1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
update_load_add(struct load_weight * lw,unsigned long inc)117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
update_load_sub(struct load_weight * lw,unsigned long dec)123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
update_load_set(struct load_weight * lw,unsigned long w)129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
get_update_sysctl_factor(void)144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
update_sysctl(void)165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
sched_init_granularity(void)177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
__update_inv_weight(struct load_weight * lw)185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
task_of(struct sched_entity * se)257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
task_cfs_rq(struct task_struct * p)269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
parent_entity(struct sched_entity * se)335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
task_of(struct sched_entity * se)374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
rq_of(struct cfs_rq * cfs_rq)379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
task_cfs_rq(struct task_struct * p)389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
cfs_rq_of(struct sched_entity * se)394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
parent_entity(struct sched_entity * se)419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
max_vruntime(u64 max_vruntime,u64 vruntime)438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
min_vruntime(u64 min_vruntime,u64 vruntime)447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
entity_before(struct sched_entity * a,struct sched_entity * b)456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
update_min_vruntime(struct cfs_rq * cfs_rq)462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
__pick_first_entity(struct cfs_rq * cfs_rq)539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
__pick_next_entity(struct sched_entity * se)549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
calc_delta_fair(u64 delta,struct sched_entity * se)601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
__sched_period(unsigned long nr_running)617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 static inline void __update_task_entity_utilization(struct sched_entity *se);
674 
675 /* Give new task start runnable values to heavy its load in infant time */
init_task_runnable_average(struct task_struct * p)676 void init_task_runnable_average(struct task_struct *p)
677 {
678 	u32 slice;
679 
680 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 	p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 	p->se.avg.avg_period = slice;
683 	__update_task_entity_contrib(&p->se);
684 	__update_task_entity_utilization(&p->se);
685 }
686 #else
init_task_runnable_average(struct task_struct * p)687 void init_task_runnable_average(struct task_struct *p)
688 {
689 }
690 #endif
691 
692 /*
693  * Update the current task's runtime statistics.
694  */
update_curr(struct cfs_rq * cfs_rq)695 static void update_curr(struct cfs_rq *cfs_rq)
696 {
697 	struct sched_entity *curr = cfs_rq->curr;
698 	u64 now = rq_clock_task(rq_of(cfs_rq));
699 	u64 delta_exec;
700 
701 	if (unlikely(!curr))
702 		return;
703 
704 	delta_exec = now - curr->exec_start;
705 	if (unlikely((s64)delta_exec <= 0))
706 		return;
707 
708 	curr->exec_start = now;
709 
710 	schedstat_set(curr->statistics.exec_max,
711 		      max(delta_exec, curr->statistics.exec_max));
712 
713 	curr->sum_exec_runtime += delta_exec;
714 	schedstat_add(cfs_rq, exec_clock, delta_exec);
715 
716 	curr->vruntime += calc_delta_fair(delta_exec, curr);
717 	update_min_vruntime(cfs_rq);
718 
719 	if (entity_is_task(curr)) {
720 		struct task_struct *curtask = task_of(curr);
721 
722 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
723 		cpuacct_charge(curtask, delta_exec);
724 		account_group_exec_runtime(curtask, delta_exec);
725 	}
726 
727 	account_cfs_rq_runtime(cfs_rq, delta_exec);
728 }
729 
update_curr_fair(struct rq * rq)730 static void update_curr_fair(struct rq *rq)
731 {
732 	update_curr(cfs_rq_of(&rq->curr->se));
733 }
734 
735 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)736 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
739 }
740 
741 /*
742  * Task is being enqueued - update stats:
743  */
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)744 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 	/*
747 	 * Are we enqueueing a waiting task? (for current tasks
748 	 * a dequeue/enqueue event is a NOP)
749 	 */
750 	if (se != cfs_rq->curr)
751 		update_stats_wait_start(cfs_rq, se);
752 }
753 
754 static void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
758 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
759 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
761 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
762 #ifdef CONFIG_SCHEDSTATS
763 	if (entity_is_task(se)) {
764 		trace_sched_stat_wait(task_of(se),
765 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
766 	}
767 #endif
768 	schedstat_set(se->statistics.wait_start, 0);
769 }
770 
771 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)772 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 	/*
775 	 * Mark the end of the wait period if dequeueing a
776 	 * waiting task:
777 	 */
778 	if (se != cfs_rq->curr)
779 		update_stats_wait_end(cfs_rq, se);
780 }
781 
782 /*
783  * We are picking a new current task - update its stats:
784  */
785 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)786 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 	/*
789 	 * We are starting a new run period:
790 	 */
791 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
792 }
793 
794 /**************************************************
795  * Scheduling class queueing methods:
796  */
797 
798 #ifdef CONFIG_NUMA_BALANCING
799 /*
800  * Approximate time to scan a full NUMA task in ms. The task scan period is
801  * calculated based on the tasks virtual memory size and
802  * numa_balancing_scan_size.
803  */
804 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
806 
807 /* Portion of address space to scan in MB */
808 unsigned int sysctl_numa_balancing_scan_size = 256;
809 
810 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811 unsigned int sysctl_numa_balancing_scan_delay = 1000;
812 
task_nr_scan_windows(struct task_struct * p)813 static unsigned int task_nr_scan_windows(struct task_struct *p)
814 {
815 	unsigned long rss = 0;
816 	unsigned long nr_scan_pages;
817 
818 	/*
819 	 * Calculations based on RSS as non-present and empty pages are skipped
820 	 * by the PTE scanner and NUMA hinting faults should be trapped based
821 	 * on resident pages
822 	 */
823 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 	rss = get_mm_rss(p->mm);
825 	if (!rss)
826 		rss = nr_scan_pages;
827 
828 	rss = round_up(rss, nr_scan_pages);
829 	return rss / nr_scan_pages;
830 }
831 
832 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833 #define MAX_SCAN_WINDOW 2560
834 
task_scan_min(struct task_struct * p)835 static unsigned int task_scan_min(struct task_struct *p)
836 {
837 	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
838 	unsigned int scan, floor;
839 	unsigned int windows = 1;
840 
841 	if (scan_size < MAX_SCAN_WINDOW)
842 		windows = MAX_SCAN_WINDOW / scan_size;
843 	floor = 1000 / windows;
844 
845 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 	return max_t(unsigned int, floor, scan);
847 }
848 
task_scan_max(struct task_struct * p)849 static unsigned int task_scan_max(struct task_struct *p)
850 {
851 	unsigned int smin = task_scan_min(p);
852 	unsigned int smax;
853 
854 	/* Watch for min being lower than max due to floor calculations */
855 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 	return max(smin, smax);
857 }
858 
account_numa_enqueue(struct rq * rq,struct task_struct * p)859 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860 {
861 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863 }
864 
account_numa_dequeue(struct rq * rq,struct task_struct * p)865 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866 {
867 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869 }
870 
871 struct numa_group {
872 	atomic_t refcount;
873 
874 	spinlock_t lock; /* nr_tasks, tasks */
875 	int nr_tasks;
876 	pid_t gid;
877 
878 	struct rcu_head rcu;
879 	nodemask_t active_nodes;
880 	unsigned long total_faults;
881 	/*
882 	 * Faults_cpu is used to decide whether memory should move
883 	 * towards the CPU. As a consequence, these stats are weighted
884 	 * more by CPU use than by memory faults.
885 	 */
886 	unsigned long *faults_cpu;
887 	unsigned long faults[0];
888 };
889 
890 /* Shared or private faults. */
891 #define NR_NUMA_HINT_FAULT_TYPES 2
892 
893 /* Memory and CPU locality */
894 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895 
896 /* Averaged statistics, and temporary buffers. */
897 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898 
task_numa_group_id(struct task_struct * p)899 pid_t task_numa_group_id(struct task_struct *p)
900 {
901 	return p->numa_group ? p->numa_group->gid : 0;
902 }
903 
904 /*
905  * The averaged statistics, shared & private, memory & cpu,
906  * occupy the first half of the array. The second half of the
907  * array is for current counters, which are averaged into the
908  * first set by task_numa_placement.
909  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)910 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
911 {
912 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
913 }
914 
task_faults(struct task_struct * p,int nid)915 static inline unsigned long task_faults(struct task_struct *p, int nid)
916 {
917 	if (!p->numa_faults)
918 		return 0;
919 
920 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
922 }
923 
group_faults(struct task_struct * p,int nid)924 static inline unsigned long group_faults(struct task_struct *p, int nid)
925 {
926 	if (!p->numa_group)
927 		return 0;
928 
929 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
931 }
932 
group_faults_cpu(struct numa_group * group,int nid)933 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934 {
935 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
937 }
938 
939 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)940 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 					int maxdist, bool task)
942 {
943 	unsigned long score = 0;
944 	int node;
945 
946 	/*
947 	 * All nodes are directly connected, and the same distance
948 	 * from each other. No need for fancy placement algorithms.
949 	 */
950 	if (sched_numa_topology_type == NUMA_DIRECT)
951 		return 0;
952 
953 	/*
954 	 * This code is called for each node, introducing N^2 complexity,
955 	 * which should be ok given the number of nodes rarely exceeds 8.
956 	 */
957 	for_each_online_node(node) {
958 		unsigned long faults;
959 		int dist = node_distance(nid, node);
960 
961 		/*
962 		 * The furthest away nodes in the system are not interesting
963 		 * for placement; nid was already counted.
964 		 */
965 		if (dist == sched_max_numa_distance || node == nid)
966 			continue;
967 
968 		/*
969 		 * On systems with a backplane NUMA topology, compare groups
970 		 * of nodes, and move tasks towards the group with the most
971 		 * memory accesses. When comparing two nodes at distance
972 		 * "hoplimit", only nodes closer by than "hoplimit" are part
973 		 * of each group. Skip other nodes.
974 		 */
975 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 					dist > maxdist)
977 			continue;
978 
979 		/* Add up the faults from nearby nodes. */
980 		if (task)
981 			faults = task_faults(p, node);
982 		else
983 			faults = group_faults(p, node);
984 
985 		/*
986 		 * On systems with a glueless mesh NUMA topology, there are
987 		 * no fixed "groups of nodes". Instead, nodes that are not
988 		 * directly connected bounce traffic through intermediate
989 		 * nodes; a numa_group can occupy any set of nodes.
990 		 * The further away a node is, the less the faults count.
991 		 * This seems to result in good task placement.
992 		 */
993 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 			faults *= (sched_max_numa_distance - dist);
995 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 		}
997 
998 		score += faults;
999 	}
1000 
1001 	return score;
1002 }
1003 
1004 /*
1005  * These return the fraction of accesses done by a particular task, or
1006  * task group, on a particular numa node.  The group weight is given a
1007  * larger multiplier, in order to group tasks together that are almost
1008  * evenly spread out between numa nodes.
1009  */
task_weight(struct task_struct * p,int nid,int dist)1010 static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 					int dist)
1012 {
1013 	unsigned long faults, total_faults;
1014 
1015 	if (!p->numa_faults)
1016 		return 0;
1017 
1018 	total_faults = p->total_numa_faults;
1019 
1020 	if (!total_faults)
1021 		return 0;
1022 
1023 	faults = task_faults(p, nid);
1024 	faults += score_nearby_nodes(p, nid, dist, true);
1025 
1026 	return 1000 * faults / total_faults;
1027 }
1028 
group_weight(struct task_struct * p,int nid,int dist)1029 static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 					 int dist)
1031 {
1032 	unsigned long faults, total_faults;
1033 
1034 	if (!p->numa_group)
1035 		return 0;
1036 
1037 	total_faults = p->numa_group->total_faults;
1038 
1039 	if (!total_faults)
1040 		return 0;
1041 
1042 	faults = group_faults(p, nid);
1043 	faults += score_nearby_nodes(p, nid, dist, false);
1044 
1045 	return 1000 * faults / total_faults;
1046 }
1047 
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1048 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 				int src_nid, int dst_cpu)
1050 {
1051 	struct numa_group *ng = p->numa_group;
1052 	int dst_nid = cpu_to_node(dst_cpu);
1053 	int last_cpupid, this_cpupid;
1054 
1055 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056 
1057 	/*
1058 	 * Multi-stage node selection is used in conjunction with a periodic
1059 	 * migration fault to build a temporal task<->page relation. By using
1060 	 * a two-stage filter we remove short/unlikely relations.
1061 	 *
1062 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 	 * a task's usage of a particular page (n_p) per total usage of this
1064 	 * page (n_t) (in a given time-span) to a probability.
1065 	 *
1066 	 * Our periodic faults will sample this probability and getting the
1067 	 * same result twice in a row, given these samples are fully
1068 	 * independent, is then given by P(n)^2, provided our sample period
1069 	 * is sufficiently short compared to the usage pattern.
1070 	 *
1071 	 * This quadric squishes small probabilities, making it less likely we
1072 	 * act on an unlikely task<->page relation.
1073 	 */
1074 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 	if (!cpupid_pid_unset(last_cpupid) &&
1076 				cpupid_to_nid(last_cpupid) != dst_nid)
1077 		return false;
1078 
1079 	/* Always allow migrate on private faults */
1080 	if (cpupid_match_pid(p, last_cpupid))
1081 		return true;
1082 
1083 	/* A shared fault, but p->numa_group has not been set up yet. */
1084 	if (!ng)
1085 		return true;
1086 
1087 	/*
1088 	 * Do not migrate if the destination is not a node that
1089 	 * is actively used by this numa group.
1090 	 */
1091 	if (!node_isset(dst_nid, ng->active_nodes))
1092 		return false;
1093 
1094 	/*
1095 	 * Source is a node that is not actively used by this
1096 	 * numa group, while the destination is. Migrate.
1097 	 */
1098 	if (!node_isset(src_nid, ng->active_nodes))
1099 		return true;
1100 
1101 	/*
1102 	 * Both source and destination are nodes in active
1103 	 * use by this numa group. Maximize memory bandwidth
1104 	 * by migrating from more heavily used groups, to less
1105 	 * heavily used ones, spreading the load around.
1106 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 	 */
1108 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109 }
1110 
1111 static unsigned long weighted_cpuload(const int cpu);
1112 static unsigned long source_load(int cpu, int type);
1113 static unsigned long target_load(int cpu, int type);
1114 static unsigned long capacity_of(int cpu);
1115 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116 
1117 /* Cached statistics for all CPUs within a node */
1118 struct numa_stats {
1119 	unsigned long nr_running;
1120 	unsigned long load;
1121 
1122 	/* Total compute capacity of CPUs on a node */
1123 	unsigned long compute_capacity;
1124 
1125 	/* Approximate capacity in terms of runnable tasks on a node */
1126 	unsigned long task_capacity;
1127 	int has_free_capacity;
1128 };
1129 
1130 /*
1131  * XXX borrowed from update_sg_lb_stats
1132  */
update_numa_stats(struct numa_stats * ns,int nid)1133 static void update_numa_stats(struct numa_stats *ns, int nid)
1134 {
1135 	int smt, cpu, cpus = 0;
1136 	unsigned long capacity;
1137 
1138 	memset(ns, 0, sizeof(*ns));
1139 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 		struct rq *rq = cpu_rq(cpu);
1141 
1142 		ns->nr_running += rq->nr_running;
1143 		ns->load += weighted_cpuload(cpu);
1144 		ns->compute_capacity += capacity_of(cpu);
1145 
1146 		cpus++;
1147 	}
1148 
1149 	/*
1150 	 * If we raced with hotplug and there are no CPUs left in our mask
1151 	 * the @ns structure is NULL'ed and task_numa_compare() will
1152 	 * not find this node attractive.
1153 	 *
1154 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 	 * imbalance and bail there.
1156 	 */
1157 	if (!cpus)
1158 		return;
1159 
1160 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 	capacity = cpus / smt; /* cores */
1163 
1164 	ns->task_capacity = min_t(unsigned, capacity,
1165 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1166 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1167 }
1168 
1169 struct task_numa_env {
1170 	struct task_struct *p;
1171 
1172 	int src_cpu, src_nid;
1173 	int dst_cpu, dst_nid;
1174 
1175 	struct numa_stats src_stats, dst_stats;
1176 
1177 	int imbalance_pct;
1178 	int dist;
1179 
1180 	struct task_struct *best_task;
1181 	long best_imp;
1182 	int best_cpu;
1183 };
1184 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1185 static void task_numa_assign(struct task_numa_env *env,
1186 			     struct task_struct *p, long imp)
1187 {
1188 	if (env->best_task)
1189 		put_task_struct(env->best_task);
1190 	if (p)
1191 		get_task_struct(p);
1192 
1193 	env->best_task = p;
1194 	env->best_imp = imp;
1195 	env->best_cpu = env->dst_cpu;
1196 }
1197 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1198 static bool load_too_imbalanced(long src_load, long dst_load,
1199 				struct task_numa_env *env)
1200 {
1201 	long src_capacity, dst_capacity;
1202 	long orig_src_load;
1203 	long load_a, load_b;
1204 	long moved_load;
1205 	long imb;
1206 
1207 	/*
1208 	 * The load is corrected for the CPU capacity available on each node.
1209 	 *
1210 	 * src_load        dst_load
1211 	 * ------------ vs ---------
1212 	 * src_capacity    dst_capacity
1213 	 */
1214 	src_capacity = env->src_stats.compute_capacity;
1215 	dst_capacity = env->dst_stats.compute_capacity;
1216 
1217 	/* We care about the slope of the imbalance, not the direction. */
1218 	load_a = dst_load;
1219 	load_b = src_load;
1220 	if (load_a < load_b)
1221 		swap(load_a, load_b);
1222 
1223 	/* Is the difference below the threshold? */
1224 	imb = load_a * src_capacity * 100 -
1225 		load_b * dst_capacity * env->imbalance_pct;
1226 	if (imb <= 0)
1227 		return false;
1228 
1229 	/*
1230 	 * The imbalance is above the allowed threshold.
1231 	 * Allow a move that brings us closer to a balanced situation,
1232 	 * without moving things past the point of balance.
1233 	 */
1234 	orig_src_load = env->src_stats.load;
1235 
1236 	/*
1237 	 * In a task swap, there will be one load moving from src to dst,
1238 	 * and another moving back. This is the net sum of both moves.
1239 	 * A simple task move will always have a positive value.
1240 	 * Allow the move if it brings the system closer to a balanced
1241 	 * situation, without crossing over the balance point.
1242 	 */
1243 	moved_load = orig_src_load - src_load;
1244 
1245 	if (moved_load > 0)
1246 		/* Moving src -> dst. Did we overshoot balance? */
1247 		return src_load * dst_capacity < dst_load * src_capacity;
1248 	else
1249 		/* Moving dst -> src. Did we overshoot balance? */
1250 		return dst_load * src_capacity < src_load * dst_capacity;
1251 }
1252 
1253 /*
1254  * This checks if the overall compute and NUMA accesses of the system would
1255  * be improved if the source tasks was migrated to the target dst_cpu taking
1256  * into account that it might be best if task running on the dst_cpu should
1257  * be exchanged with the source task
1258  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp)1259 static void task_numa_compare(struct task_numa_env *env,
1260 			      long taskimp, long groupimp)
1261 {
1262 	struct rq *src_rq = cpu_rq(env->src_cpu);
1263 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 	struct task_struct *cur;
1265 	long src_load, dst_load;
1266 	long load;
1267 	long imp = env->p->numa_group ? groupimp : taskimp;
1268 	long moveimp = imp;
1269 	int dist = env->dist;
1270 
1271 	rcu_read_lock();
1272 
1273 	raw_spin_lock_irq(&dst_rq->lock);
1274 	cur = dst_rq->curr;
1275 	/*
1276 	 * No need to move the exiting task, and this ensures that ->curr
1277 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 	 * is safe under RCU read lock.
1279 	 * Note that rcu_read_lock() itself can't protect from the final
1280 	 * put_task_struct() after the last schedule().
1281 	 */
1282 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1283 		cur = NULL;
1284 	raw_spin_unlock_irq(&dst_rq->lock);
1285 
1286 	/*
1287 	 * Because we have preemption enabled we can get migrated around and
1288 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 	 */
1290 	if (cur == env->p)
1291 		goto unlock;
1292 
1293 	/*
1294 	 * "imp" is the fault differential for the source task between the
1295 	 * source and destination node. Calculate the total differential for
1296 	 * the source task and potential destination task. The more negative
1297 	 * the value is, the more rmeote accesses that would be expected to
1298 	 * be incurred if the tasks were swapped.
1299 	 */
1300 	if (cur) {
1301 		/* Skip this swap candidate if cannot move to the source cpu */
1302 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 			goto unlock;
1304 
1305 		/*
1306 		 * If dst and source tasks are in the same NUMA group, or not
1307 		 * in any group then look only at task weights.
1308 		 */
1309 		if (cur->numa_group == env->p->numa_group) {
1310 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 			      task_weight(cur, env->dst_nid, dist);
1312 			/*
1313 			 * Add some hysteresis to prevent swapping the
1314 			 * tasks within a group over tiny differences.
1315 			 */
1316 			if (cur->numa_group)
1317 				imp -= imp/16;
1318 		} else {
1319 			/*
1320 			 * Compare the group weights. If a task is all by
1321 			 * itself (not part of a group), use the task weight
1322 			 * instead.
1323 			 */
1324 			if (cur->numa_group)
1325 				imp += group_weight(cur, env->src_nid, dist) -
1326 				       group_weight(cur, env->dst_nid, dist);
1327 			else
1328 				imp += task_weight(cur, env->src_nid, dist) -
1329 				       task_weight(cur, env->dst_nid, dist);
1330 		}
1331 	}
1332 
1333 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1334 		goto unlock;
1335 
1336 	if (!cur) {
1337 		/* Is there capacity at our destination? */
1338 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1339 		    !env->dst_stats.has_free_capacity)
1340 			goto unlock;
1341 
1342 		goto balance;
1343 	}
1344 
1345 	/* Balance doesn't matter much if we're running a task per cpu */
1346 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 			dst_rq->nr_running == 1)
1348 		goto assign;
1349 
1350 	/*
1351 	 * In the overloaded case, try and keep the load balanced.
1352 	 */
1353 balance:
1354 	load = task_h_load(env->p);
1355 	dst_load = env->dst_stats.load + load;
1356 	src_load = env->src_stats.load - load;
1357 
1358 	if (moveimp > imp && moveimp > env->best_imp) {
1359 		/*
1360 		 * If the improvement from just moving env->p direction is
1361 		 * better than swapping tasks around, check if a move is
1362 		 * possible. Store a slightly smaller score than moveimp,
1363 		 * so an actually idle CPU will win.
1364 		 */
1365 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 			imp = moveimp - 1;
1367 			cur = NULL;
1368 			goto assign;
1369 		}
1370 	}
1371 
1372 	if (imp <= env->best_imp)
1373 		goto unlock;
1374 
1375 	if (cur) {
1376 		load = task_h_load(cur);
1377 		dst_load -= load;
1378 		src_load += load;
1379 	}
1380 
1381 	if (load_too_imbalanced(src_load, dst_load, env))
1382 		goto unlock;
1383 
1384 	/*
1385 	 * One idle CPU per node is evaluated for a task numa move.
1386 	 * Call select_idle_sibling to maybe find a better one.
1387 	 */
1388 	if (!cur)
1389 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390 
1391 assign:
1392 	task_numa_assign(env, cur, imp);
1393 unlock:
1394 	rcu_read_unlock();
1395 }
1396 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1397 static void task_numa_find_cpu(struct task_numa_env *env,
1398 				long taskimp, long groupimp)
1399 {
1400 	int cpu;
1401 
1402 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 		/* Skip this CPU if the source task cannot migrate */
1404 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 			continue;
1406 
1407 		env->dst_cpu = cpu;
1408 		task_numa_compare(env, taskimp, groupimp);
1409 	}
1410 }
1411 
task_numa_migrate(struct task_struct * p)1412 static int task_numa_migrate(struct task_struct *p)
1413 {
1414 	struct task_numa_env env = {
1415 		.p = p,
1416 
1417 		.src_cpu = task_cpu(p),
1418 		.src_nid = task_node(p),
1419 
1420 		.imbalance_pct = 112,
1421 
1422 		.best_task = NULL,
1423 		.best_imp = 0,
1424 		.best_cpu = -1
1425 	};
1426 	struct sched_domain *sd;
1427 	unsigned long taskweight, groupweight;
1428 	int nid, ret, dist;
1429 	long taskimp, groupimp;
1430 
1431 	/*
1432 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 	 * imbalance and would be the first to start moving tasks about.
1434 	 *
1435 	 * And we want to avoid any moving of tasks about, as that would create
1436 	 * random movement of tasks -- counter the numa conditions we're trying
1437 	 * to satisfy here.
1438 	 */
1439 	rcu_read_lock();
1440 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1441 	if (sd)
1442 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1443 	rcu_read_unlock();
1444 
1445 	/*
1446 	 * Cpusets can break the scheduler domain tree into smaller
1447 	 * balance domains, some of which do not cross NUMA boundaries.
1448 	 * Tasks that are "trapped" in such domains cannot be migrated
1449 	 * elsewhere, so there is no point in (re)trying.
1450 	 */
1451 	if (unlikely(!sd)) {
1452 		p->numa_preferred_nid = task_node(p);
1453 		return -EINVAL;
1454 	}
1455 
1456 	env.dst_nid = p->numa_preferred_nid;
1457 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 	taskweight = task_weight(p, env.src_nid, dist);
1459 	groupweight = group_weight(p, env.src_nid, dist);
1460 	update_numa_stats(&env.src_stats, env.src_nid);
1461 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1463 	update_numa_stats(&env.dst_stats, env.dst_nid);
1464 
1465 	/* Try to find a spot on the preferred nid. */
1466 	task_numa_find_cpu(&env, taskimp, groupimp);
1467 
1468 	/*
1469 	 * Look at other nodes in these cases:
1470 	 * - there is no space available on the preferred_nid
1471 	 * - the task is part of a numa_group that is interleaved across
1472 	 *   multiple NUMA nodes; in order to better consolidate the group,
1473 	 *   we need to check other locations.
1474 	 */
1475 	if (env.best_cpu == -1 || (p->numa_group &&
1476 			nodes_weight(p->numa_group->active_nodes) > 1)) {
1477 		for_each_online_node(nid) {
1478 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 				continue;
1480 
1481 			dist = node_distance(env.src_nid, env.dst_nid);
1482 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 						dist != env.dist) {
1484 				taskweight = task_weight(p, env.src_nid, dist);
1485 				groupweight = group_weight(p, env.src_nid, dist);
1486 			}
1487 
1488 			/* Only consider nodes where both task and groups benefit */
1489 			taskimp = task_weight(p, nid, dist) - taskweight;
1490 			groupimp = group_weight(p, nid, dist) - groupweight;
1491 			if (taskimp < 0 && groupimp < 0)
1492 				continue;
1493 
1494 			env.dist = dist;
1495 			env.dst_nid = nid;
1496 			update_numa_stats(&env.dst_stats, env.dst_nid);
1497 			task_numa_find_cpu(&env, taskimp, groupimp);
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * If the task is part of a workload that spans multiple NUMA nodes,
1503 	 * and is migrating into one of the workload's active nodes, remember
1504 	 * this node as the task's preferred numa node, so the workload can
1505 	 * settle down.
1506 	 * A task that migrated to a second choice node will be better off
1507 	 * trying for a better one later. Do not set the preferred node here.
1508 	 */
1509 	if (p->numa_group) {
1510 		if (env.best_cpu == -1)
1511 			nid = env.src_nid;
1512 		else
1513 			nid = env.dst_nid;
1514 
1515 		if (node_isset(nid, p->numa_group->active_nodes))
1516 			sched_setnuma(p, env.dst_nid);
1517 	}
1518 
1519 	/* No better CPU than the current one was found. */
1520 	if (env.best_cpu == -1)
1521 		return -EAGAIN;
1522 
1523 	/*
1524 	 * Reset the scan period if the task is being rescheduled on an
1525 	 * alternative node to recheck if the tasks is now properly placed.
1526 	 */
1527 	p->numa_scan_period = task_scan_min(p);
1528 
1529 	if (env.best_task == NULL) {
1530 		ret = migrate_task_to(p, env.best_cpu);
1531 		if (ret != 0)
1532 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1533 		return ret;
1534 	}
1535 
1536 	ret = migrate_swap(p, env.best_task);
1537 	if (ret != 0)
1538 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1539 	put_task_struct(env.best_task);
1540 	return ret;
1541 }
1542 
1543 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)1544 static void numa_migrate_preferred(struct task_struct *p)
1545 {
1546 	unsigned long interval = HZ;
1547 
1548 	/* This task has no NUMA fault statistics yet */
1549 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1550 		return;
1551 
1552 	/* Periodically retry migrating the task to the preferred node */
1553 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 	p->numa_migrate_retry = jiffies + interval;
1555 
1556 	/* Success if task is already running on preferred CPU */
1557 	if (task_node(p) == p->numa_preferred_nid)
1558 		return;
1559 
1560 	/* Otherwise, try migrate to a CPU on the preferred node */
1561 	task_numa_migrate(p);
1562 }
1563 
1564 /*
1565  * Find the nodes on which the workload is actively running. We do this by
1566  * tracking the nodes from which NUMA hinting faults are triggered. This can
1567  * be different from the set of nodes where the workload's memory is currently
1568  * located.
1569  *
1570  * The bitmask is used to make smarter decisions on when to do NUMA page
1571  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572  * are added when they cause over 6/16 of the maximum number of faults, but
1573  * only removed when they drop below 3/16.
1574  */
update_numa_active_node_mask(struct numa_group * numa_group)1575 static void update_numa_active_node_mask(struct numa_group *numa_group)
1576 {
1577 	unsigned long faults, max_faults = 0;
1578 	int nid;
1579 
1580 	for_each_online_node(nid) {
1581 		faults = group_faults_cpu(numa_group, nid);
1582 		if (faults > max_faults)
1583 			max_faults = faults;
1584 	}
1585 
1586 	for_each_online_node(nid) {
1587 		faults = group_faults_cpu(numa_group, nid);
1588 		if (!node_isset(nid, numa_group->active_nodes)) {
1589 			if (faults > max_faults * 6 / 16)
1590 				node_set(nid, numa_group->active_nodes);
1591 		} else if (faults < max_faults * 3 / 16)
1592 			node_clear(nid, numa_group->active_nodes);
1593 	}
1594 }
1595 
1596 /*
1597  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598  * increments. The more local the fault statistics are, the higher the scan
1599  * period will be for the next scan window. If local/(local+remote) ratio is
1600  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601  * the scan period will decrease. Aim for 70% local accesses.
1602  */
1603 #define NUMA_PERIOD_SLOTS 10
1604 #define NUMA_PERIOD_THRESHOLD 7
1605 
1606 /*
1607  * Increase the scan period (slow down scanning) if the majority of
1608  * our memory is already on our local node, or if the majority of
1609  * the page accesses are shared with other processes.
1610  * Otherwise, decrease the scan period.
1611  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)1612 static void update_task_scan_period(struct task_struct *p,
1613 			unsigned long shared, unsigned long private)
1614 {
1615 	unsigned int period_slot;
1616 	int ratio;
1617 	int diff;
1618 
1619 	unsigned long remote = p->numa_faults_locality[0];
1620 	unsigned long local = p->numa_faults_locality[1];
1621 
1622 	/*
1623 	 * If there were no record hinting faults then either the task is
1624 	 * completely idle or all activity is areas that are not of interest
1625 	 * to automatic numa balancing. Related to that, if there were failed
1626 	 * migration then it implies we are migrating too quickly or the local
1627 	 * node is overloaded. In either case, scan slower
1628 	 */
1629 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1630 		p->numa_scan_period = min(p->numa_scan_period_max,
1631 			p->numa_scan_period << 1);
1632 
1633 		p->mm->numa_next_scan = jiffies +
1634 			msecs_to_jiffies(p->numa_scan_period);
1635 
1636 		return;
1637 	}
1638 
1639 	/*
1640 	 * Prepare to scale scan period relative to the current period.
1641 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644 	 */
1645 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 		if (!slot)
1650 			slot = 1;
1651 		diff = slot * period_slot;
1652 	} else {
1653 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654 
1655 		/*
1656 		 * Scale scan rate increases based on sharing. There is an
1657 		 * inverse relationship between the degree of sharing and
1658 		 * the adjustment made to the scanning period. Broadly
1659 		 * speaking the intent is that there is little point
1660 		 * scanning faster if shared accesses dominate as it may
1661 		 * simply bounce migrations uselessly
1662 		 */
1663 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1664 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665 	}
1666 
1667 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 			task_scan_min(p), task_scan_max(p));
1669 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670 }
1671 
1672 /*
1673  * Get the fraction of time the task has been running since the last
1674  * NUMA placement cycle. The scheduler keeps similar statistics, but
1675  * decays those on a 32ms period, which is orders of magnitude off
1676  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677  * stats only if the task is so new there are no NUMA statistics yet.
1678  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)1679 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680 {
1681 	u64 runtime, delta, now;
1682 	/* Use the start of this time slice to avoid calculations. */
1683 	now = p->se.exec_start;
1684 	runtime = p->se.sum_exec_runtime;
1685 
1686 	if (p->last_task_numa_placement) {
1687 		delta = runtime - p->last_sum_exec_runtime;
1688 		*period = now - p->last_task_numa_placement;
1689 	} else {
1690 		delta = p->se.avg.runnable_avg_sum;
1691 		*period = p->se.avg.avg_period;
1692 	}
1693 
1694 	p->last_sum_exec_runtime = runtime;
1695 	p->last_task_numa_placement = now;
1696 
1697 	return delta;
1698 }
1699 
1700 /*
1701  * Determine the preferred nid for a task in a numa_group. This needs to
1702  * be done in a way that produces consistent results with group_weight,
1703  * otherwise workloads might not converge.
1704  */
preferred_group_nid(struct task_struct * p,int nid)1705 static int preferred_group_nid(struct task_struct *p, int nid)
1706 {
1707 	nodemask_t nodes;
1708 	int dist;
1709 
1710 	/* Direct connections between all NUMA nodes. */
1711 	if (sched_numa_topology_type == NUMA_DIRECT)
1712 		return nid;
1713 
1714 	/*
1715 	 * On a system with glueless mesh NUMA topology, group_weight
1716 	 * scores nodes according to the number of NUMA hinting faults on
1717 	 * both the node itself, and on nearby nodes.
1718 	 */
1719 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 		unsigned long score, max_score = 0;
1721 		int node, max_node = nid;
1722 
1723 		dist = sched_max_numa_distance;
1724 
1725 		for_each_online_node(node) {
1726 			score = group_weight(p, node, dist);
1727 			if (score > max_score) {
1728 				max_score = score;
1729 				max_node = node;
1730 			}
1731 		}
1732 		return max_node;
1733 	}
1734 
1735 	/*
1736 	 * Finding the preferred nid in a system with NUMA backplane
1737 	 * interconnect topology is more involved. The goal is to locate
1738 	 * tasks from numa_groups near each other in the system, and
1739 	 * untangle workloads from different sides of the system. This requires
1740 	 * searching down the hierarchy of node groups, recursively searching
1741 	 * inside the highest scoring group of nodes. The nodemask tricks
1742 	 * keep the complexity of the search down.
1743 	 */
1744 	nodes = node_online_map;
1745 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 		unsigned long max_faults = 0;
1747 		nodemask_t max_group = NODE_MASK_NONE;
1748 		int a, b;
1749 
1750 		/* Are there nodes at this distance from each other? */
1751 		if (!find_numa_distance(dist))
1752 			continue;
1753 
1754 		for_each_node_mask(a, nodes) {
1755 			unsigned long faults = 0;
1756 			nodemask_t this_group;
1757 			nodes_clear(this_group);
1758 
1759 			/* Sum group's NUMA faults; includes a==b case. */
1760 			for_each_node_mask(b, nodes) {
1761 				if (node_distance(a, b) < dist) {
1762 					faults += group_faults(p, b);
1763 					node_set(b, this_group);
1764 					node_clear(b, nodes);
1765 				}
1766 			}
1767 
1768 			/* Remember the top group. */
1769 			if (faults > max_faults) {
1770 				max_faults = faults;
1771 				max_group = this_group;
1772 				/*
1773 				 * subtle: at the smallest distance there is
1774 				 * just one node left in each "group", the
1775 				 * winner is the preferred nid.
1776 				 */
1777 				nid = a;
1778 			}
1779 		}
1780 		/* Next round, evaluate the nodes within max_group. */
1781 		if (!max_faults)
1782 			break;
1783 		nodes = max_group;
1784 	}
1785 	return nid;
1786 }
1787 
task_numa_placement(struct task_struct * p)1788 static void task_numa_placement(struct task_struct *p)
1789 {
1790 	int seq, nid, max_nid = -1, max_group_nid = -1;
1791 	unsigned long max_faults = 0, max_group_faults = 0;
1792 	unsigned long fault_types[2] = { 0, 0 };
1793 	unsigned long total_faults;
1794 	u64 runtime, period;
1795 	spinlock_t *group_lock = NULL;
1796 
1797 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1798 	if (p->numa_scan_seq == seq)
1799 		return;
1800 	p->numa_scan_seq = seq;
1801 	p->numa_scan_period_max = task_scan_max(p);
1802 
1803 	total_faults = p->numa_faults_locality[0] +
1804 		       p->numa_faults_locality[1];
1805 	runtime = numa_get_avg_runtime(p, &period);
1806 
1807 	/* If the task is part of a group prevent parallel updates to group stats */
1808 	if (p->numa_group) {
1809 		group_lock = &p->numa_group->lock;
1810 		spin_lock_irq(group_lock);
1811 	}
1812 
1813 	/* Find the node with the highest number of faults */
1814 	for_each_online_node(nid) {
1815 		/* Keep track of the offsets in numa_faults array */
1816 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1817 		unsigned long faults = 0, group_faults = 0;
1818 		int priv;
1819 
1820 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1821 			long diff, f_diff, f_weight;
1822 
1823 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1824 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1825 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1826 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1827 
1828 			/* Decay existing window, copy faults since last scan */
1829 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1830 			fault_types[priv] += p->numa_faults[membuf_idx];
1831 			p->numa_faults[membuf_idx] = 0;
1832 
1833 			/*
1834 			 * Normalize the faults_from, so all tasks in a group
1835 			 * count according to CPU use, instead of by the raw
1836 			 * number of faults. Tasks with little runtime have
1837 			 * little over-all impact on throughput, and thus their
1838 			 * faults are less important.
1839 			 */
1840 			f_weight = div64_u64(runtime << 16, period + 1);
1841 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1842 				   (total_faults + 1);
1843 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1844 			p->numa_faults[cpubuf_idx] = 0;
1845 
1846 			p->numa_faults[mem_idx] += diff;
1847 			p->numa_faults[cpu_idx] += f_diff;
1848 			faults += p->numa_faults[mem_idx];
1849 			p->total_numa_faults += diff;
1850 			if (p->numa_group) {
1851 				/*
1852 				 * safe because we can only change our own group
1853 				 *
1854 				 * mem_idx represents the offset for a given
1855 				 * nid and priv in a specific region because it
1856 				 * is at the beginning of the numa_faults array.
1857 				 */
1858 				p->numa_group->faults[mem_idx] += diff;
1859 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1860 				p->numa_group->total_faults += diff;
1861 				group_faults += p->numa_group->faults[mem_idx];
1862 			}
1863 		}
1864 
1865 		if (faults > max_faults) {
1866 			max_faults = faults;
1867 			max_nid = nid;
1868 		}
1869 
1870 		if (group_faults > max_group_faults) {
1871 			max_group_faults = group_faults;
1872 			max_group_nid = nid;
1873 		}
1874 	}
1875 
1876 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1877 
1878 	if (p->numa_group) {
1879 		update_numa_active_node_mask(p->numa_group);
1880 		spin_unlock_irq(group_lock);
1881 		max_nid = preferred_group_nid(p, max_group_nid);
1882 	}
1883 
1884 	if (max_faults) {
1885 		/* Set the new preferred node */
1886 		if (max_nid != p->numa_preferred_nid)
1887 			sched_setnuma(p, max_nid);
1888 
1889 		if (task_node(p) != p->numa_preferred_nid)
1890 			numa_migrate_preferred(p);
1891 	}
1892 }
1893 
get_numa_group(struct numa_group * grp)1894 static inline int get_numa_group(struct numa_group *grp)
1895 {
1896 	return atomic_inc_not_zero(&grp->refcount);
1897 }
1898 
put_numa_group(struct numa_group * grp)1899 static inline void put_numa_group(struct numa_group *grp)
1900 {
1901 	if (atomic_dec_and_test(&grp->refcount))
1902 		kfree_rcu(grp, rcu);
1903 }
1904 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)1905 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1906 			int *priv)
1907 {
1908 	struct numa_group *grp, *my_grp;
1909 	struct task_struct *tsk;
1910 	bool join = false;
1911 	int cpu = cpupid_to_cpu(cpupid);
1912 	int i;
1913 
1914 	if (unlikely(!p->numa_group)) {
1915 		unsigned int size = sizeof(struct numa_group) +
1916 				    4*nr_node_ids*sizeof(unsigned long);
1917 
1918 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1919 		if (!grp)
1920 			return;
1921 
1922 		atomic_set(&grp->refcount, 1);
1923 		spin_lock_init(&grp->lock);
1924 		grp->gid = p->pid;
1925 		/* Second half of the array tracks nids where faults happen */
1926 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1927 						nr_node_ids;
1928 
1929 		node_set(task_node(current), grp->active_nodes);
1930 
1931 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1932 			grp->faults[i] = p->numa_faults[i];
1933 
1934 		grp->total_faults = p->total_numa_faults;
1935 
1936 		grp->nr_tasks++;
1937 		rcu_assign_pointer(p->numa_group, grp);
1938 	}
1939 
1940 	rcu_read_lock();
1941 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1942 
1943 	if (!cpupid_match_pid(tsk, cpupid))
1944 		goto no_join;
1945 
1946 	grp = rcu_dereference(tsk->numa_group);
1947 	if (!grp)
1948 		goto no_join;
1949 
1950 	my_grp = p->numa_group;
1951 	if (grp == my_grp)
1952 		goto no_join;
1953 
1954 	/*
1955 	 * Only join the other group if its bigger; if we're the bigger group,
1956 	 * the other task will join us.
1957 	 */
1958 	if (my_grp->nr_tasks > grp->nr_tasks)
1959 		goto no_join;
1960 
1961 	/*
1962 	 * Tie-break on the grp address.
1963 	 */
1964 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1965 		goto no_join;
1966 
1967 	/* Always join threads in the same process. */
1968 	if (tsk->mm == current->mm)
1969 		join = true;
1970 
1971 	/* Simple filter to avoid false positives due to PID collisions */
1972 	if (flags & TNF_SHARED)
1973 		join = true;
1974 
1975 	/* Update priv based on whether false sharing was detected */
1976 	*priv = !join;
1977 
1978 	if (join && !get_numa_group(grp))
1979 		goto no_join;
1980 
1981 	rcu_read_unlock();
1982 
1983 	if (!join)
1984 		return;
1985 
1986 	BUG_ON(irqs_disabled());
1987 	double_lock_irq(&my_grp->lock, &grp->lock);
1988 
1989 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1990 		my_grp->faults[i] -= p->numa_faults[i];
1991 		grp->faults[i] += p->numa_faults[i];
1992 	}
1993 	my_grp->total_faults -= p->total_numa_faults;
1994 	grp->total_faults += p->total_numa_faults;
1995 
1996 	my_grp->nr_tasks--;
1997 	grp->nr_tasks++;
1998 
1999 	spin_unlock(&my_grp->lock);
2000 	spin_unlock_irq(&grp->lock);
2001 
2002 	rcu_assign_pointer(p->numa_group, grp);
2003 
2004 	put_numa_group(my_grp);
2005 	return;
2006 
2007 no_join:
2008 	rcu_read_unlock();
2009 	return;
2010 }
2011 
task_numa_free(struct task_struct * p)2012 void task_numa_free(struct task_struct *p)
2013 {
2014 	struct numa_group *grp = p->numa_group;
2015 	void *numa_faults = p->numa_faults;
2016 	unsigned long flags;
2017 	int i;
2018 
2019 	if (grp) {
2020 		spin_lock_irqsave(&grp->lock, flags);
2021 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2022 			grp->faults[i] -= p->numa_faults[i];
2023 		grp->total_faults -= p->total_numa_faults;
2024 
2025 		grp->nr_tasks--;
2026 		spin_unlock_irqrestore(&grp->lock, flags);
2027 		RCU_INIT_POINTER(p->numa_group, NULL);
2028 		put_numa_group(grp);
2029 	}
2030 
2031 	p->numa_faults = NULL;
2032 	kfree(numa_faults);
2033 }
2034 
2035 /*
2036  * Got a PROT_NONE fault for a page on @node.
2037  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2038 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2039 {
2040 	struct task_struct *p = current;
2041 	bool migrated = flags & TNF_MIGRATED;
2042 	int cpu_node = task_node(current);
2043 	int local = !!(flags & TNF_FAULT_LOCAL);
2044 	int priv;
2045 
2046 	if (!numabalancing_enabled)
2047 		return;
2048 
2049 	/* for example, ksmd faulting in a user's mm */
2050 	if (!p->mm)
2051 		return;
2052 
2053 	/* Allocate buffer to track faults on a per-node basis */
2054 	if (unlikely(!p->numa_faults)) {
2055 		int size = sizeof(*p->numa_faults) *
2056 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2057 
2058 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2059 		if (!p->numa_faults)
2060 			return;
2061 
2062 		p->total_numa_faults = 0;
2063 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2064 	}
2065 
2066 	/*
2067 	 * First accesses are treated as private, otherwise consider accesses
2068 	 * to be private if the accessing pid has not changed
2069 	 */
2070 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2071 		priv = 1;
2072 	} else {
2073 		priv = cpupid_match_pid(p, last_cpupid);
2074 		if (!priv && !(flags & TNF_NO_GROUP))
2075 			task_numa_group(p, last_cpupid, flags, &priv);
2076 	}
2077 
2078 	/*
2079 	 * If a workload spans multiple NUMA nodes, a shared fault that
2080 	 * occurs wholly within the set of nodes that the workload is
2081 	 * actively using should be counted as local. This allows the
2082 	 * scan rate to slow down when a workload has settled down.
2083 	 */
2084 	if (!priv && !local && p->numa_group &&
2085 			node_isset(cpu_node, p->numa_group->active_nodes) &&
2086 			node_isset(mem_node, p->numa_group->active_nodes))
2087 		local = 1;
2088 
2089 	task_numa_placement(p);
2090 
2091 	/*
2092 	 * Retry task to preferred node migration periodically, in case it
2093 	 * case it previously failed, or the scheduler moved us.
2094 	 */
2095 	if (time_after(jiffies, p->numa_migrate_retry))
2096 		numa_migrate_preferred(p);
2097 
2098 	if (migrated)
2099 		p->numa_pages_migrated += pages;
2100 	if (flags & TNF_MIGRATE_FAIL)
2101 		p->numa_faults_locality[2] += pages;
2102 
2103 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2104 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2105 	p->numa_faults_locality[local] += pages;
2106 }
2107 
reset_ptenuma_scan(struct task_struct * p)2108 static void reset_ptenuma_scan(struct task_struct *p)
2109 {
2110 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
2111 	p->mm->numa_scan_offset = 0;
2112 }
2113 
2114 /*
2115  * The expensive part of numa migration is done from task_work context.
2116  * Triggered from task_tick_numa().
2117  */
task_numa_work(struct callback_head * work)2118 void task_numa_work(struct callback_head *work)
2119 {
2120 	unsigned long migrate, next_scan, now = jiffies;
2121 	struct task_struct *p = current;
2122 	struct mm_struct *mm = p->mm;
2123 	struct vm_area_struct *vma;
2124 	unsigned long start, end;
2125 	unsigned long nr_pte_updates = 0;
2126 	long pages;
2127 
2128 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2129 
2130 	work->next = work; /* protect against double add */
2131 	/*
2132 	 * Who cares about NUMA placement when they're dying.
2133 	 *
2134 	 * NOTE: make sure not to dereference p->mm before this check,
2135 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2136 	 * without p->mm even though we still had it when we enqueued this
2137 	 * work.
2138 	 */
2139 	if (p->flags & PF_EXITING)
2140 		return;
2141 
2142 	if (!mm->numa_next_scan) {
2143 		mm->numa_next_scan = now +
2144 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2145 	}
2146 
2147 	/*
2148 	 * Enforce maximal scan/migration frequency..
2149 	 */
2150 	migrate = mm->numa_next_scan;
2151 	if (time_before(now, migrate))
2152 		return;
2153 
2154 	if (p->numa_scan_period == 0) {
2155 		p->numa_scan_period_max = task_scan_max(p);
2156 		p->numa_scan_period = task_scan_min(p);
2157 	}
2158 
2159 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2160 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2161 		return;
2162 
2163 	/*
2164 	 * Delay this task enough that another task of this mm will likely win
2165 	 * the next time around.
2166 	 */
2167 	p->node_stamp += 2 * TICK_NSEC;
2168 
2169 	start = mm->numa_scan_offset;
2170 	pages = sysctl_numa_balancing_scan_size;
2171 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2172 	if (!pages)
2173 		return;
2174 
2175 	down_read(&mm->mmap_sem);
2176 	vma = find_vma(mm, start);
2177 	if (!vma) {
2178 		reset_ptenuma_scan(p);
2179 		start = 0;
2180 		vma = mm->mmap;
2181 	}
2182 	for (; vma; vma = vma->vm_next) {
2183 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2184 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2185 			continue;
2186 		}
2187 
2188 		/*
2189 		 * Shared library pages mapped by multiple processes are not
2190 		 * migrated as it is expected they are cache replicated. Avoid
2191 		 * hinting faults in read-only file-backed mappings or the vdso
2192 		 * as migrating the pages will be of marginal benefit.
2193 		 */
2194 		if (!vma->vm_mm ||
2195 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2196 			continue;
2197 
2198 		/*
2199 		 * Skip inaccessible VMAs to avoid any confusion between
2200 		 * PROT_NONE and NUMA hinting ptes
2201 		 */
2202 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2203 			continue;
2204 
2205 		do {
2206 			start = max(start, vma->vm_start);
2207 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2208 			end = min(end, vma->vm_end);
2209 			nr_pte_updates += change_prot_numa(vma, start, end);
2210 
2211 			/*
2212 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2213 			 * at least one PTE is updated so that unused virtual
2214 			 * address space is quickly skipped.
2215 			 */
2216 			if (nr_pte_updates)
2217 				pages -= (end - start) >> PAGE_SHIFT;
2218 
2219 			start = end;
2220 			if (pages <= 0)
2221 				goto out;
2222 
2223 			cond_resched();
2224 		} while (end != vma->vm_end);
2225 	}
2226 
2227 out:
2228 	/*
2229 	 * It is possible to reach the end of the VMA list but the last few
2230 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2231 	 * would find the !migratable VMA on the next scan but not reset the
2232 	 * scanner to the start so check it now.
2233 	 */
2234 	if (vma)
2235 		mm->numa_scan_offset = start;
2236 	else
2237 		reset_ptenuma_scan(p);
2238 	up_read(&mm->mmap_sem);
2239 }
2240 
2241 /*
2242  * Drive the periodic memory faults..
2243  */
task_tick_numa(struct rq * rq,struct task_struct * curr)2244 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2245 {
2246 	struct callback_head *work = &curr->numa_work;
2247 	u64 period, now;
2248 
2249 	/*
2250 	 * We don't care about NUMA placement if we don't have memory.
2251 	 */
2252 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2253 		return;
2254 
2255 	/*
2256 	 * Using runtime rather than walltime has the dual advantage that
2257 	 * we (mostly) drive the selection from busy threads and that the
2258 	 * task needs to have done some actual work before we bother with
2259 	 * NUMA placement.
2260 	 */
2261 	now = curr->se.sum_exec_runtime;
2262 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2263 
2264 	if (now - curr->node_stamp > period) {
2265 		if (!curr->node_stamp)
2266 			curr->numa_scan_period = task_scan_min(curr);
2267 		curr->node_stamp += period;
2268 
2269 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2270 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2271 			task_work_add(curr, work, true);
2272 		}
2273 	}
2274 }
2275 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2276 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2277 {
2278 }
2279 
account_numa_enqueue(struct rq * rq,struct task_struct * p)2280 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2281 {
2282 }
2283 
account_numa_dequeue(struct rq * rq,struct task_struct * p)2284 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2285 {
2286 }
2287 #endif /* CONFIG_NUMA_BALANCING */
2288 
2289 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)2290 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2291 {
2292 	update_load_add(&cfs_rq->load, se->load.weight);
2293 	if (!parent_entity(se))
2294 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2295 #ifdef CONFIG_SMP
2296 	if (entity_is_task(se)) {
2297 		struct rq *rq = rq_of(cfs_rq);
2298 
2299 		account_numa_enqueue(rq, task_of(se));
2300 		list_add(&se->group_node, &rq->cfs_tasks);
2301 	}
2302 #endif
2303 	cfs_rq->nr_running++;
2304 }
2305 
2306 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)2307 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2308 {
2309 	update_load_sub(&cfs_rq->load, se->load.weight);
2310 	if (!parent_entity(se))
2311 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2312 	if (entity_is_task(se)) {
2313 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2314 		list_del_init(&se->group_node);
2315 	}
2316 	cfs_rq->nr_running--;
2317 }
2318 
2319 #ifdef CONFIG_FAIR_GROUP_SCHED
2320 # ifdef CONFIG_SMP
calc_tg_weight(struct task_group * tg,struct cfs_rq * cfs_rq)2321 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2322 {
2323 	long tg_weight;
2324 
2325 	/*
2326 	 * Use this CPU's actual weight instead of the last load_contribution
2327 	 * to gain a more accurate current total weight. See
2328 	 * update_cfs_rq_load_contribution().
2329 	 */
2330 	tg_weight = atomic_long_read(&tg->load_avg);
2331 	tg_weight -= cfs_rq->tg_load_contrib;
2332 	tg_weight += cfs_rq->load.weight;
2333 
2334 	return tg_weight;
2335 }
2336 
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2337 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2338 {
2339 	long tg_weight, load, shares;
2340 
2341 	tg_weight = calc_tg_weight(tg, cfs_rq);
2342 	load = cfs_rq->load.weight;
2343 
2344 	shares = (tg->shares * load);
2345 	if (tg_weight)
2346 		shares /= tg_weight;
2347 
2348 	if (shares < MIN_SHARES)
2349 		shares = MIN_SHARES;
2350 	if (shares > tg->shares)
2351 		shares = tg->shares;
2352 
2353 	return shares;
2354 }
2355 # else /* CONFIG_SMP */
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2356 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2357 {
2358 	return tg->shares;
2359 }
2360 # endif /* CONFIG_SMP */
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)2361 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2362 			    unsigned long weight)
2363 {
2364 	if (se->on_rq) {
2365 		/* commit outstanding execution time */
2366 		if (cfs_rq->curr == se)
2367 			update_curr(cfs_rq);
2368 		account_entity_dequeue(cfs_rq, se);
2369 	}
2370 
2371 	update_load_set(&se->load, weight);
2372 
2373 	if (se->on_rq)
2374 		account_entity_enqueue(cfs_rq, se);
2375 }
2376 
2377 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2378 
update_cfs_shares(struct cfs_rq * cfs_rq)2379 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2380 {
2381 	struct task_group *tg;
2382 	struct sched_entity *se;
2383 	long shares;
2384 
2385 	tg = cfs_rq->tg;
2386 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2387 	if (!se || throttled_hierarchy(cfs_rq))
2388 		return;
2389 #ifndef CONFIG_SMP
2390 	if (likely(se->load.weight == tg->shares))
2391 		return;
2392 #endif
2393 	shares = calc_cfs_shares(cfs_rq, tg);
2394 
2395 	reweight_entity(cfs_rq_of(se), se, shares);
2396 }
2397 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_shares(struct cfs_rq * cfs_rq)2398 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2399 {
2400 }
2401 #endif /* CONFIG_FAIR_GROUP_SCHED */
2402 
2403 #ifdef CONFIG_SMP
2404 /*
2405  * We choose a half-life close to 1 scheduling period.
2406  * Note: The tables below are dependent on this value.
2407  */
2408 #define LOAD_AVG_PERIOD 32
2409 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2410 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2411 
2412 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2413 static const u32 runnable_avg_yN_inv[] = {
2414 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2415 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2416 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2417 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2418 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2419 	0x85aac367, 0x82cd8698,
2420 };
2421 
2422 /*
2423  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2424  * over-estimates when re-combining.
2425  */
2426 static const u32 runnable_avg_yN_sum[] = {
2427 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2428 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2429 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2430 };
2431 
2432 /*
2433  * Approximate:
2434  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2435  */
decay_load(u64 val,u64 n)2436 static __always_inline u64 decay_load(u64 val, u64 n)
2437 {
2438 	unsigned int local_n;
2439 
2440 	if (!n)
2441 		return val;
2442 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2443 		return 0;
2444 
2445 	/* after bounds checking we can collapse to 32-bit */
2446 	local_n = n;
2447 
2448 	/*
2449 	 * As y^PERIOD = 1/2, we can combine
2450 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2451 	 * With a look-up table which covers y^n (n<PERIOD)
2452 	 *
2453 	 * To achieve constant time decay_load.
2454 	 */
2455 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2456 		val >>= local_n / LOAD_AVG_PERIOD;
2457 		local_n %= LOAD_AVG_PERIOD;
2458 	}
2459 
2460 	val *= runnable_avg_yN_inv[local_n];
2461 	/* We don't use SRR here since we always want to round down. */
2462 	return val >> 32;
2463 }
2464 
2465 /*
2466  * For updates fully spanning n periods, the contribution to runnable
2467  * average will be: \Sum 1024*y^n
2468  *
2469  * We can compute this reasonably efficiently by combining:
2470  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2471  */
__compute_runnable_contrib(u64 n)2472 static u32 __compute_runnable_contrib(u64 n)
2473 {
2474 	u32 contrib = 0;
2475 
2476 	if (likely(n <= LOAD_AVG_PERIOD))
2477 		return runnable_avg_yN_sum[n];
2478 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2479 		return LOAD_AVG_MAX;
2480 
2481 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2482 	do {
2483 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2484 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2485 
2486 		n -= LOAD_AVG_PERIOD;
2487 	} while (n > LOAD_AVG_PERIOD);
2488 
2489 	contrib = decay_load(contrib, n);
2490 	return contrib + runnable_avg_yN_sum[n];
2491 }
2492 
2493 /*
2494  * We can represent the historical contribution to runnable average as the
2495  * coefficients of a geometric series.  To do this we sub-divide our runnable
2496  * history into segments of approximately 1ms (1024us); label the segment that
2497  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2498  *
2499  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2500  *      p0            p1           p2
2501  *     (now)       (~1ms ago)  (~2ms ago)
2502  *
2503  * Let u_i denote the fraction of p_i that the entity was runnable.
2504  *
2505  * We then designate the fractions u_i as our co-efficients, yielding the
2506  * following representation of historical load:
2507  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2508  *
2509  * We choose y based on the with of a reasonably scheduling period, fixing:
2510  *   y^32 = 0.5
2511  *
2512  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2513  * approximately half as much as the contribution to load within the last ms
2514  * (u_0).
2515  *
2516  * When a period "rolls over" and we have new u_0`, multiplying the previous
2517  * sum again by y is sufficient to update:
2518  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2519  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2520  */
__update_entity_runnable_avg(u64 now,int cpu,struct sched_avg * sa,int runnable,int running)2521 static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
2522 							struct sched_avg *sa,
2523 							int runnable,
2524 							int running)
2525 {
2526 	u64 delta, periods;
2527 	u32 runnable_contrib;
2528 	int delta_w, decayed = 0;
2529 	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2530 
2531 	delta = now - sa->last_runnable_update;
2532 	/*
2533 	 * This should only happen when time goes backwards, which it
2534 	 * unfortunately does during sched clock init when we swap over to TSC.
2535 	 */
2536 	if ((s64)delta < 0) {
2537 		sa->last_runnable_update = now;
2538 		return 0;
2539 	}
2540 
2541 	/*
2542 	 * Use 1024ns as the unit of measurement since it's a reasonable
2543 	 * approximation of 1us and fast to compute.
2544 	 */
2545 	delta >>= 10;
2546 	if (!delta)
2547 		return 0;
2548 	sa->last_runnable_update = now;
2549 
2550 	/* delta_w is the amount already accumulated against our next period */
2551 	delta_w = sa->avg_period % 1024;
2552 	if (delta + delta_w >= 1024) {
2553 		/* period roll-over */
2554 		decayed = 1;
2555 
2556 		/*
2557 		 * Now that we know we're crossing a period boundary, figure
2558 		 * out how much from delta we need to complete the current
2559 		 * period and accrue it.
2560 		 */
2561 		delta_w = 1024 - delta_w;
2562 		if (runnable)
2563 			sa->runnable_avg_sum += delta_w;
2564 		if (running)
2565 			sa->running_avg_sum += delta_w * scale_freq
2566 				>> SCHED_CAPACITY_SHIFT;
2567 		sa->avg_period += delta_w;
2568 
2569 		delta -= delta_w;
2570 
2571 		/* Figure out how many additional periods this update spans */
2572 		periods = delta / 1024;
2573 		delta %= 1024;
2574 
2575 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2576 						  periods + 1);
2577 		sa->running_avg_sum = decay_load(sa->running_avg_sum,
2578 						  periods + 1);
2579 		sa->avg_period = decay_load(sa->avg_period,
2580 						     periods + 1);
2581 
2582 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2583 		runnable_contrib = __compute_runnable_contrib(periods);
2584 		if (runnable)
2585 			sa->runnable_avg_sum += runnable_contrib;
2586 		if (running)
2587 			sa->running_avg_sum += runnable_contrib * scale_freq
2588 				>> SCHED_CAPACITY_SHIFT;
2589 		sa->avg_period += runnable_contrib;
2590 	}
2591 
2592 	/* Remainder of delta accrued against u_0` */
2593 	if (runnable)
2594 		sa->runnable_avg_sum += delta;
2595 	if (running)
2596 		sa->running_avg_sum += delta * scale_freq
2597 			>> SCHED_CAPACITY_SHIFT;
2598 	sa->avg_period += delta;
2599 
2600 	return decayed;
2601 }
2602 
2603 /* Synchronize an entity's decay with its parenting cfs_rq.*/
__synchronize_entity_decay(struct sched_entity * se)2604 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2605 {
2606 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2607 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2608 
2609 	decays -= se->avg.decay_count;
2610 	se->avg.decay_count = 0;
2611 	if (!decays)
2612 		return 0;
2613 
2614 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2615 	se->avg.utilization_avg_contrib =
2616 		decay_load(se->avg.utilization_avg_contrib, decays);
2617 
2618 	return decays;
2619 }
2620 
2621 #ifdef CONFIG_FAIR_GROUP_SCHED
__update_cfs_rq_tg_load_contrib(struct cfs_rq * cfs_rq,int force_update)2622 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2623 						 int force_update)
2624 {
2625 	struct task_group *tg = cfs_rq->tg;
2626 	long tg_contrib;
2627 
2628 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2629 	tg_contrib -= cfs_rq->tg_load_contrib;
2630 
2631 	if (!tg_contrib)
2632 		return;
2633 
2634 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2635 		atomic_long_add(tg_contrib, &tg->load_avg);
2636 		cfs_rq->tg_load_contrib += tg_contrib;
2637 	}
2638 }
2639 
2640 /*
2641  * Aggregate cfs_rq runnable averages into an equivalent task_group
2642  * representation for computing load contributions.
2643  */
__update_tg_runnable_avg(struct sched_avg * sa,struct cfs_rq * cfs_rq)2644 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2645 						  struct cfs_rq *cfs_rq)
2646 {
2647 	struct task_group *tg = cfs_rq->tg;
2648 	long contrib;
2649 
2650 	/* The fraction of a cpu used by this cfs_rq */
2651 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2652 			  sa->avg_period + 1);
2653 	contrib -= cfs_rq->tg_runnable_contrib;
2654 
2655 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2656 		atomic_add(contrib, &tg->runnable_avg);
2657 		cfs_rq->tg_runnable_contrib += contrib;
2658 	}
2659 }
2660 
__update_group_entity_contrib(struct sched_entity * se)2661 static inline void __update_group_entity_contrib(struct sched_entity *se)
2662 {
2663 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2664 	struct task_group *tg = cfs_rq->tg;
2665 	int runnable_avg;
2666 
2667 	u64 contrib;
2668 
2669 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2670 	se->avg.load_avg_contrib = div_u64(contrib,
2671 				     atomic_long_read(&tg->load_avg) + 1);
2672 
2673 	/*
2674 	 * For group entities we need to compute a correction term in the case
2675 	 * that they are consuming <1 cpu so that we would contribute the same
2676 	 * load as a task of equal weight.
2677 	 *
2678 	 * Explicitly co-ordinating this measurement would be expensive, but
2679 	 * fortunately the sum of each cpus contribution forms a usable
2680 	 * lower-bound on the true value.
2681 	 *
2682 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2683 	 * (and the sum represents true value) or they are disjoint and we are
2684 	 * understating by the aggregate of their overlap.
2685 	 *
2686 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2687 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2688 	 * cpus that overlap for this interval and w_i is the interval width.
2689 	 *
2690 	 * On a small machine; the first term is well-bounded which bounds the
2691 	 * total error since w_i is a subset of the period.  Whereas on a
2692 	 * larger machine, while this first term can be larger, if w_i is the
2693 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2694 	 * our upper bound of 1-cpu.
2695 	 */
2696 	runnable_avg = atomic_read(&tg->runnable_avg);
2697 	if (runnable_avg < NICE_0_LOAD) {
2698 		se->avg.load_avg_contrib *= runnable_avg;
2699 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2700 	}
2701 }
2702 
update_rq_runnable_avg(struct rq * rq,int runnable)2703 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2704 {
2705 	__update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2706 			runnable, runnable);
2707 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2708 }
2709 #else /* CONFIG_FAIR_GROUP_SCHED */
__update_cfs_rq_tg_load_contrib(struct cfs_rq * cfs_rq,int force_update)2710 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2711 						 int force_update) {}
__update_tg_runnable_avg(struct sched_avg * sa,struct cfs_rq * cfs_rq)2712 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2713 						  struct cfs_rq *cfs_rq) {}
__update_group_entity_contrib(struct sched_entity * se)2714 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
update_rq_runnable_avg(struct rq * rq,int runnable)2715 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2716 #endif /* CONFIG_FAIR_GROUP_SCHED */
2717 
__update_task_entity_contrib(struct sched_entity * se)2718 static inline void __update_task_entity_contrib(struct sched_entity *se)
2719 {
2720 	u32 contrib;
2721 
2722 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2723 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2724 	contrib /= (se->avg.avg_period + 1);
2725 	se->avg.load_avg_contrib = scale_load(contrib);
2726 }
2727 
2728 /* Compute the current contribution to load_avg by se, return any delta */
__update_entity_load_avg_contrib(struct sched_entity * se)2729 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2730 {
2731 	long old_contrib = se->avg.load_avg_contrib;
2732 
2733 	if (entity_is_task(se)) {
2734 		__update_task_entity_contrib(se);
2735 	} else {
2736 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2737 		__update_group_entity_contrib(se);
2738 	}
2739 
2740 	return se->avg.load_avg_contrib - old_contrib;
2741 }
2742 
2743 
__update_task_entity_utilization(struct sched_entity * se)2744 static inline void __update_task_entity_utilization(struct sched_entity *se)
2745 {
2746 	u32 contrib;
2747 
2748 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2749 	contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2750 	contrib /= (se->avg.avg_period + 1);
2751 	se->avg.utilization_avg_contrib = scale_load(contrib);
2752 }
2753 
__update_entity_utilization_avg_contrib(struct sched_entity * se)2754 static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2755 {
2756 	long old_contrib = se->avg.utilization_avg_contrib;
2757 
2758 	if (entity_is_task(se))
2759 		__update_task_entity_utilization(se);
2760 	else
2761 		se->avg.utilization_avg_contrib =
2762 					group_cfs_rq(se)->utilization_load_avg;
2763 
2764 	return se->avg.utilization_avg_contrib - old_contrib;
2765 }
2766 
subtract_blocked_load_contrib(struct cfs_rq * cfs_rq,long load_contrib)2767 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2768 						 long load_contrib)
2769 {
2770 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2771 		cfs_rq->blocked_load_avg -= load_contrib;
2772 	else
2773 		cfs_rq->blocked_load_avg = 0;
2774 }
2775 
2776 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2777 
2778 /* Update a sched_entity's runnable average */
update_entity_load_avg(struct sched_entity * se,int update_cfs_rq)2779 static inline void update_entity_load_avg(struct sched_entity *se,
2780 					  int update_cfs_rq)
2781 {
2782 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2783 	long contrib_delta, utilization_delta;
2784 	int cpu = cpu_of(rq_of(cfs_rq));
2785 	u64 now;
2786 
2787 	/*
2788 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2789 	 * case they are the parent of a throttled hierarchy.
2790 	 */
2791 	if (entity_is_task(se))
2792 		now = cfs_rq_clock_task(cfs_rq);
2793 	else
2794 		now = cfs_rq_clock_task(group_cfs_rq(se));
2795 
2796 	if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
2797 					cfs_rq->curr == se))
2798 		return;
2799 
2800 	contrib_delta = __update_entity_load_avg_contrib(se);
2801 	utilization_delta = __update_entity_utilization_avg_contrib(se);
2802 
2803 	if (!update_cfs_rq)
2804 		return;
2805 
2806 	if (se->on_rq) {
2807 		cfs_rq->runnable_load_avg += contrib_delta;
2808 		cfs_rq->utilization_load_avg += utilization_delta;
2809 	} else {
2810 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2811 	}
2812 }
2813 
2814 /*
2815  * Decay the load contributed by all blocked children and account this so that
2816  * their contribution may appropriately discounted when they wake up.
2817  */
update_cfs_rq_blocked_load(struct cfs_rq * cfs_rq,int force_update)2818 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2819 {
2820 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2821 	u64 decays;
2822 
2823 	decays = now - cfs_rq->last_decay;
2824 	if (!decays && !force_update)
2825 		return;
2826 
2827 	if (atomic_long_read(&cfs_rq->removed_load)) {
2828 		unsigned long removed_load;
2829 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2830 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2831 	}
2832 
2833 	if (decays) {
2834 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2835 						      decays);
2836 		atomic64_add(decays, &cfs_rq->decay_counter);
2837 		cfs_rq->last_decay = now;
2838 	}
2839 
2840 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2841 }
2842 
2843 /* Add the load generated by se into cfs_rq's child load-average */
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int wakeup)2844 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2845 						  struct sched_entity *se,
2846 						  int wakeup)
2847 {
2848 	/*
2849 	 * We track migrations using entity decay_count <= 0, on a wake-up
2850 	 * migration we use a negative decay count to track the remote decays
2851 	 * accumulated while sleeping.
2852 	 *
2853 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2854 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2855 	 * constructed load_avg_contrib.
2856 	 */
2857 	if (unlikely(se->avg.decay_count <= 0)) {
2858 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2859 		if (se->avg.decay_count) {
2860 			/*
2861 			 * In a wake-up migration we have to approximate the
2862 			 * time sleeping.  This is because we can't synchronize
2863 			 * clock_task between the two cpus, and it is not
2864 			 * guaranteed to be read-safe.  Instead, we can
2865 			 * approximate this using our carried decays, which are
2866 			 * explicitly atomically readable.
2867 			 */
2868 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2869 							<< 20;
2870 			update_entity_load_avg(se, 0);
2871 			/* Indicate that we're now synchronized and on-rq */
2872 			se->avg.decay_count = 0;
2873 		}
2874 		wakeup = 0;
2875 	} else {
2876 		__synchronize_entity_decay(se);
2877 	}
2878 
2879 	/* migrated tasks did not contribute to our blocked load */
2880 	if (wakeup) {
2881 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2882 		update_entity_load_avg(se, 0);
2883 	}
2884 
2885 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2886 	cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
2887 	/* we force update consideration on load-balancer moves */
2888 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2889 }
2890 
2891 /*
2892  * Remove se's load from this cfs_rq child load-average, if the entity is
2893  * transitioning to a blocked state we track its projected decay using
2894  * blocked_load_avg.
2895  */
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int sleep)2896 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2897 						  struct sched_entity *se,
2898 						  int sleep)
2899 {
2900 	update_entity_load_avg(se, 1);
2901 	/* we force update consideration on load-balancer moves */
2902 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2903 
2904 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2905 	cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
2906 	if (sleep) {
2907 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2908 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2909 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2910 }
2911 
2912 /*
2913  * Update the rq's load with the elapsed running time before entering
2914  * idle. if the last scheduled task is not a CFS task, idle_enter will
2915  * be the only way to update the runnable statistic.
2916  */
idle_enter_fair(struct rq * this_rq)2917 void idle_enter_fair(struct rq *this_rq)
2918 {
2919 	update_rq_runnable_avg(this_rq, 1);
2920 }
2921 
2922 /*
2923  * Update the rq's load with the elapsed idle time before a task is
2924  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2925  * be the only way to update the runnable statistic.
2926  */
idle_exit_fair(struct rq * this_rq)2927 void idle_exit_fair(struct rq *this_rq)
2928 {
2929 	update_rq_runnable_avg(this_rq, 0);
2930 }
2931 
2932 static int idle_balance(struct rq *this_rq);
2933 
2934 #else /* CONFIG_SMP */
2935 
update_entity_load_avg(struct sched_entity * se,int update_cfs_rq)2936 static inline void update_entity_load_avg(struct sched_entity *se,
2937 					  int update_cfs_rq) {}
update_rq_runnable_avg(struct rq * rq,int runnable)2938 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int wakeup)2939 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2940 					   struct sched_entity *se,
2941 					   int wakeup) {}
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int sleep)2942 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2943 					   struct sched_entity *se,
2944 					   int sleep) {}
update_cfs_rq_blocked_load(struct cfs_rq * cfs_rq,int force_update)2945 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2946 					      int force_update) {}
2947 
idle_balance(struct rq * rq)2948 static inline int idle_balance(struct rq *rq)
2949 {
2950 	return 0;
2951 }
2952 
2953 #endif /* CONFIG_SMP */
2954 
enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)2955 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2956 {
2957 #ifdef CONFIG_SCHEDSTATS
2958 	struct task_struct *tsk = NULL;
2959 
2960 	if (entity_is_task(se))
2961 		tsk = task_of(se);
2962 
2963 	if (se->statistics.sleep_start) {
2964 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2965 
2966 		if ((s64)delta < 0)
2967 			delta = 0;
2968 
2969 		if (unlikely(delta > se->statistics.sleep_max))
2970 			se->statistics.sleep_max = delta;
2971 
2972 		se->statistics.sleep_start = 0;
2973 		se->statistics.sum_sleep_runtime += delta;
2974 
2975 		if (tsk) {
2976 			account_scheduler_latency(tsk, delta >> 10, 1);
2977 			trace_sched_stat_sleep(tsk, delta);
2978 		}
2979 	}
2980 	if (se->statistics.block_start) {
2981 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2982 
2983 		if ((s64)delta < 0)
2984 			delta = 0;
2985 
2986 		if (unlikely(delta > se->statistics.block_max))
2987 			se->statistics.block_max = delta;
2988 
2989 		se->statistics.block_start = 0;
2990 		se->statistics.sum_sleep_runtime += delta;
2991 
2992 		if (tsk) {
2993 			if (tsk->in_iowait) {
2994 				se->statistics.iowait_sum += delta;
2995 				se->statistics.iowait_count++;
2996 				trace_sched_stat_iowait(tsk, delta);
2997 			}
2998 
2999 			trace_sched_stat_blocked(tsk, delta);
3000 
3001 			/*
3002 			 * Blocking time is in units of nanosecs, so shift by
3003 			 * 20 to get a milliseconds-range estimation of the
3004 			 * amount of time that the task spent sleeping:
3005 			 */
3006 			if (unlikely(prof_on == SLEEP_PROFILING)) {
3007 				profile_hits(SLEEP_PROFILING,
3008 						(void *)get_wchan(tsk),
3009 						delta >> 20);
3010 			}
3011 			account_scheduler_latency(tsk, delta >> 10, 0);
3012 		}
3013 	}
3014 #endif
3015 }
3016 
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)3017 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3018 {
3019 #ifdef CONFIG_SCHED_DEBUG
3020 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3021 
3022 	if (d < 0)
3023 		d = -d;
3024 
3025 	if (d > 3*sysctl_sched_latency)
3026 		schedstat_inc(cfs_rq, nr_spread_over);
3027 #endif
3028 }
3029 
3030 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)3031 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3032 {
3033 	u64 vruntime = cfs_rq->min_vruntime;
3034 
3035 	/*
3036 	 * The 'current' period is already promised to the current tasks,
3037 	 * however the extra weight of the new task will slow them down a
3038 	 * little, place the new task so that it fits in the slot that
3039 	 * stays open at the end.
3040 	 */
3041 	if (initial && sched_feat(START_DEBIT))
3042 		vruntime += sched_vslice(cfs_rq, se);
3043 
3044 	/* sleeps up to a single latency don't count. */
3045 	if (!initial) {
3046 		unsigned long thresh = sysctl_sched_latency;
3047 
3048 		/*
3049 		 * Halve their sleep time's effect, to allow
3050 		 * for a gentler effect of sleepers:
3051 		 */
3052 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3053 			thresh >>= 1;
3054 
3055 		vruntime -= thresh;
3056 	}
3057 
3058 	/* ensure we never gain time by being placed backwards. */
3059 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3060 }
3061 
3062 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3063 
3064 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3065 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3066 {
3067 	/*
3068 	 * Update the normalized vruntime before updating min_vruntime
3069 	 * through calling update_curr().
3070 	 */
3071 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3072 		se->vruntime += cfs_rq->min_vruntime;
3073 
3074 	/*
3075 	 * Update run-time statistics of the 'current'.
3076 	 */
3077 	update_curr(cfs_rq);
3078 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3079 	account_entity_enqueue(cfs_rq, se);
3080 	update_cfs_shares(cfs_rq);
3081 
3082 	if (flags & ENQUEUE_WAKEUP) {
3083 		place_entity(cfs_rq, se, 0);
3084 		enqueue_sleeper(cfs_rq, se);
3085 	}
3086 
3087 	update_stats_enqueue(cfs_rq, se);
3088 	check_spread(cfs_rq, se);
3089 	if (se != cfs_rq->curr)
3090 		__enqueue_entity(cfs_rq, se);
3091 	se->on_rq = 1;
3092 
3093 	if (cfs_rq->nr_running == 1) {
3094 		list_add_leaf_cfs_rq(cfs_rq);
3095 		check_enqueue_throttle(cfs_rq);
3096 	}
3097 }
3098 
__clear_buddies_last(struct sched_entity * se)3099 static void __clear_buddies_last(struct sched_entity *se)
3100 {
3101 	for_each_sched_entity(se) {
3102 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3103 		if (cfs_rq->last != se)
3104 			break;
3105 
3106 		cfs_rq->last = NULL;
3107 	}
3108 }
3109 
__clear_buddies_next(struct sched_entity * se)3110 static void __clear_buddies_next(struct sched_entity *se)
3111 {
3112 	for_each_sched_entity(se) {
3113 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 		if (cfs_rq->next != se)
3115 			break;
3116 
3117 		cfs_rq->next = NULL;
3118 	}
3119 }
3120 
__clear_buddies_skip(struct sched_entity * se)3121 static void __clear_buddies_skip(struct sched_entity *se)
3122 {
3123 	for_each_sched_entity(se) {
3124 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3125 		if (cfs_rq->skip != se)
3126 			break;
3127 
3128 		cfs_rq->skip = NULL;
3129 	}
3130 }
3131 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)3132 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3133 {
3134 	if (cfs_rq->last == se)
3135 		__clear_buddies_last(se);
3136 
3137 	if (cfs_rq->next == se)
3138 		__clear_buddies_next(se);
3139 
3140 	if (cfs_rq->skip == se)
3141 		__clear_buddies_skip(se);
3142 }
3143 
3144 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3145 
3146 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3147 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3148 {
3149 	/*
3150 	 * Update run-time statistics of the 'current'.
3151 	 */
3152 	update_curr(cfs_rq);
3153 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3154 
3155 	update_stats_dequeue(cfs_rq, se);
3156 	if (flags & DEQUEUE_SLEEP) {
3157 #ifdef CONFIG_SCHEDSTATS
3158 		if (entity_is_task(se)) {
3159 			struct task_struct *tsk = task_of(se);
3160 
3161 			if (tsk->state & TASK_INTERRUPTIBLE)
3162 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3163 			if (tsk->state & TASK_UNINTERRUPTIBLE)
3164 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3165 		}
3166 #endif
3167 	}
3168 
3169 	clear_buddies(cfs_rq, se);
3170 
3171 	if (se != cfs_rq->curr)
3172 		__dequeue_entity(cfs_rq, se);
3173 	se->on_rq = 0;
3174 	account_entity_dequeue(cfs_rq, se);
3175 
3176 	/*
3177 	 * Normalize the entity after updating the min_vruntime because the
3178 	 * update can refer to the ->curr item and we need to reflect this
3179 	 * movement in our normalized position.
3180 	 */
3181 	if (!(flags & DEQUEUE_SLEEP))
3182 		se->vruntime -= cfs_rq->min_vruntime;
3183 
3184 	/* return excess runtime on last dequeue */
3185 	return_cfs_rq_runtime(cfs_rq);
3186 
3187 	update_min_vruntime(cfs_rq);
3188 	update_cfs_shares(cfs_rq);
3189 }
3190 
3191 /*
3192  * Preempt the current task with a newly woken task if needed:
3193  */
3194 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)3195 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3196 {
3197 	unsigned long ideal_runtime, delta_exec;
3198 	struct sched_entity *se;
3199 	s64 delta;
3200 
3201 	ideal_runtime = sched_slice(cfs_rq, curr);
3202 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3203 	if (delta_exec > ideal_runtime) {
3204 		resched_curr(rq_of(cfs_rq));
3205 		/*
3206 		 * The current task ran long enough, ensure it doesn't get
3207 		 * re-elected due to buddy favours.
3208 		 */
3209 		clear_buddies(cfs_rq, curr);
3210 		return;
3211 	}
3212 
3213 	/*
3214 	 * Ensure that a task that missed wakeup preemption by a
3215 	 * narrow margin doesn't have to wait for a full slice.
3216 	 * This also mitigates buddy induced latencies under load.
3217 	 */
3218 	if (delta_exec < sysctl_sched_min_granularity)
3219 		return;
3220 
3221 	se = __pick_first_entity(cfs_rq);
3222 	delta = curr->vruntime - se->vruntime;
3223 
3224 	if (delta < 0)
3225 		return;
3226 
3227 	if (delta > ideal_runtime)
3228 		resched_curr(rq_of(cfs_rq));
3229 }
3230 
3231 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)3232 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3233 {
3234 	/* 'current' is not kept within the tree. */
3235 	if (se->on_rq) {
3236 		/*
3237 		 * Any task has to be enqueued before it get to execute on
3238 		 * a CPU. So account for the time it spent waiting on the
3239 		 * runqueue.
3240 		 */
3241 		update_stats_wait_end(cfs_rq, se);
3242 		__dequeue_entity(cfs_rq, se);
3243 		update_entity_load_avg(se, 1);
3244 	}
3245 
3246 	update_stats_curr_start(cfs_rq, se);
3247 	cfs_rq->curr = se;
3248 #ifdef CONFIG_SCHEDSTATS
3249 	/*
3250 	 * Track our maximum slice length, if the CPU's load is at
3251 	 * least twice that of our own weight (i.e. dont track it
3252 	 * when there are only lesser-weight tasks around):
3253 	 */
3254 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3255 		se->statistics.slice_max = max(se->statistics.slice_max,
3256 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3257 	}
3258 #endif
3259 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3260 }
3261 
3262 static int
3263 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3264 
3265 /*
3266  * Pick the next process, keeping these things in mind, in this order:
3267  * 1) keep things fair between processes/task groups
3268  * 2) pick the "next" process, since someone really wants that to run
3269  * 3) pick the "last" process, for cache locality
3270  * 4) do not run the "skip" process, if something else is available
3271  */
3272 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)3273 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3274 {
3275 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3276 	struct sched_entity *se;
3277 
3278 	/*
3279 	 * If curr is set we have to see if its left of the leftmost entity
3280 	 * still in the tree, provided there was anything in the tree at all.
3281 	 */
3282 	if (!left || (curr && entity_before(curr, left)))
3283 		left = curr;
3284 
3285 	se = left; /* ideally we run the leftmost entity */
3286 
3287 	/*
3288 	 * Avoid running the skip buddy, if running something else can
3289 	 * be done without getting too unfair.
3290 	 */
3291 	if (cfs_rq->skip == se) {
3292 		struct sched_entity *second;
3293 
3294 		if (se == curr) {
3295 			second = __pick_first_entity(cfs_rq);
3296 		} else {
3297 			second = __pick_next_entity(se);
3298 			if (!second || (curr && entity_before(curr, second)))
3299 				second = curr;
3300 		}
3301 
3302 		if (second && wakeup_preempt_entity(second, left) < 1)
3303 			se = second;
3304 	}
3305 
3306 	/*
3307 	 * Prefer last buddy, try to return the CPU to a preempted task.
3308 	 */
3309 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3310 		se = cfs_rq->last;
3311 
3312 	/*
3313 	 * Someone really wants this to run. If it's not unfair, run it.
3314 	 */
3315 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3316 		se = cfs_rq->next;
3317 
3318 	clear_buddies(cfs_rq, se);
3319 
3320 	return se;
3321 }
3322 
3323 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3324 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)3325 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3326 {
3327 	/*
3328 	 * If still on the runqueue then deactivate_task()
3329 	 * was not called and update_curr() has to be done:
3330 	 */
3331 	if (prev->on_rq)
3332 		update_curr(cfs_rq);
3333 
3334 	/* throttle cfs_rqs exceeding runtime */
3335 	check_cfs_rq_runtime(cfs_rq);
3336 
3337 	check_spread(cfs_rq, prev);
3338 	if (prev->on_rq) {
3339 		update_stats_wait_start(cfs_rq, prev);
3340 		/* Put 'current' back into the tree. */
3341 		__enqueue_entity(cfs_rq, prev);
3342 		/* in !on_rq case, update occurred at dequeue */
3343 		update_entity_load_avg(prev, 1);
3344 	}
3345 	cfs_rq->curr = NULL;
3346 }
3347 
3348 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)3349 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3350 {
3351 	/*
3352 	 * Update run-time statistics of the 'current'.
3353 	 */
3354 	update_curr(cfs_rq);
3355 
3356 	/*
3357 	 * Ensure that runnable average is periodically updated.
3358 	 */
3359 	update_entity_load_avg(curr, 1);
3360 	update_cfs_rq_blocked_load(cfs_rq, 1);
3361 	update_cfs_shares(cfs_rq);
3362 
3363 #ifdef CONFIG_SCHED_HRTICK
3364 	/*
3365 	 * queued ticks are scheduled to match the slice, so don't bother
3366 	 * validating it and just reschedule.
3367 	 */
3368 	if (queued) {
3369 		resched_curr(rq_of(cfs_rq));
3370 		return;
3371 	}
3372 	/*
3373 	 * don't let the period tick interfere with the hrtick preemption
3374 	 */
3375 	if (!sched_feat(DOUBLE_TICK) &&
3376 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3377 		return;
3378 #endif
3379 
3380 	if (cfs_rq->nr_running > 1)
3381 		check_preempt_tick(cfs_rq, curr);
3382 }
3383 
3384 
3385 /**************************************************
3386  * CFS bandwidth control machinery
3387  */
3388 
3389 #ifdef CONFIG_CFS_BANDWIDTH
3390 
3391 #ifdef HAVE_JUMP_LABEL
3392 static struct static_key __cfs_bandwidth_used;
3393 
cfs_bandwidth_used(void)3394 static inline bool cfs_bandwidth_used(void)
3395 {
3396 	return static_key_false(&__cfs_bandwidth_used);
3397 }
3398 
cfs_bandwidth_usage_inc(void)3399 void cfs_bandwidth_usage_inc(void)
3400 {
3401 	static_key_slow_inc(&__cfs_bandwidth_used);
3402 }
3403 
cfs_bandwidth_usage_dec(void)3404 void cfs_bandwidth_usage_dec(void)
3405 {
3406 	static_key_slow_dec(&__cfs_bandwidth_used);
3407 }
3408 #else /* HAVE_JUMP_LABEL */
cfs_bandwidth_used(void)3409 static bool cfs_bandwidth_used(void)
3410 {
3411 	return true;
3412 }
3413 
cfs_bandwidth_usage_inc(void)3414 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)3415 void cfs_bandwidth_usage_dec(void) {}
3416 #endif /* HAVE_JUMP_LABEL */
3417 
3418 /*
3419  * default period for cfs group bandwidth.
3420  * default: 0.1s, units: nanoseconds
3421  */
default_cfs_period(void)3422 static inline u64 default_cfs_period(void)
3423 {
3424 	return 100000000ULL;
3425 }
3426 
sched_cfs_bandwidth_slice(void)3427 static inline u64 sched_cfs_bandwidth_slice(void)
3428 {
3429 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3430 }
3431 
3432 /*
3433  * Replenish runtime according to assigned quota and update expiration time.
3434  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3435  * additional synchronization around rq->lock.
3436  *
3437  * requires cfs_b->lock
3438  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)3439 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3440 {
3441 	u64 now;
3442 
3443 	if (cfs_b->quota == RUNTIME_INF)
3444 		return;
3445 
3446 	now = sched_clock_cpu(smp_processor_id());
3447 	cfs_b->runtime = cfs_b->quota;
3448 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3449 }
3450 
tg_cfs_bandwidth(struct task_group * tg)3451 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3452 {
3453 	return &tg->cfs_bandwidth;
3454 }
3455 
3456 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)3457 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3458 {
3459 	if (unlikely(cfs_rq->throttle_count))
3460 		return cfs_rq->throttled_clock_task;
3461 
3462 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3463 }
3464 
3465 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)3466 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3467 {
3468 	struct task_group *tg = cfs_rq->tg;
3469 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3470 	u64 amount = 0, min_amount, expires;
3471 
3472 	/* note: this is a positive sum as runtime_remaining <= 0 */
3473 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3474 
3475 	raw_spin_lock(&cfs_b->lock);
3476 	if (cfs_b->quota == RUNTIME_INF)
3477 		amount = min_amount;
3478 	else {
3479 		/*
3480 		 * If the bandwidth pool has become inactive, then at least one
3481 		 * period must have elapsed since the last consumption.
3482 		 * Refresh the global state and ensure bandwidth timer becomes
3483 		 * active.
3484 		 */
3485 		if (!cfs_b->timer_active) {
3486 			__refill_cfs_bandwidth_runtime(cfs_b);
3487 			__start_cfs_bandwidth(cfs_b, false);
3488 		}
3489 
3490 		if (cfs_b->runtime > 0) {
3491 			amount = min(cfs_b->runtime, min_amount);
3492 			cfs_b->runtime -= amount;
3493 			cfs_b->idle = 0;
3494 		}
3495 	}
3496 	expires = cfs_b->runtime_expires;
3497 	raw_spin_unlock(&cfs_b->lock);
3498 
3499 	cfs_rq->runtime_remaining += amount;
3500 	/*
3501 	 * we may have advanced our local expiration to account for allowed
3502 	 * spread between our sched_clock and the one on which runtime was
3503 	 * issued.
3504 	 */
3505 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3506 		cfs_rq->runtime_expires = expires;
3507 
3508 	return cfs_rq->runtime_remaining > 0;
3509 }
3510 
3511 /*
3512  * Note: This depends on the synchronization provided by sched_clock and the
3513  * fact that rq->clock snapshots this value.
3514  */
expire_cfs_rq_runtime(struct cfs_rq * cfs_rq)3515 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3516 {
3517 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3518 
3519 	/* if the deadline is ahead of our clock, nothing to do */
3520 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3521 		return;
3522 
3523 	if (cfs_rq->runtime_remaining < 0)
3524 		return;
3525 
3526 	/*
3527 	 * If the local deadline has passed we have to consider the
3528 	 * possibility that our sched_clock is 'fast' and the global deadline
3529 	 * has not truly expired.
3530 	 *
3531 	 * Fortunately we can check determine whether this the case by checking
3532 	 * whether the global deadline has advanced. It is valid to compare
3533 	 * cfs_b->runtime_expires without any locks since we only care about
3534 	 * exact equality, so a partial write will still work.
3535 	 */
3536 
3537 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3538 		/* extend local deadline, drift is bounded above by 2 ticks */
3539 		cfs_rq->runtime_expires += TICK_NSEC;
3540 	} else {
3541 		/* global deadline is ahead, expiration has passed */
3542 		cfs_rq->runtime_remaining = 0;
3543 	}
3544 }
3545 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)3546 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3547 {
3548 	/* dock delta_exec before expiring quota (as it could span periods) */
3549 	cfs_rq->runtime_remaining -= delta_exec;
3550 	expire_cfs_rq_runtime(cfs_rq);
3551 
3552 	if (likely(cfs_rq->runtime_remaining > 0))
3553 		return;
3554 
3555 	/*
3556 	 * if we're unable to extend our runtime we resched so that the active
3557 	 * hierarchy can be throttled
3558 	 */
3559 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3560 		resched_curr(rq_of(cfs_rq));
3561 }
3562 
3563 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)3564 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3565 {
3566 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3567 		return;
3568 
3569 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3570 }
3571 
cfs_rq_throttled(struct cfs_rq * cfs_rq)3572 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3573 {
3574 	return cfs_bandwidth_used() && cfs_rq->throttled;
3575 }
3576 
3577 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)3578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3579 {
3580 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3581 }
3582 
3583 /*
3584  * Ensure that neither of the group entities corresponding to src_cpu or
3585  * dest_cpu are members of a throttled hierarchy when performing group
3586  * load-balance operations.
3587  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)3588 static inline int throttled_lb_pair(struct task_group *tg,
3589 				    int src_cpu, int dest_cpu)
3590 {
3591 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3592 
3593 	src_cfs_rq = tg->cfs_rq[src_cpu];
3594 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3595 
3596 	return throttled_hierarchy(src_cfs_rq) ||
3597 	       throttled_hierarchy(dest_cfs_rq);
3598 }
3599 
3600 /* updated child weight may affect parent so we have to do this bottom up */
tg_unthrottle_up(struct task_group * tg,void * data)3601 static int tg_unthrottle_up(struct task_group *tg, void *data)
3602 {
3603 	struct rq *rq = data;
3604 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3605 
3606 	cfs_rq->throttle_count--;
3607 #ifdef CONFIG_SMP
3608 	if (!cfs_rq->throttle_count) {
3609 		/* adjust cfs_rq_clock_task() */
3610 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3611 					     cfs_rq->throttled_clock_task;
3612 	}
3613 #endif
3614 
3615 	return 0;
3616 }
3617 
tg_throttle_down(struct task_group * tg,void * data)3618 static int tg_throttle_down(struct task_group *tg, void *data)
3619 {
3620 	struct rq *rq = data;
3621 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3622 
3623 	/* group is entering throttled state, stop time */
3624 	if (!cfs_rq->throttle_count)
3625 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3626 	cfs_rq->throttle_count++;
3627 
3628 	return 0;
3629 }
3630 
throttle_cfs_rq(struct cfs_rq * cfs_rq)3631 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3632 {
3633 	struct rq *rq = rq_of(cfs_rq);
3634 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3635 	struct sched_entity *se;
3636 	long task_delta, dequeue = 1;
3637 
3638 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3639 
3640 	/* freeze hierarchy runnable averages while throttled */
3641 	rcu_read_lock();
3642 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3643 	rcu_read_unlock();
3644 
3645 	task_delta = cfs_rq->h_nr_running;
3646 	for_each_sched_entity(se) {
3647 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3648 		/* throttled entity or throttle-on-deactivate */
3649 		if (!se->on_rq)
3650 			break;
3651 
3652 		if (dequeue)
3653 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3654 		qcfs_rq->h_nr_running -= task_delta;
3655 
3656 		if (qcfs_rq->load.weight)
3657 			dequeue = 0;
3658 	}
3659 
3660 	if (!se)
3661 		sub_nr_running(rq, task_delta);
3662 
3663 	cfs_rq->throttled = 1;
3664 	cfs_rq->throttled_clock = rq_clock(rq);
3665 	raw_spin_lock(&cfs_b->lock);
3666 	/*
3667 	 * Add to the _head_ of the list, so that an already-started
3668 	 * distribute_cfs_runtime will not see us
3669 	 */
3670 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3671 	if (!cfs_b->timer_active)
3672 		__start_cfs_bandwidth(cfs_b, false);
3673 	raw_spin_unlock(&cfs_b->lock);
3674 }
3675 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)3676 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3677 {
3678 	struct rq *rq = rq_of(cfs_rq);
3679 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3680 	struct sched_entity *se;
3681 	int enqueue = 1;
3682 	long task_delta;
3683 
3684 	se = cfs_rq->tg->se[cpu_of(rq)];
3685 
3686 	cfs_rq->throttled = 0;
3687 
3688 	update_rq_clock(rq);
3689 
3690 	raw_spin_lock(&cfs_b->lock);
3691 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3692 	list_del_rcu(&cfs_rq->throttled_list);
3693 	raw_spin_unlock(&cfs_b->lock);
3694 
3695 	/* update hierarchical throttle state */
3696 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3697 
3698 	if (!cfs_rq->load.weight)
3699 		return;
3700 
3701 	task_delta = cfs_rq->h_nr_running;
3702 	for_each_sched_entity(se) {
3703 		if (se->on_rq)
3704 			enqueue = 0;
3705 
3706 		cfs_rq = cfs_rq_of(se);
3707 		if (enqueue)
3708 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3709 		cfs_rq->h_nr_running += task_delta;
3710 
3711 		if (cfs_rq_throttled(cfs_rq))
3712 			break;
3713 	}
3714 
3715 	if (!se)
3716 		add_nr_running(rq, task_delta);
3717 
3718 	/* determine whether we need to wake up potentially idle cpu */
3719 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3720 		resched_curr(rq);
3721 }
3722 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b,u64 remaining,u64 expires)3723 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3724 		u64 remaining, u64 expires)
3725 {
3726 	struct cfs_rq *cfs_rq;
3727 	u64 runtime;
3728 	u64 starting_runtime = remaining;
3729 
3730 	rcu_read_lock();
3731 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3732 				throttled_list) {
3733 		struct rq *rq = rq_of(cfs_rq);
3734 
3735 		raw_spin_lock(&rq->lock);
3736 		if (!cfs_rq_throttled(cfs_rq))
3737 			goto next;
3738 
3739 		runtime = -cfs_rq->runtime_remaining + 1;
3740 		if (runtime > remaining)
3741 			runtime = remaining;
3742 		remaining -= runtime;
3743 
3744 		cfs_rq->runtime_remaining += runtime;
3745 		cfs_rq->runtime_expires = expires;
3746 
3747 		/* we check whether we're throttled above */
3748 		if (cfs_rq->runtime_remaining > 0)
3749 			unthrottle_cfs_rq(cfs_rq);
3750 
3751 next:
3752 		raw_spin_unlock(&rq->lock);
3753 
3754 		if (!remaining)
3755 			break;
3756 	}
3757 	rcu_read_unlock();
3758 
3759 	return starting_runtime - remaining;
3760 }
3761 
3762 /*
3763  * Responsible for refilling a task_group's bandwidth and unthrottling its
3764  * cfs_rqs as appropriate. If there has been no activity within the last
3765  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3766  * used to track this state.
3767  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun)3768 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3769 {
3770 	u64 runtime, runtime_expires;
3771 	int throttled;
3772 
3773 	/* no need to continue the timer with no bandwidth constraint */
3774 	if (cfs_b->quota == RUNTIME_INF)
3775 		goto out_deactivate;
3776 
3777 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3778 	cfs_b->nr_periods += overrun;
3779 
3780 	/*
3781 	 * idle depends on !throttled (for the case of a large deficit), and if
3782 	 * we're going inactive then everything else can be deferred
3783 	 */
3784 	if (cfs_b->idle && !throttled)
3785 		goto out_deactivate;
3786 
3787 	/*
3788 	 * if we have relooped after returning idle once, we need to update our
3789 	 * status as actually running, so that other cpus doing
3790 	 * __start_cfs_bandwidth will stop trying to cancel us.
3791 	 */
3792 	cfs_b->timer_active = 1;
3793 
3794 	__refill_cfs_bandwidth_runtime(cfs_b);
3795 
3796 	if (!throttled) {
3797 		/* mark as potentially idle for the upcoming period */
3798 		cfs_b->idle = 1;
3799 		return 0;
3800 	}
3801 
3802 	/* account preceding periods in which throttling occurred */
3803 	cfs_b->nr_throttled += overrun;
3804 
3805 	runtime_expires = cfs_b->runtime_expires;
3806 
3807 	/*
3808 	 * This check is repeated as we are holding onto the new bandwidth while
3809 	 * we unthrottle. This can potentially race with an unthrottled group
3810 	 * trying to acquire new bandwidth from the global pool. This can result
3811 	 * in us over-using our runtime if it is all used during this loop, but
3812 	 * only by limited amounts in that extreme case.
3813 	 */
3814 	while (throttled && cfs_b->runtime > 0) {
3815 		runtime = cfs_b->runtime;
3816 		raw_spin_unlock(&cfs_b->lock);
3817 		/* we can't nest cfs_b->lock while distributing bandwidth */
3818 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3819 						 runtime_expires);
3820 		raw_spin_lock(&cfs_b->lock);
3821 
3822 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3823 
3824 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3825 	}
3826 
3827 	/*
3828 	 * While we are ensured activity in the period following an
3829 	 * unthrottle, this also covers the case in which the new bandwidth is
3830 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3831 	 * timer to remain active while there are any throttled entities.)
3832 	 */
3833 	cfs_b->idle = 0;
3834 
3835 	return 0;
3836 
3837 out_deactivate:
3838 	cfs_b->timer_active = 0;
3839 	return 1;
3840 }
3841 
3842 /* a cfs_rq won't donate quota below this amount */
3843 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3844 /* minimum remaining period time to redistribute slack quota */
3845 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3846 /* how long we wait to gather additional slack before distributing */
3847 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3848 
3849 /*
3850  * Are we near the end of the current quota period?
3851  *
3852  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3853  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3854  * migrate_hrtimers, base is never cleared, so we are fine.
3855  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)3856 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3857 {
3858 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3859 	u64 remaining;
3860 
3861 	/* if the call-back is running a quota refresh is already occurring */
3862 	if (hrtimer_callback_running(refresh_timer))
3863 		return 1;
3864 
3865 	/* is a quota refresh about to occur? */
3866 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3867 	if (remaining < min_expire)
3868 		return 1;
3869 
3870 	return 0;
3871 }
3872 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)3873 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3874 {
3875 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3876 
3877 	/* if there's a quota refresh soon don't bother with slack */
3878 	if (runtime_refresh_within(cfs_b, min_left))
3879 		return;
3880 
3881 	start_bandwidth_timer(&cfs_b->slack_timer,
3882 				ns_to_ktime(cfs_bandwidth_slack_period));
3883 }
3884 
3885 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)3886 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3887 {
3888 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3889 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3890 
3891 	if (slack_runtime <= 0)
3892 		return;
3893 
3894 	raw_spin_lock(&cfs_b->lock);
3895 	if (cfs_b->quota != RUNTIME_INF &&
3896 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3897 		cfs_b->runtime += slack_runtime;
3898 
3899 		/* we are under rq->lock, defer unthrottling using a timer */
3900 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3901 		    !list_empty(&cfs_b->throttled_cfs_rq))
3902 			start_cfs_slack_bandwidth(cfs_b);
3903 	}
3904 	raw_spin_unlock(&cfs_b->lock);
3905 
3906 	/* even if it's not valid for return we don't want to try again */
3907 	cfs_rq->runtime_remaining -= slack_runtime;
3908 }
3909 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)3910 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3911 {
3912 	if (!cfs_bandwidth_used())
3913 		return;
3914 
3915 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3916 		return;
3917 
3918 	__return_cfs_rq_runtime(cfs_rq);
3919 }
3920 
3921 /*
3922  * This is done with a timer (instead of inline with bandwidth return) since
3923  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3924  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)3925 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3926 {
3927 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3928 	u64 expires;
3929 
3930 	/* confirm we're still not at a refresh boundary */
3931 	raw_spin_lock(&cfs_b->lock);
3932 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3933 		raw_spin_unlock(&cfs_b->lock);
3934 		return;
3935 	}
3936 
3937 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3938 		runtime = cfs_b->runtime;
3939 
3940 	expires = cfs_b->runtime_expires;
3941 	raw_spin_unlock(&cfs_b->lock);
3942 
3943 	if (!runtime)
3944 		return;
3945 
3946 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3947 
3948 	raw_spin_lock(&cfs_b->lock);
3949 	if (expires == cfs_b->runtime_expires)
3950 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3951 	raw_spin_unlock(&cfs_b->lock);
3952 }
3953 
3954 /*
3955  * When a group wakes up we want to make sure that its quota is not already
3956  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3957  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3958  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)3959 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3960 {
3961 	if (!cfs_bandwidth_used())
3962 		return;
3963 
3964 	/* an active group must be handled by the update_curr()->put() path */
3965 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3966 		return;
3967 
3968 	/* ensure the group is not already throttled */
3969 	if (cfs_rq_throttled(cfs_rq))
3970 		return;
3971 
3972 	/* update runtime allocation */
3973 	account_cfs_rq_runtime(cfs_rq, 0);
3974 	if (cfs_rq->runtime_remaining <= 0)
3975 		throttle_cfs_rq(cfs_rq);
3976 }
3977 
3978 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)3979 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3980 {
3981 	if (!cfs_bandwidth_used())
3982 		return false;
3983 
3984 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3985 		return false;
3986 
3987 	/*
3988 	 * it's possible for a throttled entity to be forced into a running
3989 	 * state (e.g. set_curr_task), in this case we're finished.
3990 	 */
3991 	if (cfs_rq_throttled(cfs_rq))
3992 		return true;
3993 
3994 	throttle_cfs_rq(cfs_rq);
3995 	return true;
3996 }
3997 
sched_cfs_slack_timer(struct hrtimer * timer)3998 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3999 {
4000 	struct cfs_bandwidth *cfs_b =
4001 		container_of(timer, struct cfs_bandwidth, slack_timer);
4002 	do_sched_cfs_slack_timer(cfs_b);
4003 
4004 	return HRTIMER_NORESTART;
4005 }
4006 
sched_cfs_period_timer(struct hrtimer * timer)4007 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4008 {
4009 	struct cfs_bandwidth *cfs_b =
4010 		container_of(timer, struct cfs_bandwidth, period_timer);
4011 	ktime_t now;
4012 	int overrun;
4013 	int idle = 0;
4014 
4015 	raw_spin_lock(&cfs_b->lock);
4016 	for (;;) {
4017 		now = hrtimer_cb_get_time(timer);
4018 		overrun = hrtimer_forward(timer, now, cfs_b->period);
4019 
4020 		if (!overrun)
4021 			break;
4022 
4023 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4024 	}
4025 	raw_spin_unlock(&cfs_b->lock);
4026 
4027 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4028 }
4029 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4030 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4031 {
4032 	raw_spin_lock_init(&cfs_b->lock);
4033 	cfs_b->runtime = 0;
4034 	cfs_b->quota = RUNTIME_INF;
4035 	cfs_b->period = ns_to_ktime(default_cfs_period());
4036 
4037 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4038 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4039 	cfs_b->period_timer.function = sched_cfs_period_timer;
4040 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4042 }
4043 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)4044 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4045 {
4046 	cfs_rq->runtime_enabled = 0;
4047 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4048 }
4049 
4050 /* requires cfs_b->lock, may release to reprogram timer */
__start_cfs_bandwidth(struct cfs_bandwidth * cfs_b,bool force)4051 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
4052 {
4053 	/*
4054 	 * The timer may be active because we're trying to set a new bandwidth
4055 	 * period or because we're racing with the tear-down path
4056 	 * (timer_active==0 becomes visible before the hrtimer call-back
4057 	 * terminates).  In either case we ensure that it's re-programmed
4058 	 */
4059 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4060 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4061 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
4062 		raw_spin_unlock(&cfs_b->lock);
4063 		cpu_relax();
4064 		raw_spin_lock(&cfs_b->lock);
4065 		/* if someone else restarted the timer then we're done */
4066 		if (!force && cfs_b->timer_active)
4067 			return;
4068 	}
4069 
4070 	cfs_b->timer_active = 1;
4071 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4072 }
4073 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4074 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4075 {
4076 	/* init_cfs_bandwidth() was not called */
4077 	if (!cfs_b->throttled_cfs_rq.next)
4078 		return;
4079 
4080 	hrtimer_cancel(&cfs_b->period_timer);
4081 	hrtimer_cancel(&cfs_b->slack_timer);
4082 }
4083 
update_runtime_enabled(struct rq * rq)4084 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4085 {
4086 	struct cfs_rq *cfs_rq;
4087 
4088 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4089 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4090 
4091 		raw_spin_lock(&cfs_b->lock);
4092 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4093 		raw_spin_unlock(&cfs_b->lock);
4094 	}
4095 }
4096 
unthrottle_offline_cfs_rqs(struct rq * rq)4097 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4098 {
4099 	struct cfs_rq *cfs_rq;
4100 
4101 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4102 		if (!cfs_rq->runtime_enabled)
4103 			continue;
4104 
4105 		/*
4106 		 * clock_task is not advancing so we just need to make sure
4107 		 * there's some valid quota amount
4108 		 */
4109 		cfs_rq->runtime_remaining = 1;
4110 		/*
4111 		 * Offline rq is schedulable till cpu is completely disabled
4112 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4113 		 */
4114 		cfs_rq->runtime_enabled = 0;
4115 
4116 		if (cfs_rq_throttled(cfs_rq))
4117 			unthrottle_cfs_rq(cfs_rq);
4118 	}
4119 }
4120 
4121 #else /* CONFIG_CFS_BANDWIDTH */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)4122 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4123 {
4124 	return rq_clock_task(rq_of(cfs_rq));
4125 }
4126 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4127 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)4128 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)4129 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4130 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4131 
cfs_rq_throttled(struct cfs_rq * cfs_rq)4132 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4133 {
4134 	return 0;
4135 }
4136 
throttled_hierarchy(struct cfs_rq * cfs_rq)4137 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4138 {
4139 	return 0;
4140 }
4141 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4142 static inline int throttled_lb_pair(struct task_group *tg,
4143 				    int src_cpu, int dest_cpu)
4144 {
4145 	return 0;
4146 }
4147 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4148 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4149 
4150 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)4151 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4152 #endif
4153 
tg_cfs_bandwidth(struct task_group * tg)4154 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4155 {
4156 	return NULL;
4157 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4158 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)4159 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)4160 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4161 
4162 #endif /* CONFIG_CFS_BANDWIDTH */
4163 
4164 /**************************************************
4165  * CFS operations on tasks:
4166  */
4167 
4168 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)4169 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4170 {
4171 	struct sched_entity *se = &p->se;
4172 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4173 
4174 	WARN_ON(task_rq(p) != rq);
4175 
4176 	if (cfs_rq->nr_running > 1) {
4177 		u64 slice = sched_slice(cfs_rq, se);
4178 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4179 		s64 delta = slice - ran;
4180 
4181 		if (delta < 0) {
4182 			if (rq->curr == p)
4183 				resched_curr(rq);
4184 			return;
4185 		}
4186 		hrtick_start(rq, delta);
4187 	}
4188 }
4189 
4190 /*
4191  * called from enqueue/dequeue and updates the hrtick when the
4192  * current task is from our class and nr_running is low enough
4193  * to matter.
4194  */
hrtick_update(struct rq * rq)4195 static void hrtick_update(struct rq *rq)
4196 {
4197 	struct task_struct *curr = rq->curr;
4198 
4199 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4200 		return;
4201 
4202 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4203 		hrtick_start_fair(rq, curr);
4204 }
4205 #else /* !CONFIG_SCHED_HRTICK */
4206 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)4207 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4208 {
4209 }
4210 
hrtick_update(struct rq * rq)4211 static inline void hrtick_update(struct rq *rq)
4212 {
4213 }
4214 #endif
4215 
4216 /*
4217  * The enqueue_task method is called before nr_running is
4218  * increased. Here we update the fair scheduling stats and
4219  * then put the task into the rbtree:
4220  */
4221 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)4222 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4223 {
4224 	struct cfs_rq *cfs_rq;
4225 	struct sched_entity *se = &p->se;
4226 
4227 	for_each_sched_entity(se) {
4228 		if (se->on_rq)
4229 			break;
4230 		cfs_rq = cfs_rq_of(se);
4231 		enqueue_entity(cfs_rq, se, flags);
4232 
4233 		/*
4234 		 * end evaluation on encountering a throttled cfs_rq
4235 		 *
4236 		 * note: in the case of encountering a throttled cfs_rq we will
4237 		 * post the final h_nr_running increment below.
4238 		*/
4239 		if (cfs_rq_throttled(cfs_rq))
4240 			break;
4241 		cfs_rq->h_nr_running++;
4242 
4243 		flags = ENQUEUE_WAKEUP;
4244 	}
4245 
4246 	for_each_sched_entity(se) {
4247 		cfs_rq = cfs_rq_of(se);
4248 		cfs_rq->h_nr_running++;
4249 
4250 		if (cfs_rq_throttled(cfs_rq))
4251 			break;
4252 
4253 		update_cfs_shares(cfs_rq);
4254 		update_entity_load_avg(se, 1);
4255 	}
4256 
4257 	if (!se) {
4258 		update_rq_runnable_avg(rq, rq->nr_running);
4259 		add_nr_running(rq, 1);
4260 	}
4261 	hrtick_update(rq);
4262 }
4263 
4264 static void set_next_buddy(struct sched_entity *se);
4265 
4266 /*
4267  * The dequeue_task method is called before nr_running is
4268  * decreased. We remove the task from the rbtree and
4269  * update the fair scheduling stats:
4270  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)4271 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4272 {
4273 	struct cfs_rq *cfs_rq;
4274 	struct sched_entity *se = &p->se;
4275 	int task_sleep = flags & DEQUEUE_SLEEP;
4276 
4277 	for_each_sched_entity(se) {
4278 		cfs_rq = cfs_rq_of(se);
4279 		dequeue_entity(cfs_rq, se, flags);
4280 
4281 		/*
4282 		 * end evaluation on encountering a throttled cfs_rq
4283 		 *
4284 		 * note: in the case of encountering a throttled cfs_rq we will
4285 		 * post the final h_nr_running decrement below.
4286 		*/
4287 		if (cfs_rq_throttled(cfs_rq))
4288 			break;
4289 		cfs_rq->h_nr_running--;
4290 
4291 		/* Don't dequeue parent if it has other entities besides us */
4292 		if (cfs_rq->load.weight) {
4293 			/*
4294 			 * Bias pick_next to pick a task from this cfs_rq, as
4295 			 * p is sleeping when it is within its sched_slice.
4296 			 */
4297 			if (task_sleep && parent_entity(se))
4298 				set_next_buddy(parent_entity(se));
4299 
4300 			/* avoid re-evaluating load for this entity */
4301 			se = parent_entity(se);
4302 			break;
4303 		}
4304 		flags |= DEQUEUE_SLEEP;
4305 	}
4306 
4307 	for_each_sched_entity(se) {
4308 		cfs_rq = cfs_rq_of(se);
4309 		cfs_rq->h_nr_running--;
4310 
4311 		if (cfs_rq_throttled(cfs_rq))
4312 			break;
4313 
4314 		update_cfs_shares(cfs_rq);
4315 		update_entity_load_avg(se, 1);
4316 	}
4317 
4318 	if (!se) {
4319 		sub_nr_running(rq, 1);
4320 		update_rq_runnable_avg(rq, 1);
4321 	}
4322 	hrtick_update(rq);
4323 }
4324 
4325 #ifdef CONFIG_SMP
4326 /* Used instead of source_load when we know the type == 0 */
weighted_cpuload(const int cpu)4327 static unsigned long weighted_cpuload(const int cpu)
4328 {
4329 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4330 }
4331 
4332 /*
4333  * Return a low guess at the load of a migration-source cpu weighted
4334  * according to the scheduling class and "nice" value.
4335  *
4336  * We want to under-estimate the load of migration sources, to
4337  * balance conservatively.
4338  */
source_load(int cpu,int type)4339 static unsigned long source_load(int cpu, int type)
4340 {
4341 	struct rq *rq = cpu_rq(cpu);
4342 	unsigned long total = weighted_cpuload(cpu);
4343 
4344 	if (type == 0 || !sched_feat(LB_BIAS))
4345 		return total;
4346 
4347 	return min(rq->cpu_load[type-1], total);
4348 }
4349 
4350 /*
4351  * Return a high guess at the load of a migration-target cpu weighted
4352  * according to the scheduling class and "nice" value.
4353  */
target_load(int cpu,int type)4354 static unsigned long target_load(int cpu, int type)
4355 {
4356 	struct rq *rq = cpu_rq(cpu);
4357 	unsigned long total = weighted_cpuload(cpu);
4358 
4359 	if (type == 0 || !sched_feat(LB_BIAS))
4360 		return total;
4361 
4362 	return max(rq->cpu_load[type-1], total);
4363 }
4364 
capacity_of(int cpu)4365 static unsigned long capacity_of(int cpu)
4366 {
4367 	return cpu_rq(cpu)->cpu_capacity;
4368 }
4369 
capacity_orig_of(int cpu)4370 static unsigned long capacity_orig_of(int cpu)
4371 {
4372 	return cpu_rq(cpu)->cpu_capacity_orig;
4373 }
4374 
cpu_avg_load_per_task(int cpu)4375 static unsigned long cpu_avg_load_per_task(int cpu)
4376 {
4377 	struct rq *rq = cpu_rq(cpu);
4378 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4379 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4380 
4381 	if (nr_running)
4382 		return load_avg / nr_running;
4383 
4384 	return 0;
4385 }
4386 
record_wakee(struct task_struct * p)4387 static void record_wakee(struct task_struct *p)
4388 {
4389 	/*
4390 	 * Rough decay (wiping) for cost saving, don't worry
4391 	 * about the boundary, really active task won't care
4392 	 * about the loss.
4393 	 */
4394 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4395 		current->wakee_flips >>= 1;
4396 		current->wakee_flip_decay_ts = jiffies;
4397 	}
4398 
4399 	if (current->last_wakee != p) {
4400 		current->last_wakee = p;
4401 		current->wakee_flips++;
4402 	}
4403 }
4404 
task_waking_fair(struct task_struct * p)4405 static void task_waking_fair(struct task_struct *p)
4406 {
4407 	struct sched_entity *se = &p->se;
4408 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4409 	u64 min_vruntime;
4410 
4411 #ifndef CONFIG_64BIT
4412 	u64 min_vruntime_copy;
4413 
4414 	do {
4415 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4416 		smp_rmb();
4417 		min_vruntime = cfs_rq->min_vruntime;
4418 	} while (min_vruntime != min_vruntime_copy);
4419 #else
4420 	min_vruntime = cfs_rq->min_vruntime;
4421 #endif
4422 
4423 	se->vruntime -= min_vruntime;
4424 	record_wakee(p);
4425 }
4426 
4427 #ifdef CONFIG_FAIR_GROUP_SCHED
4428 /*
4429  * effective_load() calculates the load change as seen from the root_task_group
4430  *
4431  * Adding load to a group doesn't make a group heavier, but can cause movement
4432  * of group shares between cpus. Assuming the shares were perfectly aligned one
4433  * can calculate the shift in shares.
4434  *
4435  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4436  * on this @cpu and results in a total addition (subtraction) of @wg to the
4437  * total group weight.
4438  *
4439  * Given a runqueue weight distribution (rw_i) we can compute a shares
4440  * distribution (s_i) using:
4441  *
4442  *   s_i = rw_i / \Sum rw_j						(1)
4443  *
4444  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4445  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4446  * shares distribution (s_i):
4447  *
4448  *   rw_i = {   2,   4,   1,   0 }
4449  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4450  *
4451  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4452  * task used to run on and the CPU the waker is running on), we need to
4453  * compute the effect of waking a task on either CPU and, in case of a sync
4454  * wakeup, compute the effect of the current task going to sleep.
4455  *
4456  * So for a change of @wl to the local @cpu with an overall group weight change
4457  * of @wl we can compute the new shares distribution (s'_i) using:
4458  *
4459  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4460  *
4461  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4462  * differences in waking a task to CPU 0. The additional task changes the
4463  * weight and shares distributions like:
4464  *
4465  *   rw'_i = {   3,   4,   1,   0 }
4466  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4467  *
4468  * We can then compute the difference in effective weight by using:
4469  *
4470  *   dw_i = S * (s'_i - s_i)						(3)
4471  *
4472  * Where 'S' is the group weight as seen by its parent.
4473  *
4474  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4475  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4476  * 4/7) times the weight of the group.
4477  */
effective_load(struct task_group * tg,int cpu,long wl,long wg)4478 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4479 {
4480 	struct sched_entity *se = tg->se[cpu];
4481 
4482 	if (!tg->parent)	/* the trivial, non-cgroup case */
4483 		return wl;
4484 
4485 	for_each_sched_entity(se) {
4486 		long w, W;
4487 
4488 		tg = se->my_q->tg;
4489 
4490 		/*
4491 		 * W = @wg + \Sum rw_j
4492 		 */
4493 		W = wg + calc_tg_weight(tg, se->my_q);
4494 
4495 		/*
4496 		 * w = rw_i + @wl
4497 		 */
4498 		w = se->my_q->load.weight + wl;
4499 
4500 		/*
4501 		 * wl = S * s'_i; see (2)
4502 		 */
4503 		if (W > 0 && w < W)
4504 			wl = (w * (long)tg->shares) / W;
4505 		else
4506 			wl = tg->shares;
4507 
4508 		/*
4509 		 * Per the above, wl is the new se->load.weight value; since
4510 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4511 		 * calc_cfs_shares().
4512 		 */
4513 		if (wl < MIN_SHARES)
4514 			wl = MIN_SHARES;
4515 
4516 		/*
4517 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4518 		 */
4519 		wl -= se->load.weight;
4520 
4521 		/*
4522 		 * Recursively apply this logic to all parent groups to compute
4523 		 * the final effective load change on the root group. Since
4524 		 * only the @tg group gets extra weight, all parent groups can
4525 		 * only redistribute existing shares. @wl is the shift in shares
4526 		 * resulting from this level per the above.
4527 		 */
4528 		wg = 0;
4529 	}
4530 
4531 	return wl;
4532 }
4533 #else
4534 
effective_load(struct task_group * tg,int cpu,long wl,long wg)4535 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4536 {
4537 	return wl;
4538 }
4539 
4540 #endif
4541 
wake_wide(struct task_struct * p)4542 static int wake_wide(struct task_struct *p)
4543 {
4544 	int factor = this_cpu_read(sd_llc_size);
4545 
4546 	/*
4547 	 * Yeah, it's the switching-frequency, could means many wakee or
4548 	 * rapidly switch, use factor here will just help to automatically
4549 	 * adjust the loose-degree, so bigger node will lead to more pull.
4550 	 */
4551 	if (p->wakee_flips > factor) {
4552 		/*
4553 		 * wakee is somewhat hot, it needs certain amount of cpu
4554 		 * resource, so if waker is far more hot, prefer to leave
4555 		 * it alone.
4556 		 */
4557 		if (current->wakee_flips > (factor * p->wakee_flips))
4558 			return 1;
4559 	}
4560 
4561 	return 0;
4562 }
4563 
wake_affine(struct sched_domain * sd,struct task_struct * p,int sync)4564 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4565 {
4566 	s64 this_load, load;
4567 	s64 this_eff_load, prev_eff_load;
4568 	int idx, this_cpu, prev_cpu;
4569 	struct task_group *tg;
4570 	unsigned long weight;
4571 	int balanced;
4572 
4573 	/*
4574 	 * If we wake multiple tasks be careful to not bounce
4575 	 * ourselves around too much.
4576 	 */
4577 	if (wake_wide(p))
4578 		return 0;
4579 
4580 	idx	  = sd->wake_idx;
4581 	this_cpu  = smp_processor_id();
4582 	prev_cpu  = task_cpu(p);
4583 	load	  = source_load(prev_cpu, idx);
4584 	this_load = target_load(this_cpu, idx);
4585 
4586 	/*
4587 	 * If sync wakeup then subtract the (maximum possible)
4588 	 * effect of the currently running task from the load
4589 	 * of the current CPU:
4590 	 */
4591 	if (sync) {
4592 		tg = task_group(current);
4593 		weight = current->se.load.weight;
4594 
4595 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4596 		load += effective_load(tg, prev_cpu, 0, -weight);
4597 	}
4598 
4599 	tg = task_group(p);
4600 	weight = p->se.load.weight;
4601 
4602 	/*
4603 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4604 	 * due to the sync cause above having dropped this_load to 0, we'll
4605 	 * always have an imbalance, but there's really nothing you can do
4606 	 * about that, so that's good too.
4607 	 *
4608 	 * Otherwise check if either cpus are near enough in load to allow this
4609 	 * task to be woken on this_cpu.
4610 	 */
4611 	this_eff_load = 100;
4612 	this_eff_load *= capacity_of(prev_cpu);
4613 
4614 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4615 	prev_eff_load *= capacity_of(this_cpu);
4616 
4617 	if (this_load > 0) {
4618 		this_eff_load *= this_load +
4619 			effective_load(tg, this_cpu, weight, weight);
4620 
4621 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4622 	}
4623 
4624 	balanced = this_eff_load <= prev_eff_load;
4625 
4626 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4627 
4628 	if (!balanced)
4629 		return 0;
4630 
4631 	schedstat_inc(sd, ttwu_move_affine);
4632 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4633 
4634 	return 1;
4635 }
4636 
4637 /*
4638  * find_idlest_group finds and returns the least busy CPU group within the
4639  * domain.
4640  */
4641 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int sd_flag)4642 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4643 		  int this_cpu, int sd_flag)
4644 {
4645 	struct sched_group *idlest = NULL, *group = sd->groups;
4646 	unsigned long min_load = ULONG_MAX, this_load = 0;
4647 	int load_idx = sd->forkexec_idx;
4648 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4649 
4650 	if (sd_flag & SD_BALANCE_WAKE)
4651 		load_idx = sd->wake_idx;
4652 
4653 	do {
4654 		unsigned long load, avg_load;
4655 		int local_group;
4656 		int i;
4657 
4658 		/* Skip over this group if it has no CPUs allowed */
4659 		if (!cpumask_intersects(sched_group_cpus(group),
4660 					tsk_cpus_allowed(p)))
4661 			continue;
4662 
4663 		local_group = cpumask_test_cpu(this_cpu,
4664 					       sched_group_cpus(group));
4665 
4666 		/* Tally up the load of all CPUs in the group */
4667 		avg_load = 0;
4668 
4669 		for_each_cpu(i, sched_group_cpus(group)) {
4670 			/* Bias balancing toward cpus of our domain */
4671 			if (local_group)
4672 				load = source_load(i, load_idx);
4673 			else
4674 				load = target_load(i, load_idx);
4675 
4676 			avg_load += load;
4677 		}
4678 
4679 		/* Adjust by relative CPU capacity of the group */
4680 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4681 
4682 		if (local_group) {
4683 			this_load = avg_load;
4684 		} else if (avg_load < min_load) {
4685 			min_load = avg_load;
4686 			idlest = group;
4687 		}
4688 	} while (group = group->next, group != sd->groups);
4689 
4690 	if (!idlest || 100*this_load < imbalance*min_load)
4691 		return NULL;
4692 	return idlest;
4693 }
4694 
4695 /*
4696  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4697  */
4698 static int
find_idlest_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)4699 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4700 {
4701 	unsigned long load, min_load = ULONG_MAX;
4702 	unsigned int min_exit_latency = UINT_MAX;
4703 	u64 latest_idle_timestamp = 0;
4704 	int least_loaded_cpu = this_cpu;
4705 	int shallowest_idle_cpu = -1;
4706 	int i;
4707 
4708 	/* Traverse only the allowed CPUs */
4709 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4710 		if (idle_cpu(i)) {
4711 			struct rq *rq = cpu_rq(i);
4712 			struct cpuidle_state *idle = idle_get_state(rq);
4713 			if (idle && idle->exit_latency < min_exit_latency) {
4714 				/*
4715 				 * We give priority to a CPU whose idle state
4716 				 * has the smallest exit latency irrespective
4717 				 * of any idle timestamp.
4718 				 */
4719 				min_exit_latency = idle->exit_latency;
4720 				latest_idle_timestamp = rq->idle_stamp;
4721 				shallowest_idle_cpu = i;
4722 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4723 				   rq->idle_stamp > latest_idle_timestamp) {
4724 				/*
4725 				 * If equal or no active idle state, then
4726 				 * the most recently idled CPU might have
4727 				 * a warmer cache.
4728 				 */
4729 				latest_idle_timestamp = rq->idle_stamp;
4730 				shallowest_idle_cpu = i;
4731 			}
4732 		} else if (shallowest_idle_cpu == -1) {
4733 			load = weighted_cpuload(i);
4734 			if (load < min_load || (load == min_load && i == this_cpu)) {
4735 				min_load = load;
4736 				least_loaded_cpu = i;
4737 			}
4738 		}
4739 	}
4740 
4741 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4742 }
4743 
4744 /*
4745  * Try and locate an idle CPU in the sched_domain.
4746  */
select_idle_sibling(struct task_struct * p,int target)4747 static int select_idle_sibling(struct task_struct *p, int target)
4748 {
4749 	struct sched_domain *sd;
4750 	struct sched_group *sg;
4751 	int i = task_cpu(p);
4752 
4753 	if (idle_cpu(target))
4754 		return target;
4755 
4756 	/*
4757 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4758 	 */
4759 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4760 		return i;
4761 
4762 	/*
4763 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4764 	 */
4765 	sd = rcu_dereference(per_cpu(sd_llc, target));
4766 	for_each_lower_domain(sd) {
4767 		sg = sd->groups;
4768 		do {
4769 			if (!cpumask_intersects(sched_group_cpus(sg),
4770 						tsk_cpus_allowed(p)))
4771 				goto next;
4772 
4773 			for_each_cpu(i, sched_group_cpus(sg)) {
4774 				if (i == target || !idle_cpu(i))
4775 					goto next;
4776 			}
4777 
4778 			target = cpumask_first_and(sched_group_cpus(sg),
4779 					tsk_cpus_allowed(p));
4780 			goto done;
4781 next:
4782 			sg = sg->next;
4783 		} while (sg != sd->groups);
4784 	}
4785 done:
4786 	return target;
4787 }
4788 /*
4789  * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4790  * tasks. The unit of the return value must be the one of capacity so we can
4791  * compare the usage with the capacity of the CPU that is available for CFS
4792  * task (ie cpu_capacity).
4793  * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4794  * CPU. It represents the amount of utilization of a CPU in the range
4795  * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
4796  * capacity of the CPU because it's about the running time on this CPU.
4797  * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4798  * because of unfortunate rounding in avg_period and running_load_avg or just
4799  * after migrating tasks until the average stabilizes with the new running
4800  * time. So we need to check that the usage stays into the range
4801  * [0..cpu_capacity_orig] and cap if necessary.
4802  * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4803  * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4804  */
get_cpu_usage(int cpu)4805 static int get_cpu_usage(int cpu)
4806 {
4807 	unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4808 	unsigned long capacity = capacity_orig_of(cpu);
4809 
4810 	if (usage >= SCHED_LOAD_SCALE)
4811 		return capacity;
4812 
4813 	return (usage * capacity) >> SCHED_LOAD_SHIFT;
4814 }
4815 
4816 /*
4817  * select_task_rq_fair: Select target runqueue for the waking task in domains
4818  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4819  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4820  *
4821  * Balances load by selecting the idlest cpu in the idlest group, or under
4822  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4823  *
4824  * Returns the target cpu number.
4825  *
4826  * preempt must be disabled.
4827  */
4828 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)4829 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4830 {
4831 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4832 	int cpu = smp_processor_id();
4833 	int new_cpu = cpu;
4834 	int want_affine = 0;
4835 	int sync = wake_flags & WF_SYNC;
4836 
4837 	if (sd_flag & SD_BALANCE_WAKE)
4838 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4839 
4840 	rcu_read_lock();
4841 	for_each_domain(cpu, tmp) {
4842 		if (!(tmp->flags & SD_LOAD_BALANCE))
4843 			continue;
4844 
4845 		/*
4846 		 * If both cpu and prev_cpu are part of this domain,
4847 		 * cpu is a valid SD_WAKE_AFFINE target.
4848 		 */
4849 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4850 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4851 			affine_sd = tmp;
4852 			break;
4853 		}
4854 
4855 		if (tmp->flags & sd_flag)
4856 			sd = tmp;
4857 	}
4858 
4859 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4860 		prev_cpu = cpu;
4861 
4862 	if (sd_flag & SD_BALANCE_WAKE) {
4863 		new_cpu = select_idle_sibling(p, prev_cpu);
4864 		goto unlock;
4865 	}
4866 
4867 	while (sd) {
4868 		struct sched_group *group;
4869 		int weight;
4870 
4871 		if (!(sd->flags & sd_flag)) {
4872 			sd = sd->child;
4873 			continue;
4874 		}
4875 
4876 		group = find_idlest_group(sd, p, cpu, sd_flag);
4877 		if (!group) {
4878 			sd = sd->child;
4879 			continue;
4880 		}
4881 
4882 		new_cpu = find_idlest_cpu(group, p, cpu);
4883 		if (new_cpu == -1 || new_cpu == cpu) {
4884 			/* Now try balancing at a lower domain level of cpu */
4885 			sd = sd->child;
4886 			continue;
4887 		}
4888 
4889 		/* Now try balancing at a lower domain level of new_cpu */
4890 		cpu = new_cpu;
4891 		weight = sd->span_weight;
4892 		sd = NULL;
4893 		for_each_domain(cpu, tmp) {
4894 			if (weight <= tmp->span_weight)
4895 				break;
4896 			if (tmp->flags & sd_flag)
4897 				sd = tmp;
4898 		}
4899 		/* while loop will break here if sd == NULL */
4900 	}
4901 unlock:
4902 	rcu_read_unlock();
4903 
4904 	return new_cpu;
4905 }
4906 
4907 /*
4908  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4909  * cfs_rq_of(p) references at time of call are still valid and identify the
4910  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4911  * other assumptions, including the state of rq->lock, should be made.
4912  */
4913 static void
migrate_task_rq_fair(struct task_struct * p,int next_cpu)4914 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4915 {
4916 	struct sched_entity *se = &p->se;
4917 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4918 
4919 	/*
4920 	 * Load tracking: accumulate removed load so that it can be processed
4921 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4922 	 * to blocked load iff they have a positive decay-count.  It can never
4923 	 * be negative here since on-rq tasks have decay-count == 0.
4924 	 */
4925 	if (se->avg.decay_count) {
4926 		se->avg.decay_count = -__synchronize_entity_decay(se);
4927 		atomic_long_add(se->avg.load_avg_contrib,
4928 						&cfs_rq->removed_load);
4929 	}
4930 
4931 	/* We have migrated, no longer consider this task hot */
4932 	se->exec_start = 0;
4933 }
4934 #endif /* CONFIG_SMP */
4935 
4936 static unsigned long
wakeup_gran(struct sched_entity * curr,struct sched_entity * se)4937 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4938 {
4939 	unsigned long gran = sysctl_sched_wakeup_granularity;
4940 
4941 	/*
4942 	 * Since its curr running now, convert the gran from real-time
4943 	 * to virtual-time in his units.
4944 	 *
4945 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4946 	 * they get preempted easier. That is, if 'se' < 'curr' then
4947 	 * the resulting gran will be larger, therefore penalizing the
4948 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4949 	 * be smaller, again penalizing the lighter task.
4950 	 *
4951 	 * This is especially important for buddies when the leftmost
4952 	 * task is higher priority than the buddy.
4953 	 */
4954 	return calc_delta_fair(gran, se);
4955 }
4956 
4957 /*
4958  * Should 'se' preempt 'curr'.
4959  *
4960  *             |s1
4961  *        |s2
4962  *   |s3
4963  *         g
4964  *      |<--->|c
4965  *
4966  *  w(c, s1) = -1
4967  *  w(c, s2) =  0
4968  *  w(c, s3) =  1
4969  *
4970  */
4971 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)4972 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4973 {
4974 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4975 
4976 	if (vdiff <= 0)
4977 		return -1;
4978 
4979 	gran = wakeup_gran(curr, se);
4980 	if (vdiff > gran)
4981 		return 1;
4982 
4983 	return 0;
4984 }
4985 
set_last_buddy(struct sched_entity * se)4986 static void set_last_buddy(struct sched_entity *se)
4987 {
4988 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4989 		return;
4990 
4991 	for_each_sched_entity(se)
4992 		cfs_rq_of(se)->last = se;
4993 }
4994 
set_next_buddy(struct sched_entity * se)4995 static void set_next_buddy(struct sched_entity *se)
4996 {
4997 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4998 		return;
4999 
5000 	for_each_sched_entity(se)
5001 		cfs_rq_of(se)->next = se;
5002 }
5003 
set_skip_buddy(struct sched_entity * se)5004 static void set_skip_buddy(struct sched_entity *se)
5005 {
5006 	for_each_sched_entity(se)
5007 		cfs_rq_of(se)->skip = se;
5008 }
5009 
5010 /*
5011  * Preempt the current task with a newly woken task if needed:
5012  */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)5013 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5014 {
5015 	struct task_struct *curr = rq->curr;
5016 	struct sched_entity *se = &curr->se, *pse = &p->se;
5017 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5018 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5019 	int next_buddy_marked = 0;
5020 
5021 	if (unlikely(se == pse))
5022 		return;
5023 
5024 	/*
5025 	 * This is possible from callers such as attach_tasks(), in which we
5026 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5027 	 * lead to a throttle).  This both saves work and prevents false
5028 	 * next-buddy nomination below.
5029 	 */
5030 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5031 		return;
5032 
5033 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5034 		set_next_buddy(pse);
5035 		next_buddy_marked = 1;
5036 	}
5037 
5038 	/*
5039 	 * We can come here with TIF_NEED_RESCHED already set from new task
5040 	 * wake up path.
5041 	 *
5042 	 * Note: this also catches the edge-case of curr being in a throttled
5043 	 * group (e.g. via set_curr_task), since update_curr() (in the
5044 	 * enqueue of curr) will have resulted in resched being set.  This
5045 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5046 	 * below.
5047 	 */
5048 	if (test_tsk_need_resched(curr))
5049 		return;
5050 
5051 	/* Idle tasks are by definition preempted by non-idle tasks. */
5052 	if (unlikely(curr->policy == SCHED_IDLE) &&
5053 	    likely(p->policy != SCHED_IDLE))
5054 		goto preempt;
5055 
5056 	/*
5057 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5058 	 * is driven by the tick):
5059 	 */
5060 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5061 		return;
5062 
5063 	find_matching_se(&se, &pse);
5064 	update_curr(cfs_rq_of(se));
5065 	BUG_ON(!pse);
5066 	if (wakeup_preempt_entity(se, pse) == 1) {
5067 		/*
5068 		 * Bias pick_next to pick the sched entity that is
5069 		 * triggering this preemption.
5070 		 */
5071 		if (!next_buddy_marked)
5072 			set_next_buddy(pse);
5073 		goto preempt;
5074 	}
5075 
5076 	return;
5077 
5078 preempt:
5079 	resched_curr(rq);
5080 	/*
5081 	 * Only set the backward buddy when the current task is still
5082 	 * on the rq. This can happen when a wakeup gets interleaved
5083 	 * with schedule on the ->pre_schedule() or idle_balance()
5084 	 * point, either of which can * drop the rq lock.
5085 	 *
5086 	 * Also, during early boot the idle thread is in the fair class,
5087 	 * for obvious reasons its a bad idea to schedule back to it.
5088 	 */
5089 	if (unlikely(!se->on_rq || curr == rq->idle))
5090 		return;
5091 
5092 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5093 		set_last_buddy(se);
5094 }
5095 
5096 static struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev)5097 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5098 {
5099 	struct cfs_rq *cfs_rq = &rq->cfs;
5100 	struct sched_entity *se;
5101 	struct task_struct *p;
5102 	int new_tasks;
5103 
5104 again:
5105 #ifdef CONFIG_FAIR_GROUP_SCHED
5106 	if (!cfs_rq->nr_running)
5107 		goto idle;
5108 
5109 	if (prev->sched_class != &fair_sched_class)
5110 		goto simple;
5111 
5112 	/*
5113 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5114 	 * likely that a next task is from the same cgroup as the current.
5115 	 *
5116 	 * Therefore attempt to avoid putting and setting the entire cgroup
5117 	 * hierarchy, only change the part that actually changes.
5118 	 */
5119 
5120 	do {
5121 		struct sched_entity *curr = cfs_rq->curr;
5122 
5123 		/*
5124 		 * Since we got here without doing put_prev_entity() we also
5125 		 * have to consider cfs_rq->curr. If it is still a runnable
5126 		 * entity, update_curr() will update its vruntime, otherwise
5127 		 * forget we've ever seen it.
5128 		 */
5129 		if (curr) {
5130 			if (curr->on_rq)
5131 				update_curr(cfs_rq);
5132 			else
5133 				curr = NULL;
5134 
5135 			/*
5136 			 * This call to check_cfs_rq_runtime() will do the
5137 			 * throttle and dequeue its entity in the parent(s).
5138 			 * Therefore the 'simple' nr_running test will indeed
5139 			 * be correct.
5140 			 */
5141 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5142 				goto simple;
5143 		}
5144 
5145 		se = pick_next_entity(cfs_rq, curr);
5146 		cfs_rq = group_cfs_rq(se);
5147 	} while (cfs_rq);
5148 
5149 	p = task_of(se);
5150 
5151 	/*
5152 	 * Since we haven't yet done put_prev_entity and if the selected task
5153 	 * is a different task than we started out with, try and touch the
5154 	 * least amount of cfs_rqs.
5155 	 */
5156 	if (prev != p) {
5157 		struct sched_entity *pse = &prev->se;
5158 
5159 		while (!(cfs_rq = is_same_group(se, pse))) {
5160 			int se_depth = se->depth;
5161 			int pse_depth = pse->depth;
5162 
5163 			if (se_depth <= pse_depth) {
5164 				put_prev_entity(cfs_rq_of(pse), pse);
5165 				pse = parent_entity(pse);
5166 			}
5167 			if (se_depth >= pse_depth) {
5168 				set_next_entity(cfs_rq_of(se), se);
5169 				se = parent_entity(se);
5170 			}
5171 		}
5172 
5173 		put_prev_entity(cfs_rq, pse);
5174 		set_next_entity(cfs_rq, se);
5175 	}
5176 
5177 	if (hrtick_enabled(rq))
5178 		hrtick_start_fair(rq, p);
5179 
5180 	return p;
5181 simple:
5182 	cfs_rq = &rq->cfs;
5183 #endif
5184 
5185 	if (!cfs_rq->nr_running)
5186 		goto idle;
5187 
5188 	put_prev_task(rq, prev);
5189 
5190 	do {
5191 		se = pick_next_entity(cfs_rq, NULL);
5192 		set_next_entity(cfs_rq, se);
5193 		cfs_rq = group_cfs_rq(se);
5194 	} while (cfs_rq);
5195 
5196 	p = task_of(se);
5197 
5198 	if (hrtick_enabled(rq))
5199 		hrtick_start_fair(rq, p);
5200 
5201 	return p;
5202 
5203 idle:
5204 	new_tasks = idle_balance(rq);
5205 	/*
5206 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5207 	 * possible for any higher priority task to appear. In that case we
5208 	 * must re-start the pick_next_entity() loop.
5209 	 */
5210 	if (new_tasks < 0)
5211 		return RETRY_TASK;
5212 
5213 	if (new_tasks > 0)
5214 		goto again;
5215 
5216 	return NULL;
5217 }
5218 
5219 /*
5220  * Account for a descheduled task:
5221  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)5222 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5223 {
5224 	struct sched_entity *se = &prev->se;
5225 	struct cfs_rq *cfs_rq;
5226 
5227 	for_each_sched_entity(se) {
5228 		cfs_rq = cfs_rq_of(se);
5229 		put_prev_entity(cfs_rq, se);
5230 	}
5231 }
5232 
5233 /*
5234  * sched_yield() is very simple
5235  *
5236  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5237  */
yield_task_fair(struct rq * rq)5238 static void yield_task_fair(struct rq *rq)
5239 {
5240 	struct task_struct *curr = rq->curr;
5241 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5242 	struct sched_entity *se = &curr->se;
5243 
5244 	/*
5245 	 * Are we the only task in the tree?
5246 	 */
5247 	if (unlikely(rq->nr_running == 1))
5248 		return;
5249 
5250 	clear_buddies(cfs_rq, se);
5251 
5252 	if (curr->policy != SCHED_BATCH) {
5253 		update_rq_clock(rq);
5254 		/*
5255 		 * Update run-time statistics of the 'current'.
5256 		 */
5257 		update_curr(cfs_rq);
5258 		/*
5259 		 * Tell update_rq_clock() that we've just updated,
5260 		 * so we don't do microscopic update in schedule()
5261 		 * and double the fastpath cost.
5262 		 */
5263 		rq_clock_skip_update(rq, true);
5264 	}
5265 
5266 	set_skip_buddy(se);
5267 }
5268 
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)5269 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5270 {
5271 	struct sched_entity *se = &p->se;
5272 
5273 	/* throttled hierarchies are not runnable */
5274 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5275 		return false;
5276 
5277 	/* Tell the scheduler that we'd really like pse to run next. */
5278 	set_next_buddy(se);
5279 
5280 	yield_task_fair(rq);
5281 
5282 	return true;
5283 }
5284 
5285 #ifdef CONFIG_SMP
5286 /**************************************************
5287  * Fair scheduling class load-balancing methods.
5288  *
5289  * BASICS
5290  *
5291  * The purpose of load-balancing is to achieve the same basic fairness the
5292  * per-cpu scheduler provides, namely provide a proportional amount of compute
5293  * time to each task. This is expressed in the following equation:
5294  *
5295  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5296  *
5297  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5298  * W_i,0 is defined as:
5299  *
5300  *   W_i,0 = \Sum_j w_i,j                                             (2)
5301  *
5302  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5303  * is derived from the nice value as per prio_to_weight[].
5304  *
5305  * The weight average is an exponential decay average of the instantaneous
5306  * weight:
5307  *
5308  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5309  *
5310  * C_i is the compute capacity of cpu i, typically it is the
5311  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5312  * can also include other factors [XXX].
5313  *
5314  * To achieve this balance we define a measure of imbalance which follows
5315  * directly from (1):
5316  *
5317  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5318  *
5319  * We them move tasks around to minimize the imbalance. In the continuous
5320  * function space it is obvious this converges, in the discrete case we get
5321  * a few fun cases generally called infeasible weight scenarios.
5322  *
5323  * [XXX expand on:
5324  *     - infeasible weights;
5325  *     - local vs global optima in the discrete case. ]
5326  *
5327  *
5328  * SCHED DOMAINS
5329  *
5330  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5331  * for all i,j solution, we create a tree of cpus that follows the hardware
5332  * topology where each level pairs two lower groups (or better). This results
5333  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5334  * tree to only the first of the previous level and we decrease the frequency
5335  * of load-balance at each level inv. proportional to the number of cpus in
5336  * the groups.
5337  *
5338  * This yields:
5339  *
5340  *     log_2 n     1     n
5341  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5342  *     i = 0      2^i   2^i
5343  *                               `- size of each group
5344  *         |         |     `- number of cpus doing load-balance
5345  *         |         `- freq
5346  *         `- sum over all levels
5347  *
5348  * Coupled with a limit on how many tasks we can migrate every balance pass,
5349  * this makes (5) the runtime complexity of the balancer.
5350  *
5351  * An important property here is that each CPU is still (indirectly) connected
5352  * to every other cpu in at most O(log n) steps:
5353  *
5354  * The adjacency matrix of the resulting graph is given by:
5355  *
5356  *             log_2 n
5357  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5358  *             k = 0
5359  *
5360  * And you'll find that:
5361  *
5362  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5363  *
5364  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5365  * The task movement gives a factor of O(m), giving a convergence complexity
5366  * of:
5367  *
5368  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5369  *
5370  *
5371  * WORK CONSERVING
5372  *
5373  * In order to avoid CPUs going idle while there's still work to do, new idle
5374  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5375  * tree itself instead of relying on other CPUs to bring it work.
5376  *
5377  * This adds some complexity to both (5) and (8) but it reduces the total idle
5378  * time.
5379  *
5380  * [XXX more?]
5381  *
5382  *
5383  * CGROUPS
5384  *
5385  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5386  *
5387  *                                s_k,i
5388  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5389  *                                 S_k
5390  *
5391  * Where
5392  *
5393  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5394  *
5395  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5396  *
5397  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5398  * property.
5399  *
5400  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5401  *      rewrite all of this once again.]
5402  */
5403 
5404 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5405 
5406 enum fbq_type { regular, remote, all };
5407 
5408 #define LBF_ALL_PINNED	0x01
5409 #define LBF_NEED_BREAK	0x02
5410 #define LBF_DST_PINNED  0x04
5411 #define LBF_SOME_PINNED	0x08
5412 
5413 struct lb_env {
5414 	struct sched_domain	*sd;
5415 
5416 	struct rq		*src_rq;
5417 	int			src_cpu;
5418 
5419 	int			dst_cpu;
5420 	struct rq		*dst_rq;
5421 
5422 	struct cpumask		*dst_grpmask;
5423 	int			new_dst_cpu;
5424 	enum cpu_idle_type	idle;
5425 	long			imbalance;
5426 	/* The set of CPUs under consideration for load-balancing */
5427 	struct cpumask		*cpus;
5428 
5429 	unsigned int		flags;
5430 
5431 	unsigned int		loop;
5432 	unsigned int		loop_break;
5433 	unsigned int		loop_max;
5434 
5435 	enum fbq_type		fbq_type;
5436 	struct list_head	tasks;
5437 };
5438 
5439 /*
5440  * Is this task likely cache-hot:
5441  */
task_hot(struct task_struct * p,struct lb_env * env)5442 static int task_hot(struct task_struct *p, struct lb_env *env)
5443 {
5444 	s64 delta;
5445 
5446 	lockdep_assert_held(&env->src_rq->lock);
5447 
5448 	if (p->sched_class != &fair_sched_class)
5449 		return 0;
5450 
5451 	if (unlikely(p->policy == SCHED_IDLE))
5452 		return 0;
5453 
5454 	/*
5455 	 * Buddy candidates are cache hot:
5456 	 */
5457 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5458 			(&p->se == cfs_rq_of(&p->se)->next ||
5459 			 &p->se == cfs_rq_of(&p->se)->last))
5460 		return 1;
5461 
5462 	if (sysctl_sched_migration_cost == -1)
5463 		return 1;
5464 	if (sysctl_sched_migration_cost == 0)
5465 		return 0;
5466 
5467 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5468 
5469 	return delta < (s64)sysctl_sched_migration_cost;
5470 }
5471 
5472 #ifdef CONFIG_NUMA_BALANCING
5473 /* Returns true if the destination node has incurred more faults */
migrate_improves_locality(struct task_struct * p,struct lb_env * env)5474 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5475 {
5476 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5477 	int src_nid, dst_nid;
5478 
5479 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5480 	    !(env->sd->flags & SD_NUMA)) {
5481 		return false;
5482 	}
5483 
5484 	src_nid = cpu_to_node(env->src_cpu);
5485 	dst_nid = cpu_to_node(env->dst_cpu);
5486 
5487 	if (src_nid == dst_nid)
5488 		return false;
5489 
5490 	if (numa_group) {
5491 		/* Task is already in the group's interleave set. */
5492 		if (node_isset(src_nid, numa_group->active_nodes))
5493 			return false;
5494 
5495 		/* Task is moving into the group's interleave set. */
5496 		if (node_isset(dst_nid, numa_group->active_nodes))
5497 			return true;
5498 
5499 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5500 	}
5501 
5502 	/* Encourage migration to the preferred node. */
5503 	if (dst_nid == p->numa_preferred_nid)
5504 		return true;
5505 
5506 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5507 }
5508 
5509 
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)5510 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5511 {
5512 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5513 	int src_nid, dst_nid;
5514 
5515 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5516 		return false;
5517 
5518 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5519 		return false;
5520 
5521 	src_nid = cpu_to_node(env->src_cpu);
5522 	dst_nid = cpu_to_node(env->dst_cpu);
5523 
5524 	if (src_nid == dst_nid)
5525 		return false;
5526 
5527 	if (numa_group) {
5528 		/* Task is moving within/into the group's interleave set. */
5529 		if (node_isset(dst_nid, numa_group->active_nodes))
5530 			return false;
5531 
5532 		/* Task is moving out of the group's interleave set. */
5533 		if (node_isset(src_nid, numa_group->active_nodes))
5534 			return true;
5535 
5536 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5537 	}
5538 
5539 	/* Migrating away from the preferred node is always bad. */
5540 	if (src_nid == p->numa_preferred_nid)
5541 		return true;
5542 
5543 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5544 }
5545 
5546 #else
migrate_improves_locality(struct task_struct * p,struct lb_env * env)5547 static inline bool migrate_improves_locality(struct task_struct *p,
5548 					     struct lb_env *env)
5549 {
5550 	return false;
5551 }
5552 
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)5553 static inline bool migrate_degrades_locality(struct task_struct *p,
5554 					     struct lb_env *env)
5555 {
5556 	return false;
5557 }
5558 #endif
5559 
5560 /*
5561  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5562  */
5563 static
can_migrate_task(struct task_struct * p,struct lb_env * env)5564 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5565 {
5566 	int tsk_cache_hot = 0;
5567 
5568 	lockdep_assert_held(&env->src_rq->lock);
5569 
5570 	/*
5571 	 * We do not migrate tasks that are:
5572 	 * 1) throttled_lb_pair, or
5573 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5574 	 * 3) running (obviously), or
5575 	 * 4) are cache-hot on their current CPU.
5576 	 */
5577 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5578 		return 0;
5579 
5580 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5581 		int cpu;
5582 
5583 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5584 
5585 		env->flags |= LBF_SOME_PINNED;
5586 
5587 		/*
5588 		 * Remember if this task can be migrated to any other cpu in
5589 		 * our sched_group. We may want to revisit it if we couldn't
5590 		 * meet load balance goals by pulling other tasks on src_cpu.
5591 		 *
5592 		 * Also avoid computing new_dst_cpu if we have already computed
5593 		 * one in current iteration.
5594 		 */
5595 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5596 			return 0;
5597 
5598 		/* Prevent to re-select dst_cpu via env's cpus */
5599 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5600 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5601 				env->flags |= LBF_DST_PINNED;
5602 				env->new_dst_cpu = cpu;
5603 				break;
5604 			}
5605 		}
5606 
5607 		return 0;
5608 	}
5609 
5610 	/* Record that we found atleast one task that could run on dst_cpu */
5611 	env->flags &= ~LBF_ALL_PINNED;
5612 
5613 	if (task_running(env->src_rq, p)) {
5614 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5615 		return 0;
5616 	}
5617 
5618 	/*
5619 	 * Aggressive migration if:
5620 	 * 1) destination numa is preferred
5621 	 * 2) task is cache cold, or
5622 	 * 3) too many balance attempts have failed.
5623 	 */
5624 	tsk_cache_hot = task_hot(p, env);
5625 	if (!tsk_cache_hot)
5626 		tsk_cache_hot = migrate_degrades_locality(p, env);
5627 
5628 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5629 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5630 		if (tsk_cache_hot) {
5631 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5632 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5633 		}
5634 		return 1;
5635 	}
5636 
5637 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5638 	return 0;
5639 }
5640 
5641 /*
5642  * detach_task() -- detach the task for the migration specified in env
5643  */
detach_task(struct task_struct * p,struct lb_env * env)5644 static void detach_task(struct task_struct *p, struct lb_env *env)
5645 {
5646 	lockdep_assert_held(&env->src_rq->lock);
5647 
5648 	deactivate_task(env->src_rq, p, 0);
5649 	p->on_rq = TASK_ON_RQ_MIGRATING;
5650 	set_task_cpu(p, env->dst_cpu);
5651 }
5652 
5653 /*
5654  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5655  * part of active balancing operations within "domain".
5656  *
5657  * Returns a task if successful and NULL otherwise.
5658  */
detach_one_task(struct lb_env * env)5659 static struct task_struct *detach_one_task(struct lb_env *env)
5660 {
5661 	struct task_struct *p, *n;
5662 
5663 	lockdep_assert_held(&env->src_rq->lock);
5664 
5665 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5666 		if (!can_migrate_task(p, env))
5667 			continue;
5668 
5669 		detach_task(p, env);
5670 
5671 		/*
5672 		 * Right now, this is only the second place where
5673 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5674 		 * so we can safely collect stats here rather than
5675 		 * inside detach_tasks().
5676 		 */
5677 		schedstat_inc(env->sd, lb_gained[env->idle]);
5678 		return p;
5679 	}
5680 	return NULL;
5681 }
5682 
5683 static const unsigned int sched_nr_migrate_break = 32;
5684 
5685 /*
5686  * detach_tasks() -- tries to detach up to imbalance weighted load from
5687  * busiest_rq, as part of a balancing operation within domain "sd".
5688  *
5689  * Returns number of detached tasks if successful and 0 otherwise.
5690  */
detach_tasks(struct lb_env * env)5691 static int detach_tasks(struct lb_env *env)
5692 {
5693 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5694 	struct task_struct *p;
5695 	unsigned long load;
5696 	int detached = 0;
5697 
5698 	lockdep_assert_held(&env->src_rq->lock);
5699 
5700 	if (env->imbalance <= 0)
5701 		return 0;
5702 
5703 	while (!list_empty(tasks)) {
5704 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5705 
5706 		env->loop++;
5707 		/* We've more or less seen every task there is, call it quits */
5708 		if (env->loop > env->loop_max)
5709 			break;
5710 
5711 		/* take a breather every nr_migrate tasks */
5712 		if (env->loop > env->loop_break) {
5713 			env->loop_break += sched_nr_migrate_break;
5714 			env->flags |= LBF_NEED_BREAK;
5715 			break;
5716 		}
5717 
5718 		if (!can_migrate_task(p, env))
5719 			goto next;
5720 
5721 		load = task_h_load(p);
5722 
5723 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5724 			goto next;
5725 
5726 		if ((load / 2) > env->imbalance)
5727 			goto next;
5728 
5729 		detach_task(p, env);
5730 		list_add(&p->se.group_node, &env->tasks);
5731 
5732 		detached++;
5733 		env->imbalance -= load;
5734 
5735 #ifdef CONFIG_PREEMPT
5736 		/*
5737 		 * NEWIDLE balancing is a source of latency, so preemptible
5738 		 * kernels will stop after the first task is detached to minimize
5739 		 * the critical section.
5740 		 */
5741 		if (env->idle == CPU_NEWLY_IDLE)
5742 			break;
5743 #endif
5744 
5745 		/*
5746 		 * We only want to steal up to the prescribed amount of
5747 		 * weighted load.
5748 		 */
5749 		if (env->imbalance <= 0)
5750 			break;
5751 
5752 		continue;
5753 next:
5754 		list_move_tail(&p->se.group_node, tasks);
5755 	}
5756 
5757 	/*
5758 	 * Right now, this is one of only two places we collect this stat
5759 	 * so we can safely collect detach_one_task() stats here rather
5760 	 * than inside detach_one_task().
5761 	 */
5762 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5763 
5764 	return detached;
5765 }
5766 
5767 /*
5768  * attach_task() -- attach the task detached by detach_task() to its new rq.
5769  */
attach_task(struct rq * rq,struct task_struct * p)5770 static void attach_task(struct rq *rq, struct task_struct *p)
5771 {
5772 	lockdep_assert_held(&rq->lock);
5773 
5774 	BUG_ON(task_rq(p) != rq);
5775 	p->on_rq = TASK_ON_RQ_QUEUED;
5776 	activate_task(rq, p, 0);
5777 	check_preempt_curr(rq, p, 0);
5778 }
5779 
5780 /*
5781  * attach_one_task() -- attaches the task returned from detach_one_task() to
5782  * its new rq.
5783  */
attach_one_task(struct rq * rq,struct task_struct * p)5784 static void attach_one_task(struct rq *rq, struct task_struct *p)
5785 {
5786 	raw_spin_lock(&rq->lock);
5787 	attach_task(rq, p);
5788 	raw_spin_unlock(&rq->lock);
5789 }
5790 
5791 /*
5792  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5793  * new rq.
5794  */
attach_tasks(struct lb_env * env)5795 static void attach_tasks(struct lb_env *env)
5796 {
5797 	struct list_head *tasks = &env->tasks;
5798 	struct task_struct *p;
5799 
5800 	raw_spin_lock(&env->dst_rq->lock);
5801 
5802 	while (!list_empty(tasks)) {
5803 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5804 		list_del_init(&p->se.group_node);
5805 
5806 		attach_task(env->dst_rq, p);
5807 	}
5808 
5809 	raw_spin_unlock(&env->dst_rq->lock);
5810 }
5811 
5812 #ifdef CONFIG_FAIR_GROUP_SCHED
5813 /*
5814  * update tg->load_weight by folding this cpu's load_avg
5815  */
__update_blocked_averages_cpu(struct task_group * tg,int cpu)5816 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5817 {
5818 	struct sched_entity *se = tg->se[cpu];
5819 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5820 
5821 	/* throttled entities do not contribute to load */
5822 	if (throttled_hierarchy(cfs_rq))
5823 		return;
5824 
5825 	update_cfs_rq_blocked_load(cfs_rq, 1);
5826 
5827 	if (se) {
5828 		update_entity_load_avg(se, 1);
5829 		/*
5830 		 * We pivot on our runnable average having decayed to zero for
5831 		 * list removal.  This generally implies that all our children
5832 		 * have also been removed (modulo rounding error or bandwidth
5833 		 * control); however, such cases are rare and we can fix these
5834 		 * at enqueue.
5835 		 *
5836 		 * TODO: fix up out-of-order children on enqueue.
5837 		 */
5838 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5839 			list_del_leaf_cfs_rq(cfs_rq);
5840 	} else {
5841 		struct rq *rq = rq_of(cfs_rq);
5842 		update_rq_runnable_avg(rq, rq->nr_running);
5843 	}
5844 }
5845 
update_blocked_averages(int cpu)5846 static void update_blocked_averages(int cpu)
5847 {
5848 	struct rq *rq = cpu_rq(cpu);
5849 	struct cfs_rq *cfs_rq;
5850 	unsigned long flags;
5851 
5852 	raw_spin_lock_irqsave(&rq->lock, flags);
5853 	update_rq_clock(rq);
5854 	/*
5855 	 * Iterates the task_group tree in a bottom up fashion, see
5856 	 * list_add_leaf_cfs_rq() for details.
5857 	 */
5858 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5859 		/*
5860 		 * Note: We may want to consider periodically releasing
5861 		 * rq->lock about these updates so that creating many task
5862 		 * groups does not result in continually extending hold time.
5863 		 */
5864 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5865 	}
5866 
5867 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5868 }
5869 
5870 /*
5871  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5872  * This needs to be done in a top-down fashion because the load of a child
5873  * group is a fraction of its parents load.
5874  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)5875 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5876 {
5877 	struct rq *rq = rq_of(cfs_rq);
5878 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5879 	unsigned long now = jiffies;
5880 	unsigned long load;
5881 
5882 	if (cfs_rq->last_h_load_update == now)
5883 		return;
5884 
5885 	cfs_rq->h_load_next = NULL;
5886 	for_each_sched_entity(se) {
5887 		cfs_rq = cfs_rq_of(se);
5888 		cfs_rq->h_load_next = se;
5889 		if (cfs_rq->last_h_load_update == now)
5890 			break;
5891 	}
5892 
5893 	if (!se) {
5894 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5895 		cfs_rq->last_h_load_update = now;
5896 	}
5897 
5898 	while ((se = cfs_rq->h_load_next) != NULL) {
5899 		load = cfs_rq->h_load;
5900 		load = div64_ul(load * se->avg.load_avg_contrib,
5901 				cfs_rq->runnable_load_avg + 1);
5902 		cfs_rq = group_cfs_rq(se);
5903 		cfs_rq->h_load = load;
5904 		cfs_rq->last_h_load_update = now;
5905 	}
5906 }
5907 
task_h_load(struct task_struct * p)5908 static unsigned long task_h_load(struct task_struct *p)
5909 {
5910 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5911 
5912 	update_cfs_rq_h_load(cfs_rq);
5913 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5914 			cfs_rq->runnable_load_avg + 1);
5915 }
5916 #else
update_blocked_averages(int cpu)5917 static inline void update_blocked_averages(int cpu)
5918 {
5919 }
5920 
task_h_load(struct task_struct * p)5921 static unsigned long task_h_load(struct task_struct *p)
5922 {
5923 	return p->se.avg.load_avg_contrib;
5924 }
5925 #endif
5926 
5927 /********** Helpers for find_busiest_group ************************/
5928 
5929 enum group_type {
5930 	group_other = 0,
5931 	group_imbalanced,
5932 	group_overloaded,
5933 };
5934 
5935 /*
5936  * sg_lb_stats - stats of a sched_group required for load_balancing
5937  */
5938 struct sg_lb_stats {
5939 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5940 	unsigned long group_load; /* Total load over the CPUs of the group */
5941 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5942 	unsigned long load_per_task;
5943 	unsigned long group_capacity;
5944 	unsigned long group_usage; /* Total usage of the group */
5945 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5946 	unsigned int idle_cpus;
5947 	unsigned int group_weight;
5948 	enum group_type group_type;
5949 	int group_no_capacity;
5950 #ifdef CONFIG_NUMA_BALANCING
5951 	unsigned int nr_numa_running;
5952 	unsigned int nr_preferred_running;
5953 #endif
5954 };
5955 
5956 /*
5957  * sd_lb_stats - Structure to store the statistics of a sched_domain
5958  *		 during load balancing.
5959  */
5960 struct sd_lb_stats {
5961 	struct sched_group *busiest;	/* Busiest group in this sd */
5962 	struct sched_group *local;	/* Local group in this sd */
5963 	unsigned long total_load;	/* Total load of all groups in sd */
5964 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5965 	unsigned long avg_load;	/* Average load across all groups in sd */
5966 
5967 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5968 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5969 };
5970 
init_sd_lb_stats(struct sd_lb_stats * sds)5971 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5972 {
5973 	/*
5974 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5975 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5976 	 * We must however clear busiest_stat::avg_load because
5977 	 * update_sd_pick_busiest() reads this before assignment.
5978 	 */
5979 	*sds = (struct sd_lb_stats){
5980 		.busiest = NULL,
5981 		.local = NULL,
5982 		.total_load = 0UL,
5983 		.total_capacity = 0UL,
5984 		.busiest_stat = {
5985 			.avg_load = 0UL,
5986 			.sum_nr_running = 0,
5987 			.group_type = group_other,
5988 		},
5989 	};
5990 }
5991 
5992 /**
5993  * get_sd_load_idx - Obtain the load index for a given sched domain.
5994  * @sd: The sched_domain whose load_idx is to be obtained.
5995  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5996  *
5997  * Return: The load index.
5998  */
get_sd_load_idx(struct sched_domain * sd,enum cpu_idle_type idle)5999 static inline int get_sd_load_idx(struct sched_domain *sd,
6000 					enum cpu_idle_type idle)
6001 {
6002 	int load_idx;
6003 
6004 	switch (idle) {
6005 	case CPU_NOT_IDLE:
6006 		load_idx = sd->busy_idx;
6007 		break;
6008 
6009 	case CPU_NEWLY_IDLE:
6010 		load_idx = sd->newidle_idx;
6011 		break;
6012 	default:
6013 		load_idx = sd->idle_idx;
6014 		break;
6015 	}
6016 
6017 	return load_idx;
6018 }
6019 
default_scale_cpu_capacity(struct sched_domain * sd,int cpu)6020 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6021 {
6022 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6023 		return sd->smt_gain / sd->span_weight;
6024 
6025 	return SCHED_CAPACITY_SCALE;
6026 }
6027 
arch_scale_cpu_capacity(struct sched_domain * sd,int cpu)6028 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6029 {
6030 	return default_scale_cpu_capacity(sd, cpu);
6031 }
6032 
scale_rt_capacity(int cpu)6033 static unsigned long scale_rt_capacity(int cpu)
6034 {
6035 	struct rq *rq = cpu_rq(cpu);
6036 	u64 total, used, age_stamp, avg;
6037 	s64 delta;
6038 
6039 	/*
6040 	 * Since we're reading these variables without serialization make sure
6041 	 * we read them once before doing sanity checks on them.
6042 	 */
6043 	age_stamp = ACCESS_ONCE(rq->age_stamp);
6044 	avg = ACCESS_ONCE(rq->rt_avg);
6045 	delta = __rq_clock_broken(rq) - age_stamp;
6046 
6047 	if (unlikely(delta < 0))
6048 		delta = 0;
6049 
6050 	total = sched_avg_period() + delta;
6051 
6052 	used = div_u64(avg, total);
6053 
6054 	if (likely(used < SCHED_CAPACITY_SCALE))
6055 		return SCHED_CAPACITY_SCALE - used;
6056 
6057 	return 1;
6058 }
6059 
update_cpu_capacity(struct sched_domain * sd,int cpu)6060 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6061 {
6062 	unsigned long capacity = SCHED_CAPACITY_SCALE;
6063 	struct sched_group *sdg = sd->groups;
6064 
6065 	if (sched_feat(ARCH_CAPACITY))
6066 		capacity *= arch_scale_cpu_capacity(sd, cpu);
6067 	else
6068 		capacity *= default_scale_cpu_capacity(sd, cpu);
6069 
6070 	capacity >>= SCHED_CAPACITY_SHIFT;
6071 
6072 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6073 
6074 	capacity *= scale_rt_capacity(cpu);
6075 	capacity >>= SCHED_CAPACITY_SHIFT;
6076 
6077 	if (!capacity)
6078 		capacity = 1;
6079 
6080 	cpu_rq(cpu)->cpu_capacity = capacity;
6081 	sdg->sgc->capacity = capacity;
6082 }
6083 
update_group_capacity(struct sched_domain * sd,int cpu)6084 void update_group_capacity(struct sched_domain *sd, int cpu)
6085 {
6086 	struct sched_domain *child = sd->child;
6087 	struct sched_group *group, *sdg = sd->groups;
6088 	unsigned long capacity;
6089 	unsigned long interval;
6090 
6091 	interval = msecs_to_jiffies(sd->balance_interval);
6092 	interval = clamp(interval, 1UL, max_load_balance_interval);
6093 	sdg->sgc->next_update = jiffies + interval;
6094 
6095 	if (!child) {
6096 		update_cpu_capacity(sd, cpu);
6097 		return;
6098 	}
6099 
6100 	capacity = 0;
6101 
6102 	if (child->flags & SD_OVERLAP) {
6103 		/*
6104 		 * SD_OVERLAP domains cannot assume that child groups
6105 		 * span the current group.
6106 		 */
6107 
6108 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6109 			struct sched_group_capacity *sgc;
6110 			struct rq *rq = cpu_rq(cpu);
6111 
6112 			/*
6113 			 * build_sched_domains() -> init_sched_groups_capacity()
6114 			 * gets here before we've attached the domains to the
6115 			 * runqueues.
6116 			 *
6117 			 * Use capacity_of(), which is set irrespective of domains
6118 			 * in update_cpu_capacity().
6119 			 *
6120 			 * This avoids capacity from being 0 and
6121 			 * causing divide-by-zero issues on boot.
6122 			 */
6123 			if (unlikely(!rq->sd)) {
6124 				capacity += capacity_of(cpu);
6125 				continue;
6126 			}
6127 
6128 			sgc = rq->sd->groups->sgc;
6129 			capacity += sgc->capacity;
6130 		}
6131 	} else  {
6132 		/*
6133 		 * !SD_OVERLAP domains can assume that child groups
6134 		 * span the current group.
6135 		 */
6136 
6137 		group = child->groups;
6138 		do {
6139 			capacity += group->sgc->capacity;
6140 			group = group->next;
6141 		} while (group != child->groups);
6142 	}
6143 
6144 	sdg->sgc->capacity = capacity;
6145 }
6146 
6147 /*
6148  * Check whether the capacity of the rq has been noticeably reduced by side
6149  * activity. The imbalance_pct is used for the threshold.
6150  * Return true is the capacity is reduced
6151  */
6152 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)6153 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6154 {
6155 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6156 				(rq->cpu_capacity_orig * 100));
6157 }
6158 
6159 /*
6160  * Group imbalance indicates (and tries to solve) the problem where balancing
6161  * groups is inadequate due to tsk_cpus_allowed() constraints.
6162  *
6163  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6164  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6165  * Something like:
6166  *
6167  * 	{ 0 1 2 3 } { 4 5 6 7 }
6168  * 	        *     * * *
6169  *
6170  * If we were to balance group-wise we'd place two tasks in the first group and
6171  * two tasks in the second group. Clearly this is undesired as it will overload
6172  * cpu 3 and leave one of the cpus in the second group unused.
6173  *
6174  * The current solution to this issue is detecting the skew in the first group
6175  * by noticing the lower domain failed to reach balance and had difficulty
6176  * moving tasks due to affinity constraints.
6177  *
6178  * When this is so detected; this group becomes a candidate for busiest; see
6179  * update_sd_pick_busiest(). And calculate_imbalance() and
6180  * find_busiest_group() avoid some of the usual balance conditions to allow it
6181  * to create an effective group imbalance.
6182  *
6183  * This is a somewhat tricky proposition since the next run might not find the
6184  * group imbalance and decide the groups need to be balanced again. A most
6185  * subtle and fragile situation.
6186  */
6187 
sg_imbalanced(struct sched_group * group)6188 static inline int sg_imbalanced(struct sched_group *group)
6189 {
6190 	return group->sgc->imbalance;
6191 }
6192 
6193 /*
6194  * group_has_capacity returns true if the group has spare capacity that could
6195  * be used by some tasks.
6196  * We consider that a group has spare capacity if the  * number of task is
6197  * smaller than the number of CPUs or if the usage is lower than the available
6198  * capacity for CFS tasks.
6199  * For the latter, we use a threshold to stabilize the state, to take into
6200  * account the variance of the tasks' load and to return true if the available
6201  * capacity in meaningful for the load balancer.
6202  * As an example, an available capacity of 1% can appear but it doesn't make
6203  * any benefit for the load balance.
6204  */
6205 static inline bool
group_has_capacity(struct lb_env * env,struct sg_lb_stats * sgs)6206 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6207 {
6208 	if (sgs->sum_nr_running < sgs->group_weight)
6209 		return true;
6210 
6211 	if ((sgs->group_capacity * 100) >
6212 			(sgs->group_usage * env->sd->imbalance_pct))
6213 		return true;
6214 
6215 	return false;
6216 }
6217 
6218 /*
6219  *  group_is_overloaded returns true if the group has more tasks than it can
6220  *  handle.
6221  *  group_is_overloaded is not equals to !group_has_capacity because a group
6222  *  with the exact right number of tasks, has no more spare capacity but is not
6223  *  overloaded so both group_has_capacity and group_is_overloaded return
6224  *  false.
6225  */
6226 static inline bool
group_is_overloaded(struct lb_env * env,struct sg_lb_stats * sgs)6227 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6228 {
6229 	if (sgs->sum_nr_running <= sgs->group_weight)
6230 		return false;
6231 
6232 	if ((sgs->group_capacity * 100) <
6233 			(sgs->group_usage * env->sd->imbalance_pct))
6234 		return true;
6235 
6236 	return false;
6237 }
6238 
group_classify(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs)6239 static enum group_type group_classify(struct lb_env *env,
6240 		struct sched_group *group,
6241 		struct sg_lb_stats *sgs)
6242 {
6243 	if (sgs->group_no_capacity)
6244 		return group_overloaded;
6245 
6246 	if (sg_imbalanced(group))
6247 		return group_imbalanced;
6248 
6249 	return group_other;
6250 }
6251 
6252 /**
6253  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6254  * @env: The load balancing environment.
6255  * @group: sched_group whose statistics are to be updated.
6256  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6257  * @local_group: Does group contain this_cpu.
6258  * @sgs: variable to hold the statistics for this group.
6259  * @overload: Indicate more than one runnable task for any CPU.
6260  */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,int load_idx,int local_group,struct sg_lb_stats * sgs,bool * overload)6261 static inline void update_sg_lb_stats(struct lb_env *env,
6262 			struct sched_group *group, int load_idx,
6263 			int local_group, struct sg_lb_stats *sgs,
6264 			bool *overload)
6265 {
6266 	unsigned long load;
6267 	int i;
6268 
6269 	memset(sgs, 0, sizeof(*sgs));
6270 
6271 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6272 		struct rq *rq = cpu_rq(i);
6273 
6274 		/* Bias balancing toward cpus of our domain */
6275 		if (local_group)
6276 			load = target_load(i, load_idx);
6277 		else
6278 			load = source_load(i, load_idx);
6279 
6280 		sgs->group_load += load;
6281 		sgs->group_usage += get_cpu_usage(i);
6282 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6283 
6284 		if (rq->nr_running > 1)
6285 			*overload = true;
6286 
6287 #ifdef CONFIG_NUMA_BALANCING
6288 		sgs->nr_numa_running += rq->nr_numa_running;
6289 		sgs->nr_preferred_running += rq->nr_preferred_running;
6290 #endif
6291 		sgs->sum_weighted_load += weighted_cpuload(i);
6292 		if (idle_cpu(i))
6293 			sgs->idle_cpus++;
6294 	}
6295 
6296 	/* Adjust by relative CPU capacity of the group */
6297 	sgs->group_capacity = group->sgc->capacity;
6298 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6299 
6300 	if (sgs->sum_nr_running)
6301 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6302 
6303 	sgs->group_weight = group->group_weight;
6304 
6305 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6306 	sgs->group_type = group_classify(env, group, sgs);
6307 }
6308 
6309 /**
6310  * update_sd_pick_busiest - return 1 on busiest group
6311  * @env: The load balancing environment.
6312  * @sds: sched_domain statistics
6313  * @sg: sched_group candidate to be checked for being the busiest
6314  * @sgs: sched_group statistics
6315  *
6316  * Determine if @sg is a busier group than the previously selected
6317  * busiest group.
6318  *
6319  * Return: %true if @sg is a busier group than the previously selected
6320  * busiest group. %false otherwise.
6321  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)6322 static bool update_sd_pick_busiest(struct lb_env *env,
6323 				   struct sd_lb_stats *sds,
6324 				   struct sched_group *sg,
6325 				   struct sg_lb_stats *sgs)
6326 {
6327 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6328 
6329 	if (sgs->group_type > busiest->group_type)
6330 		return true;
6331 
6332 	if (sgs->group_type < busiest->group_type)
6333 		return false;
6334 
6335 	if (sgs->avg_load <= busiest->avg_load)
6336 		return false;
6337 
6338 	/* This is the busiest node in its class. */
6339 	if (!(env->sd->flags & SD_ASYM_PACKING))
6340 		return true;
6341 
6342 	/*
6343 	 * ASYM_PACKING needs to move all the work to the lowest
6344 	 * numbered CPUs in the group, therefore mark all groups
6345 	 * higher than ourself as busy.
6346 	 */
6347 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6348 		if (!sds->busiest)
6349 			return true;
6350 
6351 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6352 			return true;
6353 	}
6354 
6355 	return false;
6356 }
6357 
6358 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)6359 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6360 {
6361 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6362 		return regular;
6363 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6364 		return remote;
6365 	return all;
6366 }
6367 
fbq_classify_rq(struct rq * rq)6368 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6369 {
6370 	if (rq->nr_running > rq->nr_numa_running)
6371 		return regular;
6372 	if (rq->nr_running > rq->nr_preferred_running)
6373 		return remote;
6374 	return all;
6375 }
6376 #else
fbq_classify_group(struct sg_lb_stats * sgs)6377 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6378 {
6379 	return all;
6380 }
6381 
fbq_classify_rq(struct rq * rq)6382 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6383 {
6384 	return regular;
6385 }
6386 #endif /* CONFIG_NUMA_BALANCING */
6387 
6388 /**
6389  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6390  * @env: The load balancing environment.
6391  * @sds: variable to hold the statistics for this sched_domain.
6392  */
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)6393 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6394 {
6395 	struct sched_domain *child = env->sd->child;
6396 	struct sched_group *sg = env->sd->groups;
6397 	struct sg_lb_stats tmp_sgs;
6398 	int load_idx, prefer_sibling = 0;
6399 	bool overload = false;
6400 
6401 	if (child && child->flags & SD_PREFER_SIBLING)
6402 		prefer_sibling = 1;
6403 
6404 	load_idx = get_sd_load_idx(env->sd, env->idle);
6405 
6406 	do {
6407 		struct sg_lb_stats *sgs = &tmp_sgs;
6408 		int local_group;
6409 
6410 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6411 		if (local_group) {
6412 			sds->local = sg;
6413 			sgs = &sds->local_stat;
6414 
6415 			if (env->idle != CPU_NEWLY_IDLE ||
6416 			    time_after_eq(jiffies, sg->sgc->next_update))
6417 				update_group_capacity(env->sd, env->dst_cpu);
6418 		}
6419 
6420 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6421 						&overload);
6422 
6423 		if (local_group)
6424 			goto next_group;
6425 
6426 		/*
6427 		 * In case the child domain prefers tasks go to siblings
6428 		 * first, lower the sg capacity so that we'll try
6429 		 * and move all the excess tasks away. We lower the capacity
6430 		 * of a group only if the local group has the capacity to fit
6431 		 * these excess tasks. The extra check prevents the case where
6432 		 * you always pull from the heaviest group when it is already
6433 		 * under-utilized (possible with a large weight task outweighs
6434 		 * the tasks on the system).
6435 		 */
6436 		if (prefer_sibling && sds->local &&
6437 		    group_has_capacity(env, &sds->local_stat) &&
6438 		    (sgs->sum_nr_running > 1)) {
6439 			sgs->group_no_capacity = 1;
6440 			sgs->group_type = group_overloaded;
6441 		}
6442 
6443 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6444 			sds->busiest = sg;
6445 			sds->busiest_stat = *sgs;
6446 		}
6447 
6448 next_group:
6449 		/* Now, start updating sd_lb_stats */
6450 		sds->total_load += sgs->group_load;
6451 		sds->total_capacity += sgs->group_capacity;
6452 
6453 		sg = sg->next;
6454 	} while (sg != env->sd->groups);
6455 
6456 	if (env->sd->flags & SD_NUMA)
6457 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6458 
6459 	if (!env->sd->parent) {
6460 		/* update overload indicator if we are at root domain */
6461 		if (env->dst_rq->rd->overload != overload)
6462 			env->dst_rq->rd->overload = overload;
6463 	}
6464 
6465 }
6466 
6467 /**
6468  * check_asym_packing - Check to see if the group is packed into the
6469  *			sched doman.
6470  *
6471  * This is primarily intended to used at the sibling level.  Some
6472  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6473  * case of POWER7, it can move to lower SMT modes only when higher
6474  * threads are idle.  When in lower SMT modes, the threads will
6475  * perform better since they share less core resources.  Hence when we
6476  * have idle threads, we want them to be the higher ones.
6477  *
6478  * This packing function is run on idle threads.  It checks to see if
6479  * the busiest CPU in this domain (core in the P7 case) has a higher
6480  * CPU number than the packing function is being run on.  Here we are
6481  * assuming lower CPU number will be equivalent to lower a SMT thread
6482  * number.
6483  *
6484  * Return: 1 when packing is required and a task should be moved to
6485  * this CPU.  The amount of the imbalance is returned in *imbalance.
6486  *
6487  * @env: The load balancing environment.
6488  * @sds: Statistics of the sched_domain which is to be packed
6489  */
check_asym_packing(struct lb_env * env,struct sd_lb_stats * sds)6490 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6491 {
6492 	int busiest_cpu;
6493 
6494 	if (!(env->sd->flags & SD_ASYM_PACKING))
6495 		return 0;
6496 
6497 	if (!sds->busiest)
6498 		return 0;
6499 
6500 	busiest_cpu = group_first_cpu(sds->busiest);
6501 	if (env->dst_cpu > busiest_cpu)
6502 		return 0;
6503 
6504 	env->imbalance = DIV_ROUND_CLOSEST(
6505 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6506 		SCHED_CAPACITY_SCALE);
6507 
6508 	return 1;
6509 }
6510 
6511 /**
6512  * fix_small_imbalance - Calculate the minor imbalance that exists
6513  *			amongst the groups of a sched_domain, during
6514  *			load balancing.
6515  * @env: The load balancing environment.
6516  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6517  */
6518 static inline
fix_small_imbalance(struct lb_env * env,struct sd_lb_stats * sds)6519 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6520 {
6521 	unsigned long tmp, capa_now = 0, capa_move = 0;
6522 	unsigned int imbn = 2;
6523 	unsigned long scaled_busy_load_per_task;
6524 	struct sg_lb_stats *local, *busiest;
6525 
6526 	local = &sds->local_stat;
6527 	busiest = &sds->busiest_stat;
6528 
6529 	if (!local->sum_nr_running)
6530 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6531 	else if (busiest->load_per_task > local->load_per_task)
6532 		imbn = 1;
6533 
6534 	scaled_busy_load_per_task =
6535 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6536 		busiest->group_capacity;
6537 
6538 	if (busiest->avg_load + scaled_busy_load_per_task >=
6539 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6540 		env->imbalance = busiest->load_per_task;
6541 		return;
6542 	}
6543 
6544 	/*
6545 	 * OK, we don't have enough imbalance to justify moving tasks,
6546 	 * however we may be able to increase total CPU capacity used by
6547 	 * moving them.
6548 	 */
6549 
6550 	capa_now += busiest->group_capacity *
6551 			min(busiest->load_per_task, busiest->avg_load);
6552 	capa_now += local->group_capacity *
6553 			min(local->load_per_task, local->avg_load);
6554 	capa_now /= SCHED_CAPACITY_SCALE;
6555 
6556 	/* Amount of load we'd subtract */
6557 	if (busiest->avg_load > scaled_busy_load_per_task) {
6558 		capa_move += busiest->group_capacity *
6559 			    min(busiest->load_per_task,
6560 				busiest->avg_load - scaled_busy_load_per_task);
6561 	}
6562 
6563 	/* Amount of load we'd add */
6564 	if (busiest->avg_load * busiest->group_capacity <
6565 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6566 		tmp = (busiest->avg_load * busiest->group_capacity) /
6567 		      local->group_capacity;
6568 	} else {
6569 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6570 		      local->group_capacity;
6571 	}
6572 	capa_move += local->group_capacity *
6573 		    min(local->load_per_task, local->avg_load + tmp);
6574 	capa_move /= SCHED_CAPACITY_SCALE;
6575 
6576 	/* Move if we gain throughput */
6577 	if (capa_move > capa_now)
6578 		env->imbalance = busiest->load_per_task;
6579 }
6580 
6581 /**
6582  * calculate_imbalance - Calculate the amount of imbalance present within the
6583  *			 groups of a given sched_domain during load balance.
6584  * @env: load balance environment
6585  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6586  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)6587 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6588 {
6589 	unsigned long max_pull, load_above_capacity = ~0UL;
6590 	struct sg_lb_stats *local, *busiest;
6591 
6592 	local = &sds->local_stat;
6593 	busiest = &sds->busiest_stat;
6594 
6595 	if (busiest->group_type == group_imbalanced) {
6596 		/*
6597 		 * In the group_imb case we cannot rely on group-wide averages
6598 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6599 		 */
6600 		busiest->load_per_task =
6601 			min(busiest->load_per_task, sds->avg_load);
6602 	}
6603 
6604 	/*
6605 	 * In the presence of smp nice balancing, certain scenarios can have
6606 	 * max load less than avg load(as we skip the groups at or below
6607 	 * its cpu_capacity, while calculating max_load..)
6608 	 */
6609 	if (busiest->avg_load <= sds->avg_load ||
6610 	    local->avg_load >= sds->avg_load) {
6611 		env->imbalance = 0;
6612 		return fix_small_imbalance(env, sds);
6613 	}
6614 
6615 	/*
6616 	 * If there aren't any idle cpus, avoid creating some.
6617 	 */
6618 	if (busiest->group_type == group_overloaded &&
6619 	    local->group_type   == group_overloaded) {
6620 		load_above_capacity = busiest->sum_nr_running *
6621 					SCHED_LOAD_SCALE;
6622 		if (load_above_capacity > busiest->group_capacity)
6623 			load_above_capacity -= busiest->group_capacity;
6624 		else
6625 			load_above_capacity = ~0UL;
6626 	}
6627 
6628 	/*
6629 	 * We're trying to get all the cpus to the average_load, so we don't
6630 	 * want to push ourselves above the average load, nor do we wish to
6631 	 * reduce the max loaded cpu below the average load. At the same time,
6632 	 * we also don't want to reduce the group load below the group capacity
6633 	 * (so that we can implement power-savings policies etc). Thus we look
6634 	 * for the minimum possible imbalance.
6635 	 */
6636 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6637 
6638 	/* How much load to actually move to equalise the imbalance */
6639 	env->imbalance = min(
6640 		max_pull * busiest->group_capacity,
6641 		(sds->avg_load - local->avg_load) * local->group_capacity
6642 	) / SCHED_CAPACITY_SCALE;
6643 
6644 	/*
6645 	 * if *imbalance is less than the average load per runnable task
6646 	 * there is no guarantee that any tasks will be moved so we'll have
6647 	 * a think about bumping its value to force at least one task to be
6648 	 * moved
6649 	 */
6650 	if (env->imbalance < busiest->load_per_task)
6651 		return fix_small_imbalance(env, sds);
6652 }
6653 
6654 /******* find_busiest_group() helpers end here *********************/
6655 
6656 /**
6657  * find_busiest_group - Returns the busiest group within the sched_domain
6658  * if there is an imbalance. If there isn't an imbalance, and
6659  * the user has opted for power-savings, it returns a group whose
6660  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6661  * such a group exists.
6662  *
6663  * Also calculates the amount of weighted load which should be moved
6664  * to restore balance.
6665  *
6666  * @env: The load balancing environment.
6667  *
6668  * Return:	- The busiest group if imbalance exists.
6669  *		- If no imbalance and user has opted for power-savings balance,
6670  *		   return the least loaded group whose CPUs can be
6671  *		   put to idle by rebalancing its tasks onto our group.
6672  */
find_busiest_group(struct lb_env * env)6673 static struct sched_group *find_busiest_group(struct lb_env *env)
6674 {
6675 	struct sg_lb_stats *local, *busiest;
6676 	struct sd_lb_stats sds;
6677 
6678 	init_sd_lb_stats(&sds);
6679 
6680 	/*
6681 	 * Compute the various statistics relavent for load balancing at
6682 	 * this level.
6683 	 */
6684 	update_sd_lb_stats(env, &sds);
6685 	local = &sds.local_stat;
6686 	busiest = &sds.busiest_stat;
6687 
6688 	/* ASYM feature bypasses nice load balance check */
6689 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6690 	    check_asym_packing(env, &sds))
6691 		return sds.busiest;
6692 
6693 	/* There is no busy sibling group to pull tasks from */
6694 	if (!sds.busiest || busiest->sum_nr_running == 0)
6695 		goto out_balanced;
6696 
6697 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6698 						/ sds.total_capacity;
6699 
6700 	/*
6701 	 * If the busiest group is imbalanced the below checks don't
6702 	 * work because they assume all things are equal, which typically
6703 	 * isn't true due to cpus_allowed constraints and the like.
6704 	 */
6705 	if (busiest->group_type == group_imbalanced)
6706 		goto force_balance;
6707 
6708 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6709 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6710 	    busiest->group_no_capacity)
6711 		goto force_balance;
6712 
6713 	/*
6714 	 * If the local group is busier than the selected busiest group
6715 	 * don't try and pull any tasks.
6716 	 */
6717 	if (local->avg_load >= busiest->avg_load)
6718 		goto out_balanced;
6719 
6720 	/*
6721 	 * Don't pull any tasks if this group is already above the domain
6722 	 * average load.
6723 	 */
6724 	if (local->avg_load >= sds.avg_load)
6725 		goto out_balanced;
6726 
6727 	if (env->idle == CPU_IDLE) {
6728 		/*
6729 		 * This cpu is idle. If the busiest group is not overloaded
6730 		 * and there is no imbalance between this and busiest group
6731 		 * wrt idle cpus, it is balanced. The imbalance becomes
6732 		 * significant if the diff is greater than 1 otherwise we
6733 		 * might end up to just move the imbalance on another group
6734 		 */
6735 		if ((busiest->group_type != group_overloaded) &&
6736 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6737 			goto out_balanced;
6738 	} else {
6739 		/*
6740 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6741 		 * imbalance_pct to be conservative.
6742 		 */
6743 		if (100 * busiest->avg_load <=
6744 				env->sd->imbalance_pct * local->avg_load)
6745 			goto out_balanced;
6746 	}
6747 
6748 force_balance:
6749 	/* Looks like there is an imbalance. Compute it */
6750 	calculate_imbalance(env, &sds);
6751 	return sds.busiest;
6752 
6753 out_balanced:
6754 	env->imbalance = 0;
6755 	return NULL;
6756 }
6757 
6758 /*
6759  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6760  */
find_busiest_queue(struct lb_env * env,struct sched_group * group)6761 static struct rq *find_busiest_queue(struct lb_env *env,
6762 				     struct sched_group *group)
6763 {
6764 	struct rq *busiest = NULL, *rq;
6765 	unsigned long busiest_load = 0, busiest_capacity = 1;
6766 	int i;
6767 
6768 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6769 		unsigned long capacity, wl;
6770 		enum fbq_type rt;
6771 
6772 		rq = cpu_rq(i);
6773 		rt = fbq_classify_rq(rq);
6774 
6775 		/*
6776 		 * We classify groups/runqueues into three groups:
6777 		 *  - regular: there are !numa tasks
6778 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6779 		 *  - all:     there is no distinction
6780 		 *
6781 		 * In order to avoid migrating ideally placed numa tasks,
6782 		 * ignore those when there's better options.
6783 		 *
6784 		 * If we ignore the actual busiest queue to migrate another
6785 		 * task, the next balance pass can still reduce the busiest
6786 		 * queue by moving tasks around inside the node.
6787 		 *
6788 		 * If we cannot move enough load due to this classification
6789 		 * the next pass will adjust the group classification and
6790 		 * allow migration of more tasks.
6791 		 *
6792 		 * Both cases only affect the total convergence complexity.
6793 		 */
6794 		if (rt > env->fbq_type)
6795 			continue;
6796 
6797 		capacity = capacity_of(i);
6798 
6799 		wl = weighted_cpuload(i);
6800 
6801 		/*
6802 		 * When comparing with imbalance, use weighted_cpuload()
6803 		 * which is not scaled with the cpu capacity.
6804 		 */
6805 
6806 		if (rq->nr_running == 1 && wl > env->imbalance &&
6807 		    !check_cpu_capacity(rq, env->sd))
6808 			continue;
6809 
6810 		/*
6811 		 * For the load comparisons with the other cpu's, consider
6812 		 * the weighted_cpuload() scaled with the cpu capacity, so
6813 		 * that the load can be moved away from the cpu that is
6814 		 * potentially running at a lower capacity.
6815 		 *
6816 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6817 		 * multiplication to rid ourselves of the division works out
6818 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6819 		 * our previous maximum.
6820 		 */
6821 		if (wl * busiest_capacity > busiest_load * capacity) {
6822 			busiest_load = wl;
6823 			busiest_capacity = capacity;
6824 			busiest = rq;
6825 		}
6826 	}
6827 
6828 	return busiest;
6829 }
6830 
6831 /*
6832  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6833  * so long as it is large enough.
6834  */
6835 #define MAX_PINNED_INTERVAL	512
6836 
6837 /* Working cpumask for load_balance and load_balance_newidle. */
6838 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6839 
need_active_balance(struct lb_env * env)6840 static int need_active_balance(struct lb_env *env)
6841 {
6842 	struct sched_domain *sd = env->sd;
6843 
6844 	if (env->idle == CPU_NEWLY_IDLE) {
6845 
6846 		/*
6847 		 * ASYM_PACKING needs to force migrate tasks from busy but
6848 		 * higher numbered CPUs in order to pack all tasks in the
6849 		 * lowest numbered CPUs.
6850 		 */
6851 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6852 			return 1;
6853 	}
6854 
6855 	/*
6856 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6857 	 * It's worth migrating the task if the src_cpu's capacity is reduced
6858 	 * because of other sched_class or IRQs if more capacity stays
6859 	 * available on dst_cpu.
6860 	 */
6861 	if ((env->idle != CPU_NOT_IDLE) &&
6862 	    (env->src_rq->cfs.h_nr_running == 1)) {
6863 		if ((check_cpu_capacity(env->src_rq, sd)) &&
6864 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6865 			return 1;
6866 	}
6867 
6868 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6869 }
6870 
6871 static int active_load_balance_cpu_stop(void *data);
6872 
should_we_balance(struct lb_env * env)6873 static int should_we_balance(struct lb_env *env)
6874 {
6875 	struct sched_group *sg = env->sd->groups;
6876 	struct cpumask *sg_cpus, *sg_mask;
6877 	int cpu, balance_cpu = -1;
6878 
6879 	/*
6880 	 * In the newly idle case, we will allow all the cpu's
6881 	 * to do the newly idle load balance.
6882 	 */
6883 	if (env->idle == CPU_NEWLY_IDLE)
6884 		return 1;
6885 
6886 	sg_cpus = sched_group_cpus(sg);
6887 	sg_mask = sched_group_mask(sg);
6888 	/* Try to find first idle cpu */
6889 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6890 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6891 			continue;
6892 
6893 		balance_cpu = cpu;
6894 		break;
6895 	}
6896 
6897 	if (balance_cpu == -1)
6898 		balance_cpu = group_balance_cpu(sg);
6899 
6900 	/*
6901 	 * First idle cpu or the first cpu(busiest) in this sched group
6902 	 * is eligible for doing load balancing at this and above domains.
6903 	 */
6904 	return balance_cpu == env->dst_cpu;
6905 }
6906 
6907 /*
6908  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6909  * tasks if there is an imbalance.
6910  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)6911 static int load_balance(int this_cpu, struct rq *this_rq,
6912 			struct sched_domain *sd, enum cpu_idle_type idle,
6913 			int *continue_balancing)
6914 {
6915 	int ld_moved, cur_ld_moved, active_balance = 0;
6916 	struct sched_domain *sd_parent = sd->parent;
6917 	struct sched_group *group;
6918 	struct rq *busiest;
6919 	unsigned long flags;
6920 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6921 
6922 	struct lb_env env = {
6923 		.sd		= sd,
6924 		.dst_cpu	= this_cpu,
6925 		.dst_rq		= this_rq,
6926 		.dst_grpmask    = sched_group_cpus(sd->groups),
6927 		.idle		= idle,
6928 		.loop_break	= sched_nr_migrate_break,
6929 		.cpus		= cpus,
6930 		.fbq_type	= all,
6931 		.tasks		= LIST_HEAD_INIT(env.tasks),
6932 	};
6933 
6934 	/*
6935 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6936 	 * other cpus in our group
6937 	 */
6938 	if (idle == CPU_NEWLY_IDLE)
6939 		env.dst_grpmask = NULL;
6940 
6941 	cpumask_copy(cpus, cpu_active_mask);
6942 
6943 	schedstat_inc(sd, lb_count[idle]);
6944 
6945 redo:
6946 	if (!should_we_balance(&env)) {
6947 		*continue_balancing = 0;
6948 		goto out_balanced;
6949 	}
6950 
6951 	group = find_busiest_group(&env);
6952 	if (!group) {
6953 		schedstat_inc(sd, lb_nobusyg[idle]);
6954 		goto out_balanced;
6955 	}
6956 
6957 	busiest = find_busiest_queue(&env, group);
6958 	if (!busiest) {
6959 		schedstat_inc(sd, lb_nobusyq[idle]);
6960 		goto out_balanced;
6961 	}
6962 
6963 	BUG_ON(busiest == env.dst_rq);
6964 
6965 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6966 
6967 	env.src_cpu = busiest->cpu;
6968 	env.src_rq = busiest;
6969 
6970 	ld_moved = 0;
6971 	if (busiest->nr_running > 1) {
6972 		/*
6973 		 * Attempt to move tasks. If find_busiest_group has found
6974 		 * an imbalance but busiest->nr_running <= 1, the group is
6975 		 * still unbalanced. ld_moved simply stays zero, so it is
6976 		 * correctly treated as an imbalance.
6977 		 */
6978 		env.flags |= LBF_ALL_PINNED;
6979 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6980 
6981 more_balance:
6982 		raw_spin_lock_irqsave(&busiest->lock, flags);
6983 
6984 		/*
6985 		 * cur_ld_moved - load moved in current iteration
6986 		 * ld_moved     - cumulative load moved across iterations
6987 		 */
6988 		cur_ld_moved = detach_tasks(&env);
6989 
6990 		/*
6991 		 * We've detached some tasks from busiest_rq. Every
6992 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6993 		 * unlock busiest->lock, and we are able to be sure
6994 		 * that nobody can manipulate the tasks in parallel.
6995 		 * See task_rq_lock() family for the details.
6996 		 */
6997 
6998 		raw_spin_unlock(&busiest->lock);
6999 
7000 		if (cur_ld_moved) {
7001 			attach_tasks(&env);
7002 			ld_moved += cur_ld_moved;
7003 		}
7004 
7005 		local_irq_restore(flags);
7006 
7007 		if (env.flags & LBF_NEED_BREAK) {
7008 			env.flags &= ~LBF_NEED_BREAK;
7009 			goto more_balance;
7010 		}
7011 
7012 		/*
7013 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7014 		 * us and move them to an alternate dst_cpu in our sched_group
7015 		 * where they can run. The upper limit on how many times we
7016 		 * iterate on same src_cpu is dependent on number of cpus in our
7017 		 * sched_group.
7018 		 *
7019 		 * This changes load balance semantics a bit on who can move
7020 		 * load to a given_cpu. In addition to the given_cpu itself
7021 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7022 		 * nohz-idle), we now have balance_cpu in a position to move
7023 		 * load to given_cpu. In rare situations, this may cause
7024 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7025 		 * _independently_ and at _same_ time to move some load to
7026 		 * given_cpu) causing exceess load to be moved to given_cpu.
7027 		 * This however should not happen so much in practice and
7028 		 * moreover subsequent load balance cycles should correct the
7029 		 * excess load moved.
7030 		 */
7031 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7032 
7033 			/* Prevent to re-select dst_cpu via env's cpus */
7034 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7035 
7036 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7037 			env.dst_cpu	 = env.new_dst_cpu;
7038 			env.flags	&= ~LBF_DST_PINNED;
7039 			env.loop	 = 0;
7040 			env.loop_break	 = sched_nr_migrate_break;
7041 
7042 			/*
7043 			 * Go back to "more_balance" rather than "redo" since we
7044 			 * need to continue with same src_cpu.
7045 			 */
7046 			goto more_balance;
7047 		}
7048 
7049 		/*
7050 		 * We failed to reach balance because of affinity.
7051 		 */
7052 		if (sd_parent) {
7053 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7054 
7055 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7056 				*group_imbalance = 1;
7057 		}
7058 
7059 		/* All tasks on this runqueue were pinned by CPU affinity */
7060 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7061 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7062 			if (!cpumask_empty(cpus)) {
7063 				env.loop = 0;
7064 				env.loop_break = sched_nr_migrate_break;
7065 				goto redo;
7066 			}
7067 			goto out_all_pinned;
7068 		}
7069 	}
7070 
7071 	if (!ld_moved) {
7072 		schedstat_inc(sd, lb_failed[idle]);
7073 		/*
7074 		 * Increment the failure counter only on periodic balance.
7075 		 * We do not want newidle balance, which can be very
7076 		 * frequent, pollute the failure counter causing
7077 		 * excessive cache_hot migrations and active balances.
7078 		 */
7079 		if (idle != CPU_NEWLY_IDLE)
7080 			sd->nr_balance_failed++;
7081 
7082 		if (need_active_balance(&env)) {
7083 			raw_spin_lock_irqsave(&busiest->lock, flags);
7084 
7085 			/* don't kick the active_load_balance_cpu_stop,
7086 			 * if the curr task on busiest cpu can't be
7087 			 * moved to this_cpu
7088 			 */
7089 			if (!cpumask_test_cpu(this_cpu,
7090 					tsk_cpus_allowed(busiest->curr))) {
7091 				raw_spin_unlock_irqrestore(&busiest->lock,
7092 							    flags);
7093 				env.flags |= LBF_ALL_PINNED;
7094 				goto out_one_pinned;
7095 			}
7096 
7097 			/*
7098 			 * ->active_balance synchronizes accesses to
7099 			 * ->active_balance_work.  Once set, it's cleared
7100 			 * only after active load balance is finished.
7101 			 */
7102 			if (!busiest->active_balance) {
7103 				busiest->active_balance = 1;
7104 				busiest->push_cpu = this_cpu;
7105 				active_balance = 1;
7106 			}
7107 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7108 
7109 			if (active_balance) {
7110 				stop_one_cpu_nowait(cpu_of(busiest),
7111 					active_load_balance_cpu_stop, busiest,
7112 					&busiest->active_balance_work);
7113 			}
7114 
7115 			/*
7116 			 * We've kicked active balancing, reset the failure
7117 			 * counter.
7118 			 */
7119 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7120 		}
7121 	} else
7122 		sd->nr_balance_failed = 0;
7123 
7124 	if (likely(!active_balance)) {
7125 		/* We were unbalanced, so reset the balancing interval */
7126 		sd->balance_interval = sd->min_interval;
7127 	} else {
7128 		/*
7129 		 * If we've begun active balancing, start to back off. This
7130 		 * case may not be covered by the all_pinned logic if there
7131 		 * is only 1 task on the busy runqueue (because we don't call
7132 		 * detach_tasks).
7133 		 */
7134 		if (sd->balance_interval < sd->max_interval)
7135 			sd->balance_interval *= 2;
7136 	}
7137 
7138 	goto out;
7139 
7140 out_balanced:
7141 	/*
7142 	 * We reach balance although we may have faced some affinity
7143 	 * constraints. Clear the imbalance flag if it was set.
7144 	 */
7145 	if (sd_parent) {
7146 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7147 
7148 		if (*group_imbalance)
7149 			*group_imbalance = 0;
7150 	}
7151 
7152 out_all_pinned:
7153 	/*
7154 	 * We reach balance because all tasks are pinned at this level so
7155 	 * we can't migrate them. Let the imbalance flag set so parent level
7156 	 * can try to migrate them.
7157 	 */
7158 	schedstat_inc(sd, lb_balanced[idle]);
7159 
7160 	sd->nr_balance_failed = 0;
7161 
7162 out_one_pinned:
7163 	/* tune up the balancing interval */
7164 	if (((env.flags & LBF_ALL_PINNED) &&
7165 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7166 			(sd->balance_interval < sd->max_interval))
7167 		sd->balance_interval *= 2;
7168 
7169 	ld_moved = 0;
7170 out:
7171 	return ld_moved;
7172 }
7173 
7174 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)7175 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7176 {
7177 	unsigned long interval = sd->balance_interval;
7178 
7179 	if (cpu_busy)
7180 		interval *= sd->busy_factor;
7181 
7182 	/* scale ms to jiffies */
7183 	interval = msecs_to_jiffies(interval);
7184 	interval = clamp(interval, 1UL, max_load_balance_interval);
7185 
7186 	return interval;
7187 }
7188 
7189 static inline void
update_next_balance(struct sched_domain * sd,int cpu_busy,unsigned long * next_balance)7190 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7191 {
7192 	unsigned long interval, next;
7193 
7194 	interval = get_sd_balance_interval(sd, cpu_busy);
7195 	next = sd->last_balance + interval;
7196 
7197 	if (time_after(*next_balance, next))
7198 		*next_balance = next;
7199 }
7200 
7201 /*
7202  * idle_balance is called by schedule() if this_cpu is about to become
7203  * idle. Attempts to pull tasks from other CPUs.
7204  */
idle_balance(struct rq * this_rq)7205 static int idle_balance(struct rq *this_rq)
7206 {
7207 	unsigned long next_balance = jiffies + HZ;
7208 	int this_cpu = this_rq->cpu;
7209 	struct sched_domain *sd;
7210 	int pulled_task = 0;
7211 	u64 curr_cost = 0;
7212 
7213 	idle_enter_fair(this_rq);
7214 
7215 	/*
7216 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7217 	 * measure the duration of idle_balance() as idle time.
7218 	 */
7219 	this_rq->idle_stamp = rq_clock(this_rq);
7220 
7221 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7222 	    !this_rq->rd->overload) {
7223 		rcu_read_lock();
7224 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7225 		if (sd)
7226 			update_next_balance(sd, 0, &next_balance);
7227 		rcu_read_unlock();
7228 
7229 		goto out;
7230 	}
7231 
7232 	/*
7233 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
7234 	 */
7235 	raw_spin_unlock(&this_rq->lock);
7236 
7237 	update_blocked_averages(this_cpu);
7238 	rcu_read_lock();
7239 	for_each_domain(this_cpu, sd) {
7240 		int continue_balancing = 1;
7241 		u64 t0, domain_cost;
7242 
7243 		if (!(sd->flags & SD_LOAD_BALANCE))
7244 			continue;
7245 
7246 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7247 			update_next_balance(sd, 0, &next_balance);
7248 			break;
7249 		}
7250 
7251 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7252 			t0 = sched_clock_cpu(this_cpu);
7253 
7254 			pulled_task = load_balance(this_cpu, this_rq,
7255 						   sd, CPU_NEWLY_IDLE,
7256 						   &continue_balancing);
7257 
7258 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7259 			if (domain_cost > sd->max_newidle_lb_cost)
7260 				sd->max_newidle_lb_cost = domain_cost;
7261 
7262 			curr_cost += domain_cost;
7263 		}
7264 
7265 		update_next_balance(sd, 0, &next_balance);
7266 
7267 		/*
7268 		 * Stop searching for tasks to pull if there are
7269 		 * now runnable tasks on this rq.
7270 		 */
7271 		if (pulled_task || this_rq->nr_running > 0)
7272 			break;
7273 	}
7274 	rcu_read_unlock();
7275 
7276 	raw_spin_lock(&this_rq->lock);
7277 
7278 	if (curr_cost > this_rq->max_idle_balance_cost)
7279 		this_rq->max_idle_balance_cost = curr_cost;
7280 
7281 	/*
7282 	 * While browsing the domains, we released the rq lock, a task could
7283 	 * have been enqueued in the meantime. Since we're not going idle,
7284 	 * pretend we pulled a task.
7285 	 */
7286 	if (this_rq->cfs.h_nr_running && !pulled_task)
7287 		pulled_task = 1;
7288 
7289 out:
7290 	/* Move the next balance forward */
7291 	if (time_after(this_rq->next_balance, next_balance))
7292 		this_rq->next_balance = next_balance;
7293 
7294 	/* Is there a task of a high priority class? */
7295 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7296 		pulled_task = -1;
7297 
7298 	if (pulled_task) {
7299 		idle_exit_fair(this_rq);
7300 		this_rq->idle_stamp = 0;
7301 	}
7302 
7303 	return pulled_task;
7304 }
7305 
7306 /*
7307  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7308  * running tasks off the busiest CPU onto idle CPUs. It requires at
7309  * least 1 task to be running on each physical CPU where possible, and
7310  * avoids physical / logical imbalances.
7311  */
active_load_balance_cpu_stop(void * data)7312 static int active_load_balance_cpu_stop(void *data)
7313 {
7314 	struct rq *busiest_rq = data;
7315 	int busiest_cpu = cpu_of(busiest_rq);
7316 	int target_cpu = busiest_rq->push_cpu;
7317 	struct rq *target_rq = cpu_rq(target_cpu);
7318 	struct sched_domain *sd;
7319 	struct task_struct *p = NULL;
7320 
7321 	raw_spin_lock_irq(&busiest_rq->lock);
7322 
7323 	/* make sure the requested cpu hasn't gone down in the meantime */
7324 	if (unlikely(busiest_cpu != smp_processor_id() ||
7325 		     !busiest_rq->active_balance))
7326 		goto out_unlock;
7327 
7328 	/* Is there any task to move? */
7329 	if (busiest_rq->nr_running <= 1)
7330 		goto out_unlock;
7331 
7332 	/*
7333 	 * This condition is "impossible", if it occurs
7334 	 * we need to fix it. Originally reported by
7335 	 * Bjorn Helgaas on a 128-cpu setup.
7336 	 */
7337 	BUG_ON(busiest_rq == target_rq);
7338 
7339 	/* Search for an sd spanning us and the target CPU. */
7340 	rcu_read_lock();
7341 	for_each_domain(target_cpu, sd) {
7342 		if ((sd->flags & SD_LOAD_BALANCE) &&
7343 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7344 				break;
7345 	}
7346 
7347 	if (likely(sd)) {
7348 		struct lb_env env = {
7349 			.sd		= sd,
7350 			.dst_cpu	= target_cpu,
7351 			.dst_rq		= target_rq,
7352 			.src_cpu	= busiest_rq->cpu,
7353 			.src_rq		= busiest_rq,
7354 			.idle		= CPU_IDLE,
7355 		};
7356 
7357 		schedstat_inc(sd, alb_count);
7358 
7359 		p = detach_one_task(&env);
7360 		if (p)
7361 			schedstat_inc(sd, alb_pushed);
7362 		else
7363 			schedstat_inc(sd, alb_failed);
7364 	}
7365 	rcu_read_unlock();
7366 out_unlock:
7367 	busiest_rq->active_balance = 0;
7368 	raw_spin_unlock(&busiest_rq->lock);
7369 
7370 	if (p)
7371 		attach_one_task(target_rq, p);
7372 
7373 	local_irq_enable();
7374 
7375 	return 0;
7376 }
7377 
on_null_domain(struct rq * rq)7378 static inline int on_null_domain(struct rq *rq)
7379 {
7380 	return unlikely(!rcu_dereference_sched(rq->sd));
7381 }
7382 
7383 #ifdef CONFIG_NO_HZ_COMMON
7384 /*
7385  * idle load balancing details
7386  * - When one of the busy CPUs notice that there may be an idle rebalancing
7387  *   needed, they will kick the idle load balancer, which then does idle
7388  *   load balancing for all the idle CPUs.
7389  */
7390 static struct {
7391 	cpumask_var_t idle_cpus_mask;
7392 	atomic_t nr_cpus;
7393 	unsigned long next_balance;     /* in jiffy units */
7394 } nohz ____cacheline_aligned;
7395 
find_new_ilb(void)7396 static inline int find_new_ilb(void)
7397 {
7398 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7399 
7400 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7401 		return ilb;
7402 
7403 	return nr_cpu_ids;
7404 }
7405 
7406 /*
7407  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7408  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7409  * CPU (if there is one).
7410  */
nohz_balancer_kick(void)7411 static void nohz_balancer_kick(void)
7412 {
7413 	int ilb_cpu;
7414 
7415 	nohz.next_balance++;
7416 
7417 	ilb_cpu = find_new_ilb();
7418 
7419 	if (ilb_cpu >= nr_cpu_ids)
7420 		return;
7421 
7422 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7423 		return;
7424 	/*
7425 	 * Use smp_send_reschedule() instead of resched_cpu().
7426 	 * This way we generate a sched IPI on the target cpu which
7427 	 * is idle. And the softirq performing nohz idle load balance
7428 	 * will be run before returning from the IPI.
7429 	 */
7430 	smp_send_reschedule(ilb_cpu);
7431 	return;
7432 }
7433 
nohz_balance_exit_idle(int cpu)7434 static inline void nohz_balance_exit_idle(int cpu)
7435 {
7436 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7437 		/*
7438 		 * Completely isolated CPUs don't ever set, so we must test.
7439 		 */
7440 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7441 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7442 			atomic_dec(&nohz.nr_cpus);
7443 		}
7444 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7445 	}
7446 }
7447 
set_cpu_sd_state_busy(void)7448 static inline void set_cpu_sd_state_busy(void)
7449 {
7450 	struct sched_domain *sd;
7451 	int cpu = smp_processor_id();
7452 
7453 	rcu_read_lock();
7454 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7455 
7456 	if (!sd || !sd->nohz_idle)
7457 		goto unlock;
7458 	sd->nohz_idle = 0;
7459 
7460 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7461 unlock:
7462 	rcu_read_unlock();
7463 }
7464 
set_cpu_sd_state_idle(void)7465 void set_cpu_sd_state_idle(void)
7466 {
7467 	struct sched_domain *sd;
7468 	int cpu = smp_processor_id();
7469 
7470 	rcu_read_lock();
7471 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7472 
7473 	if (!sd || sd->nohz_idle)
7474 		goto unlock;
7475 	sd->nohz_idle = 1;
7476 
7477 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7478 unlock:
7479 	rcu_read_unlock();
7480 }
7481 
7482 /*
7483  * This routine will record that the cpu is going idle with tick stopped.
7484  * This info will be used in performing idle load balancing in the future.
7485  */
nohz_balance_enter_idle(int cpu)7486 void nohz_balance_enter_idle(int cpu)
7487 {
7488 	/*
7489 	 * If this cpu is going down, then nothing needs to be done.
7490 	 */
7491 	if (!cpu_active(cpu))
7492 		return;
7493 
7494 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7495 		return;
7496 
7497 	/*
7498 	 * If we're a completely isolated CPU, we don't play.
7499 	 */
7500 	if (on_null_domain(cpu_rq(cpu)))
7501 		return;
7502 
7503 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7504 	atomic_inc(&nohz.nr_cpus);
7505 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7506 }
7507 
sched_ilb_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)7508 static int sched_ilb_notifier(struct notifier_block *nfb,
7509 					unsigned long action, void *hcpu)
7510 {
7511 	switch (action & ~CPU_TASKS_FROZEN) {
7512 	case CPU_DYING:
7513 		nohz_balance_exit_idle(smp_processor_id());
7514 		return NOTIFY_OK;
7515 	default:
7516 		return NOTIFY_DONE;
7517 	}
7518 }
7519 #endif
7520 
7521 static DEFINE_SPINLOCK(balancing);
7522 
7523 /*
7524  * Scale the max load_balance interval with the number of CPUs in the system.
7525  * This trades load-balance latency on larger machines for less cross talk.
7526  */
update_max_interval(void)7527 void update_max_interval(void)
7528 {
7529 	max_load_balance_interval = HZ*num_online_cpus()/10;
7530 }
7531 
7532 /*
7533  * It checks each scheduling domain to see if it is due to be balanced,
7534  * and initiates a balancing operation if so.
7535  *
7536  * Balancing parameters are set up in init_sched_domains.
7537  */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)7538 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7539 {
7540 	int continue_balancing = 1;
7541 	int cpu = rq->cpu;
7542 	unsigned long interval;
7543 	struct sched_domain *sd;
7544 	/* Earliest time when we have to do rebalance again */
7545 	unsigned long next_balance = jiffies + 60*HZ;
7546 	int update_next_balance = 0;
7547 	int need_serialize, need_decay = 0;
7548 	u64 max_cost = 0;
7549 
7550 	update_blocked_averages(cpu);
7551 
7552 	rcu_read_lock();
7553 	for_each_domain(cpu, sd) {
7554 		/*
7555 		 * Decay the newidle max times here because this is a regular
7556 		 * visit to all the domains. Decay ~1% per second.
7557 		 */
7558 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7559 			sd->max_newidle_lb_cost =
7560 				(sd->max_newidle_lb_cost * 253) / 256;
7561 			sd->next_decay_max_lb_cost = jiffies + HZ;
7562 			need_decay = 1;
7563 		}
7564 		max_cost += sd->max_newidle_lb_cost;
7565 
7566 		if (!(sd->flags & SD_LOAD_BALANCE))
7567 			continue;
7568 
7569 		/*
7570 		 * Stop the load balance at this level. There is another
7571 		 * CPU in our sched group which is doing load balancing more
7572 		 * actively.
7573 		 */
7574 		if (!continue_balancing) {
7575 			if (need_decay)
7576 				continue;
7577 			break;
7578 		}
7579 
7580 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7581 
7582 		need_serialize = sd->flags & SD_SERIALIZE;
7583 		if (need_serialize) {
7584 			if (!spin_trylock(&balancing))
7585 				goto out;
7586 		}
7587 
7588 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7589 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7590 				/*
7591 				 * The LBF_DST_PINNED logic could have changed
7592 				 * env->dst_cpu, so we can't know our idle
7593 				 * state even if we migrated tasks. Update it.
7594 				 */
7595 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7596 			}
7597 			sd->last_balance = jiffies;
7598 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7599 		}
7600 		if (need_serialize)
7601 			spin_unlock(&balancing);
7602 out:
7603 		if (time_after(next_balance, sd->last_balance + interval)) {
7604 			next_balance = sd->last_balance + interval;
7605 			update_next_balance = 1;
7606 		}
7607 	}
7608 	if (need_decay) {
7609 		/*
7610 		 * Ensure the rq-wide value also decays but keep it at a
7611 		 * reasonable floor to avoid funnies with rq->avg_idle.
7612 		 */
7613 		rq->max_idle_balance_cost =
7614 			max((u64)sysctl_sched_migration_cost, max_cost);
7615 	}
7616 	rcu_read_unlock();
7617 
7618 	/*
7619 	 * next_balance will be updated only when there is a need.
7620 	 * When the cpu is attached to null domain for ex, it will not be
7621 	 * updated.
7622 	 */
7623 	if (likely(update_next_balance))
7624 		rq->next_balance = next_balance;
7625 }
7626 
7627 #ifdef CONFIG_NO_HZ_COMMON
7628 /*
7629  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7630  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7631  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)7632 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7633 {
7634 	int this_cpu = this_rq->cpu;
7635 	struct rq *rq;
7636 	int balance_cpu;
7637 
7638 	if (idle != CPU_IDLE ||
7639 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7640 		goto end;
7641 
7642 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7643 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7644 			continue;
7645 
7646 		/*
7647 		 * If this cpu gets work to do, stop the load balancing
7648 		 * work being done for other cpus. Next load
7649 		 * balancing owner will pick it up.
7650 		 */
7651 		if (need_resched())
7652 			break;
7653 
7654 		rq = cpu_rq(balance_cpu);
7655 
7656 		/*
7657 		 * If time for next balance is due,
7658 		 * do the balance.
7659 		 */
7660 		if (time_after_eq(jiffies, rq->next_balance)) {
7661 			raw_spin_lock_irq(&rq->lock);
7662 			update_rq_clock(rq);
7663 			update_idle_cpu_load(rq);
7664 			raw_spin_unlock_irq(&rq->lock);
7665 			rebalance_domains(rq, CPU_IDLE);
7666 		}
7667 
7668 		if (time_after(this_rq->next_balance, rq->next_balance))
7669 			this_rq->next_balance = rq->next_balance;
7670 	}
7671 	nohz.next_balance = this_rq->next_balance;
7672 end:
7673 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7674 }
7675 
7676 /*
7677  * Current heuristic for kicking the idle load balancer in the presence
7678  * of an idle cpu in the system.
7679  *   - This rq has more than one task.
7680  *   - This rq has at least one CFS task and the capacity of the CPU is
7681  *     significantly reduced because of RT tasks or IRQs.
7682  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7683  *     multiple busy cpu.
7684  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7685  *     domain span are idle.
7686  */
nohz_kick_needed(struct rq * rq)7687 static inline bool nohz_kick_needed(struct rq *rq)
7688 {
7689 	unsigned long now = jiffies;
7690 	struct sched_domain *sd;
7691 	struct sched_group_capacity *sgc;
7692 	int nr_busy, cpu = rq->cpu;
7693 	bool kick = false;
7694 
7695 	if (unlikely(rq->idle_balance))
7696 		return false;
7697 
7698        /*
7699 	* We may be recently in ticked or tickless idle mode. At the first
7700 	* busy tick after returning from idle, we will update the busy stats.
7701 	*/
7702 	set_cpu_sd_state_busy();
7703 	nohz_balance_exit_idle(cpu);
7704 
7705 	/*
7706 	 * None are in tickless mode and hence no need for NOHZ idle load
7707 	 * balancing.
7708 	 */
7709 	if (likely(!atomic_read(&nohz.nr_cpus)))
7710 		return false;
7711 
7712 	if (time_before(now, nohz.next_balance))
7713 		return false;
7714 
7715 	if (rq->nr_running >= 2)
7716 		return true;
7717 
7718 	rcu_read_lock();
7719 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7720 	if (sd) {
7721 		sgc = sd->groups->sgc;
7722 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7723 
7724 		if (nr_busy > 1) {
7725 			kick = true;
7726 			goto unlock;
7727 		}
7728 
7729 	}
7730 
7731 	sd = rcu_dereference(rq->sd);
7732 	if (sd) {
7733 		if ((rq->cfs.h_nr_running >= 1) &&
7734 				check_cpu_capacity(rq, sd)) {
7735 			kick = true;
7736 			goto unlock;
7737 		}
7738 	}
7739 
7740 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7741 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7742 				  sched_domain_span(sd)) < cpu)) {
7743 		kick = true;
7744 		goto unlock;
7745 	}
7746 
7747 unlock:
7748 	rcu_read_unlock();
7749 	return kick;
7750 }
7751 #else
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)7752 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7753 #endif
7754 
7755 /*
7756  * run_rebalance_domains is triggered when needed from the scheduler tick.
7757  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7758  */
run_rebalance_domains(struct softirq_action * h)7759 static void run_rebalance_domains(struct softirq_action *h)
7760 {
7761 	struct rq *this_rq = this_rq();
7762 	enum cpu_idle_type idle = this_rq->idle_balance ?
7763 						CPU_IDLE : CPU_NOT_IDLE;
7764 
7765 	/*
7766 	 * If this cpu has a pending nohz_balance_kick, then do the
7767 	 * balancing on behalf of the other idle cpus whose ticks are
7768 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7769 	 * give the idle cpus a chance to load balance. Else we may
7770 	 * load balance only within the local sched_domain hierarchy
7771 	 * and abort nohz_idle_balance altogether if we pull some load.
7772 	 */
7773 	nohz_idle_balance(this_rq, idle);
7774 	rebalance_domains(this_rq, idle);
7775 }
7776 
7777 /*
7778  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7779  */
trigger_load_balance(struct rq * rq)7780 void trigger_load_balance(struct rq *rq)
7781 {
7782 	/* Don't need to rebalance while attached to NULL domain */
7783 	if (unlikely(on_null_domain(rq)))
7784 		return;
7785 
7786 	if (time_after_eq(jiffies, rq->next_balance))
7787 		raise_softirq(SCHED_SOFTIRQ);
7788 #ifdef CONFIG_NO_HZ_COMMON
7789 	if (nohz_kick_needed(rq))
7790 		nohz_balancer_kick();
7791 #endif
7792 }
7793 
rq_online_fair(struct rq * rq)7794 static void rq_online_fair(struct rq *rq)
7795 {
7796 	update_sysctl();
7797 
7798 	update_runtime_enabled(rq);
7799 }
7800 
rq_offline_fair(struct rq * rq)7801 static void rq_offline_fair(struct rq *rq)
7802 {
7803 	update_sysctl();
7804 
7805 	/* Ensure any throttled groups are reachable by pick_next_task */
7806 	unthrottle_offline_cfs_rqs(rq);
7807 }
7808 
7809 #endif /* CONFIG_SMP */
7810 
7811 /*
7812  * scheduler tick hitting a task of our scheduling class:
7813  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)7814 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7815 {
7816 	struct cfs_rq *cfs_rq;
7817 	struct sched_entity *se = &curr->se;
7818 
7819 	for_each_sched_entity(se) {
7820 		cfs_rq = cfs_rq_of(se);
7821 		entity_tick(cfs_rq, se, queued);
7822 	}
7823 
7824 	if (numabalancing_enabled)
7825 		task_tick_numa(rq, curr);
7826 
7827 	update_rq_runnable_avg(rq, 1);
7828 }
7829 
7830 /*
7831  * called on fork with the child task as argument from the parent's context
7832  *  - child not yet on the tasklist
7833  *  - preemption disabled
7834  */
task_fork_fair(struct task_struct * p)7835 static void task_fork_fair(struct task_struct *p)
7836 {
7837 	struct cfs_rq *cfs_rq;
7838 	struct sched_entity *se = &p->se, *curr;
7839 	int this_cpu = smp_processor_id();
7840 	struct rq *rq = this_rq();
7841 	unsigned long flags;
7842 
7843 	raw_spin_lock_irqsave(&rq->lock, flags);
7844 
7845 	update_rq_clock(rq);
7846 
7847 	cfs_rq = task_cfs_rq(current);
7848 	curr = cfs_rq->curr;
7849 
7850 	/*
7851 	 * Not only the cpu but also the task_group of the parent might have
7852 	 * been changed after parent->se.parent,cfs_rq were copied to
7853 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7854 	 * of child point to valid ones.
7855 	 */
7856 	rcu_read_lock();
7857 	__set_task_cpu(p, this_cpu);
7858 	rcu_read_unlock();
7859 
7860 	update_curr(cfs_rq);
7861 
7862 	if (curr)
7863 		se->vruntime = curr->vruntime;
7864 	place_entity(cfs_rq, se, 1);
7865 
7866 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7867 		/*
7868 		 * Upon rescheduling, sched_class::put_prev_task() will place
7869 		 * 'current' within the tree based on its new key value.
7870 		 */
7871 		swap(curr->vruntime, se->vruntime);
7872 		resched_curr(rq);
7873 	}
7874 
7875 	se->vruntime -= cfs_rq->min_vruntime;
7876 
7877 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7878 }
7879 
7880 /*
7881  * Priority of the task has changed. Check to see if we preempt
7882  * the current task.
7883  */
7884 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)7885 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7886 {
7887 	if (!task_on_rq_queued(p))
7888 		return;
7889 
7890 	/*
7891 	 * Reschedule if we are currently running on this runqueue and
7892 	 * our priority decreased, or if we are not currently running on
7893 	 * this runqueue and our priority is higher than the current's
7894 	 */
7895 	if (rq->curr == p) {
7896 		if (p->prio > oldprio)
7897 			resched_curr(rq);
7898 	} else
7899 		check_preempt_curr(rq, p, 0);
7900 }
7901 
switched_from_fair(struct rq * rq,struct task_struct * p)7902 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7903 {
7904 	struct sched_entity *se = &p->se;
7905 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7906 
7907 	/*
7908 	 * Ensure the task's vruntime is normalized, so that when it's
7909 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7910 	 * do the right thing.
7911 	 *
7912 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7913 	 * have normalized the vruntime, if it's !queued, then only when
7914 	 * the task is sleeping will it still have non-normalized vruntime.
7915 	 */
7916 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7917 		/*
7918 		 * Fix up our vruntime so that the current sleep doesn't
7919 		 * cause 'unlimited' sleep bonus.
7920 		 */
7921 		place_entity(cfs_rq, se, 0);
7922 		se->vruntime -= cfs_rq->min_vruntime;
7923 	}
7924 
7925 #ifdef CONFIG_SMP
7926 	/*
7927 	* Remove our load from contribution when we leave sched_fair
7928 	* and ensure we don't carry in an old decay_count if we
7929 	* switch back.
7930 	*/
7931 	if (se->avg.decay_count) {
7932 		__synchronize_entity_decay(se);
7933 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7934 	}
7935 #endif
7936 }
7937 
7938 /*
7939  * We switched to the sched_fair class.
7940  */
switched_to_fair(struct rq * rq,struct task_struct * p)7941 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7942 {
7943 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 	struct sched_entity *se = &p->se;
7945 	/*
7946 	 * Since the real-depth could have been changed (only FAIR
7947 	 * class maintain depth value), reset depth properly.
7948 	 */
7949 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7950 #endif
7951 	if (!task_on_rq_queued(p))
7952 		return;
7953 
7954 	/*
7955 	 * We were most likely switched from sched_rt, so
7956 	 * kick off the schedule if running, otherwise just see
7957 	 * if we can still preempt the current task.
7958 	 */
7959 	if (rq->curr == p)
7960 		resched_curr(rq);
7961 	else
7962 		check_preempt_curr(rq, p, 0);
7963 }
7964 
7965 /* Account for a task changing its policy or group.
7966  *
7967  * This routine is mostly called to set cfs_rq->curr field when a task
7968  * migrates between groups/classes.
7969  */
set_curr_task_fair(struct rq * rq)7970 static void set_curr_task_fair(struct rq *rq)
7971 {
7972 	struct sched_entity *se = &rq->curr->se;
7973 
7974 	for_each_sched_entity(se) {
7975 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7976 
7977 		set_next_entity(cfs_rq, se);
7978 		/* ensure bandwidth has been allocated on our new cfs_rq */
7979 		account_cfs_rq_runtime(cfs_rq, 0);
7980 	}
7981 }
7982 
init_cfs_rq(struct cfs_rq * cfs_rq)7983 void init_cfs_rq(struct cfs_rq *cfs_rq)
7984 {
7985 	cfs_rq->tasks_timeline = RB_ROOT;
7986 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7987 #ifndef CONFIG_64BIT
7988 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7989 #endif
7990 #ifdef CONFIG_SMP
7991 	atomic64_set(&cfs_rq->decay_counter, 1);
7992 	atomic_long_set(&cfs_rq->removed_load, 0);
7993 #endif
7994 }
7995 
7996 #ifdef CONFIG_FAIR_GROUP_SCHED
task_move_group_fair(struct task_struct * p,int queued)7997 static void task_move_group_fair(struct task_struct *p, int queued)
7998 {
7999 	struct sched_entity *se = &p->se;
8000 	struct cfs_rq *cfs_rq;
8001 
8002 	/*
8003 	 * If the task was not on the rq at the time of this cgroup movement
8004 	 * it must have been asleep, sleeping tasks keep their ->vruntime
8005 	 * absolute on their old rq until wakeup (needed for the fair sleeper
8006 	 * bonus in place_entity()).
8007 	 *
8008 	 * If it was on the rq, we've just 'preempted' it, which does convert
8009 	 * ->vruntime to a relative base.
8010 	 *
8011 	 * Make sure both cases convert their relative position when migrating
8012 	 * to another cgroup's rq. This does somewhat interfere with the
8013 	 * fair sleeper stuff for the first placement, but who cares.
8014 	 */
8015 	/*
8016 	 * When !queued, vruntime of the task has usually NOT been normalized.
8017 	 * But there are some cases where it has already been normalized:
8018 	 *
8019 	 * - Moving a forked child which is waiting for being woken up by
8020 	 *   wake_up_new_task().
8021 	 * - Moving a task which has been woken up by try_to_wake_up() and
8022 	 *   waiting for actually being woken up by sched_ttwu_pending().
8023 	 *
8024 	 * To prevent boost or penalty in the new cfs_rq caused by delta
8025 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8026 	 */
8027 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8028 		queued = 1;
8029 
8030 	if (!queued)
8031 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
8032 	set_task_rq(p, task_cpu(p));
8033 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8034 	if (!queued) {
8035 		cfs_rq = cfs_rq_of(se);
8036 		se->vruntime += cfs_rq->min_vruntime;
8037 #ifdef CONFIG_SMP
8038 		/*
8039 		 * migrate_task_rq_fair() will have removed our previous
8040 		 * contribution, but we must synchronize for ongoing future
8041 		 * decay.
8042 		 */
8043 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8044 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
8045 #endif
8046 	}
8047 }
8048 
free_fair_sched_group(struct task_group * tg)8049 void free_fair_sched_group(struct task_group *tg)
8050 {
8051 	int i;
8052 
8053 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8054 
8055 	for_each_possible_cpu(i) {
8056 		if (tg->cfs_rq)
8057 			kfree(tg->cfs_rq[i]);
8058 		if (tg->se)
8059 			kfree(tg->se[i]);
8060 	}
8061 
8062 	kfree(tg->cfs_rq);
8063 	kfree(tg->se);
8064 }
8065 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)8066 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8067 {
8068 	struct cfs_rq *cfs_rq;
8069 	struct sched_entity *se;
8070 	int i;
8071 
8072 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8073 	if (!tg->cfs_rq)
8074 		goto err;
8075 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8076 	if (!tg->se)
8077 		goto err;
8078 
8079 	tg->shares = NICE_0_LOAD;
8080 
8081 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8082 
8083 	for_each_possible_cpu(i) {
8084 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8085 				      GFP_KERNEL, cpu_to_node(i));
8086 		if (!cfs_rq)
8087 			goto err;
8088 
8089 		se = kzalloc_node(sizeof(struct sched_entity),
8090 				  GFP_KERNEL, cpu_to_node(i));
8091 		if (!se)
8092 			goto err_free_rq;
8093 
8094 		init_cfs_rq(cfs_rq);
8095 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8096 	}
8097 
8098 	return 1;
8099 
8100 err_free_rq:
8101 	kfree(cfs_rq);
8102 err:
8103 	return 0;
8104 }
8105 
unregister_fair_sched_group(struct task_group * tg,int cpu)8106 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8107 {
8108 	struct rq *rq = cpu_rq(cpu);
8109 	unsigned long flags;
8110 
8111 	/*
8112 	* Only empty task groups can be destroyed; so we can speculatively
8113 	* check on_list without danger of it being re-added.
8114 	*/
8115 	if (!tg->cfs_rq[cpu]->on_list)
8116 		return;
8117 
8118 	raw_spin_lock_irqsave(&rq->lock, flags);
8119 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8120 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8121 }
8122 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)8123 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8124 			struct sched_entity *se, int cpu,
8125 			struct sched_entity *parent)
8126 {
8127 	struct rq *rq = cpu_rq(cpu);
8128 
8129 	cfs_rq->tg = tg;
8130 	cfs_rq->rq = rq;
8131 	init_cfs_rq_runtime(cfs_rq);
8132 
8133 	tg->cfs_rq[cpu] = cfs_rq;
8134 	tg->se[cpu] = se;
8135 
8136 	/* se could be NULL for root_task_group */
8137 	if (!se)
8138 		return;
8139 
8140 	if (!parent) {
8141 		se->cfs_rq = &rq->cfs;
8142 		se->depth = 0;
8143 	} else {
8144 		se->cfs_rq = parent->my_q;
8145 		se->depth = parent->depth + 1;
8146 	}
8147 
8148 	se->my_q = cfs_rq;
8149 	/* guarantee group entities always have weight */
8150 	update_load_set(&se->load, NICE_0_LOAD);
8151 	se->parent = parent;
8152 }
8153 
8154 static DEFINE_MUTEX(shares_mutex);
8155 
sched_group_set_shares(struct task_group * tg,unsigned long shares)8156 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8157 {
8158 	int i;
8159 	unsigned long flags;
8160 
8161 	/*
8162 	 * We can't change the weight of the root cgroup.
8163 	 */
8164 	if (!tg->se[0])
8165 		return -EINVAL;
8166 
8167 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8168 
8169 	mutex_lock(&shares_mutex);
8170 	if (tg->shares == shares)
8171 		goto done;
8172 
8173 	tg->shares = shares;
8174 	for_each_possible_cpu(i) {
8175 		struct rq *rq = cpu_rq(i);
8176 		struct sched_entity *se;
8177 
8178 		se = tg->se[i];
8179 		/* Propagate contribution to hierarchy */
8180 		raw_spin_lock_irqsave(&rq->lock, flags);
8181 
8182 		/* Possible calls to update_curr() need rq clock */
8183 		update_rq_clock(rq);
8184 		for_each_sched_entity(se)
8185 			update_cfs_shares(group_cfs_rq(se));
8186 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8187 	}
8188 
8189 done:
8190 	mutex_unlock(&shares_mutex);
8191 	return 0;
8192 }
8193 #else /* CONFIG_FAIR_GROUP_SCHED */
8194 
free_fair_sched_group(struct task_group * tg)8195 void free_fair_sched_group(struct task_group *tg) { }
8196 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)8197 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8198 {
8199 	return 1;
8200 }
8201 
unregister_fair_sched_group(struct task_group * tg,int cpu)8202 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8203 
8204 #endif /* CONFIG_FAIR_GROUP_SCHED */
8205 
8206 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)8207 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8208 {
8209 	struct sched_entity *se = &task->se;
8210 	unsigned int rr_interval = 0;
8211 
8212 	/*
8213 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8214 	 * idle runqueue:
8215 	 */
8216 	if (rq->cfs.load.weight)
8217 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8218 
8219 	return rr_interval;
8220 }
8221 
8222 /*
8223  * All the scheduling class methods:
8224  */
8225 const struct sched_class fair_sched_class = {
8226 	.next			= &idle_sched_class,
8227 	.enqueue_task		= enqueue_task_fair,
8228 	.dequeue_task		= dequeue_task_fair,
8229 	.yield_task		= yield_task_fair,
8230 	.yield_to_task		= yield_to_task_fair,
8231 
8232 	.check_preempt_curr	= check_preempt_wakeup,
8233 
8234 	.pick_next_task		= pick_next_task_fair,
8235 	.put_prev_task		= put_prev_task_fair,
8236 
8237 #ifdef CONFIG_SMP
8238 	.select_task_rq		= select_task_rq_fair,
8239 	.migrate_task_rq	= migrate_task_rq_fair,
8240 
8241 	.rq_online		= rq_online_fair,
8242 	.rq_offline		= rq_offline_fair,
8243 
8244 	.task_waking		= task_waking_fair,
8245 #endif
8246 
8247 	.set_curr_task          = set_curr_task_fair,
8248 	.task_tick		= task_tick_fair,
8249 	.task_fork		= task_fork_fair,
8250 
8251 	.prio_changed		= prio_changed_fair,
8252 	.switched_from		= switched_from_fair,
8253 	.switched_to		= switched_to_fair,
8254 
8255 	.get_rr_interval	= get_rr_interval_fair,
8256 
8257 	.update_curr		= update_curr_fair,
8258 
8259 #ifdef CONFIG_FAIR_GROUP_SCHED
8260 	.task_move_group	= task_move_group_fair,
8261 #endif
8262 };
8263 
8264 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)8265 void print_cfs_stats(struct seq_file *m, int cpu)
8266 {
8267 	struct cfs_rq *cfs_rq;
8268 
8269 	rcu_read_lock();
8270 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8271 		print_cfs_rq(m, cpu, cfs_rq);
8272 	rcu_read_unlock();
8273 }
8274 #endif
8275 
init_sched_fair_class(void)8276 __init void init_sched_fair_class(void)
8277 {
8278 #ifdef CONFIG_SMP
8279 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8280 
8281 #ifdef CONFIG_NO_HZ_COMMON
8282 	nohz.next_balance = jiffies;
8283 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8284 	cpu_notifier(sched_ilb_notifier, 0);
8285 #endif
8286 #endif /* SMP */
8287 
8288 }
8289