can free zero page only if last reference remains */
219	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220}
221
222static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223				       struct shrink_control *sc)
224{
225	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226		struct page *zero_page = xchg(&huge_zero_page, NULL);
227		BUG_ON(zero_page == NULL);
228		__free_pages(zero_page, compound_order(zero_page));
229		return HPAGE_PMD_NR;
230	}
231
232	return 0;
233}
234
235static struct shrinker huge_zero_page_shrinker = {
236	.count_objects = shrink_huge_zero_page_count,
237	.scan_objects = shrink_huge_zero_page_scan,
238	.seeks = DEFAULT_SEEKS,
239};
240
241#ifdef CONFIG_SYSFS
242
243static ssize_t double_flag_show(struct kobject *kobj,
244				struct kobj_attribute *attr, char *buf,
245				enum transparent_hugepage_flag enabled,
246				enum transparent_hugepage_flag req_madv)
247{
248	if (test_bit(enabled, &transparent_hugepage_flags)) {
249		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250		return sprintf(buf, "[always] madvise never\n");
251	} else if (test_bit(req_madv, &transparent_hugepage_flags))
252		return sprintf(buf, "always [madvise] never\n");
253	else
254		return sprintf(buf, "always madvise [never]\n");
255}
256static ssize_t double_flag_store(struct kobject *kobj,
257				 struct kobj_attribute *attr,
258				 const char *buf, size_t count,
259				 enum transparent_hugepage_flag enabled,
260				 enum transparent_hugepage_flag req_madv)
261{
262	if (!memcmp("always", buf,
263		    min(sizeof("always")-1, count))) {
264		set_bit(enabled, &transparent_hugepage_flags);
265		clear_bit(req_madv, &transparent_hugepage_flags);
266	} else if (!memcmp("madvise", buf,
267			   min(sizeof("madvise")-1, count))) {
268		clear_bit(enabled, &transparent_hugepage_flags);
269		set_bit(req_madv, &transparent_hugepage_flags);
270	} else if (!memcmp("never", buf,
271			   min(sizeof("never")-1, count))) {
272		clear_bit(enabled, &transparent_hugepage_flags);
273		clear_bit(req_madv, &transparent_hugepage_flags);
274	} else
275		return -EINVAL;
276
277	return count;
278}
279
280static ssize_t enabled_show(struct kobject *kobj,
281			    struct kobj_attribute *attr, char *buf)
282{
283	return double_flag_show(kobj, attr, buf,
284				TRANSPARENT_HUGEPAGE_FLAG,
285				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286}
287static ssize_t enabled_store(struct kobject *kobj,
288			     struct kobj_attribute *attr,
289			     const char *buf, size_t count)
290{
291	ssize_t ret;
292
293	ret = double_flag_store(kobj, attr, buf, count,
294				TRANSPARENT_HUGEPAGE_FLAG,
295				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296
297	if (ret > 0) {
298		int err;
299
300		mutex_lock(&khugepaged_mutex);
301		err = start_stop_khugepaged();
302		mutex_unlock(&khugepaged_mutex);
303
304		if (err)
305			ret = err;
306	}
307
308	return ret;
309}
310static struct kobj_attribute enabled_attr =
311	__ATTR(enabled, 0644, enabled_show, enabled_store);
312
313static ssize_t single_flag_show(struct kobject *kobj,
314				struct kobj_attribute *attr, char *buf,
315				enum transparent_hugepage_flag flag)
316{
317	return sprintf(buf, "%d\n",
318		       !!test_bit(flag, &transparent_hugepage_flags));
319}
320
321static ssize_t single_flag_store(struct kobject *kobj,
322				 struct kobj_attribute *attr,
323				 const char *buf, size_t count,
324				 enum transparent_hugepage_flag flag)
325{
326	unsigned long value;
327	int ret;
328
329	ret = kstrtoul(buf, 10, &value);
330	if (ret < 0)
331		return ret;
332	if (value > 1)
333		return -EINVAL;
334
335	if (value)
336		set_bit(flag, &transparent_hugepage_flags);
337	else
338		clear_bit(flag, &transparent_hugepage_flags);
339
340	return count;
341}
342
343/*
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
347 */
348static ssize_t defrag_show(struct kobject *kobj,
349			   struct kobj_attribute *attr, char *buf)
350{
351	return double_flag_show(kobj, attr, buf,
352				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354}
355static ssize_t defrag_store(struct kobject *kobj,
356			    struct kobj_attribute *attr,
357			    const char *buf, size_t count)
358{
359	return double_flag_store(kobj, attr, buf, count,
360				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362}
363static struct kobj_attribute defrag_attr =
364	__ATTR(defrag, 0644, defrag_show, defrag_store);
365
366static ssize_t use_zero_page_show(struct kobject *kobj,
367		struct kobj_attribute *attr, char *buf)
368{
369	return single_flag_show(kobj, attr, buf,
370				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371}
372static ssize_t use_zero_page_store(struct kobject *kobj,
373		struct kobj_attribute *attr, const char *buf, size_t count)
374{
375	return single_flag_store(kobj, attr, buf, count,
376				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377}
378static struct kobj_attribute use_zero_page_attr =
379	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380#ifdef CONFIG_DEBUG_VM
381static ssize_t debug_cow_show(struct kobject *kobj,
382				struct kobj_attribute *attr, char *buf)
383{
384	return single_flag_show(kobj, attr, buf,
385				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386}
387static ssize_t debug_cow_store(struct kobject *kobj,
388			       struct kobj_attribute *attr,
389			       const char *buf, size_t count)
390{
391	return single_flag_store(kobj, attr, buf, count,
392				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393}
394static struct kobj_attribute debug_cow_attr =
395	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396#endif /* CONFIG_DEBUG_VM */
397
398static struct attribute *hugepage_attr[] = {
399	&enabled_attr.attr,
400	&defrag_attr.attr,
401	&use_zero_page_attr.attr,
402#ifdef CONFIG_DEBUG_VM
403	&debug_cow_attr.attr,
404#endif
405	NULL,
406};
407
408static struct attribute_group hugepage_attr_group = {
409	.attrs = hugepage_attr,
410};
411
412static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413					 struct kobj_attribute *attr,
414					 char *buf)
415{
416	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417}
418
419static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420					  struct kobj_attribute *attr,
421					  const char *buf, size_t count)
422{
423	unsigned long msecs;
424	int err;
425
426	err = kstrtoul(buf, 10, &msecs);
427	if (err || msecs > UINT_MAX)
428		return -EINVAL;
429
430	khugepaged_scan_sleep_millisecs = msecs;
431	wake_up_interruptible(&khugepaged_wait);
432
433	return count;
434}
435static struct kobj_attribute scan_sleep_millisecs_attr =
436	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437	       scan_sleep_millisecs_store);
438
439static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440					  struct kobj_attribute *attr,
441					  char *buf)
442{
443	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444}
445
446static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447					   struct kobj_attribute *attr,
448					   const char *buf, size_t count)
449{
450	unsigned long msecs;
451	int err;
452
453	err = kstrtoul(buf, 10, &msecs);
454	if (err || msecs > UINT_MAX)
455		return -EINVAL;
456
457	khugepaged_alloc_sleep_millisecs = msecs;
458	wake_up_interruptible(&khugepaged_wait);
459
460	return count;
461}
462static struct kobj_attribute alloc_sleep_millisecs_attr =
463	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464	       alloc_sleep_millisecs_store);
465
466static ssize_t pages_to_scan_show(struct kobject *kobj,
467				  struct kobj_attribute *attr,
468				  char *buf)
469{
470	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471}
472static ssize_t pages_to_scan_store(struct kobject *kobj,
473				   struct kobj_attribute *attr,
474				   const char *buf, size_t count)
475{
476	int err;
477	unsigned long pages;
478
479	err = kstrtoul(buf, 10, &pages);
480	if (err || !pages || pages > UINT_MAX)
481		return -EINVAL;
482
483	khugepaged_pages_to_scan = pages;
484
485	return count;
486}
487static struct kobj_attribute pages_to_scan_attr =
488	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
489	       pages_to_scan_store);
490
491static ssize_t pages_collapsed_show(struct kobject *kobj,
492				    struct kobj_attribute *attr,
493				    char *buf)
494{
495	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496}
497static struct kobj_attribute pages_collapsed_attr =
498	__ATTR_RO(pages_collapsed);
499
500static ssize_t full_scans_show(struct kobject *kobj,
501			       struct kobj_attribute *attr,
502			       char *buf)
503{
504	return sprintf(buf, "%u\n", khugepaged_full_scans);
505}
506static struct kobj_attribute full_scans_attr =
507	__ATTR_RO(full_scans);
508
509static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510				      struct kobj_attribute *attr, char *buf)
511{
512	return single_flag_show(kobj, attr, buf,
513				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514}
515static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516				       struct kobj_attribute *attr,
517				       const char *buf, size_t count)
518{
519	return single_flag_store(kobj, attr, buf, count,
520				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521}
522static struct kobj_attribute khugepaged_defrag_attr =
523	__ATTR(defrag, 0644, khugepaged_defrag_show,
524	       khugepaged_defrag_store);
525
526/*
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
533 */
534static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535					     struct kobj_attribute *attr,
536					     char *buf)
537{
538	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539}
540static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541					      struct kobj_attribute *attr,
542					      const char *buf, size_t count)
543{
544	int err;
545	unsigned long max_ptes_none;
546
547	err = kstrtoul(buf, 10, &max_ptes_none);
548	if (err || max_ptes_none > HPAGE_PMD_NR-1)
549		return -EINVAL;
550
551	khugepaged_max_ptes_none = max_ptes_none;
552
553	return count;
554}
555static struct kobj_attribute khugepaged_max_ptes_none_attr =
556	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557	       khugepaged_max_ptes_none_store);
558
559static struct attribute *khugepaged_attr[] = {
560	&khugepaged_defrag_attr.attr,
561	&khugepaged_max_ptes_none_attr.attr,
562	&pages_to_scan_attr.attr,
563	&pages_collapsed_attr.attr,
564	&full_scans_attr.attr,
565	&scan_sleep_millisecs_attr.attr,
566	&alloc_sleep_millisecs_attr.attr,
567	NULL,
568};
569
570static struct attribute_group khugepaged_attr_group = {
571	.attrs = khugepaged_attr,
572	.name = "khugepaged",
573};
574
575static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
576{
577	int err;
578
579	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580	if (unlikely(!*hugepage_kobj)) {
581		pr_err("failed to create transparent hugepage kobject\n");
582		return -ENOMEM;
583	}
584
585	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586	if (err) {
587		pr_err("failed to register transparent hugepage group\n");
588		goto delete_obj;
589	}
590
591	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592	if (err) {
593		pr_err("failed to register transparent hugepage group\n");
594		goto remove_hp_group;
595	}
596
597	return 0;
598
599remove_hp_group:
600	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601delete_obj:
602	kobject_put(*hugepage_kobj);
603	return err;
604}
605
606static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607{
608	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610	kobject_put(hugepage_kobj);
611}
612#else
613static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614{
615	return 0;
616}
617
618static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619{
620}
621#endif /* CONFIG_SYSFS */
622
623static int __init hugepage_init(void)
624{
625	int err;
626	struct kobject *hugepage_kobj;
627
628	if (!has_transparent_hugepage()) {
629		transparent_hugepage_flags = 0;
630		return -EINVAL;
631	}
632
633	err = hugepage_init_sysfs(&hugepage_kobj);
634	if (err)
635		goto err_sysfs;
636
637	err = khugepaged_slab_init();
638	if (err)
639		goto err_slab;
640
641	err = register_shrinker(&huge_zero_page_shrinker);
642	if (err)
643		goto err_hzp_shrinker;
644
645	/*
646	 * By default disable transparent hugepages on smaller systems,
647	 * where the extra memory used could hurt more than TLB overhead
648	 * is likely to save.  The admin can still enable it through /sys.
649	 */
650	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
651		transparent_hugepage_flags = 0;
652		return 0;
653	}
654
655	err = start_stop_khugepaged();
656	if (err)
657		goto err_khugepaged;
658
659	return 0;
660err_khugepaged:
661	unregister_shrinker(&huge_zero_page_shrinker);
662err_hzp_shrinker:
663	khugepaged_slab_exit();
664err_slab:
665	hugepage_exit_sysfs(hugepage_kobj);
666err_sysfs:
667	return err;
668}
669subsys_initcall(hugepage_init);
670
671static int __init setup_transparent_hugepage(char *str)
672{
673	int ret = 0;
674	if (!str)
675		goto out;
676	if (!strcmp(str, "always")) {
677		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
678			&transparent_hugepage_flags);
679		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680			  &transparent_hugepage_flags);
681		ret = 1;
682	} else if (!strcmp(str, "madvise")) {
683		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
684			  &transparent_hugepage_flags);
685		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
686			&transparent_hugepage_flags);
687		ret = 1;
688	} else if (!strcmp(str, "never")) {
689		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
690			  &transparent_hugepage_flags);
691		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
692			  &transparent_hugepage_flags);
693		ret = 1;
694	}
695out:
696	if (!ret)
697		pr_warn("transparent_hugepage= cannot parse, ignored\n");
698	return ret;
699}
700__setup("transparent_hugepage=", setup_transparent_hugepage);
701
702pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
703{
704	if (likely(vma->vm_flags & VM_WRITE))
705		pmd = pmd_mkwrite(pmd);
706	return pmd;
707}
708
709static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
710{
711	pmd_t entry;
712	entry = mk_pmd(page, prot);
713	entry = pmd_mkhuge(entry);
714	return entry;
715}
716
717static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
718					struct vm_area_struct *vma,
719					unsigned long haddr, pmd_t *pmd,
720					struct page *page, gfp_t gfp)
721{
722	struct mem_cgroup *memcg;
723	pgtable_t pgtable;
724	spinlock_t *ptl;
725
726	VM_BUG_ON_PAGE(!PageCompound(page), page);
727
728	if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
729		return VM_FAULT_OOM;
730
731	pgtable = pte_alloc_one(mm, haddr);
732	if (unlikely(!pgtable)) {
733		mem_cgroup_cancel_charge(page, memcg);
734		return VM_FAULT_OOM;
735	}
736
737	clear_huge_page(page, haddr, HPAGE_PMD_NR);
738	/*
739	 * The memory barrier inside __SetPageUptodate makes sure that
740	 * clear_huge_page writes become visible before the set_pmd_at()
741	 * write.
742	 */
743	__SetPageUptodate(page);
744
745	ptl = pmd_lock(mm, pmd);
746	if (unlikely(!pmd_none(*pmd))) {
747		spin_unlock(ptl);
748		mem_cgroup_cancel_charge(page, memcg);
749		put_page(page);
750		pte_free(mm, pgtable);
751	} else {
752		pmd_t entry;
753		entry = mk_huge_pmd(page, vma->vm_page_prot);
754		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
755		page_add_new_anon_rmap(page, vma, haddr);
756		mem_cgroup_commit_charge(page, memcg, false);
757		lru_cache_add_active_or_unevictable(page, vma);
758		pgtable_trans_huge_deposit(mm, pmd, pgtable);
759		set_pmd_at(mm, haddr, pmd, entry);
760		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
761		atomic_long_inc(&mm->nr_ptes);
762		spin_unlock(ptl);
763	}
764
765	return 0;
766}
767
768static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
769{
770	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
771}
772
773/* Caller must hold page table lock. */
774static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
775		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
776		struct page *zero_page)
777{
778	pmd_t entry;
779	if (!pmd_none(*pmd))
780		return false;
781	entry = mk_pmd(zero_page, vma->vm_page_prot);
782	entry = pmd_mkhuge(entry);
783	pgtable_trans_huge_deposit(mm, pmd, pgtable);
784	set_pmd_at(mm, haddr, pmd, entry);
785	atomic_long_inc(&mm->nr_ptes);
786	return true;
787}
788
789int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
790			       unsigned long address, pmd_t *pmd,
791			       unsigned int flags)
792{
793	gfp_t gfp;
794	struct page *page;
795	unsigned long haddr = address & HPAGE_PMD_MASK;
796
797	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
798		return VM_FAULT_FALLBACK;
799	if (unlikely(anon_vma_prepare(vma)))
800		return VM_FAULT_OOM;
801	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
802		return VM_FAULT_OOM;
803	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
804			transparent_hugepage_use_zero_page()) {
805		spinlock_t *ptl;
806		pgtable_t pgtable;
807		struct page *zero_page;
808		bool set;
809		pgtable = pte_alloc_one(mm, haddr);
810		if (unlikely(!pgtable))
811			return VM_FAULT_OOM;
812		zero_page = get_huge_zero_page();
813		if (unlikely(!zero_page)) {
814			pte_free(mm, pgtable);
815			count_vm_event(THP_FAULT_FALLBACK);
816			return VM_FAULT_FALLBACK;
817		}
818		ptl = pmd_lock(mm, pmd);
819		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
820				zero_page);
821		spin_unlock(ptl);
822		if (!set) {
823			pte_free(mm, pgtable);
824			put_huge_zero_page();
825		}
826		return 0;
827	}
828	gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
829	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
830	if (unlikely(!page)) {
831		count_vm_event(THP_FAULT_FALLBACK);
832		return VM_FAULT_FALLBACK;
833	}
834	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
835		put_page(page);
836		count_vm_event(THP_FAULT_FALLBACK);
837		return VM_FAULT_FALLBACK;
838	}
839
840	count_vm_event(THP_FAULT_ALLOC);
841	return 0;
842}
843
844int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
846		  struct vm_area_struct *vma)
847{
848	spinlock_t *dst_ptl, *src_ptl;
849	struct page *src_page;
850	pmd_t pmd;
851	pgtable_t pgtable;
852	int ret;
853
854	ret = -ENOMEM;
855	pgtable = pte_alloc_one(dst_mm, addr);
856	if (unlikely(!pgtable))
857		goto out;
858
859	dst_ptl = pmd_lock(dst_mm, dst_pmd);
860	src_ptl = pmd_lockptr(src_mm, src_pmd);
861	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
862
863	ret = -EAGAIN;
864	pmd = *src_pmd;
865	if (unlikely(!pmd_trans_huge(pmd))) {
866		pte_free(dst_mm, pgtable);
867		goto out_unlock;
868	}
869	/*
870	 * When page table lock is held, the huge zero pmd should not be
871	 * under splitting since we don't split the page itself, only pmd to
872	 * a page table.
873	 */
874	if (is_huge_zero_pmd(pmd)) {
875		struct page *zero_page;
876		bool set;
877		/*
878		 * get_huge_zero_page() will never allocate a new page here,
879		 * since we already have a zero page to copy. It just takes a
880		 * reference.
881		 */
882		zero_page = get_huge_zero_page();
883		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
884				zero_page);
885		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
886		ret = 0;
887		goto out_unlock;
888	}
889
890	if (unlikely(pmd_trans_splitting(pmd))) {
891		/* split huge page running from under us */
892		spin_unlock(src_ptl);
893		spin_unlock(dst_ptl);
894		pte_free(dst_mm, pgtable);
895
896		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
897		goto out;
898	}
899	src_page = pmd_page(pmd);
900	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
901	get_page(src_page);
902	page_dup_rmap(src_page);
903	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
904
905	pmdp_set_wrprotect(src_mm, addr, src_pmd);
906	pmd = pmd_mkold(pmd_wrprotect(pmd));
907	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
908	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
909	atomic_long_inc(&dst_mm->nr_ptes);
910
911	ret = 0;
912out_unlock:
913	spin_unlock(src_ptl);
914	spin_unlock(dst_ptl);
915out:
916	return ret;
917}
918
919void huge_pmd_set_accessed(struct mm_struct *mm,
920			   struct vm_area_struct *vma,
921			   unsigned long address,
922			   pmd_t *pmd, pmd_t orig_pmd,
923			   int dirty)
924{
925	spinlock_t *ptl;
926	pmd_t entry;
927	unsigned long haddr;
928
929	ptl = pmd_lock(mm, pmd);
930	if (unlikely(!pmd_same(*pmd, orig_pmd)))
931		goto unlock;
932
933	entry = pmd_mkyoung(orig_pmd);
934	haddr = address & HPAGE_PMD_MASK;
935	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
936		update_mmu_cache_pmd(vma, address, pmd);
937
938unlock:
939	spin_unlock(ptl);
940}
941
942/*
943 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
944 * during copy_user_huge_page()'s copy_page_rep(): in the case when
945 * the source page gets split and a tail freed before copy completes.
946 * Called under pmd_lock of checked pmd, so safe from splitting itself.
947 */
948static void get_user_huge_page(struct page *page)
949{
950	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
951		struct page *endpage = page + HPAGE_PMD_NR;
952
953		atomic_add(HPAGE_PMD_NR, &page->_count);
954		while (++page < endpage)
955			get_huge_page_tail(page);
956	} else {
957		get_page(page);
958	}
959}
960
961static void put_user_huge_page(struct page *page)
962{
963	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
964		struct page *endpage = page + HPAGE_PMD_NR;
965
966		while (page < endpage)
967			put_page(page++);
968	} else {
969		put_page(page);
970	}
971}
972
973static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
974					struct vm_area_struct *vma,
975					unsigned long address,
976					pmd_t *pmd, pmd_t orig_pmd,
977					struct page *page,
978					unsigned long haddr)
979{
980	struct mem_cgroup *memcg;
981	spinlock_t *ptl;
982	pgtable_t pgtable;
983	pmd_t _pmd;
984	int ret = 0, i;
985	struct page **pages;
986	unsigned long mmun_start;	/* For mmu_notifiers */
987	unsigned long mmun_end;		/* For mmu_notifiers */
988
989	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
990			GFP_KERNEL);
991	if (unlikely(!pages)) {
992		ret |= VM_FAULT_OOM;
993		goto out;
994	}
995
996	for (i = 0; i < HPAGE_PMD_NR; i++) {
997		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
998					       __GFP_OTHER_NODE,
999					       vma, address, page_to_nid(page));
1000		if (unlikely(!pages[i] ||
1001			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1002						   &memcg))) {
1003			if (pages[i])
1004				put_page(pages[i]);
1005			while (--i >= 0) {
1006				memcg = (void *)page_private(pages[i]);
1007				set_page_private(pages[i], 0);
1008				mem_cgroup_cancel_charge(pages[i], memcg);
1009				put_page(pages[i]);
1010			}
1011			kfree(pages);
1012			ret |= VM_FAULT_OOM;
1013			goto out;
1014		}
1015		set_page_private(pages[i], (unsigned long)memcg);
1016	}
1017
1018	for (i = 0; i < HPAGE_PMD_NR; i++) {
1019		copy_user_highpage(pages[i], page + i,
1020				   haddr + PAGE_SIZE * i, vma);
1021		__SetPageUptodate(pages[i]);
1022		cond_resched();
1023	}
1024
1025	mmun_start = haddr;
1026	mmun_end   = haddr + HPAGE_PMD_SIZE;
1027	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1028
1029	ptl = pmd_lock(mm, pmd);
1030	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1031		goto out_free_pages;
1032	VM_BUG_ON_PAGE(!PageHead(page), page);
1033
1034	pmdp_clear_flush_notify(vma, haddr, pmd);
1035	/* leave pmd empty until pte is filled */
1036
1037	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1038	pmd_populate(mm, &_pmd, pgtable);
1039
1040	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1041		pte_t *pte, entry;
1042		entry = mk_pte(pages[i], vma->vm_page_prot);
1043		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1044		memcg = (void *)page_private(pages[i]);
1045		set_page_private(pages[i], 0);
1046		page_add_new_anon_rmap(pages[i], vma, haddr);
1047		mem_cgroup_commit_charge(pages[i], memcg, false);
1048		lru_cache_add_active_or_unevictable(pages[i], vma);
1049		pte = pte_offset_map(&_pmd, haddr);
1050		VM_BUG_ON(!pte_none(*pte));
1051		set_pte_at(mm, haddr, pte, entry);
1052		pte_unmap(pte);
1053	}
1054	kfree(pages);
1055
1056	smp_wmb(); /* make pte visible before pmd */
1057	pmd_populate(mm, pmd, pgtable);
1058	page_remove_rmap(page);
1059	spin_unlock(ptl);
1060
1061	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1062
1063	ret |= VM_FAULT_WRITE;
1064	put_page(page);
1065
1066out:
1067	return ret;
1068
1069out_free_pages:
1070	spin_unlock(ptl);
1071	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1072	for (i = 0; i < HPAGE_PMD_NR; i++) {
1073		memcg = (void *)page_private(pages[i]);
1074		set_page_private(pages[i], 0);
1075		mem_cgroup_cancel_charge(pages[i], memcg);
1076		put_page(pages[i]);
1077	}
1078	kfree(pages);
1079	goto out;
1080}
1081
1082int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1083			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1084{
1085	spinlock_t *ptl;
1086	int ret = 0;
1087	struct page *page = NULL, *new_page;
1088	struct mem_cgroup *memcg;
1089	unsigned long haddr;
1090	unsigned long mmun_start;	/* For mmu_notifiers */
1091	unsigned long mmun_end;		/* For mmu_notifiers */
1092	gfp_t huge_gfp;			/* for allocation and charge */
1093
1094	ptl = pmd_lockptr(mm, pmd);
1095	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1096	haddr = address & HPAGE_PMD_MASK;
1097	if (is_huge_zero_pmd(orig_pmd))
1098		goto alloc;
1099	spin_lock(ptl);
1100	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1101		goto out_unlock;
1102
1103	page = pmd_page(orig_pmd);
1104	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1105	if (page_mapcount(page) == 1) {
1106		pmd_t entry;
1107		entry = pmd_mkyoung(orig_pmd);
1108		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1109		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1110			update_mmu_cache_pmd(vma, address, pmd);
1111		ret |= VM_FAULT_WRITE;
1112		goto out_unlock;
1113	}
1114	get_user_huge_page(page);
1115	spin_unlock(ptl);
1116alloc:
1117	if (transparent_hugepage_enabled(vma) &&
1118	    !transparent_hugepage_debug_cow()) {
1119		huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1120		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1121	} else
1122		new_page = NULL;
1123
1124	if (unlikely(!new_page)) {
1125		if (!page) {
1126			split_huge_page_pmd(vma, address, pmd);
1127			ret |= VM_FAULT_FALLBACK;
1128		} else {
1129			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1130					pmd, orig_pmd, page, haddr);
1131			if (ret & VM_FAULT_OOM) {
1132				split_huge_page(page);
1133				ret |= VM_FAULT_FALLBACK;
1134			}
1135			put_user_huge_page(page);
1136		}
1137		count_vm_event(THP_FAULT_FALLBACK);
1138		goto out;
1139	}
1140
1141	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1142		put_page(new_page);
1143		if (page) {
1144			split_huge_page(page);
1145			put_user_huge_page(page);
1146		} else
1147			split_huge_page_pmd(vma, address, pmd);
1148		ret |= VM_FAULT_FALLBACK;
1149		count_vm_event(THP_FAULT_FALLBACK);
1150		goto out;
1151	}
1152
1153	count_vm_event(THP_FAULT_ALLOC);
1154
1155	if (!page)
1156		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1157	else
1158		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1159	__SetPageUptodate(new_page);
1160
1161	mmun_start = haddr;
1162	mmun_end   = haddr + HPAGE_PMD_SIZE;
1163	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1164
1165	spin_lock(ptl);
1166	if (page)
1167		put_user_huge_page(page);
1168	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1169		spin_unlock(ptl);
1170		mem_cgroup_cancel_charge(new_page, memcg);
1171		put_page(new_page);
1172		goto out_mn;
1173	} else {
1174		pmd_t entry;
1175		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1176		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1177		pmdp_clear_flush_notify(vma, haddr, pmd);
1178		page_add_new_anon_rmap(new_page, vma, haddr);
1179		mem_cgroup_commit_charge(new_page, memcg, false);
1180		lru_cache_add_active_or_unevictable(new_page, vma);
1181		set_pmd_at(mm, haddr, pmd, entry);
1182		update_mmu_cache_pmd(vma, address, pmd);
1183		if (!page) {
1184			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1185			put_huge_zero_page();
1186		} else {
1187			VM_BUG_ON_PAGE(!PageHead(page), page);
1188			page_remove_rmap(page);
1189			put_page(page);
1190		}
1191		ret |= VM_FAULT_WRITE;
1192	}
1193	spin_unlock(ptl);
1194out_mn:
1195	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1196out:
1197	return ret;
1198out_unlock:
1199	spin_unlock(ptl);
1200	return ret;
1201}
1202
1203struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1204				   unsigned long addr,
1205				   pmd_t *pmd,
1206				   unsigned int flags)
1207{
1208	struct mm_struct *mm = vma->vm_mm;
1209	struct page *page = NULL;
1210
1211	assert_spin_locked(pmd_lockptr(mm, pmd));
1212
1213	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1214		goto out;
1215
1216	/* Avoid dumping huge zero page */
1217	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1218		return ERR_PTR(-EFAULT);
1219
1220	/* Full NUMA hinting faults to serialise migration in fault paths */
1221	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1222		goto out;
1223
1224	page = pmd_page(*pmd);
1225	VM_BUG_ON_PAGE(!PageHead(page), page);
1226	if (flags & FOLL_TOUCH) {
1227		pmd_t _pmd;
1228		/*
1229		 * We should set the dirty bit only for FOLL_WRITE but
1230		 * for now the dirty bit in the pmd is meaningless.
1231		 * And if the dirty bit will become meaningful and
1232		 * we'll only set it with FOLL_WRITE, an atomic
1233		 * set_bit will be required on the pmd to set the
1234		 * young bit, instead of the current set_pmd_at.
1235		 */
1236		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1237		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1238					  pmd, _pmd,  1))
1239			update_mmu_cache_pmd(vma, addr, pmd);
1240	}
1241	if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
1242		if (page->mapping && trylock_page(page)) {
1243			lru_add_drain();
1244			if (page->mapping)
1245				mlock_vma_page(page);
1246			unlock_page(page);
1247		}
1248	}
1249	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1250	VM_BUG_ON_PAGE(!PageCompound(page), page);
1251	if (flags & FOLL_GET)
1252		get_page_foll(page);
1253
1254out:
1255	return page;
1256}
1257
1258/* NUMA hinting page fault entry point for trans huge pmds */
1259int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1260				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1261{
1262	spinlock_t *ptl;
1263	struct anon_vma *anon_vma = NULL;
1264	struct page *page;
1265	unsigned long haddr = addr & HPAGE_PMD_MASK;
1266	int page_nid = -1, this_nid = numa_node_id();
1267	int target_nid, last_cpupid = -1;
1268	bool page_locked;
1269	bool migrated = false;
1270	bool was_writable;
1271	int flags = 0;
1272
1273	/* A PROT_NONE fault should not end up here */
1274	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1275
1276	ptl = pmd_lock(mm, pmdp);
1277	if (unlikely(!pmd_same(pmd, *pmdp)))
1278		goto out_unlock;
1279
1280	/*
1281	 * If there are potential migrations, wait for completion and retry
1282	 * without disrupting NUMA hinting information. Do not relock and
1283	 * check_same as the page may no longer be mapped.
1284	 */
1285	if (unlikely(pmd_trans_migrating(*pmdp))) {
1286		page = pmd_page(*pmdp);
1287		spin_unlock(ptl);
1288		wait_on_page_locked(page);
1289		goto out;
1290	}
1291
1292	page = pmd_page(pmd);
1293	BUG_ON(is_huge_zero_page(page));
1294	page_nid = page_to_nid(page);
1295	last_cpupid = page_cpupid_last(page);
1296	count_vm_numa_event(NUMA_HINT_FAULTS);
1297	if (page_nid == this_nid) {
1298		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1299		flags |= TNF_FAULT_LOCAL;
1300	}
1301
1302	/* See similar comment in do_numa_page for explanation */
1303	if (!(vma->vm_flags & VM_WRITE))
1304		flags |= TNF_NO_GROUP;
1305
1306	/*
1307	 * Acquire the page lock to serialise THP migrations but avoid dropping
1308	 * page_table_lock if at all possible
1309	 */
1310	page_locked = trylock_page(page);
1311	target_nid = mpol_misplaced(page, vma, haddr);
1312	if (target_nid == -1) {
1313		/* If the page was locked, there are no parallel migrations */
1314		if (page_locked)
1315			goto clear_pmdnuma;
1316	}
1317
1318	/* Migration could have started since the pmd_trans_migrating check */
1319	if (!page_locked) {
1320		spin_unlock(ptl);
1321		wait_on_page_locked(page);
1322		page_nid = -1;
1323		goto out;
1324	}
1325
1326	/*
1327	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1328	 * to serialises splits
1329	 */
1330	get_page(page);
1331	spin_unlock(ptl);
1332	anon_vma = page_lock_anon_vma_read(page);
1333
1334	/* Confirm the PMD did not change while page_table_lock was released */
1335	spin_lock(ptl);
1336	if (unlikely(!pmd_same(pmd, *pmdp))) {
1337		unlock_page(page);
1338		put_page(page);
1339		page_nid = -1;
1340		goto out_unlock;
1341	}
1342
1343	/* Bail if we fail to protect against THP splits for any reason */
1344	if (unlikely(!anon_vma)) {
1345		put_page(page);
1346		page_nid = -1;
1347		goto clear_pmdnuma;
1348	}
1349
1350	/*
1351	 * Migrate the THP to the requested node, returns with page unlocked
1352	 * and access rights restored.
1353	 */
1354	spin_unlock(ptl);
1355	migrated = migrate_misplaced_transhuge_page(mm, vma,
1356				pmdp, pmd, addr, page, target_nid);
1357	if (migrated) {
1358		flags |= TNF_MIGRATED;
1359		page_nid = target_nid;
1360	} else
1361		flags |= TNF_MIGRATE_FAIL;
1362
1363	goto out;
1364clear_pmdnuma:
1365	BUG_ON(!PageLocked(page));
1366	was_writable = pmd_write(pmd);
1367	pmd = pmd_modify(pmd, vma->vm_page_prot);
1368	pmd = pmd_mkyoung(pmd);
1369	if (was_writable)
1370		pmd = pmd_mkwrite(pmd);
1371	set_pmd_at(mm, haddr, pmdp, pmd);
1372	update_mmu_cache_pmd(vma, addr, pmdp);
1373	unlock_page(page);
1374out_unlock:
1375	spin_unlock(ptl);
1376
1377out:
1378	if (anon_vma)
1379		page_unlock_anon_vma_read(anon_vma);
1380
1381	if (page_nid != -1)
1382		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1383
1384	return 0;
1385}
1386
1387int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1388		 pmd_t *pmd, unsigned long addr)
1389{
1390	spinlock_t *ptl;
1391	int ret = 0;
1392
1393	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1394		struct page *page;
1395		pgtable_t pgtable;
1396		pmd_t orig_pmd;
1397		/*
1398		 * For architectures like ppc64 we look at deposited pgtable
1399		 * when calling pmdp_get_and_clear. So do the
1400		 * pgtable_trans_huge_withdraw after finishing pmdp related
1401		 * operations.
1402		 */
1403		orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1404						   tlb->fullmm);
1405		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1406		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1407		if (is_huge_zero_pmd(orig_pmd)) {
1408			atomic_long_dec(&tlb->mm->nr_ptes);
1409			spin_unlock(ptl);
1410			put_huge_zero_page();
1411		} else {
1412			page = pmd_page(orig_pmd);
1413			page_remove_rmap(page);
1414			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1415			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1416			VM_BUG_ON_PAGE(!PageHead(page), page);
1417			atomic_long_dec(&tlb->mm->nr_ptes);
1418			spin_unlock(ptl);
1419			tlb_remove_page(tlb, page);
1420		}
1421		pte_free(tlb->mm, pgtable);
1422		ret = 1;
1423	}
1424	return ret;
1425}
1426
1427int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1428		  unsigned long old_addr,
1429		  unsigned long new_addr, unsigned long old_end,
1430		  pmd_t *old_pmd, pmd_t *new_pmd)
1431{
1432	spinlock_t *old_ptl, *new_ptl;
1433	int ret = 0;
1434	pmd_t pmd;
1435
1436	struct mm_struct *mm = vma->vm_mm;
1437
1438	if ((old_addr & ~HPAGE_PMD_MASK) ||
1439	    (new_addr & ~HPAGE_PMD_MASK) ||
1440	    old_end - old_addr < HPAGE_PMD_SIZE ||
1441	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1442		goto out;
1443
1444	/*
1445	 * The destination pmd shouldn't be established, free_pgtables()
1446	 * should have release it.
1447	 */
1448	if (WARN_ON(!pmd_none(*new_pmd))) {
1449		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1450		goto out;
1451	}
1452
1453	/*
1454	 * We don't have to worry about the ordering of src and dst
1455	 * ptlocks because exclusive mmap_sem prevents deadlock.
1456	 */
1457	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1458	if (ret == 1) {
1459		new_ptl = pmd_lockptr(mm, new_pmd);
1460		if (new_ptl != old_ptl)
1461			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1462		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1463		VM_BUG_ON(!pmd_none(*new_pmd));
1464
1465		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1466			pgtable_t pgtable;
1467			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1468			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1469		}
1470		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1471		if (new_ptl != old_ptl)
1472			spin_unlock(new_ptl);
1473		spin_unlock(old_ptl);
1474	}
1475out:
1476	return ret;
1477}
1478
1479/*
1480 * Returns
1481 *  - 0 if PMD could not be locked
1482 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1483 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1484 */
1485int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1486		unsigned long addr, pgprot_t newprot, int prot_numa)
1487{
1488	struct mm_struct *mm = vma->vm_mm;
1489	spinlock_t *ptl;
1490	int ret = 0;
1491
1492	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1493		pmd_t entry;
1494		bool preserve_write = prot_numa && pmd_write(*pmd);
1495		ret = 1;
1496
1497		/*
1498		 * Avoid trapping faults against the zero page. The read-only
1499		 * data is likely to be read-cached on the local CPU and
1500		 * local/remote hits to the zero page are not interesting.
1501		 */
1502		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1503			spin_unlock(ptl);
1504			return ret;
1505		}
1506
1507		if (!prot_numa || !pmd_protnone(*pmd)) {
1508			entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1509			entry = pmd_modify(entry, newprot);
1510			if (preserve_write)
1511				entry = pmd_mkwrite(entry);
1512			ret = HPAGE_PMD_NR;
1513			set_pmd_at(mm, addr, pmd, entry);
1514			BUG_ON(!preserve_write && pmd_write(entry));
1515		}
1516		spin_unlock(ptl);
1517	}
1518
1519	return ret;
1520}
1521
1522/*
1523 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1524 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1525 *
1526 * Note that if it returns 1, this routine returns without unlocking page
1527 * table locks. So callers must unlock them.
1528 */
1529int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1530		spinlock_t **ptl)
1531{
1532	*ptl = pmd_lock(vma->vm_mm, pmd);
1533	if (likely(pmd_trans_huge(*pmd))) {
1534		if (unlikely(pmd_trans_splitting(*pmd))) {
1535			spin_unlock(*ptl);
1536			wait_split_huge_page(vma->anon_vma, pmd);
1537			return -1;
1538		} else {
1539			/* Thp mapped by 'pmd' is stable, so we can
1540			 * handle it as it is. */
1541			return 1;
1542		}
1543	}
1544	spin_unlock(*ptl);
1545	return 0;
1546}
1547
1548/*
1549 * This function returns whether a given @page is mapped onto the @address
1550 * in the virtual space of @mm.
1551 *
1552 * When it's true, this function returns *pmd with holding the page table lock
1553 * and passing it back to the caller via @ptl.
1554 * If it's false, returns NULL without holding the page table lock.
1555 */
1556pmd_t *page_check_address_pmd(struct page *page,
1557			      struct mm_struct *mm,
1558			      unsigned long address,
1559			      enum page_check_address_pmd_flag flag,
1560			      spinlock_t **ptl)
1561{
1562	pgd_t *pgd;
1563	pud_t *pud;
1564	pmd_t *pmd;
1565
1566	if (address & ~HPAGE_PMD_MASK)
1567		return NULL;
1568
1569	pgd = pgd_offset(mm, address);
1570	if (!pgd_present(*pgd))
1571		return NULL;
1572	pud = pud_offset(pgd, address);
1573	if (!pud_present(*pud))
1574		return NULL;
1575	pmd = pmd_offset(pud, address);
1576
1577	*ptl = pmd_lock(mm, pmd);
1578	if (!pmd_present(*pmd))
1579		goto unlock;
1580	if (pmd_page(*pmd) != page)
1581		goto unlock;
1582	/*
1583	 * split_vma() may create temporary aliased mappings. There is
1584	 * no risk as long as all huge pmd are found and have their
1585	 * splitting bit set before __split_huge_page_refcount
1586	 * runs. Finding the same huge pmd more than once during the
1587	 * same rmap walk is not a problem.
1588	 */
1589	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1590	    pmd_trans_splitting(*pmd))
1591		goto unlock;
1592	if (pmd_trans_huge(*pmd)) {
1593		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1594			  !pmd_trans_splitting(*pmd));
1595		return pmd;
1596	}
1597unlock:
1598	spin_unlock(*ptl);
1599	return NULL;
1600}
1601
1602static int __split_huge_page_splitting(struct page *page,
1603				       struct vm_area_struct *vma,
1604				       unsigned long address)
1605{
1606	struct mm_struct *mm = vma->vm_mm;
1607	spinlock_t *ptl;
1608	pmd_t *pmd;
1609	int ret = 0;
1610	/* For mmu_notifiers */
1611	const unsigned long mmun_start = address;
1612	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1613
1614	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1615	pmd = page_check_address_pmd(page, mm, address,
1616			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1617	if (pmd) {
1618		/*
1619		 * We can't temporarily set the pmd to null in order
1620		 * to split it, the pmd must remain marked huge at all
1621		 * times or the VM won't take the pmd_trans_huge paths
1622		 * and it won't wait on the anon_vma->root->rwsem to
1623		 * serialize against split_huge_page*.
1624		 */
1625		pmdp_splitting_flush(vma, address, pmd);
1626
1627		ret = 1;
1628		spin_unlock(ptl);
1629	}
1630	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1631
1632	return ret;
1633}
1634
1635static void __split_huge_page_refcount(struct page *page,
1636				       struct list_head *list)
1637{
1638	int i;
1639	struct zone *zone = page_zone(page);
1640	struct lruvec *lruvec;
1641	int tail_count = 0;
1642
1643	/* prevent PageLRU to go away from under us, and freeze lru stats */
1644	spin_lock_irq(&zone->lru_lock);
1645	lruvec = mem_cgroup_page_lruvec(page, zone);
1646
1647	compound_lock(page);
1648	/* complete memcg works before add pages to LRU */
1649	mem_cgroup_split_huge_fixup(page);
1650
1651	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1652		struct page *page_tail = page + i;
1653
1654		/* tail_page->_mapcount cannot change */
1655		BUG_ON(page_mapcount(page_tail) < 0);
1656		tail_count += page_mapcount(page_tail);
1657		/* check for overflow */
1658		BUG_ON(tail_count < 0);
1659		BUG_ON(atomic_read(&page_tail->_count) != 0);
1660		/*
1661		 * tail_page->_count is zero and not changing from
1662		 * under us. But get_page_unless_zero() may be running
1663		 * from under us on the tail_page. If we used
1664		 * atomic_set() below instead of atomic_add(), we
1665		 * would then run atomic_set() concurrently with
1666		 * get_page_unless_zero(), and atomic_set() is
1667		 * implemented in C not using locked ops. spin_unlock
1668		 * on x86 sometime uses locked ops because of PPro
1669		 * errata 66, 92, so unless somebody can guarantee
1670		 * atomic_set() here would be safe on all archs (and
1671		 * not only on x86), it's safer to use atomic_add().
1672		 */
1673		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1674			   &page_tail->_count);
1675
1676		/* after clearing PageTail the gup refcount can be released */
1677		smp_mb__after_atomic();
1678
1679		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1680		page_tail->flags |= (page->flags &
1681				     ((1L << PG_referenced) |
1682				      (1L << PG_swapbacked) |
1683				      (1L << PG_mlocked) |
1684				      (1L << PG_uptodate) |
1685				      (1L << PG_active) |
1686				      (1L << PG_unevictable)));
1687		page_tail->flags |= (1L << PG_dirty);
1688
1689		/* clear PageTail before overwriting first_page */
1690		smp_wmb();
1691
1692		/*
1693		 * __split_huge_page_splitting() already set the
1694		 * splitting bit in all pmd that could map this
1695		 * hugepage, that will ensure no CPU can alter the
1696		 * mapcount on the head page. The mapcount is only
1697		 * accounted in the head page and it has to be
1698		 * transferred to all tail pages in the below code. So
1699		 * for this code to be safe, the split the mapcount
1700		 * can't change. But that doesn't mean userland can't
1701		 * keep changing and reading the page contents while
1702		 * we transfer the mapcount, so the pmd splitting
1703		 * status is achieved setting a reserved bit in the
1704		 * pmd, not by clearing the present bit.
1705		*/
1706		page_tail->_mapcount = page->_mapcount;
1707
1708		BUG_ON(page_tail->mapping);
1709		page_tail->mapping = page->mapping;
1710
1711		page_tail->index = page->index + i;
1712		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1713
1714		BUG_ON(!PageAnon(page_tail));
1715		BUG_ON(!PageUptodate(page_tail));
1716		BUG_ON(!PageDirty(page_tail));
1717		BUG_ON(!PageSwapBacked(page_tail));
1718
1719		lru_add_page_tail(page, page_tail, lruvec, list);
1720	}
1721	atomic_sub(tail_count, &page->_count);
1722	BUG_ON(atomic_read(&page->_count) <= 0);
1723
1724	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1725
1726	ClearPageCompound(page);
1727	compound_unlock(page);
1728	spin_unlock_irq(&zone->lru_lock);
1729
1730	for (i = 1; i < HPAGE_PMD_NR; i++) {
1731		struct page *page_tail = page + i;
1732		BUG_ON(page_count(page_tail) <= 0);
1733		/*
1734		 * Tail pages may be freed if there wasn't any mapping
1735		 * like if add_to_swap() is running on a lru page that
1736		 * had its mapping zapped. And freeing these pages
1737		 * requires taking the lru_lock so we do the put_page
1738		 * of the tail pages after the split is complete.
1739		 */
1740		put_page(page_tail);
1741	}
1742
1743	/*
1744	 * Only the head page (now become a regular page) is required
1745	 * to be pinned by the caller.
1746	 */
1747	BUG_ON(page_count(page) <= 0);
1748}
1749
1750static int __split_huge_page_map(struct page *page,
1751				 struct vm_area_struct *vma,
1752				 unsigned long address)
1753{
1754	struct mm_struct *mm = vma->vm_mm;
1755	spinlock_t *ptl;
1756	pmd_t *pmd, _pmd;
1757	int ret = 0, i;
1758	pgtable_t pgtable;
1759	unsigned long haddr;
1760
1761	pmd = page_check_address_pmd(page, mm, address,
1762			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1763	if (pmd) {
1764		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1765		pmd_populate(mm, &_pmd, pgtable);
1766		if (pmd_write(*pmd))
1767			BUG_ON(page_mapcount(page) != 1);
1768
1769		haddr = address;
1770		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1771			pte_t *pte, entry;
1772			BUG_ON(PageCompound(page+i));
1773			/*
1774			 * Note that NUMA hinting access restrictions are not
1775			 * transferred to avoid any possibility of altering
1776			 * permissions across VMAs.
1777			 */
1778			entry = mk_pte(page + i, vma->vm_page_prot);
1779			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1780			if (!pmd_write(*pmd))
1781				entry = pte_wrprotect(entry);
1782			if (!pmd_young(*pmd))
1783				entry = pte_mkold(entry);
1784			pte = pte_offset_map(&_pmd, haddr);
1785			BUG_ON(!pte_none(*pte));
1786			set_pte_at(mm, haddr, pte, entry);
1787			pte_unmap(pte);
1788		}
1789
1790		smp_wmb(); /* make pte visible before pmd */
1791		/*
1792		 * Up to this point the pmd is present and huge and
1793		 * userland has the whole access to the hugepage
1794		 * during the split (which happens in place). If we
1795		 * overwrite the pmd with the not-huge version
1796		 * pointing to the pte here (which of course we could
1797		 * if all CPUs were bug free), userland could trigger
1798		 * a small page size TLB miss on the small sized TLB
1799		 * while the hugepage TLB entry is still established
1800		 * in the huge TLB. Some CPU doesn't like that. See
1801		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1802		 * Erratum 383 on page 93. Intel should be safe but is
1803		 * also warns that it's only safe if the permission
1804		 * and cache attributes of the two entries loaded in
1805		 * the two TLB is identical (which should be the case
1806		 * here). But it is generally safer to never allow
1807		 * small and huge TLB entries for the same virtual
1808		 * address to be loaded simultaneously. So instead of
1809		 * doing "pmd_populate(); flush_tlb_range();" we first
1810		 * mark the current pmd notpresent (atomically because
1811		 * here the pmd_trans_huge and pmd_trans_splitting
1812		 * must remain set at all times on the pmd until the
1813		 * split is complete for this pmd), then we flush the
1814		 * SMP TLB and finally we write the non-huge version
1815		 * of the pmd entry with pmd_populate.
1816		 */
1817		pmdp_invalidate(vma, address, pmd);
1818		pmd_populate(mm, pmd, pgtable);
1819		ret = 1;
1820		spin_unlock(ptl);
1821	}
1822
1823	return ret;
1824}
1825
1826/* must be called with anon_vma->root->rwsem held */
1827static void __split_huge_page(struct page *page,
1828			      struct anon_vma *anon_vma,
1829			      struct list_head *list)
1830{
1831	int mapcount, mapcount2;
1832	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1833	struct anon_vma_chain *avc;
1834
1835	BUG_ON(!PageHead(page));
1836	BUG_ON(PageTail(page));
1837
1838	mapcount = 0;
1839	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1840		struct vm_area_struct *vma = avc->vma;
1841		unsigned long addr = vma_address(page, vma);
1842		BUG_ON(is_vma_temporary_stack(vma));
1843		mapcount += __split_huge_page_splitting(page, vma, addr);
1844	}
1845	/*
1846	 * It is critical that new vmas are added to the tail of the
1847	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1848	 * and establishes a child pmd before
1849	 * __split_huge_page_splitting() freezes the parent pmd (so if
1850	 * we fail to prevent copy_huge_pmd() from running until the
1851	 * whole __split_huge_page() is complete), we will still see
1852	 * the newly established pmd of the child later during the
1853	 * walk, to be able to set it as pmd_trans_splitting too.
1854	 */
1855	if (mapcount != page_mapcount(page)) {
1856		pr_err("mapcount %d page_mapcount %d\n",
1857			mapcount, page_mapcount(page));
1858		BUG();
1859	}
1860
1861	__split_huge_page_refcount(page, list);
1862
1863	mapcount2 = 0;
1864	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1865		struct vm_area_struct *vma = avc->vma;
1866		unsigned long addr = vma_address(page, vma);
1867		BUG_ON(is_vma_temporary_stack(vma));
1868		mapcount2 += __split_huge_page_map(page, vma, addr);
1869	}
1870	if (mapcount != mapcount2) {
1871		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1872			mapcount, mapcount2, page_mapcount(page));
1873		BUG();
1874	}
1875}
1876
1877/*
1878 * Split a hugepage into normal pages. This doesn't change the position of head
1879 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1880 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1881 * from the hugepage.
1882 * Return 0 if the hugepage is split successfully otherwise return 1.
1883 */
1884int split_huge_page_to_list(struct page *page, struct list_head *list)
1885{
1886	struct anon_vma *anon_vma;
1887	int ret = 1;
1888
1889	BUG_ON(is_huge_zero_page(page));
1890	BUG_ON(!PageAnon(page));
1891
1892	/*
1893	 * The caller does not necessarily hold an mmap_sem that would prevent
1894	 * the anon_vma disappearing so we first we take a reference to it
1895	 * and then lock the anon_vma for write. This is similar to
1896	 * page_lock_anon_vma_read except the write lock is taken to serialise
1897	 * against parallel split or collapse operations.
1898	 */
1899	anon_vma = page_get_anon_vma(page);
1900	if (!anon_vma)
1901		goto out;
1902	anon_vma_lock_write(anon_vma);
1903
1904	ret = 0;
1905	if (!PageCompound(page))
1906		goto out_unlock;
1907
1908	BUG_ON(!PageSwapBacked(page));
1909	__split_huge_page(page, anon_vma, list);
1910	count_vm_event(THP_SPLIT);
1911
1912	BUG_ON(PageCompound(page));
1913out_unlock:
1914	anon_vma_unlock_write(anon_vma);
1915	put_anon_vma(anon_vma);
1916out:
1917	return ret;
1918}
1919
1920#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1921
1922int hugepage_madvise(struct vm_area_struct *vma,
1923		     unsigned long *vm_flags, int advice)
1924{
1925	switch (advice) {
1926	case MADV_HUGEPAGE:
1927#ifdef CONFIG_S390
1928		/*
1929		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1930		 * can't handle this properly after s390_enable_sie, so we simply
1931		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1932		 */
1933		if (mm_has_pgste(vma->vm_mm))
1934			return 0;
1935#endif
1936		/*
1937		 * Be somewhat over-protective like KSM for now!
1938		 */
1939		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1940			return -EINVAL;
1941		*vm_flags &= ~VM_NOHUGEPAGE;
1942		*vm_flags |= VM_HUGEPAGE;
1943		/*
1944		 * If the vma become good for khugepaged to scan,
1945		 * register it here without waiting a page fault that
1946		 * may not happen any time soon.
1947		 */
1948		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1949			return -ENOMEM;
1950		break;
1951	case MADV_NOHUGEPAGE:
1952		/*
1953		 * Be somewhat over-protective like KSM for now!
1954		 */
1955		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1956			return -EINVAL;
1957		*vm_flags &= ~VM_HUGEPAGE;
1958		*vm_flags |= VM_NOHUGEPAGE;
1959		/*
1960		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1961		 * this vma even if we leave the mm registered in khugepaged if
1962		 * it got registered before VM_NOHUGEPAGE was set.
1963		 */
1964		break;
1965	}
1966
1967	return 0;
1968}
1969
1970static int __init khugepaged_slab_init(void)
1971{
1972	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1973					  sizeof(struct mm_slot),
1974					  __alignof__(struct mm_slot), 0, NULL);
1975	if (!mm_slot_cache)
1976		return -ENOMEM;
1977
1978	return 0;
1979}
1980
1981static void __init khugepaged_slab_exit(void)
1982{
1983	kmem_cache_destroy(mm_slot_cache);
1984}
1985
1986static inline struct mm_slot *alloc_mm_slot(void)
1987{
1988	if (!mm_slot_cache)	/* initialization failed */
1989		return NULL;
1990	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1991}
1992
1993static inline void free_mm_slot(struct mm_slot *mm_slot)
1994{
1995	kmem_cache_free(mm_slot_cache, mm_slot);
1996}
1997
1998static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1999{
2000	struct mm_slot *mm_slot;
2001
2002	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2003		if (mm == mm_slot->mm)
2004			return mm_slot;
2005
2006	return NULL;
2007}
2008
2009static void insert_to_mm_slots_hash(struct mm_struct *mm,
2010				    struct mm_slot *mm_slot)
2011{
2012	mm_slot->mm = mm;
2013	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2014}
2015
2016static inline int khugepaged_test_exit(struct mm_struct *mm)
2017{
2018	return atomic_read(&mm->mm_users) == 0;
2019}
2020
2021int __khugepaged_enter(struct mm_struct *mm)
2022{
2023	struct mm_slot *mm_slot;
2024	int wakeup;
2025
2026	mm_slot = alloc_mm_slot();
2027	if (!mm_slot)
2028		return -ENOMEM;
2029
2030	/* __khugepaged_exit() must not run from under us */
2031	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2032	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2033		free_mm_slot(mm_slot);
2034		return 0;
2035	}
2036
2037	spin_lock(&khugepaged_mm_lock);
2038	insert_to_mm_slots_hash(mm, mm_slot);
2039	/*
2040	 * Insert just behind the scanning cursor, to let the area settle
2041	 * down a little.
2042	 */
2043	wakeup = list_empty(&khugepaged_scan.mm_head);
2044	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2045	spin_unlock(&khugepaged_mm_lock);
2046
2047	atomic_inc(&mm->mm_count);
2048	if (wakeup)
2049		wake_up_interruptible(&khugepaged_wait);
2050
2051	return 0;
2052}
2053
2054int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2055			       unsigned long vm_flags)
2056{
2057	unsigned long hstart, hend;
2058	if (!vma->anon_vma)
2059		/*
2060		 * Not yet faulted in so we will register later in the
2061		 * page fault if needed.
2062		 */
2063		return 0;
2064	if (vma->vm_ops || (vm_flags & VM_NO_THP))
2065		/* khugepaged not yet working on file or special mappings */
2066		return 0;
2067	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2068	hend = vma->vm_end & HPAGE_PMD_MASK;
2069	if (hstart < hend)
2070		return khugepaged_enter(vma, vm_flags);
2071	return 0;
2072}
2073
2074void __khugepaged_exit(struct mm_struct *mm)
2075{
2076	struct mm_slot *mm_slot;
2077	int free = 0;
2078
2079	spin_lock(&khugepaged_mm_lock);
2080	mm_slot = get_mm_slot(mm);
2081	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2082		hash_del(&mm_slot->hash);
2083		list_del(&mm_slot->mm_node);
2084		free = 1;
2085	}
2086	spin_unlock(&khugepaged_mm_lock);
2087
2088	if (free) {
2089		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2090		free_mm_slot(mm_slot);
2091		mmdrop(mm);
2092	} else if (mm_slot) {
2093		/*
2094		 * This is required to serialize against
2095		 * khugepaged_test_exit() (which is guaranteed to run
2096		 * under mmap sem read mode). Stop here (after we
2097		 * return all pagetables will be destroyed) until
2098		 * khugepaged has finished working on the pagetables
2099		 * under the mmap_sem.
2100		 */
2101		down_write(&mm->mmap_sem);
2102		up_write(&mm->mmap_sem);
2103	}
2104}
2105
2106static void release_pte_page(struct page *page)
2107{
2108	/* 0 stands for page_is_file_cache(page) == false */
2109	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2110	unlock_page(page);
2111	putback_lru_page(page);
2112}
2113
2114static void release_pte_pages(pte_t *pte, pte_t *_pte)
2115{
2116	while (--_pte >= pte) {
2117		pte_t pteval = *_pte;
2118		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2119			release_pte_page(pte_page(pteval));
2120	}
2121}
2122
2123static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2124					unsigned long address,
2125					pte_t *pte)
2126{
2127	struct page *page;
2128	pte_t *_pte;
2129	int none_or_zero = 0;
2130	bool referenced = false, writable = false;
2131	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2132	     _pte++, address += PAGE_SIZE) {
2133		pte_t pteval = *_pte;
2134		if (pte_none(pteval) || (pte_present(pteval) &&
2135			is_zero_pfn(pte_pfn(pteval)))) {
2136			if (++none_or_zero <= khugepaged_max_ptes_none)
2137				continue;
2138			else
2139				goto out;
2140		}
2141		if (!pte_present(pteval))
2142			goto out;
2143		page = vm_normal_page(vma, address, pteval);
2144		if (unlikely(!page))
2145			goto out;
2146
2147		VM_BUG_ON_PAGE(PageCompound(page), page);
2148		VM_BUG_ON_PAGE(!PageAnon(page), page);
2149		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2150
2151		/*
2152		 * We can do it before isolate_lru_page because the
2153		 * page can't be freed from under us. NOTE: PG_lock
2154		 * is needed to serialize against split_huge_page
2155		 * when invoked from the VM.
2156		 */
2157		if (!trylock_page(page))
2158			goto out;
2159
2160		/*
2161		 * cannot use mapcount: can't collapse if there's a gup pin.
2162		 * The page must only be referenced by the scanned process
2163		 * and page swap cache.
2164		 */
2165		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2166			unlock_page(page);
2167			goto out;
2168		}
2169		if (pte_write(pteval)) {
2170			writable = true;
2171		} else {
2172			if (PageSwapCache(page) && !reuse_swap_page(page)) {
2173				unlock_page(page);
2174				goto out;
2175			}
2176			/*
2177			 * Page is not in the swap cache. It can be collapsed
2178			 * into a THP.
2179			 */
2180		}
2181
2182		/*
2183		 * Isolate the page to avoid collapsing an hugepage
2184		 * currently in use by the VM.
2185		 */
2186		if (isolate_lru_page(page)) {
2187			unlock_page(page);
2188			goto out;
2189		}
2190		/* 0 stands for page_is_file_cache(page) == false */
2191		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2192		VM_BUG_ON_PAGE(!PageLocked(page), page);
2193		VM_BUG_ON_PAGE(PageLRU(page), page);
2194
2195		/* If there is no mapped pte young don't collapse the page */
2196		if (pte_young(pteval) || PageReferenced(page) ||
2197		    mmu_notifier_test_young(vma->vm_mm, address))
2198			referenced = true;
2199	}
2200	if (likely(referenced && writable))
2201		return 1;
2202out:
2203	release_pte_pages(pte, _pte);
2204	return 0;
2205}
2206
2207static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2208				      struct vm_area_struct *vma,
2209				      unsigned long address,
2210				      spinlock_t *ptl)
2211{
2212	pte_t *_pte;
2213	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2214		pte_t pteval = *_pte;
2215		struct page *src_page;
2216
2217		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2218			clear_user_highpage(page, address);
2219			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2220			if (is_zero_pfn(pte_pfn(pteval))) {
2221				/*
2222				 * ptl mostly unnecessary.
2223				 */
2224				spin_lock(ptl);
2225				/*
2226				 * paravirt calls inside pte_clear here are
2227				 * superfluous.
2228				 */
2229				pte_clear(vma->vm_mm, address, _pte);
2230				spin_unlock(ptl);
2231			}
2232		} else {
2233			src_page = pte_page(pteval);
2234			copy_user_highpage(page, src_page, address, vma);
2235			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2236			release_pte_page(src_page);
2237			/*
2238			 * ptl mostly unnecessary, but preempt has to
2239			 * be disabled to update the per-cpu stats
2240			 * inside page_remove_rmap().
2241			 */
2242			spin_lock(ptl);
2243			/*
2244			 * paravirt calls inside pte_clear here are
2245			 * superfluous.
2246			 */
2247			pte_clear(vma->vm_mm, address, _pte);
2248			page_remove_rmap(src_page);
2249			spin_unlock(ptl);
2250			free_page_and_swap_cache(src_page);
2251		}
2252
2253		address += PAGE_SIZE;
2254		page++;
2255	}
2256}
2257
2258static void khugepaged_alloc_sleep(void)
2259{
2260	wait_event_freezable_timeout(khugepaged_wait, false,
2261			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2262}
2263
2264static int khugepaged_node_load[MAX_NUMNODES];
2265
2266static bool khugepaged_scan_abort(int nid)
2267{
2268	int i;
2269
2270	/*
2271	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2272	 * allocate memory locally.
2273	 */
2274	if (!zone_reclaim_mode)
2275		return false;
2276
2277	/* If there is a count for this node already, it must be acceptable */
2278	if (khugepaged_node_load[nid])
2279		return false;
2280
2281	for (i = 0; i < MAX_NUMNODES; i++) {
2282		if (!khugepaged_node_load[i])
2283			continue;
2284		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2285			return true;
2286	}
2287	return false;
2288}
2289
2290#ifdef CONFIG_NUMA
2291static int khugepaged_find_target_node(void)
2292{
2293	static int last_khugepaged_target_node = NUMA_NO_NODE;
2294	int nid, target_node = 0, max_value = 0;
2295
2296	/* find first node with max normal pages hit */
2297	for (nid = 0; nid < MAX_NUMNODES; nid++)
2298		if (khugepaged_node_load[nid] > max_value) {
2299			max_value = khugepaged_node_load[nid];
2300			target_node = nid;
2301		}
2302
2303	/* do some balance if several nodes have the same hit record */
2304	if (target_node <= last_khugepaged_target_node)
2305		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2306				nid++)
2307			if (max_value == khugepaged_node_load[nid]) {
2308				target_node = nid;
2309				break;
2310			}
2311
2312	last_khugepaged_target_node = target_node;
2313	return target_node;
2314}
2315
2316static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2317{
2318	if (IS_ERR(*hpage)) {
2319		if (!*wait)
2320			return false;
2321
2322		*wait = false;
2323		*hpage = NULL;
2324		khugepaged_alloc_sleep();
2325	} else if (*hpage) {
2326		put_page(*hpage);
2327		*hpage = NULL;
2328	}
2329
2330	return true;
2331}
2332
2333static struct page *
2334khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2335		       struct vm_area_struct *vma, unsigned long address,
2336		       int node)
2337{
2338	VM_BUG_ON_PAGE(*hpage, *hpage);
2339
2340	/*
2341	 * Before allocating the hugepage, release the mmap_sem read lock.
2342	 * The allocation can take potentially a long time if it involves
2343	 * sync compaction, and we do not need to hold the mmap_sem during
2344	 * that. We will recheck the vma after taking it again in write mode.
2345	 */
2346	up_read(&mm->mmap_sem);
2347
2348	*hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
2349	if (unlikely(!*hpage)) {
2350		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2351		*hpage = ERR_PTR(-ENOMEM);
2352		return NULL;
2353	}
2354
2355	count_vm_event(THP_COLLAPSE_ALLOC);
2356	return *hpage;
2357}
2358#else
2359static int khugepaged_find_target_node(void)
2360{
2361	return 0;
2362}
2363
2364static inline struct page *alloc_hugepage(int defrag)
2365{
2366	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2367			   HPAGE_PMD_ORDER);
2368}
2369
2370static struct page *khugepaged_alloc_hugepage(bool *wait)
2371{
2372	struct page *hpage;
2373
2374	do {
2375		hpage = alloc_hugepage(khugepaged_defrag());
2376		if (!hpage) {
2377			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2378			if (!*wait)
2379				return NULL;
2380
2381			*wait = false;
2382			khugepaged_alloc_sleep();
2383		} else
2384			count_vm_event(THP_COLLAPSE_ALLOC);
2385	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2386
2387	return hpage;
2388}
2389
2390static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2391{
2392	if (!*hpage)
2393		*hpage = khugepaged_alloc_hugepage(wait);
2394
2395	if (unlikely(!*hpage))
2396		return false;
2397
2398	return true;
2399}
2400
2401static struct page *
2402khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2403		       struct vm_area_struct *vma, unsigned long address,
2404		       int node)
2405{
2406	up_read(&mm->mmap_sem);
2407	VM_BUG_ON(!*hpage);
2408
2409	return  *hpage;
2410}
2411#endif
2412
2413static bool hugepage_vma_check(struct vm_area_struct *vma)
2414{
2415	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2416	    (vma->vm_flags & VM_NOHUGEPAGE))
2417		return false;
2418
2419	if (!vma->anon_vma || vma->vm_ops)
2420		return false;
2421	if (is_vma_temporary_stack(vma))
2422		return false;
2423	return !(vma->vm_flags & VM_NO_THP);
2424}
2425
2426static void collapse_huge_page(struct mm_struct *mm,
2427				   unsigned long address,
2428				   struct page **hpage,
2429				   struct vm_area_struct *vma,
2430				   int node)
2431{
2432	pmd_t *pmd, _pmd;
2433	pte_t *pte;
2434	pgtable_t pgtable;
2435	struct page *new_page;
2436	spinlock_t *pmd_ptl, *pte_ptl;
2437	int isolated;
2438	unsigned long hstart, hend;
2439	struct mem_cgroup *memcg;
2440	unsigned long mmun_start;	/* For mmu_notifiers */
2441	unsigned long mmun_end;		/* For mmu_notifiers */
2442	gfp_t gfp;
2443
2444	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2445
2446	/* Only allocate from the target node */
2447	gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2448		__GFP_THISNODE;
2449
2450	/* release the mmap_sem read lock. */
2451	new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
2452	if (!new_page)
2453		return;
2454
2455	if (unlikely(mem_cgroup_try_charge(new_page, mm,
2456					   gfp, &memcg)))
2457		return;
2458
2459	/*
2460	 * Prevent all access to pagetables with the exception of
2461	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2462	 * handled by the anon_vma lock + PG_lock.
2463	 */
2464	down_write(&mm->mmap_sem);
2465	if (unlikely(khugepaged_test_exit(mm)))
2466		goto out;
2467
2468	vma = find_vma(mm, address);
2469	if (!vma)
2470		goto out;
2471	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2472	hend = vma->vm_end & HPAGE_PMD_MASK;
2473	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2474		goto out;
2475	if (!hugepage_vma_check(vma))
2476		goto out;
2477	pmd = mm_find_pmd(mm, address);
2478	if (!pmd)
2479		goto out;
2480
2481	anon_vma_lock_write(vma->anon_vma);
2482
2483	pte = pte_offset_map(pmd, address);
2484	pte_ptl = pte_lockptr(mm, pmd);
2485
2486	mmun_start = address;
2487	mmun_end   = address + HPAGE_PMD_SIZE;
2488	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2489	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2490	/*
2491	 * After this gup_fast can't run anymore. This also removes
2492	 * any huge TLB entry from the CPU so we won't allow
2493	 * huge and small TLB entries for the same virtual address
2494	 * to avoid the risk of CPU bugs in that area.
2495	 */
2496	_pmd = pmdp_clear_flush(vma, address, pmd);
2497	spin_unlock(pmd_ptl);
2498	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2499
2500	spin_lock(pte_ptl);
2501	isolated = __collapse_huge_page_isolate(vma, address, pte);
2502	spin_unlock(pte_ptl);
2503
2504	if (unlikely(!isolated)) {
2505		pte_unmap(pte);
2506		spin_lock(pmd_ptl);
2507		BUG_ON(!pmd_none(*pmd));
2508		/*
2509		 * We can only use set_pmd_at when establishing
2510		 * hugepmds and never for establishing regular pmds that
2511		 * points to regular pagetables. Use pmd_populate for that
2512		 */
2513		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2514		spin_unlock(pmd_ptl);
2515		anon_vma_unlock_write(vma->anon_vma);
2516		goto out;
2517	}
2518
2519	/*
2520	 * All pages are isolated and locked so anon_vma rmap
2521	 * can't run anymore.
2522	 */
2523	anon_vma_unlock_write(vma->anon_vma);
2524
2525	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2526	pte_unmap(pte);
2527	__SetPageUptodate(new_page);
2528	pgtable = pmd_pgtable(_pmd);
2529
2530	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2531	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2532
2533	/*
2534	 * spin_lock() below is not the equivalent of smp_wmb(), so
2535	 * this is needed to avoid the copy_huge_page writes to become
2536	 * visible after the set_pmd_at() write.
2537	 */
2538	smp_wmb();
2539
2540	spin_lock(pmd_ptl);
2541	BUG_ON(!pmd_none(*pmd));
2542	page_add_new_anon_rmap(new_page, vma, address);
2543	mem_cgroup_commit_charge(new_page, memcg, false);
2544	lru_cache_add_active_or_unevictable(new_page, vma);
2545	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2546	set_pmd_at(mm, address, pmd, _pmd);
2547	update_mmu_cache_pmd(vma, address, pmd);
2548	spin_unlock(pmd_ptl);
2549
2550	*hpage = NULL;
2551
2552	khugepaged_pages_collapsed++;
2553out_up_write:
2554	up_write(&mm->mmap_sem);
2555	return;
2556
2557out:
2558	mem_cgroup_cancel_charge(new_page, memcg);
2559	goto out_up_write;
2560}
2561
2562static int khugepaged_scan_pmd(struct mm_struct *mm,
2563			       struct vm_area_struct *vma,
2564			       unsigned long address,
2565			       struct page **hpage)
2566{
2567	pmd_t *pmd;
2568	pte_t *pte, *_pte;
2569	int ret = 0, none_or_zero = 0;
2570	struct page *page;
2571	unsigned long _address;
2572	spinlock_t *ptl;
2573	int node = NUMA_NO_NODE;
2574	bool writable = false, referenced = false;
2575
2576	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2577
2578	pmd = mm_find_pmd(mm, address);
2579	if (!pmd)
2580		goto out;
2581
2582	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2583	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2584	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2585	     _pte++, _address += PAGE_SIZE) {
2586		pte_t pteval = *_pte;
2587		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2588			if (++none_or_zero <= khugepaged_max_ptes_none)
2589				continue;
2590			else
2591				goto out_unmap;
2592		}
2593		if (!pte_present(pteval))
2594			goto out_unmap;
2595		if (pte_write(pteval))
2596			writable = true;
2597
2598		page = vm_normal_page(vma, _address, pteval);
2599		if (unlikely(!page))
2600			goto out_unmap;
2601		/*
2602		 * Record which node the original page is from and save this
2603		 * information to khugepaged_node_load[].
2604		 * Khupaged will allocate hugepage from the node has the max
2605		 * hit record.
2606		 */
2607		node = page_to_nid(page);
2608		if (khugepaged_scan_abort(node))
2609			goto out_unmap;
2610		khugepaged_node_load[node]++;
2611		VM_BUG_ON_PAGE(PageCompound(page), page);
2612		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2613			goto out_unmap;
2614		/*
2615		 * cannot use mapcount: can't collapse if there's a gup pin.
2616		 * The page must only be referenced by the scanned process
2617		 * and page swap cache.
2618		 */
2619		if (page_count(page) != 1 + !!PageSwapCache(page))
2620			goto out_unmap;
2621		if (pte_young(pteval) || PageReferenced(page) ||
2622		    mmu_notifier_test_young(vma->vm_mm, address))
2623			referenced = true;
2624	}
2625	if (referenced && writable)
2626		ret = 1;
2627out_unmap:
2628	pte_unmap_unlock(pte, ptl);
2629	if (ret) {
2630		node = khugepaged_find_target_node();
2631		/* collapse_huge_page will return with the mmap_sem released */
2632		collapse_huge_page(mm, address, hpage, vma, node);
2633	}
2634out:
2635	return ret;
2636}
2637
2638static void collect_mm_slot(struct mm_slot *mm_slot)
2639{
2640	struct mm_struct *mm = mm_slot->mm;
2641
2642	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2643
2644	if (khugepaged_test_exit(mm)) {
2645		/* free mm_slot */
2646		hash_del(&mm_slot->hash);
2647		list_del(&mm_slot->mm_node);
2648
2649		/*
2650		 * Not strictly needed because the mm exited already.
2651		 *
2652		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2653		 */
2654
2655		/* khugepaged_mm_lock actually not necessary for the below */
2656		free_mm_slot(mm_slot);
2657		mmdrop(mm);
2658	}
2659}
2660
2661static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2662					    struct page **hpage)
2663	__releases(&khugepaged_mm_lock)
2664	__acquires(&khugepaged_mm_lock)
2665{
2666	struct mm_slot *mm_slot;
2667	struct mm_struct *mm;
2668	struct vm_area_struct *vma;
2669	int progress = 0;
2670
2671	VM_BUG_ON(!pages);
2672	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2673
2674	if (khugepaged_scan.mm_slot)
2675		mm_slot = khugepaged_scan.mm_slot;
2676	else {
2677		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2678				     struct mm_slot, mm_node);
2679		khugepaged_scan.address = 0;
2680		khugepaged_scan.mm_slot = mm_slot;
2681	}
2682	spin_unlock(&khugepaged_mm_lock);
2683
2684	mm = mm_slot->mm;
2685	down_read(&mm->mmap_sem);
2686	if (unlikely(khugepaged_test_exit(mm)))
2687		vma = NULL;
2688	else
2689		vma = find_vma(mm, khugepaged_scan.address);
2690
2691	progress++;
2692	for (; vma; vma = vma->vm_next) {
2693		unsigned long hstart, hend;
2694
2695		cond_resched();
2696		if (unlikely(khugepaged_test_exit(mm))) {
2697			progress++;
2698			break;
2699		}
2700		if (!hugepage_vma_check(vma)) {
2701skip:
2702			progress++;
2703			continue;
2704		}
2705		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2706		hend = vma->vm_end & HPAGE_PMD_MASK;
2707		if (hstart >= hend)
2708			goto skip;
2709		if (khugepaged_scan.address > hend)
2710			goto skip;
2711		if (khugepaged_scan.address < hstart)
2712			khugepaged_scan.address = hstart;
2713		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2714
2715		while (khugepaged_scan.address < hend) {
2716			int ret;
2717			cond_resched();
2718			if (unlikely(khugepaged_test_exit(mm)))
2719				goto breakouterloop;
2720
2721			VM_BUG_ON(khugepaged_scan.address < hstart ||
2722				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2723				  hend);
2724			ret = khugepaged_scan_pmd(mm, vma,
2725						  khugepaged_scan.address,
2726						  hpage);
2727			/* move to next address */
2728			khugepaged_scan.address += HPAGE_PMD_SIZE;
2729			progress += HPAGE_PMD_NR;
2730			if (ret)
2731				/* we released mmap_sem so break loop */
2732				goto breakouterloop_mmap_sem;
2733			if (progress >= pages)
2734				goto breakouterloop;
2735		}
2736	}
2737breakouterloop:
2738	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2739breakouterloop_mmap_sem:
2740
2741	spin_lock(&khugepaged_mm_lock);
2742	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2743	/*
2744	 * Release the current mm_slot if this mm is about to die, or
2745	 * if we scanned all vmas of this mm.
2746	 */
2747	if (khugepaged_test_exit(mm) || !vma) {
2748		/*
2749		 * Make sure that if mm_users is reaching zero while
2750		 * khugepaged runs here, khugepaged_exit will find
2751		 * mm_slot not pointing to the exiting mm.
2752		 */
2753		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2754			khugepaged_scan.mm_slot = list_entry(
2755				mm_slot->mm_node.next,
2756				struct mm_slot, mm_node);
2757			khugepaged_scan.address = 0;
2758		} else {
2759			khugepaged_scan.mm_slot = NULL;
2760			khugepaged_full_scans++;
2761		}
2762
2763		collect_mm_slot(mm_slot);
2764	}
2765
2766	return progress;
2767}
2768
2769static int khugepaged_has_work(void)
2770{
2771	return !list_empty(&khugepaged_scan.mm_head) &&
2772		khugepaged_enabled();
2773}
2774
2775static int khugepaged_wait_event(void)
2776{
2777	return !list_empty(&khugepaged_scan.mm_head) ||
2778		kthread_should_stop();
2779}
2780
2781static void khugepaged_do_scan(void)
2782{
2783	struct page *hpage = NULL;
2784	unsigned int progress = 0, pass_through_head = 0;
2785	unsigned int pages = khugepaged_pages_to_scan;
2786	bool wait = true;
2787
2788	barrier(); /* write khugepaged_pages_to_scan to local stack */
2789
2790	while (progress < pages) {
2791		if (!khugepaged_prealloc_page(&hpage, &wait))
2792			break;
2793
2794		cond_resched();
2795
2796		if (unlikely(kthread_should_stop() || freezing(current)))
2797			break;
2798
2799		spin_lock(&khugepaged_mm_lock);
2800		if (!khugepaged_scan.mm_slot)
2801			pass_through_head++;
2802		if (khugepaged_has_work() &&
2803		    pass_through_head < 2)
2804			progress += khugepaged_scan_mm_slot(pages - progress,
2805							    &hpage);
2806		else
2807			progress = pages;
2808		spin_unlock(&khugepaged_mm_lock);
2809	}
2810
2811	if (!IS_ERR_OR_NULL(hpage))
2812		put_page(hpage);
2813}
2814
2815static void khugepaged_wait_work(void)
2816{
2817	try_to_freeze();
2818
2819	if (khugepaged_has_work()) {
2820		if (!khugepaged_scan_sleep_millisecs)
2821			return;
2822
2823		wait_event_freezable_timeout(khugepaged_wait,
2824					     kthread_should_stop(),
2825			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2826		return;
2827	}
2828
2829	if (khugepaged_enabled())
2830		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2831}
2832
2833static int khugepaged(void *none)
2834{
2835	struct mm_slot *mm_slot;
2836
2837	set_freezable();
2838	set_user_nice(current, MAX_NICE);
2839
2840	while (!kthread_should_stop()) {
2841		khugepaged_do_scan();
2842		khugepaged_wait_work();
2843	}
2844
2845	spin_lock(&khugepaged_mm_lock);
2846	mm_slot = khugepaged_scan.mm_slot;
2847	khugepaged_scan.mm_slot = NULL;
2848	if (mm_slot)
2849		collect_mm_slot(mm_slot);
2850	spin_unlock(&khugepaged_mm_lock);
2851	return 0;
2852}
2853
2854static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2855		unsigned long haddr, pmd_t *pmd)
2856{
2857	struct mm_struct *mm = vma->vm_mm;
2858	pgtable_t pgtable;
2859	pmd_t _pmd;
2860	int i;
2861
2862	pmdp_clear_flush_notify(vma, haddr, pmd);
2863	/* leave pmd empty until pte is filled */
2864
2865	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2866	pmd_populate(mm, &_pmd, pgtable);
2867
2868	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2869		pte_t *pte, entry;
2870		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2871		entry = pte_mkspecial(entry);
2872		pte = pte_offset_map(&_pmd, haddr);
2873		VM_BUG_ON(!pte_none(*pte));
2874		set_pte_at(mm, haddr, pte, entry);
2875		pte_unmap(pte);
2876	}
2877	smp_wmb(); /* make pte visible before pmd */
2878	pmd_populate(mm, pmd, pgtable);
2879	put_huge_zero_page();
2880}
2881
2882void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2883		pmd_t *pmd)
2884{
2885	spinlock_t *ptl;
2886	struct page *page;
2887	struct mm_struct *mm = vma->vm_mm;
2888	unsigned long haddr = address & HPAGE_PMD_MASK;
2889	unsigned long mmun_start;	/* For mmu_notifiers */
2890	unsigned long mmun_end;		/* For mmu_notifiers */
2891
2892	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2893
2894	mmun_start = haddr;
2895	mmun_end   = haddr + HPAGE_PMD_SIZE;
2896again:
2897	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2898	ptl = pmd_lock(mm, pmd);
2899	if (unlikely(!pmd_trans_huge(*pmd))) {
2900		spin_unlock(ptl);
2901		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2902		return;
2903	}
2904	if (is_huge_zero_pmd(*pmd)) {
2905		__split_huge_zero_page_pmd(vma, haddr, pmd);
2906		spin_unlock(ptl);
2907		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2908		return;
2909	}
2910	page = pmd_page(*pmd);
2911	VM_BUG_ON_PAGE(!page_count(page), page);
2912	get_page(page);
2913	spin_unlock(ptl);
2914	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2915
2916	split_huge_page(page);
2917
2918	put_page(page);
2919
2920	/*
2921	 * We don't always have down_write of mmap_sem here: a racing
2922	 * do_huge_pmd_wp_page() might have copied-on-write to another
2923	 * huge page before our split_huge_page() got the anon_vma lock.
2924	 */
2925	if (unlikely(pmd_trans_huge(*pmd)))
2926		goto again;
2927}
2928
2929void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2930		pmd_t *pmd)
2931{
2932	struct vm_area_struct *vma;
2933
2934	vma = find_vma(mm, address);
2935	BUG_ON(vma == NULL);
2936	split_huge_page_pmd(vma, address, pmd);
2937}
2938
2939static void split_huge_page_address(struct mm_struct *mm,
2940				    unsigned long address)
2941{
2942	pgd_t *pgd;
2943	pud_t *pud;
2944	pmd_t *pmd;
2945
2946	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2947
2948	pgd = pgd_offset(mm, address);
2949	if (!pgd_present(*pgd))
2950		return;
2951
2952	pud = pud_offset(pgd, address);
2953	if (!pud_present(*pud))
2954		return;
2955
2956	pmd = pmd_offset(pud, address);
2957	if (!pmd_present(*pmd))
2958		return;
2959	/*
2960	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2961	 * materialize from under us.
2962	 */
2963	split_huge_page_pmd_mm(mm, address, pmd);
2964}
2965
2966void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2967			     unsigned long start,
2968			     unsigned long end,
2969			     long adjust_next)
2970{
2971	/*
2972	 * If the new start address isn't hpage aligned and it could
2973	 * previously contain an hugepage: check if we need to split
2974	 * an huge pmd.
2975	 */
2976	if (start & ~HPAGE_PMD_MASK &&
2977	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2978	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2979		split_huge_page_address(vma->vm_mm, start);
2980
2981	/*
2982	 * If the new end address isn't hpage aligned and it could
2983	 * previously contain an hugepage: check if we need to split
2984	 * an huge pmd.
2985	 */
2986	if (end & ~HPAGE_PMD_MASK &&
2987	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2988	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2989		split_huge_page_address(vma->vm_mm, end);
2990
2991	/*
2992	 * If we're also updating the vma->vm_next->vm_start, if the new
2993	 * vm_next->vm_start isn't page aligned and it could previously
2994	 * contain an hugepage: check if we need to split an huge pmd.
2995	 */
2996	if (adjust_next > 0) {
2997		struct vm_area_struct *next = vma->vm_next;
2998		unsigned long nstart = next->vm_start;
2999		nstart += adjust_next << PAGE_SHIFT;
3000		if (nstart & ~HPAGE_PMD_MASK &&
3001		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3002		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3003			split_huge_page_address(next->vm_mm, nstart);
3004	}
3005}
3006