1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
12
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
16
17 struct rq;
18 struct cpuidle_state;
19
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED 1
22 #define TASK_ON_RQ_MIGRATING 2
23
24 extern __read_mostly int scheduler_running;
25
26 extern unsigned long calc_load_update;
27 extern atomic_long_t calc_load_tasks;
28
29 extern long calc_load_fold_active(struct rq *this_rq);
30 extern void update_cpu_load_active(struct rq *this_rq);
31
32 /*
33 * Helpers for converting nanosecond timing to jiffy resolution
34 */
35 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
36
37 /*
38 * Increase resolution of nice-level calculations for 64-bit architectures.
39 * The extra resolution improves shares distribution and load balancing of
40 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
41 * hierarchies, especially on larger systems. This is not a user-visible change
42 * and does not change the user-interface for setting shares/weights.
43 *
44 * We increase resolution only if we have enough bits to allow this increased
45 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
46 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
47 * increased costs.
48 */
49 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
50 # define SCHED_LOAD_RESOLUTION 10
51 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
52 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
53 #else
54 # define SCHED_LOAD_RESOLUTION 0
55 # define scale_load(w) (w)
56 # define scale_load_down(w) (w)
57 #endif
58
59 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
60 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
61
62 #define NICE_0_LOAD SCHED_LOAD_SCALE
63 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
64
65 /*
66 * Single value that decides SCHED_DEADLINE internal math precision.
67 * 10 -> just above 1us
68 * 9 -> just above 0.5us
69 */
70 #define DL_SCALE (10)
71
72 /*
73 * These are the 'tuning knobs' of the scheduler:
74 */
75
76 /*
77 * single value that denotes runtime == period, ie unlimited time.
78 */
79 #define RUNTIME_INF ((u64)~0ULL)
80
fair_policy(int policy)81 static inline int fair_policy(int policy)
82 {
83 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
84 }
85
rt_policy(int policy)86 static inline int rt_policy(int policy)
87 {
88 return policy == SCHED_FIFO || policy == SCHED_RR;
89 }
90
dl_policy(int policy)91 static inline int dl_policy(int policy)
92 {
93 return policy == SCHED_DEADLINE;
94 }
95
task_has_rt_policy(struct task_struct * p)96 static inline int task_has_rt_policy(struct task_struct *p)
97 {
98 return rt_policy(p->policy);
99 }
100
task_has_dl_policy(struct task_struct * p)101 static inline int task_has_dl_policy(struct task_struct *p)
102 {
103 return dl_policy(p->policy);
104 }
105
dl_time_before(u64 a,u64 b)106 static inline bool dl_time_before(u64 a, u64 b)
107 {
108 return (s64)(a - b) < 0;
109 }
110
111 /*
112 * Tells if entity @a should preempt entity @b.
113 */
114 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)115 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
116 {
117 return dl_time_before(a->deadline, b->deadline);
118 }
119
120 /*
121 * This is the priority-queue data structure of the RT scheduling class:
122 */
123 struct rt_prio_array {
124 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
125 struct list_head queue[MAX_RT_PRIO];
126 };
127
128 struct rt_bandwidth {
129 /* nests inside the rq lock: */
130 raw_spinlock_t rt_runtime_lock;
131 ktime_t rt_period;
132 u64 rt_runtime;
133 struct hrtimer rt_period_timer;
134 };
135
136 void __dl_clear_params(struct task_struct *p);
137
138 /*
139 * To keep the bandwidth of -deadline tasks and groups under control
140 * we need some place where:
141 * - store the maximum -deadline bandwidth of the system (the group);
142 * - cache the fraction of that bandwidth that is currently allocated.
143 *
144 * This is all done in the data structure below. It is similar to the
145 * one used for RT-throttling (rt_bandwidth), with the main difference
146 * that, since here we are only interested in admission control, we
147 * do not decrease any runtime while the group "executes", neither we
148 * need a timer to replenish it.
149 *
150 * With respect to SMP, the bandwidth is given on a per-CPU basis,
151 * meaning that:
152 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
153 * - dl_total_bw array contains, in the i-eth element, the currently
154 * allocated bandwidth on the i-eth CPU.
155 * Moreover, groups consume bandwidth on each CPU, while tasks only
156 * consume bandwidth on the CPU they're running on.
157 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
158 * that will be shown the next time the proc or cgroup controls will
159 * be red. It on its turn can be changed by writing on its own
160 * control.
161 */
162 struct dl_bandwidth {
163 raw_spinlock_t dl_runtime_lock;
164 u64 dl_runtime;
165 u64 dl_period;
166 };
167
dl_bandwidth_enabled(void)168 static inline int dl_bandwidth_enabled(void)
169 {
170 return sysctl_sched_rt_runtime >= 0;
171 }
172
173 extern struct dl_bw *dl_bw_of(int i);
174
175 struct dl_bw {
176 raw_spinlock_t lock;
177 u64 bw, total_bw;
178 };
179
180 static inline
__dl_clear(struct dl_bw * dl_b,u64 tsk_bw)181 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
182 {
183 dl_b->total_bw -= tsk_bw;
184 }
185
186 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw)187 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
188 {
189 dl_b->total_bw += tsk_bw;
190 }
191
192 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)193 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
194 {
195 return dl_b->bw != -1 &&
196 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
197 }
198
199 extern struct mutex sched_domains_mutex;
200
201 #ifdef CONFIG_CGROUP_SCHED
202
203 #include <linux/cgroup.h>
204
205 struct cfs_rq;
206 struct rt_rq;
207
208 extern struct list_head task_groups;
209
210 struct cfs_bandwidth {
211 #ifdef CONFIG_CFS_BANDWIDTH
212 raw_spinlock_t lock;
213 ktime_t period;
214 u64 quota, runtime;
215 s64 hierarchical_quota;
216 u64 runtime_expires;
217
218 int idle, timer_active;
219 struct hrtimer period_timer, slack_timer;
220 struct list_head throttled_cfs_rq;
221
222 /* statistics */
223 int nr_periods, nr_throttled;
224 u64 throttled_time;
225 #endif
226 };
227
228 /* task group related information */
229 struct task_group {
230 struct cgroup_subsys_state css;
231
232 #ifdef CONFIG_FAIR_GROUP_SCHED
233 /* schedulable entities of this group on each cpu */
234 struct sched_entity **se;
235 /* runqueue "owned" by this group on each cpu */
236 struct cfs_rq **cfs_rq;
237 unsigned long shares;
238
239 #ifdef CONFIG_SMP
240 atomic_long_t load_avg;
241 atomic_t runnable_avg;
242 #endif
243 #endif
244
245 #ifdef CONFIG_RT_GROUP_SCHED
246 struct sched_rt_entity **rt_se;
247 struct rt_rq **rt_rq;
248
249 struct rt_bandwidth rt_bandwidth;
250 #endif
251
252 struct rcu_head rcu;
253 struct list_head list;
254
255 struct task_group *parent;
256 struct list_head siblings;
257 struct list_head children;
258
259 #ifdef CONFIG_SCHED_AUTOGROUP
260 struct autogroup *autogroup;
261 #endif
262
263 struct cfs_bandwidth cfs_bandwidth;
264 };
265
266 #ifdef CONFIG_FAIR_GROUP_SCHED
267 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
268
269 /*
270 * A weight of 0 or 1 can cause arithmetics problems.
271 * A weight of a cfs_rq is the sum of weights of which entities
272 * are queued on this cfs_rq, so a weight of a entity should not be
273 * too large, so as the shares value of a task group.
274 * (The default weight is 1024 - so there's no practical
275 * limitation from this.)
276 */
277 #define MIN_SHARES (1UL << 1)
278 #define MAX_SHARES (1UL << 18)
279 #endif
280
281 typedef int (*tg_visitor)(struct task_group *, void *);
282
283 extern int walk_tg_tree_from(struct task_group *from,
284 tg_visitor down, tg_visitor up, void *data);
285
286 /*
287 * Iterate the full tree, calling @down when first entering a node and @up when
288 * leaving it for the final time.
289 *
290 * Caller must hold rcu_lock or sufficient equivalent.
291 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)292 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
293 {
294 return walk_tg_tree_from(&root_task_group, down, up, data);
295 }
296
297 extern int tg_nop(struct task_group *tg, void *data);
298
299 extern void free_fair_sched_group(struct task_group *tg);
300 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
301 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
302 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
303 struct sched_entity *se, int cpu,
304 struct sched_entity *parent);
305 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
306 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
307
308 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
309 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
310 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
311
312 extern void free_rt_sched_group(struct task_group *tg);
313 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
314 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
315 struct sched_rt_entity *rt_se, int cpu,
316 struct sched_rt_entity *parent);
317
318 extern struct task_group *sched_create_group(struct task_group *parent);
319 extern void sched_online_group(struct task_group *tg,
320 struct task_group *parent);
321 extern void sched_destroy_group(struct task_group *tg);
322 extern void sched_offline_group(struct task_group *tg);
323
324 extern void sched_move_task(struct task_struct *tsk);
325
326 #ifdef CONFIG_FAIR_GROUP_SCHED
327 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
328 #endif
329
330 #else /* CONFIG_CGROUP_SCHED */
331
332 struct cfs_bandwidth { };
333
334 #endif /* CONFIG_CGROUP_SCHED */
335
336 /* CFS-related fields in a runqueue */
337 struct cfs_rq {
338 struct load_weight load;
339 unsigned int nr_running, h_nr_running;
340
341 u64 exec_clock;
342 u64 min_vruntime;
343 #ifndef CONFIG_64BIT
344 u64 min_vruntime_copy;
345 #endif
346
347 struct rb_root tasks_timeline;
348 struct rb_node *rb_leftmost;
349
350 /*
351 * 'curr' points to currently running entity on this cfs_rq.
352 * It is set to NULL otherwise (i.e when none are currently running).
353 */
354 struct sched_entity *curr, *next, *last, *skip;
355
356 #ifdef CONFIG_SCHED_DEBUG
357 unsigned int nr_spread_over;
358 #endif
359
360 #ifdef CONFIG_SMP
361 /*
362 * CFS Load tracking
363 * Under CFS, load is tracked on a per-entity basis and aggregated up.
364 * This allows for the description of both thread and group usage (in
365 * the FAIR_GROUP_SCHED case).
366 * runnable_load_avg is the sum of the load_avg_contrib of the
367 * sched_entities on the rq.
368 * blocked_load_avg is similar to runnable_load_avg except that its
369 * the blocked sched_entities on the rq.
370 * utilization_load_avg is the sum of the average running time of the
371 * sched_entities on the rq.
372 */
373 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
374 atomic64_t decay_counter;
375 u64 last_decay;
376 atomic_long_t removed_load;
377
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 /* Required to track per-cpu representation of a task_group */
380 u32 tg_runnable_contrib;
381 unsigned long tg_load_contrib;
382
383 /*
384 * h_load = weight * f(tg)
385 *
386 * Where f(tg) is the recursive weight fraction assigned to
387 * this group.
388 */
389 unsigned long h_load;
390 u64 last_h_load_update;
391 struct sched_entity *h_load_next;
392 #endif /* CONFIG_FAIR_GROUP_SCHED */
393 #endif /* CONFIG_SMP */
394
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
397
398 /*
399 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
400 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
401 * (like users, containers etc.)
402 *
403 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
404 * list is used during load balance.
405 */
406 int on_list;
407 struct list_head leaf_cfs_rq_list;
408 struct task_group *tg; /* group that "owns" this runqueue */
409
410 #ifdef CONFIG_CFS_BANDWIDTH
411 int runtime_enabled;
412 u64 runtime_expires;
413 s64 runtime_remaining;
414
415 u64 throttled_clock, throttled_clock_task;
416 u64 throttled_clock_task_time;
417 int throttled, throttle_count;
418 struct list_head throttled_list;
419 #endif /* CONFIG_CFS_BANDWIDTH */
420 #endif /* CONFIG_FAIR_GROUP_SCHED */
421 };
422
rt_bandwidth_enabled(void)423 static inline int rt_bandwidth_enabled(void)
424 {
425 return sysctl_sched_rt_runtime >= 0;
426 }
427
428 /* RT IPI pull logic requires IRQ_WORK */
429 #ifdef CONFIG_IRQ_WORK
430 # define HAVE_RT_PUSH_IPI
431 #endif
432
433 /* Real-Time classes' related field in a runqueue: */
434 struct rt_rq {
435 struct rt_prio_array active;
436 unsigned int rt_nr_running;
437 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
438 struct {
439 int curr; /* highest queued rt task prio */
440 #ifdef CONFIG_SMP
441 int next; /* next highest */
442 #endif
443 } highest_prio;
444 #endif
445 #ifdef CONFIG_SMP
446 unsigned long rt_nr_migratory;
447 unsigned long rt_nr_total;
448 int overloaded;
449 struct plist_head pushable_tasks;
450 #ifdef HAVE_RT_PUSH_IPI
451 int push_flags;
452 int push_cpu;
453 struct irq_work push_work;
454 raw_spinlock_t push_lock;
455 #endif
456 #endif /* CONFIG_SMP */
457 int rt_queued;
458
459 int rt_throttled;
460 u64 rt_time;
461 u64 rt_runtime;
462 /* Nests inside the rq lock: */
463 raw_spinlock_t rt_runtime_lock;
464
465 #ifdef CONFIG_RT_GROUP_SCHED
466 unsigned long rt_nr_boosted;
467
468 struct rq *rq;
469 struct task_group *tg;
470 #endif
471 };
472
473 /* Deadline class' related fields in a runqueue */
474 struct dl_rq {
475 /* runqueue is an rbtree, ordered by deadline */
476 struct rb_root rb_root;
477 struct rb_node *rb_leftmost;
478
479 unsigned long dl_nr_running;
480
481 #ifdef CONFIG_SMP
482 /*
483 * Deadline values of the currently executing and the
484 * earliest ready task on this rq. Caching these facilitates
485 * the decision wether or not a ready but not running task
486 * should migrate somewhere else.
487 */
488 struct {
489 u64 curr;
490 u64 next;
491 } earliest_dl;
492
493 unsigned long dl_nr_migratory;
494 int overloaded;
495
496 /*
497 * Tasks on this rq that can be pushed away. They are kept in
498 * an rb-tree, ordered by tasks' deadlines, with caching
499 * of the leftmost (earliest deadline) element.
500 */
501 struct rb_root pushable_dl_tasks_root;
502 struct rb_node *pushable_dl_tasks_leftmost;
503 #else
504 struct dl_bw dl_bw;
505 #endif
506 };
507
508 #ifdef CONFIG_SMP
509
510 /*
511 * We add the notion of a root-domain which will be used to define per-domain
512 * variables. Each exclusive cpuset essentially defines an island domain by
513 * fully partitioning the member cpus from any other cpuset. Whenever a new
514 * exclusive cpuset is created, we also create and attach a new root-domain
515 * object.
516 *
517 */
518 struct root_domain {
519 atomic_t refcount;
520 atomic_t rto_count;
521 struct rcu_head rcu;
522 cpumask_var_t span;
523 cpumask_var_t online;
524
525 /* Indicate more than one runnable task for any CPU */
526 bool overload;
527
528 /*
529 * The bit corresponding to a CPU gets set here if such CPU has more
530 * than one runnable -deadline task (as it is below for RT tasks).
531 */
532 cpumask_var_t dlo_mask;
533 atomic_t dlo_count;
534 struct dl_bw dl_bw;
535 struct cpudl cpudl;
536
537 /*
538 * The "RT overload" flag: it gets set if a CPU has more than
539 * one runnable RT task.
540 */
541 cpumask_var_t rto_mask;
542 struct cpupri cpupri;
543 };
544
545 extern struct root_domain def_root_domain;
546
547 #endif /* CONFIG_SMP */
548
549 /*
550 * This is the main, per-CPU runqueue data structure.
551 *
552 * Locking rule: those places that want to lock multiple runqueues
553 * (such as the load balancing or the thread migration code), lock
554 * acquire operations must be ordered by ascending &runqueue.
555 */
556 struct rq {
557 /* runqueue lock: */
558 raw_spinlock_t lock;
559
560 /*
561 * nr_running and cpu_load should be in the same cacheline because
562 * remote CPUs use both these fields when doing load calculation.
563 */
564 unsigned int nr_running;
565 #ifdef CONFIG_NUMA_BALANCING
566 unsigned int nr_numa_running;
567 unsigned int nr_preferred_running;
568 #endif
569 #define CPU_LOAD_IDX_MAX 5
570 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
571 unsigned long last_load_update_tick;
572 #ifdef CONFIG_NO_HZ_COMMON
573 u64 nohz_stamp;
574 unsigned long nohz_flags;
575 #endif
576 #ifdef CONFIG_NO_HZ_FULL
577 unsigned long last_sched_tick;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583
584 struct cfs_rq cfs;
585 struct rt_rq rt;
586 struct dl_rq dl;
587
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
591
592 struct sched_avg avg;
593 #endif /* CONFIG_FAIR_GROUP_SCHED */
594
595 /*
596 * This is part of a global counter where only the total sum
597 * over all CPUs matters. A task can increase this counter on
598 * one CPU and if it got migrated afterwards it may decrease
599 * it on another CPU. Always updated under the runqueue lock:
600 */
601 unsigned long nr_uninterruptible;
602
603 struct task_struct *curr, *idle, *stop;
604 unsigned long next_balance;
605 struct mm_struct *prev_mm;
606
607 unsigned int clock_skip_update;
608 u64 clock;
609 u64 clock_task;
610
611 atomic_t nr_iowait;
612
613 #ifdef CONFIG_SMP
614 struct root_domain *rd;
615 struct sched_domain *sd;
616
617 unsigned long cpu_capacity;
618 unsigned long cpu_capacity_orig;
619
620 unsigned char idle_balance;
621 /* For active balancing */
622 int post_schedule;
623 int active_balance;
624 int push_cpu;
625 struct cpu_stop_work active_balance_work;
626 /* cpu of this runqueue: */
627 int cpu;
628 int online;
629
630 struct list_head cfs_tasks;
631
632 u64 rt_avg;
633 u64 age_stamp;
634 u64 idle_stamp;
635 u64 avg_idle;
636
637 /* This is used to determine avg_idle's max value */
638 u64 max_idle_balance_cost;
639 #endif
640
641 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
642 u64 prev_irq_time;
643 #endif
644 #ifdef CONFIG_PARAVIRT
645 u64 prev_steal_time;
646 #endif
647 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
648 u64 prev_steal_time_rq;
649 #endif
650
651 /* calc_load related fields */
652 unsigned long calc_load_update;
653 long calc_load_active;
654
655 #ifdef CONFIG_SCHED_HRTICK
656 #ifdef CONFIG_SMP
657 int hrtick_csd_pending;
658 struct call_single_data hrtick_csd;
659 #endif
660 struct hrtimer hrtick_timer;
661 #endif
662
663 #ifdef CONFIG_SCHEDSTATS
664 /* latency stats */
665 struct sched_info rq_sched_info;
666 unsigned long long rq_cpu_time;
667 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
668
669 /* sys_sched_yield() stats */
670 unsigned int yld_count;
671
672 /* schedule() stats */
673 unsigned int sched_count;
674 unsigned int sched_goidle;
675
676 /* try_to_wake_up() stats */
677 unsigned int ttwu_count;
678 unsigned int ttwu_local;
679 #endif
680
681 #ifdef CONFIG_SMP
682 struct llist_head wake_list;
683 #endif
684
685 #ifdef CONFIG_CPU_IDLE
686 /* Must be inspected within a rcu lock section */
687 struct cpuidle_state *idle_state;
688 #endif
689 };
690
cpu_of(struct rq * rq)691 static inline int cpu_of(struct rq *rq)
692 {
693 #ifdef CONFIG_SMP
694 return rq->cpu;
695 #else
696 return 0;
697 #endif
698 }
699
700 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
701
702 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
703 #define this_rq() this_cpu_ptr(&runqueues)
704 #define task_rq(p) cpu_rq(task_cpu(p))
705 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
706 #define raw_rq() raw_cpu_ptr(&runqueues)
707
__rq_clock_broken(struct rq * rq)708 static inline u64 __rq_clock_broken(struct rq *rq)
709 {
710 return ACCESS_ONCE(rq->clock);
711 }
712
rq_clock(struct rq * rq)713 static inline u64 rq_clock(struct rq *rq)
714 {
715 lockdep_assert_held(&rq->lock);
716 return rq->clock;
717 }
718
rq_clock_task(struct rq * rq)719 static inline u64 rq_clock_task(struct rq *rq)
720 {
721 lockdep_assert_held(&rq->lock);
722 return rq->clock_task;
723 }
724
725 #define RQCF_REQ_SKIP 0x01
726 #define RQCF_ACT_SKIP 0x02
727
rq_clock_skip_update(struct rq * rq,bool skip)728 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
729 {
730 lockdep_assert_held(&rq->lock);
731 if (skip)
732 rq->clock_skip_update |= RQCF_REQ_SKIP;
733 else
734 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
735 }
736
737 #ifdef CONFIG_NUMA
738 enum numa_topology_type {
739 NUMA_DIRECT,
740 NUMA_GLUELESS_MESH,
741 NUMA_BACKPLANE,
742 };
743 extern enum numa_topology_type sched_numa_topology_type;
744 extern int sched_max_numa_distance;
745 extern bool find_numa_distance(int distance);
746 #endif
747
748 #ifdef CONFIG_NUMA_BALANCING
749 /* The regions in numa_faults array from task_struct */
750 enum numa_faults_stats {
751 NUMA_MEM = 0,
752 NUMA_CPU,
753 NUMA_MEMBUF,
754 NUMA_CPUBUF
755 };
756 extern void sched_setnuma(struct task_struct *p, int node);
757 extern int migrate_task_to(struct task_struct *p, int cpu);
758 extern int migrate_swap(struct task_struct *, struct task_struct *);
759 #endif /* CONFIG_NUMA_BALANCING */
760
761 #ifdef CONFIG_SMP
762
763 extern void sched_ttwu_pending(void);
764
765 #define rcu_dereference_check_sched_domain(p) \
766 rcu_dereference_check((p), \
767 lockdep_is_held(&sched_domains_mutex))
768
769 /*
770 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
771 * See detach_destroy_domains: synchronize_sched for details.
772 *
773 * The domain tree of any CPU may only be accessed from within
774 * preempt-disabled sections.
775 */
776 #define for_each_domain(cpu, __sd) \
777 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
778 __sd; __sd = __sd->parent)
779
780 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
781
782 /**
783 * highest_flag_domain - Return highest sched_domain containing flag.
784 * @cpu: The cpu whose highest level of sched domain is to
785 * be returned.
786 * @flag: The flag to check for the highest sched_domain
787 * for the given cpu.
788 *
789 * Returns the highest sched_domain of a cpu which contains the given flag.
790 */
highest_flag_domain(int cpu,int flag)791 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
792 {
793 struct sched_domain *sd, *hsd = NULL;
794
795 for_each_domain(cpu, sd) {
796 if (!(sd->flags & flag))
797 break;
798 hsd = sd;
799 }
800
801 return hsd;
802 }
803
lowest_flag_domain(int cpu,int flag)804 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
805 {
806 struct sched_domain *sd;
807
808 for_each_domain(cpu, sd) {
809 if (sd->flags & flag)
810 break;
811 }
812
813 return sd;
814 }
815
816 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
817 DECLARE_PER_CPU(int, sd_llc_size);
818 DECLARE_PER_CPU(int, sd_llc_id);
819 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
820 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
821 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
822
823 struct sched_group_capacity {
824 atomic_t ref;
825 /*
826 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
827 * for a single CPU.
828 */
829 unsigned int capacity;
830 unsigned long next_update;
831 int imbalance; /* XXX unrelated to capacity but shared group state */
832 /*
833 * Number of busy cpus in this group.
834 */
835 atomic_t nr_busy_cpus;
836
837 unsigned long cpumask[0]; /* iteration mask */
838 };
839
840 struct sched_group {
841 struct sched_group *next; /* Must be a circular list */
842 atomic_t ref;
843
844 unsigned int group_weight;
845 struct sched_group_capacity *sgc;
846
847 /*
848 * The CPUs this group covers.
849 *
850 * NOTE: this field is variable length. (Allocated dynamically
851 * by attaching extra space to the end of the structure,
852 * depending on how many CPUs the kernel has booted up with)
853 */
854 unsigned long cpumask[0];
855 };
856
sched_group_cpus(struct sched_group * sg)857 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
858 {
859 return to_cpumask(sg->cpumask);
860 }
861
862 /*
863 * cpumask masking which cpus in the group are allowed to iterate up the domain
864 * tree.
865 */
sched_group_mask(struct sched_group * sg)866 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
867 {
868 return to_cpumask(sg->sgc->cpumask);
869 }
870
871 /**
872 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
873 * @group: The group whose first cpu is to be returned.
874 */
group_first_cpu(struct sched_group * group)875 static inline unsigned int group_first_cpu(struct sched_group *group)
876 {
877 return cpumask_first(sched_group_cpus(group));
878 }
879
880 extern int group_balance_cpu(struct sched_group *sg);
881
882 #else
883
sched_ttwu_pending(void)884 static inline void sched_ttwu_pending(void) { }
885
886 #endif /* CONFIG_SMP */
887
888 #include "stats.h"
889 #include "auto_group.h"
890
891 #ifdef CONFIG_CGROUP_SCHED
892
893 /*
894 * Return the group to which this tasks belongs.
895 *
896 * We cannot use task_css() and friends because the cgroup subsystem
897 * changes that value before the cgroup_subsys::attach() method is called,
898 * therefore we cannot pin it and might observe the wrong value.
899 *
900 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
901 * core changes this before calling sched_move_task().
902 *
903 * Instead we use a 'copy' which is updated from sched_move_task() while
904 * holding both task_struct::pi_lock and rq::lock.
905 */
task_group(struct task_struct * p)906 static inline struct task_group *task_group(struct task_struct *p)
907 {
908 return p->sched_task_group;
909 }
910
911 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)912 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
913 {
914 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
915 struct task_group *tg = task_group(p);
916 #endif
917
918 #ifdef CONFIG_FAIR_GROUP_SCHED
919 p->se.cfs_rq = tg->cfs_rq[cpu];
920 p->se.parent = tg->se[cpu];
921 #endif
922
923 #ifdef CONFIG_RT_GROUP_SCHED
924 p->rt.rt_rq = tg->rt_rq[cpu];
925 p->rt.parent = tg->rt_se[cpu];
926 #endif
927 }
928
929 #else /* CONFIG_CGROUP_SCHED */
930
set_task_rq(struct task_struct * p,unsigned int cpu)931 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)932 static inline struct task_group *task_group(struct task_struct *p)
933 {
934 return NULL;
935 }
936
937 #endif /* CONFIG_CGROUP_SCHED */
938
__set_task_cpu(struct task_struct * p,unsigned int cpu)939 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
940 {
941 set_task_rq(p, cpu);
942 #ifdef CONFIG_SMP
943 /*
944 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
945 * successfuly executed on another CPU. We must ensure that updates of
946 * per-task data have been completed by this moment.
947 */
948 smp_wmb();
949 task_thread_info(p)->cpu = cpu;
950 p->wake_cpu = cpu;
951 #endif
952 }
953
954 /*
955 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
956 */
957 #ifdef CONFIG_SCHED_DEBUG
958 # include <linux/static_key.h>
959 # define const_debug __read_mostly
960 #else
961 # define const_debug const
962 #endif
963
964 extern const_debug unsigned int sysctl_sched_features;
965
966 #define SCHED_FEAT(name, enabled) \
967 __SCHED_FEAT_##name ,
968
969 enum {
970 #include "features.h"
971 __SCHED_FEAT_NR,
972 };
973
974 #undef SCHED_FEAT
975
976 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
977 #define SCHED_FEAT(name, enabled) \
978 static __always_inline bool static_branch_##name(struct static_key *key) \
979 { \
980 return static_key_##enabled(key); \
981 }
982
983 #include "features.h"
984
985 #undef SCHED_FEAT
986
987 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
988 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
989 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
990 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
991 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
992
993 #ifdef CONFIG_NUMA_BALANCING
994 #define sched_feat_numa(x) sched_feat(x)
995 #ifdef CONFIG_SCHED_DEBUG
996 #define numabalancing_enabled sched_feat_numa(NUMA)
997 #else
998 extern bool numabalancing_enabled;
999 #endif /* CONFIG_SCHED_DEBUG */
1000 #else
1001 #define sched_feat_numa(x) (0)
1002 #define numabalancing_enabled (0)
1003 #endif /* CONFIG_NUMA_BALANCING */
1004
global_rt_period(void)1005 static inline u64 global_rt_period(void)
1006 {
1007 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1008 }
1009
global_rt_runtime(void)1010 static inline u64 global_rt_runtime(void)
1011 {
1012 if (sysctl_sched_rt_runtime < 0)
1013 return RUNTIME_INF;
1014
1015 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1016 }
1017
task_current(struct rq * rq,struct task_struct * p)1018 static inline int task_current(struct rq *rq, struct task_struct *p)
1019 {
1020 return rq->curr == p;
1021 }
1022
task_running(struct rq * rq,struct task_struct * p)1023 static inline int task_running(struct rq *rq, struct task_struct *p)
1024 {
1025 #ifdef CONFIG_SMP
1026 return p->on_cpu;
1027 #else
1028 return task_current(rq, p);
1029 #endif
1030 }
1031
task_on_rq_queued(struct task_struct * p)1032 static inline int task_on_rq_queued(struct task_struct *p)
1033 {
1034 return p->on_rq == TASK_ON_RQ_QUEUED;
1035 }
1036
task_on_rq_migrating(struct task_struct * p)1037 static inline int task_on_rq_migrating(struct task_struct *p)
1038 {
1039 return p->on_rq == TASK_ON_RQ_MIGRATING;
1040 }
1041
1042 #ifndef prepare_arch_switch
1043 # define prepare_arch_switch(next) do { } while (0)
1044 #endif
1045 #ifndef finish_arch_switch
1046 # define finish_arch_switch(prev) do { } while (0)
1047 #endif
1048 #ifndef finish_arch_post_lock_switch
1049 # define finish_arch_post_lock_switch() do { } while (0)
1050 #endif
1051
prepare_lock_switch(struct rq * rq,struct task_struct * next)1052 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1053 {
1054 #ifdef CONFIG_SMP
1055 /*
1056 * We can optimise this out completely for !SMP, because the
1057 * SMP rebalancing from interrupt is the only thing that cares
1058 * here.
1059 */
1060 next->on_cpu = 1;
1061 #endif
1062 }
1063
finish_lock_switch(struct rq * rq,struct task_struct * prev)1064 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1065 {
1066 #ifdef CONFIG_SMP
1067 /*
1068 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1069 * We must ensure this doesn't happen until the switch is completely
1070 * finished.
1071 *
1072 * Pairs with the control dependency and rmb in try_to_wake_up().
1073 */
1074 smp_store_release(&prev->on_cpu, 0);
1075 #endif
1076 #ifdef CONFIG_DEBUG_SPINLOCK
1077 /* this is a valid case when another task releases the spinlock */
1078 rq->lock.owner = current;
1079 #endif
1080 /*
1081 * If we are tracking spinlock dependencies then we have to
1082 * fix up the runqueue lock - which gets 'carried over' from
1083 * prev into current:
1084 */
1085 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1086
1087 raw_spin_unlock_irq(&rq->lock);
1088 }
1089
1090 /*
1091 * wake flags
1092 */
1093 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1094 #define WF_FORK 0x02 /* child wakeup after fork */
1095 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1096
1097 /*
1098 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1099 * of tasks with abnormal "nice" values across CPUs the contribution that
1100 * each task makes to its run queue's load is weighted according to its
1101 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1102 * scaled version of the new time slice allocation that they receive on time
1103 * slice expiry etc.
1104 */
1105
1106 #define WEIGHT_IDLEPRIO 3
1107 #define WMULT_IDLEPRIO 1431655765
1108
1109 /*
1110 * Nice levels are multiplicative, with a gentle 10% change for every
1111 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1112 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1113 * that remained on nice 0.
1114 *
1115 * The "10% effect" is relative and cumulative: from _any_ nice level,
1116 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1117 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1118 * If a task goes up by ~10% and another task goes down by ~10% then
1119 * the relative distance between them is ~25%.)
1120 */
1121 static const int prio_to_weight[40] = {
1122 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1123 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1124 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1125 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1126 /* 0 */ 1024, 820, 655, 526, 423,
1127 /* 5 */ 335, 272, 215, 172, 137,
1128 /* 10 */ 110, 87, 70, 56, 45,
1129 /* 15 */ 36, 29, 23, 18, 15,
1130 };
1131
1132 /*
1133 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1134 *
1135 * In cases where the weight does not change often, we can use the
1136 * precalculated inverse to speed up arithmetics by turning divisions
1137 * into multiplications:
1138 */
1139 static const u32 prio_to_wmult[40] = {
1140 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1141 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1142 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1143 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1144 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1145 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1146 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1147 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1148 };
1149
1150 #define ENQUEUE_WAKEUP 1
1151 #define ENQUEUE_HEAD 2
1152 #ifdef CONFIG_SMP
1153 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1154 #else
1155 #define ENQUEUE_WAKING 0
1156 #endif
1157 #define ENQUEUE_REPLENISH 8
1158
1159 #define DEQUEUE_SLEEP 1
1160
1161 #define RETRY_TASK ((void *)-1UL)
1162
1163 struct sched_class {
1164 const struct sched_class *next;
1165
1166 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1167 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1168 void (*yield_task) (struct rq *rq);
1169 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1170
1171 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1172
1173 /*
1174 * It is the responsibility of the pick_next_task() method that will
1175 * return the next task to call put_prev_task() on the @prev task or
1176 * something equivalent.
1177 *
1178 * May return RETRY_TASK when it finds a higher prio class has runnable
1179 * tasks.
1180 */
1181 struct task_struct * (*pick_next_task) (struct rq *rq,
1182 struct task_struct *prev);
1183 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1184
1185 #ifdef CONFIG_SMP
1186 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1187 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1188
1189 void (*post_schedule) (struct rq *this_rq);
1190 void (*task_waking) (struct task_struct *task);
1191 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1192
1193 void (*set_cpus_allowed)(struct task_struct *p,
1194 const struct cpumask *newmask);
1195
1196 void (*rq_online)(struct rq *rq);
1197 void (*rq_offline)(struct rq *rq);
1198 #endif
1199
1200 void (*set_curr_task) (struct rq *rq);
1201 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1202 void (*task_fork) (struct task_struct *p);
1203 void (*task_dead) (struct task_struct *p);
1204
1205 /*
1206 * The switched_from() call is allowed to drop rq->lock, therefore we
1207 * cannot assume the switched_from/switched_to pair is serliazed by
1208 * rq->lock. They are however serialized by p->pi_lock.
1209 */
1210 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1211 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1212 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1213 int oldprio);
1214
1215 unsigned int (*get_rr_interval) (struct rq *rq,
1216 struct task_struct *task);
1217
1218 void (*update_curr) (struct rq *rq);
1219
1220 #ifdef CONFIG_FAIR_GROUP_SCHED
1221 void (*task_move_group) (struct task_struct *p, int on_rq);
1222 #endif
1223 };
1224
put_prev_task(struct rq * rq,struct task_struct * prev)1225 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1226 {
1227 prev->sched_class->put_prev_task(rq, prev);
1228 }
1229
1230 #define sched_class_highest (&stop_sched_class)
1231 #define for_each_class(class) \
1232 for (class = sched_class_highest; class; class = class->next)
1233
1234 extern const struct sched_class stop_sched_class;
1235 extern const struct sched_class dl_sched_class;
1236 extern const struct sched_class rt_sched_class;
1237 extern const struct sched_class fair_sched_class;
1238 extern const struct sched_class idle_sched_class;
1239
1240
1241 #ifdef CONFIG_SMP
1242
1243 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1244
1245 extern void trigger_load_balance(struct rq *rq);
1246
1247 extern void idle_enter_fair(struct rq *this_rq);
1248 extern void idle_exit_fair(struct rq *this_rq);
1249
1250 #else
1251
idle_enter_fair(struct rq * rq)1252 static inline void idle_enter_fair(struct rq *rq) { }
idle_exit_fair(struct rq * rq)1253 static inline void idle_exit_fair(struct rq *rq) { }
1254
1255 #endif
1256
1257 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1258 static inline void idle_set_state(struct rq *rq,
1259 struct cpuidle_state *idle_state)
1260 {
1261 rq->idle_state = idle_state;
1262 }
1263
idle_get_state(struct rq * rq)1264 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1265 {
1266 WARN_ON(!rcu_read_lock_held());
1267 return rq->idle_state;
1268 }
1269 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1270 static inline void idle_set_state(struct rq *rq,
1271 struct cpuidle_state *idle_state)
1272 {
1273 }
1274
idle_get_state(struct rq * rq)1275 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1276 {
1277 return NULL;
1278 }
1279 #endif
1280
1281 extern void sysrq_sched_debug_show(void);
1282 extern void sched_init_granularity(void);
1283 extern void update_max_interval(void);
1284
1285 extern void init_sched_dl_class(void);
1286 extern void init_sched_rt_class(void);
1287 extern void init_sched_fair_class(void);
1288 extern void init_sched_dl_class(void);
1289
1290 extern void resched_curr(struct rq *rq);
1291 extern void resched_cpu(int cpu);
1292
1293 extern struct rt_bandwidth def_rt_bandwidth;
1294 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1295
1296 extern struct dl_bandwidth def_dl_bandwidth;
1297 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1298 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1299
1300 unsigned long to_ratio(u64 period, u64 runtime);
1301
1302 extern void update_idle_cpu_load(struct rq *this_rq);
1303
1304 extern void init_task_runnable_average(struct task_struct *p);
1305
add_nr_running(struct rq * rq,unsigned count)1306 static inline void add_nr_running(struct rq *rq, unsigned count)
1307 {
1308 unsigned prev_nr = rq->nr_running;
1309
1310 rq->nr_running = prev_nr + count;
1311
1312 if (prev_nr < 2 && rq->nr_running >= 2) {
1313 #ifdef CONFIG_SMP
1314 if (!rq->rd->overload)
1315 rq->rd->overload = true;
1316 #endif
1317
1318 #ifdef CONFIG_NO_HZ_FULL
1319 if (tick_nohz_full_cpu(rq->cpu)) {
1320 /*
1321 * Tick is needed if more than one task runs on a CPU.
1322 * Send the target an IPI to kick it out of nohz mode.
1323 *
1324 * We assume that IPI implies full memory barrier and the
1325 * new value of rq->nr_running is visible on reception
1326 * from the target.
1327 */
1328 tick_nohz_full_kick_cpu(rq->cpu);
1329 }
1330 #endif
1331 }
1332 }
1333
sub_nr_running(struct rq * rq,unsigned count)1334 static inline void sub_nr_running(struct rq *rq, unsigned count)
1335 {
1336 rq->nr_running -= count;
1337 }
1338
rq_last_tick_reset(struct rq * rq)1339 static inline void rq_last_tick_reset(struct rq *rq)
1340 {
1341 #ifdef CONFIG_NO_HZ_FULL
1342 rq->last_sched_tick = jiffies;
1343 #endif
1344 }
1345
1346 extern void update_rq_clock(struct rq *rq);
1347
1348 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1349 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1350
1351 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1352
1353 extern const_debug unsigned int sysctl_sched_time_avg;
1354 extern const_debug unsigned int sysctl_sched_nr_migrate;
1355 extern const_debug unsigned int sysctl_sched_migration_cost;
1356
sched_avg_period(void)1357 static inline u64 sched_avg_period(void)
1358 {
1359 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1360 }
1361
1362 #ifdef CONFIG_SCHED_HRTICK
1363
1364 /*
1365 * Use hrtick when:
1366 * - enabled by features
1367 * - hrtimer is actually high res
1368 */
hrtick_enabled(struct rq * rq)1369 static inline int hrtick_enabled(struct rq *rq)
1370 {
1371 if (!sched_feat(HRTICK))
1372 return 0;
1373 if (!cpu_active(cpu_of(rq)))
1374 return 0;
1375 return hrtimer_is_hres_active(&rq->hrtick_timer);
1376 }
1377
1378 void hrtick_start(struct rq *rq, u64 delay);
1379
1380 #else
1381
hrtick_enabled(struct rq * rq)1382 static inline int hrtick_enabled(struct rq *rq)
1383 {
1384 return 0;
1385 }
1386
1387 #endif /* CONFIG_SCHED_HRTICK */
1388
1389 #ifdef CONFIG_SMP
1390 extern void sched_avg_update(struct rq *rq);
1391
1392 #ifndef arch_scale_freq_capacity
1393 static __always_inline
arch_scale_freq_capacity(struct sched_domain * sd,int cpu)1394 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1395 {
1396 return SCHED_CAPACITY_SCALE;
1397 }
1398 #endif
1399
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1400 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1401 {
1402 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1403 sched_avg_update(rq);
1404 }
1405 #else
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1406 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
sched_avg_update(struct rq * rq)1407 static inline void sched_avg_update(struct rq *rq) { }
1408 #endif
1409
1410 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1411
1412 /*
1413 * __task_rq_lock - lock the rq @p resides on.
1414 */
__task_rq_lock(struct task_struct * p)1415 static inline struct rq *__task_rq_lock(struct task_struct *p)
1416 __acquires(rq->lock)
1417 {
1418 struct rq *rq;
1419
1420 lockdep_assert_held(&p->pi_lock);
1421
1422 for (;;) {
1423 rq = task_rq(p);
1424 raw_spin_lock(&rq->lock);
1425 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1426 return rq;
1427 raw_spin_unlock(&rq->lock);
1428
1429 while (unlikely(task_on_rq_migrating(p)))
1430 cpu_relax();
1431 }
1432 }
1433
1434 /*
1435 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1436 */
task_rq_lock(struct task_struct * p,unsigned long * flags)1437 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1438 __acquires(p->pi_lock)
1439 __acquires(rq->lock)
1440 {
1441 struct rq *rq;
1442
1443 for (;;) {
1444 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1445 rq = task_rq(p);
1446 raw_spin_lock(&rq->lock);
1447 /*
1448 * move_queued_task() task_rq_lock()
1449 *
1450 * ACQUIRE (rq->lock)
1451 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1452 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1453 * [S] ->cpu = new_cpu [L] task_rq()
1454 * [L] ->on_rq
1455 * RELEASE (rq->lock)
1456 *
1457 * If we observe the old cpu in task_rq_lock, the acquire of
1458 * the old rq->lock will fully serialize against the stores.
1459 *
1460 * If we observe the new cpu in task_rq_lock, the acquire will
1461 * pair with the WMB to ensure we must then also see migrating.
1462 */
1463 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1464 return rq;
1465 raw_spin_unlock(&rq->lock);
1466 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1467
1468 while (unlikely(task_on_rq_migrating(p)))
1469 cpu_relax();
1470 }
1471 }
1472
__task_rq_unlock(struct rq * rq)1473 static inline void __task_rq_unlock(struct rq *rq)
1474 __releases(rq->lock)
1475 {
1476 raw_spin_unlock(&rq->lock);
1477 }
1478
1479 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,unsigned long * flags)1480 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1481 __releases(rq->lock)
1482 __releases(p->pi_lock)
1483 {
1484 raw_spin_unlock(&rq->lock);
1485 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1486 }
1487
1488 #ifdef CONFIG_SMP
1489 #ifdef CONFIG_PREEMPT
1490
1491 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1492
1493 /*
1494 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1495 * way at the expense of forcing extra atomic operations in all
1496 * invocations. This assures that the double_lock is acquired using the
1497 * same underlying policy as the spinlock_t on this architecture, which
1498 * reduces latency compared to the unfair variant below. However, it
1499 * also adds more overhead and therefore may reduce throughput.
1500 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1501 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1502 __releases(this_rq->lock)
1503 __acquires(busiest->lock)
1504 __acquires(this_rq->lock)
1505 {
1506 raw_spin_unlock(&this_rq->lock);
1507 double_rq_lock(this_rq, busiest);
1508
1509 return 1;
1510 }
1511
1512 #else
1513 /*
1514 * Unfair double_lock_balance: Optimizes throughput at the expense of
1515 * latency by eliminating extra atomic operations when the locks are
1516 * already in proper order on entry. This favors lower cpu-ids and will
1517 * grant the double lock to lower cpus over higher ids under contention,
1518 * regardless of entry order into the function.
1519 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1520 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1521 __releases(this_rq->lock)
1522 __acquires(busiest->lock)
1523 __acquires(this_rq->lock)
1524 {
1525 int ret = 0;
1526
1527 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1528 if (busiest < this_rq) {
1529 raw_spin_unlock(&this_rq->lock);
1530 raw_spin_lock(&busiest->lock);
1531 raw_spin_lock_nested(&this_rq->lock,
1532 SINGLE_DEPTH_NESTING);
1533 ret = 1;
1534 } else
1535 raw_spin_lock_nested(&busiest->lock,
1536 SINGLE_DEPTH_NESTING);
1537 }
1538 return ret;
1539 }
1540
1541 #endif /* CONFIG_PREEMPT */
1542
1543 /*
1544 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1545 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1546 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1547 {
1548 if (unlikely(!irqs_disabled())) {
1549 /* printk() doesn't work good under rq->lock */
1550 raw_spin_unlock(&this_rq->lock);
1551 BUG_ON(1);
1552 }
1553
1554 return _double_lock_balance(this_rq, busiest);
1555 }
1556
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1557 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1558 __releases(busiest->lock)
1559 {
1560 raw_spin_unlock(&busiest->lock);
1561 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1562 }
1563
double_lock(spinlock_t * l1,spinlock_t * l2)1564 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1565 {
1566 if (l1 > l2)
1567 swap(l1, l2);
1568
1569 spin_lock(l1);
1570 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1571 }
1572
double_lock_irq(spinlock_t * l1,spinlock_t * l2)1573 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1574 {
1575 if (l1 > l2)
1576 swap(l1, l2);
1577
1578 spin_lock_irq(l1);
1579 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1580 }
1581
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)1582 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1583 {
1584 if (l1 > l2)
1585 swap(l1, l2);
1586
1587 raw_spin_lock(l1);
1588 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1589 }
1590
1591 /*
1592 * double_rq_lock - safely lock two runqueues
1593 *
1594 * Note this does not disable interrupts like task_rq_lock,
1595 * you need to do so manually before calling.
1596 */
double_rq_lock(struct rq * rq1,struct rq * rq2)1597 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1598 __acquires(rq1->lock)
1599 __acquires(rq2->lock)
1600 {
1601 BUG_ON(!irqs_disabled());
1602 if (rq1 == rq2) {
1603 raw_spin_lock(&rq1->lock);
1604 __acquire(rq2->lock); /* Fake it out ;) */
1605 } else {
1606 if (rq1 < rq2) {
1607 raw_spin_lock(&rq1->lock);
1608 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1609 } else {
1610 raw_spin_lock(&rq2->lock);
1611 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1612 }
1613 }
1614 }
1615
1616 /*
1617 * double_rq_unlock - safely unlock two runqueues
1618 *
1619 * Note this does not restore interrupts like task_rq_unlock,
1620 * you need to do so manually after calling.
1621 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1622 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1623 __releases(rq1->lock)
1624 __releases(rq2->lock)
1625 {
1626 raw_spin_unlock(&rq1->lock);
1627 if (rq1 != rq2)
1628 raw_spin_unlock(&rq2->lock);
1629 else
1630 __release(rq2->lock);
1631 }
1632
1633 #else /* CONFIG_SMP */
1634
1635 /*
1636 * double_rq_lock - safely lock two runqueues
1637 *
1638 * Note this does not disable interrupts like task_rq_lock,
1639 * you need to do so manually before calling.
1640 */
double_rq_lock(struct rq * rq1,struct rq * rq2)1641 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1642 __acquires(rq1->lock)
1643 __acquires(rq2->lock)
1644 {
1645 BUG_ON(!irqs_disabled());
1646 BUG_ON(rq1 != rq2);
1647 raw_spin_lock(&rq1->lock);
1648 __acquire(rq2->lock); /* Fake it out ;) */
1649 }
1650
1651 /*
1652 * double_rq_unlock - safely unlock two runqueues
1653 *
1654 * Note this does not restore interrupts like task_rq_unlock,
1655 * you need to do so manually after calling.
1656 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1657 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1658 __releases(rq1->lock)
1659 __releases(rq2->lock)
1660 {
1661 BUG_ON(rq1 != rq2);
1662 raw_spin_unlock(&rq1->lock);
1663 __release(rq2->lock);
1664 }
1665
1666 #endif
1667
1668 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1669 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1670 extern void print_cfs_stats(struct seq_file *m, int cpu);
1671 extern void print_rt_stats(struct seq_file *m, int cpu);
1672 extern void print_dl_stats(struct seq_file *m, int cpu);
1673
1674 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1675 extern void init_rt_rq(struct rt_rq *rt_rq);
1676 extern void init_dl_rq(struct dl_rq *dl_rq);
1677
1678 extern void cfs_bandwidth_usage_inc(void);
1679 extern void cfs_bandwidth_usage_dec(void);
1680
1681 #ifdef CONFIG_NO_HZ_COMMON
1682 enum rq_nohz_flag_bits {
1683 NOHZ_TICK_STOPPED,
1684 NOHZ_BALANCE_KICK,
1685 };
1686
1687 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1688 #endif
1689
1690 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1691
1692 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1693 DECLARE_PER_CPU(u64, cpu_softirq_time);
1694
1695 #ifndef CONFIG_64BIT
1696 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1697
irq_time_write_begin(void)1698 static inline void irq_time_write_begin(void)
1699 {
1700 __this_cpu_inc(irq_time_seq.sequence);
1701 smp_wmb();
1702 }
1703
irq_time_write_end(void)1704 static inline void irq_time_write_end(void)
1705 {
1706 smp_wmb();
1707 __this_cpu_inc(irq_time_seq.sequence);
1708 }
1709
irq_time_read(int cpu)1710 static inline u64 irq_time_read(int cpu)
1711 {
1712 u64 irq_time;
1713 unsigned seq;
1714
1715 do {
1716 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1717 irq_time = per_cpu(cpu_softirq_time, cpu) +
1718 per_cpu(cpu_hardirq_time, cpu);
1719 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1720
1721 return irq_time;
1722 }
1723 #else /* CONFIG_64BIT */
irq_time_write_begin(void)1724 static inline void irq_time_write_begin(void)
1725 {
1726 }
1727
irq_time_write_end(void)1728 static inline void irq_time_write_end(void)
1729 {
1730 }
1731
irq_time_read(int cpu)1732 static inline u64 irq_time_read(int cpu)
1733 {
1734 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1735 }
1736 #endif /* CONFIG_64BIT */
1737 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1738