1 /*
2  * linux/kernel/ptrace.c
3  *
4  * (C) Copyright 1999 Linus Torvalds
5  *
6  * Common interfaces for "ptrace()" which we do not want
7  * to continually duplicate across every architecture.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
17 #include <linux/ptrace.h>
18 #include <linux/security.h>
19 #include <linux/signal.h>
20 #include <linux/uio.h>
21 #include <linux/audit.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/syscalls.h>
24 #include <linux/uaccess.h>
25 #include <linux/regset.h>
26 #include <linux/hw_breakpoint.h>
27 #include <linux/cn_proc.h>
28 #include <linux/compat.h>
29 
30 
31 /*
32  * ptrace a task: make the debugger its new parent and
33  * move it to the ptrace list.
34  *
35  * Must be called with the tasklist lock write-held.
36  */
__ptrace_link(struct task_struct * child,struct task_struct * new_parent)37 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
38 {
39 	BUG_ON(!list_empty(&child->ptrace_entry));
40 	list_add(&child->ptrace_entry, &new_parent->ptraced);
41 	child->parent = new_parent;
42 }
43 
44 /**
45  * __ptrace_unlink - unlink ptracee and restore its execution state
46  * @child: ptracee to be unlinked
47  *
48  * Remove @child from the ptrace list, move it back to the original parent,
49  * and restore the execution state so that it conforms to the group stop
50  * state.
51  *
52  * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
53  * exiting.  For PTRACE_DETACH, unless the ptracee has been killed between
54  * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
55  * If the ptracer is exiting, the ptracee can be in any state.
56  *
57  * After detach, the ptracee should be in a state which conforms to the
58  * group stop.  If the group is stopped or in the process of stopping, the
59  * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
60  * up from TASK_TRACED.
61  *
62  * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
63  * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
64  * to but in the opposite direction of what happens while attaching to a
65  * stopped task.  However, in this direction, the intermediate RUNNING
66  * state is not hidden even from the current ptracer and if it immediately
67  * re-attaches and performs a WNOHANG wait(2), it may fail.
68  *
69  * CONTEXT:
70  * write_lock_irq(tasklist_lock)
71  */
__ptrace_unlink(struct task_struct * child)72 void __ptrace_unlink(struct task_struct *child)
73 {
74 	BUG_ON(!child->ptrace);
75 
76 	child->ptrace = 0;
77 	child->parent = child->real_parent;
78 	list_del_init(&child->ptrace_entry);
79 
80 	spin_lock(&child->sighand->siglock);
81 
82 	/*
83 	 * Clear all pending traps and TRAPPING.  TRAPPING should be
84 	 * cleared regardless of JOBCTL_STOP_PENDING.  Do it explicitly.
85 	 */
86 	task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
87 	task_clear_jobctl_trapping(child);
88 
89 	/*
90 	 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
91 	 * @child isn't dead.
92 	 */
93 	if (!(child->flags & PF_EXITING) &&
94 	    (child->signal->flags & SIGNAL_STOP_STOPPED ||
95 	     child->signal->group_stop_count)) {
96 		child->jobctl |= JOBCTL_STOP_PENDING;
97 
98 		/*
99 		 * This is only possible if this thread was cloned by the
100 		 * traced task running in the stopped group, set the signal
101 		 * for the future reports.
102 		 * FIXME: we should change ptrace_init_task() to handle this
103 		 * case.
104 		 */
105 		if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
106 			child->jobctl |= SIGSTOP;
107 	}
108 
109 	/*
110 	 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
111 	 * @child in the butt.  Note that @resume should be used iff @child
112 	 * is in TASK_TRACED; otherwise, we might unduly disrupt
113 	 * TASK_KILLABLE sleeps.
114 	 */
115 	if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
116 		ptrace_signal_wake_up(child, true);
117 
118 	spin_unlock(&child->sighand->siglock);
119 }
120 
121 /* Ensure that nothing can wake it up, even SIGKILL */
ptrace_freeze_traced(struct task_struct * task)122 static bool ptrace_freeze_traced(struct task_struct *task)
123 {
124 	bool ret = false;
125 
126 	/* Lockless, nobody but us can set this flag */
127 	if (task->jobctl & JOBCTL_LISTENING)
128 		return ret;
129 
130 	spin_lock_irq(&task->sighand->siglock);
131 	if (task_is_traced(task) && !__fatal_signal_pending(task)) {
132 		task->state = __TASK_TRACED;
133 		ret = true;
134 	}
135 	spin_unlock_irq(&task->sighand->siglock);
136 
137 	return ret;
138 }
139 
ptrace_unfreeze_traced(struct task_struct * task)140 static void ptrace_unfreeze_traced(struct task_struct *task)
141 {
142 	if (task->state != __TASK_TRACED)
143 		return;
144 
145 	WARN_ON(!task->ptrace || task->parent != current);
146 
147 	spin_lock_irq(&task->sighand->siglock);
148 	if (__fatal_signal_pending(task))
149 		wake_up_state(task, __TASK_TRACED);
150 	else
151 		task->state = TASK_TRACED;
152 	spin_unlock_irq(&task->sighand->siglock);
153 }
154 
155 /**
156  * ptrace_check_attach - check whether ptracee is ready for ptrace operation
157  * @child: ptracee to check for
158  * @ignore_state: don't check whether @child is currently %TASK_TRACED
159  *
160  * Check whether @child is being ptraced by %current and ready for further
161  * ptrace operations.  If @ignore_state is %false, @child also should be in
162  * %TASK_TRACED state and on return the child is guaranteed to be traced
163  * and not executing.  If @ignore_state is %true, @child can be in any
164  * state.
165  *
166  * CONTEXT:
167  * Grabs and releases tasklist_lock and @child->sighand->siglock.
168  *
169  * RETURNS:
170  * 0 on success, -ESRCH if %child is not ready.
171  */
ptrace_check_attach(struct task_struct * child,bool ignore_state)172 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
173 {
174 	int ret = -ESRCH;
175 
176 	/*
177 	 * We take the read lock around doing both checks to close a
178 	 * possible race where someone else was tracing our child and
179 	 * detached between these two checks.  After this locked check,
180 	 * we are sure that this is our traced child and that can only
181 	 * be changed by us so it's not changing right after this.
182 	 */
183 	read_lock(&tasklist_lock);
184 	if (child->ptrace && child->parent == current) {
185 		WARN_ON(child->state == __TASK_TRACED);
186 		/*
187 		 * child->sighand can't be NULL, release_task()
188 		 * does ptrace_unlink() before __exit_signal().
189 		 */
190 		if (ignore_state || ptrace_freeze_traced(child))
191 			ret = 0;
192 	}
193 	read_unlock(&tasklist_lock);
194 
195 	if (!ret && !ignore_state) {
196 		if (!wait_task_inactive(child, __TASK_TRACED)) {
197 			/*
198 			 * This can only happen if may_ptrace_stop() fails and
199 			 * ptrace_stop() changes ->state back to TASK_RUNNING,
200 			 * so we should not worry about leaking __TASK_TRACED.
201 			 */
202 			WARN_ON(child->state == __TASK_TRACED);
203 			ret = -ESRCH;
204 		}
205 	}
206 
207 	return ret;
208 }
209 
ptrace_has_cap(struct user_namespace * ns,unsigned int mode)210 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
211 {
212 	if (mode & PTRACE_MODE_NOAUDIT)
213 		return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
214 	else
215 		return has_ns_capability(current, ns, CAP_SYS_PTRACE);
216 }
217 
218 /* Returns 0 on success, -errno on denial. */
__ptrace_may_access(struct task_struct * task,unsigned int mode)219 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
220 {
221 	const struct cred *cred = current_cred(), *tcred;
222 	int dumpable = 0;
223 	kuid_t caller_uid;
224 	kgid_t caller_gid;
225 
226 	if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
227 		WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
228 		return -EPERM;
229 	}
230 
231 	/* May we inspect the given task?
232 	 * This check is used both for attaching with ptrace
233 	 * and for allowing access to sensitive information in /proc.
234 	 *
235 	 * ptrace_attach denies several cases that /proc allows
236 	 * because setting up the necessary parent/child relationship
237 	 * or halting the specified task is impossible.
238 	 */
239 
240 	/* Don't let security modules deny introspection */
241 	if (same_thread_group(task, current))
242 		return 0;
243 	rcu_read_lock();
244 	if (mode & PTRACE_MODE_FSCREDS) {
245 		caller_uid = cred->fsuid;
246 		caller_gid = cred->fsgid;
247 	} else {
248 		/*
249 		 * Using the euid would make more sense here, but something
250 		 * in userland might rely on the old behavior, and this
251 		 * shouldn't be a security problem since
252 		 * PTRACE_MODE_REALCREDS implies that the caller explicitly
253 		 * used a syscall that requests access to another process
254 		 * (and not a filesystem syscall to procfs).
255 		 */
256 		caller_uid = cred->uid;
257 		caller_gid = cred->gid;
258 	}
259 	tcred = __task_cred(task);
260 	if (uid_eq(caller_uid, tcred->euid) &&
261 	    uid_eq(caller_uid, tcred->suid) &&
262 	    uid_eq(caller_uid, tcred->uid)  &&
263 	    gid_eq(caller_gid, tcred->egid) &&
264 	    gid_eq(caller_gid, tcred->sgid) &&
265 	    gid_eq(caller_gid, tcred->gid))
266 		goto ok;
267 	if (ptrace_has_cap(tcred->user_ns, mode))
268 		goto ok;
269 	rcu_read_unlock();
270 	return -EPERM;
271 ok:
272 	rcu_read_unlock();
273 	smp_rmb();
274 	if (task->mm)
275 		dumpable = get_dumpable(task->mm);
276 	rcu_read_lock();
277 	if (dumpable != SUID_DUMP_USER &&
278 	    !ptrace_has_cap(__task_cred(task)->user_ns, mode)) {
279 		rcu_read_unlock();
280 		return -EPERM;
281 	}
282 	rcu_read_unlock();
283 
284 	return security_ptrace_access_check(task, mode);
285 }
286 
ptrace_may_access(struct task_struct * task,unsigned int mode)287 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
288 {
289 	int err;
290 	task_lock(task);
291 	err = __ptrace_may_access(task, mode);
292 	task_unlock(task);
293 	return !err;
294 }
295 
ptrace_attach(struct task_struct * task,long request,unsigned long addr,unsigned long flags)296 static int ptrace_attach(struct task_struct *task, long request,
297 			 unsigned long addr,
298 			 unsigned long flags)
299 {
300 	bool seize = (request == PTRACE_SEIZE);
301 	int retval;
302 
303 	retval = -EIO;
304 	if (seize) {
305 		if (addr != 0)
306 			goto out;
307 		if (flags & ~(unsigned long)PTRACE_O_MASK)
308 			goto out;
309 		flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
310 	} else {
311 		flags = PT_PTRACED;
312 	}
313 
314 	audit_ptrace(task);
315 
316 	retval = -EPERM;
317 	if (unlikely(task->flags & PF_KTHREAD))
318 		goto out;
319 	if (same_thread_group(task, current))
320 		goto out;
321 
322 	/*
323 	 * Protect exec's credential calculations against our interference;
324 	 * SUID, SGID and LSM creds get determined differently
325 	 * under ptrace.
326 	 */
327 	retval = -ERESTARTNOINTR;
328 	if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
329 		goto out;
330 
331 	task_lock(task);
332 	retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
333 	task_unlock(task);
334 	if (retval)
335 		goto unlock_creds;
336 
337 	write_lock_irq(&tasklist_lock);
338 	retval = -EPERM;
339 	if (unlikely(task->exit_state))
340 		goto unlock_tasklist;
341 	if (task->ptrace)
342 		goto unlock_tasklist;
343 
344 	if (seize)
345 		flags |= PT_SEIZED;
346 	rcu_read_lock();
347 	if (ns_capable(__task_cred(task)->user_ns, CAP_SYS_PTRACE))
348 		flags |= PT_PTRACE_CAP;
349 	rcu_read_unlock();
350 	task->ptrace = flags;
351 
352 	__ptrace_link(task, current);
353 
354 	/* SEIZE doesn't trap tracee on attach */
355 	if (!seize)
356 		send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
357 
358 	spin_lock(&task->sighand->siglock);
359 
360 	/*
361 	 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
362 	 * TRAPPING, and kick it so that it transits to TRACED.  TRAPPING
363 	 * will be cleared if the child completes the transition or any
364 	 * event which clears the group stop states happens.  We'll wait
365 	 * for the transition to complete before returning from this
366 	 * function.
367 	 *
368 	 * This hides STOPPED -> RUNNING -> TRACED transition from the
369 	 * attaching thread but a different thread in the same group can
370 	 * still observe the transient RUNNING state.  IOW, if another
371 	 * thread's WNOHANG wait(2) on the stopped tracee races against
372 	 * ATTACH, the wait(2) may fail due to the transient RUNNING.
373 	 *
374 	 * The following task_is_stopped() test is safe as both transitions
375 	 * in and out of STOPPED are protected by siglock.
376 	 */
377 	if (task_is_stopped(task) &&
378 	    task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
379 		signal_wake_up_state(task, __TASK_STOPPED);
380 
381 	spin_unlock(&task->sighand->siglock);
382 
383 	retval = 0;
384 unlock_tasklist:
385 	write_unlock_irq(&tasklist_lock);
386 unlock_creds:
387 	mutex_unlock(&task->signal->cred_guard_mutex);
388 out:
389 	if (!retval) {
390 		wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
391 			    TASK_UNINTERRUPTIBLE);
392 		proc_ptrace_connector(task, PTRACE_ATTACH);
393 	}
394 
395 	return retval;
396 }
397 
398 /**
399  * ptrace_traceme  --  helper for PTRACE_TRACEME
400  *
401  * Performs checks and sets PT_PTRACED.
402  * Should be used by all ptrace implementations for PTRACE_TRACEME.
403  */
ptrace_traceme(void)404 static int ptrace_traceme(void)
405 {
406 	int ret = -EPERM;
407 
408 	write_lock_irq(&tasklist_lock);
409 	/* Are we already being traced? */
410 	if (!current->ptrace) {
411 		ret = security_ptrace_traceme(current->parent);
412 		/*
413 		 * Check PF_EXITING to ensure ->real_parent has not passed
414 		 * exit_ptrace(). Otherwise we don't report the error but
415 		 * pretend ->real_parent untraces us right after return.
416 		 */
417 		if (!ret && !(current->real_parent->flags & PF_EXITING)) {
418 			current->ptrace = PT_PTRACED;
419 			__ptrace_link(current, current->real_parent);
420 		}
421 	}
422 	write_unlock_irq(&tasklist_lock);
423 
424 	return ret;
425 }
426 
427 /*
428  * Called with irqs disabled, returns true if childs should reap themselves.
429  */
ignoring_children(struct sighand_struct * sigh)430 static int ignoring_children(struct sighand_struct *sigh)
431 {
432 	int ret;
433 	spin_lock(&sigh->siglock);
434 	ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
435 	      (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
436 	spin_unlock(&sigh->siglock);
437 	return ret;
438 }
439 
440 /*
441  * Called with tasklist_lock held for writing.
442  * Unlink a traced task, and clean it up if it was a traced zombie.
443  * Return true if it needs to be reaped with release_task().
444  * (We can't call release_task() here because we already hold tasklist_lock.)
445  *
446  * If it's a zombie, our attachedness prevented normal parent notification
447  * or self-reaping.  Do notification now if it would have happened earlier.
448  * If it should reap itself, return true.
449  *
450  * If it's our own child, there is no notification to do. But if our normal
451  * children self-reap, then this child was prevented by ptrace and we must
452  * reap it now, in that case we must also wake up sub-threads sleeping in
453  * do_wait().
454  */
__ptrace_detach(struct task_struct * tracer,struct task_struct * p)455 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
456 {
457 	bool dead;
458 
459 	__ptrace_unlink(p);
460 
461 	if (p->exit_state != EXIT_ZOMBIE)
462 		return false;
463 
464 	dead = !thread_group_leader(p);
465 
466 	if (!dead && thread_group_empty(p)) {
467 		if (!same_thread_group(p->real_parent, tracer))
468 			dead = do_notify_parent(p, p->exit_signal);
469 		else if (ignoring_children(tracer->sighand)) {
470 			__wake_up_parent(p, tracer);
471 			dead = true;
472 		}
473 	}
474 	/* Mark it as in the process of being reaped. */
475 	if (dead)
476 		p->exit_state = EXIT_DEAD;
477 	return dead;
478 }
479 
ptrace_detach(struct task_struct * child,unsigned int data)480 static int ptrace_detach(struct task_struct *child, unsigned int data)
481 {
482 	if (!valid_signal(data))
483 		return -EIO;
484 
485 	/* Architecture-specific hardware disable .. */
486 	ptrace_disable(child);
487 	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
488 
489 	write_lock_irq(&tasklist_lock);
490 	/*
491 	 * We rely on ptrace_freeze_traced(). It can't be killed and
492 	 * untraced by another thread, it can't be a zombie.
493 	 */
494 	WARN_ON(!child->ptrace || child->exit_state);
495 	/*
496 	 * tasklist_lock avoids the race with wait_task_stopped(), see
497 	 * the comment in ptrace_resume().
498 	 */
499 	child->exit_code = data;
500 	__ptrace_detach(current, child);
501 	write_unlock_irq(&tasklist_lock);
502 
503 	proc_ptrace_connector(child, PTRACE_DETACH);
504 
505 	return 0;
506 }
507 
508 /*
509  * Detach all tasks we were using ptrace on. Called with tasklist held
510  * for writing.
511  */
exit_ptrace(struct task_struct * tracer,struct list_head * dead)512 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
513 {
514 	struct task_struct *p, *n;
515 
516 	list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
517 		if (unlikely(p->ptrace & PT_EXITKILL))
518 			send_sig_info(SIGKILL, SEND_SIG_FORCED, p);
519 
520 		if (__ptrace_detach(tracer, p))
521 			list_add(&p->ptrace_entry, dead);
522 	}
523 }
524 
ptrace_readdata(struct task_struct * tsk,unsigned long src,char __user * dst,int len)525 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
526 {
527 	int copied = 0;
528 
529 	while (len > 0) {
530 		char buf[128];
531 		int this_len, retval;
532 
533 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
534 		retval = access_process_vm(tsk, src, buf, this_len, 0);
535 		if (!retval) {
536 			if (copied)
537 				break;
538 			return -EIO;
539 		}
540 		if (copy_to_user(dst, buf, retval))
541 			return -EFAULT;
542 		copied += retval;
543 		src += retval;
544 		dst += retval;
545 		len -= retval;
546 	}
547 	return copied;
548 }
549 
ptrace_writedata(struct task_struct * tsk,char __user * src,unsigned long dst,int len)550 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
551 {
552 	int copied = 0;
553 
554 	while (len > 0) {
555 		char buf[128];
556 		int this_len, retval;
557 
558 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
559 		if (copy_from_user(buf, src, this_len))
560 			return -EFAULT;
561 		retval = access_process_vm(tsk, dst, buf, this_len, 1);
562 		if (!retval) {
563 			if (copied)
564 				break;
565 			return -EIO;
566 		}
567 		copied += retval;
568 		src += retval;
569 		dst += retval;
570 		len -= retval;
571 	}
572 	return copied;
573 }
574 
ptrace_setoptions(struct task_struct * child,unsigned long data)575 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
576 {
577 	unsigned flags;
578 
579 	if (data & ~(unsigned long)PTRACE_O_MASK)
580 		return -EINVAL;
581 
582 	/* Avoid intermediate state when all opts are cleared */
583 	flags = child->ptrace;
584 	flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
585 	flags |= (data << PT_OPT_FLAG_SHIFT);
586 	child->ptrace = flags;
587 
588 	return 0;
589 }
590 
ptrace_getsiginfo(struct task_struct * child,siginfo_t * info)591 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
592 {
593 	unsigned long flags;
594 	int error = -ESRCH;
595 
596 	if (lock_task_sighand(child, &flags)) {
597 		error = -EINVAL;
598 		if (likely(child->last_siginfo != NULL)) {
599 			*info = *child->last_siginfo;
600 			error = 0;
601 		}
602 		unlock_task_sighand(child, &flags);
603 	}
604 	return error;
605 }
606 
ptrace_setsiginfo(struct task_struct * child,const siginfo_t * info)607 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
608 {
609 	unsigned long flags;
610 	int error = -ESRCH;
611 
612 	if (lock_task_sighand(child, &flags)) {
613 		error = -EINVAL;
614 		if (likely(child->last_siginfo != NULL)) {
615 			*child->last_siginfo = *info;
616 			error = 0;
617 		}
618 		unlock_task_sighand(child, &flags);
619 	}
620 	return error;
621 }
622 
ptrace_peek_siginfo(struct task_struct * child,unsigned long addr,unsigned long data)623 static int ptrace_peek_siginfo(struct task_struct *child,
624 				unsigned long addr,
625 				unsigned long data)
626 {
627 	struct ptrace_peeksiginfo_args arg;
628 	struct sigpending *pending;
629 	struct sigqueue *q;
630 	int ret, i;
631 
632 	ret = copy_from_user(&arg, (void __user *) addr,
633 				sizeof(struct ptrace_peeksiginfo_args));
634 	if (ret)
635 		return -EFAULT;
636 
637 	if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
638 		return -EINVAL; /* unknown flags */
639 
640 	if (arg.nr < 0)
641 		return -EINVAL;
642 
643 	if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
644 		pending = &child->signal->shared_pending;
645 	else
646 		pending = &child->pending;
647 
648 	for (i = 0; i < arg.nr; ) {
649 		siginfo_t info;
650 		s32 off = arg.off + i;
651 
652 		spin_lock_irq(&child->sighand->siglock);
653 		list_for_each_entry(q, &pending->list, list) {
654 			if (!off--) {
655 				copy_siginfo(&info, &q->info);
656 				break;
657 			}
658 		}
659 		spin_unlock_irq(&child->sighand->siglock);
660 
661 		if (off >= 0) /* beyond the end of the list */
662 			break;
663 
664 #ifdef CONFIG_COMPAT
665 		if (unlikely(is_compat_task())) {
666 			compat_siginfo_t __user *uinfo = compat_ptr(data);
667 
668 			if (copy_siginfo_to_user32(uinfo, &info) ||
669 			    __put_user(info.si_code, &uinfo->si_code)) {
670 				ret = -EFAULT;
671 				break;
672 			}
673 
674 		} else
675 #endif
676 		{
677 			siginfo_t __user *uinfo = (siginfo_t __user *) data;
678 
679 			if (copy_siginfo_to_user(uinfo, &info) ||
680 			    __put_user(info.si_code, &uinfo->si_code)) {
681 				ret = -EFAULT;
682 				break;
683 			}
684 		}
685 
686 		data += sizeof(siginfo_t);
687 		i++;
688 
689 		if (signal_pending(current))
690 			break;
691 
692 		cond_resched();
693 	}
694 
695 	if (i > 0)
696 		return i;
697 
698 	return ret;
699 }
700 
701 #ifdef PTRACE_SINGLESTEP
702 #define is_singlestep(request)		((request) == PTRACE_SINGLESTEP)
703 #else
704 #define is_singlestep(request)		0
705 #endif
706 
707 #ifdef PTRACE_SINGLEBLOCK
708 #define is_singleblock(request)		((request) == PTRACE_SINGLEBLOCK)
709 #else
710 #define is_singleblock(request)		0
711 #endif
712 
713 #ifdef PTRACE_SYSEMU
714 #define is_sysemu_singlestep(request)	((request) == PTRACE_SYSEMU_SINGLESTEP)
715 #else
716 #define is_sysemu_singlestep(request)	0
717 #endif
718 
ptrace_resume(struct task_struct * child,long request,unsigned long data)719 static int ptrace_resume(struct task_struct *child, long request,
720 			 unsigned long data)
721 {
722 	bool need_siglock;
723 
724 	if (!valid_signal(data))
725 		return -EIO;
726 
727 	if (request == PTRACE_SYSCALL)
728 		set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
729 	else
730 		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
731 
732 #ifdef TIF_SYSCALL_EMU
733 	if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
734 		set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
735 	else
736 		clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
737 #endif
738 
739 	if (is_singleblock(request)) {
740 		if (unlikely(!arch_has_block_step()))
741 			return -EIO;
742 		user_enable_block_step(child);
743 	} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
744 		if (unlikely(!arch_has_single_step()))
745 			return -EIO;
746 		user_enable_single_step(child);
747 	} else {
748 		user_disable_single_step(child);
749 	}
750 
751 	/*
752 	 * Change ->exit_code and ->state under siglock to avoid the race
753 	 * with wait_task_stopped() in between; a non-zero ->exit_code will
754 	 * wrongly look like another report from tracee.
755 	 *
756 	 * Note that we need siglock even if ->exit_code == data and/or this
757 	 * status was not reported yet, the new status must not be cleared by
758 	 * wait_task_stopped() after resume.
759 	 *
760 	 * If data == 0 we do not care if wait_task_stopped() reports the old
761 	 * status and clears the code too; this can't race with the tracee, it
762 	 * takes siglock after resume.
763 	 */
764 	need_siglock = data && !thread_group_empty(current);
765 	if (need_siglock)
766 		spin_lock_irq(&child->sighand->siglock);
767 	child->exit_code = data;
768 	wake_up_state(child, __TASK_TRACED);
769 	if (need_siglock)
770 		spin_unlock_irq(&child->sighand->siglock);
771 
772 	return 0;
773 }
774 
775 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
776 
777 static const struct user_regset *
find_regset(const struct user_regset_view * view,unsigned int type)778 find_regset(const struct user_regset_view *view, unsigned int type)
779 {
780 	const struct user_regset *regset;
781 	int n;
782 
783 	for (n = 0; n < view->n; ++n) {
784 		regset = view->regsets + n;
785 		if (regset->core_note_type == type)
786 			return regset;
787 	}
788 
789 	return NULL;
790 }
791 
ptrace_regset(struct task_struct * task,int req,unsigned int type,struct iovec * kiov)792 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
793 			 struct iovec *kiov)
794 {
795 	const struct user_regset_view *view = task_user_regset_view(task);
796 	const struct user_regset *regset = find_regset(view, type);
797 	int regset_no;
798 
799 	if (!regset || (kiov->iov_len % regset->size) != 0)
800 		return -EINVAL;
801 
802 	regset_no = regset - view->regsets;
803 	kiov->iov_len = min(kiov->iov_len,
804 			    (__kernel_size_t) (regset->n * regset->size));
805 
806 	if (req == PTRACE_GETREGSET)
807 		return copy_regset_to_user(task, view, regset_no, 0,
808 					   kiov->iov_len, kiov->iov_base);
809 	else
810 		return copy_regset_from_user(task, view, regset_no, 0,
811 					     kiov->iov_len, kiov->iov_base);
812 }
813 
814 /*
815  * This is declared in linux/regset.h and defined in machine-dependent
816  * code.  We put the export here, near the primary machine-neutral use,
817  * to ensure no machine forgets it.
818  */
819 EXPORT_SYMBOL_GPL(task_user_regset_view);
820 #endif
821 
ptrace_request(struct task_struct * child,long request,unsigned long addr,unsigned long data)822 int ptrace_request(struct task_struct *child, long request,
823 		   unsigned long addr, unsigned long data)
824 {
825 	bool seized = child->ptrace & PT_SEIZED;
826 	int ret = -EIO;
827 	siginfo_t siginfo, *si;
828 	void __user *datavp = (void __user *) data;
829 	unsigned long __user *datalp = datavp;
830 	unsigned long flags;
831 
832 	switch (request) {
833 	case PTRACE_PEEKTEXT:
834 	case PTRACE_PEEKDATA:
835 		return generic_ptrace_peekdata(child, addr, data);
836 	case PTRACE_POKETEXT:
837 	case PTRACE_POKEDATA:
838 		return generic_ptrace_pokedata(child, addr, data);
839 
840 #ifdef PTRACE_OLDSETOPTIONS
841 	case PTRACE_OLDSETOPTIONS:
842 #endif
843 	case PTRACE_SETOPTIONS:
844 		ret = ptrace_setoptions(child, data);
845 		break;
846 	case PTRACE_GETEVENTMSG:
847 		ret = put_user(child->ptrace_message, datalp);
848 		break;
849 
850 	case PTRACE_PEEKSIGINFO:
851 		ret = ptrace_peek_siginfo(child, addr, data);
852 		break;
853 
854 	case PTRACE_GETSIGINFO:
855 		ret = ptrace_getsiginfo(child, &siginfo);
856 		if (!ret)
857 			ret = copy_siginfo_to_user(datavp, &siginfo);
858 		break;
859 
860 	case PTRACE_SETSIGINFO:
861 		if (copy_from_user(&siginfo, datavp, sizeof siginfo))
862 			ret = -EFAULT;
863 		else
864 			ret = ptrace_setsiginfo(child, &siginfo);
865 		break;
866 
867 	case PTRACE_GETSIGMASK:
868 		if (addr != sizeof(sigset_t)) {
869 			ret = -EINVAL;
870 			break;
871 		}
872 
873 		if (copy_to_user(datavp, &child->blocked, sizeof(sigset_t)))
874 			ret = -EFAULT;
875 		else
876 			ret = 0;
877 
878 		break;
879 
880 	case PTRACE_SETSIGMASK: {
881 		sigset_t new_set;
882 
883 		if (addr != sizeof(sigset_t)) {
884 			ret = -EINVAL;
885 			break;
886 		}
887 
888 		if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
889 			ret = -EFAULT;
890 			break;
891 		}
892 
893 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
894 
895 		/*
896 		 * Every thread does recalc_sigpending() after resume, so
897 		 * retarget_shared_pending() and recalc_sigpending() are not
898 		 * called here.
899 		 */
900 		spin_lock_irq(&child->sighand->siglock);
901 		child->blocked = new_set;
902 		spin_unlock_irq(&child->sighand->siglock);
903 
904 		ret = 0;
905 		break;
906 	}
907 
908 	case PTRACE_INTERRUPT:
909 		/*
910 		 * Stop tracee without any side-effect on signal or job
911 		 * control.  At least one trap is guaranteed to happen
912 		 * after this request.  If @child is already trapped, the
913 		 * current trap is not disturbed and another trap will
914 		 * happen after the current trap is ended with PTRACE_CONT.
915 		 *
916 		 * The actual trap might not be PTRACE_EVENT_STOP trap but
917 		 * the pending condition is cleared regardless.
918 		 */
919 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
920 			break;
921 
922 		/*
923 		 * INTERRUPT doesn't disturb existing trap sans one
924 		 * exception.  If ptracer issued LISTEN for the current
925 		 * STOP, this INTERRUPT should clear LISTEN and re-trap
926 		 * tracee into STOP.
927 		 */
928 		if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
929 			ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
930 
931 		unlock_task_sighand(child, &flags);
932 		ret = 0;
933 		break;
934 
935 	case PTRACE_LISTEN:
936 		/*
937 		 * Listen for events.  Tracee must be in STOP.  It's not
938 		 * resumed per-se but is not considered to be in TRACED by
939 		 * wait(2) or ptrace(2).  If an async event (e.g. group
940 		 * stop state change) happens, tracee will enter STOP trap
941 		 * again.  Alternatively, ptracer can issue INTERRUPT to
942 		 * finish listening and re-trap tracee into STOP.
943 		 */
944 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
945 			break;
946 
947 		si = child->last_siginfo;
948 		if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
949 			child->jobctl |= JOBCTL_LISTENING;
950 			/*
951 			 * If NOTIFY is set, it means event happened between
952 			 * start of this trap and now.  Trigger re-trap.
953 			 */
954 			if (child->jobctl & JOBCTL_TRAP_NOTIFY)
955 				ptrace_signal_wake_up(child, true);
956 			ret = 0;
957 		}
958 		unlock_task_sighand(child, &flags);
959 		break;
960 
961 	case PTRACE_DETACH:	 /* detach a process that was attached. */
962 		ret = ptrace_detach(child, data);
963 		break;
964 
965 #ifdef CONFIG_BINFMT_ELF_FDPIC
966 	case PTRACE_GETFDPIC: {
967 		struct mm_struct *mm = get_task_mm(child);
968 		unsigned long tmp = 0;
969 
970 		ret = -ESRCH;
971 		if (!mm)
972 			break;
973 
974 		switch (addr) {
975 		case PTRACE_GETFDPIC_EXEC:
976 			tmp = mm->context.exec_fdpic_loadmap;
977 			break;
978 		case PTRACE_GETFDPIC_INTERP:
979 			tmp = mm->context.interp_fdpic_loadmap;
980 			break;
981 		default:
982 			break;
983 		}
984 		mmput(mm);
985 
986 		ret = put_user(tmp, datalp);
987 		break;
988 	}
989 #endif
990 
991 #ifdef PTRACE_SINGLESTEP
992 	case PTRACE_SINGLESTEP:
993 #endif
994 #ifdef PTRACE_SINGLEBLOCK
995 	case PTRACE_SINGLEBLOCK:
996 #endif
997 #ifdef PTRACE_SYSEMU
998 	case PTRACE_SYSEMU:
999 	case PTRACE_SYSEMU_SINGLESTEP:
1000 #endif
1001 	case PTRACE_SYSCALL:
1002 	case PTRACE_CONT:
1003 		return ptrace_resume(child, request, data);
1004 
1005 	case PTRACE_KILL:
1006 		if (child->exit_state)	/* already dead */
1007 			return 0;
1008 		return ptrace_resume(child, request, SIGKILL);
1009 
1010 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1011 	case PTRACE_GETREGSET:
1012 	case PTRACE_SETREGSET: {
1013 		struct iovec kiov;
1014 		struct iovec __user *uiov = datavp;
1015 
1016 		if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1017 			return -EFAULT;
1018 
1019 		if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1020 		    __get_user(kiov.iov_len, &uiov->iov_len))
1021 			return -EFAULT;
1022 
1023 		ret = ptrace_regset(child, request, addr, &kiov);
1024 		if (!ret)
1025 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1026 		break;
1027 	}
1028 #endif
1029 	default:
1030 		break;
1031 	}
1032 
1033 	return ret;
1034 }
1035 
ptrace_get_task_struct(pid_t pid)1036 static struct task_struct *ptrace_get_task_struct(pid_t pid)
1037 {
1038 	struct task_struct *child;
1039 
1040 	rcu_read_lock();
1041 	child = find_task_by_vpid(pid);
1042 	if (child)
1043 		get_task_struct(child);
1044 	rcu_read_unlock();
1045 
1046 	if (!child)
1047 		return ERR_PTR(-ESRCH);
1048 	return child;
1049 }
1050 
1051 #ifndef arch_ptrace_attach
1052 #define arch_ptrace_attach(child)	do { } while (0)
1053 #endif
1054 
SYSCALL_DEFINE4(ptrace,long,request,long,pid,unsigned long,addr,unsigned long,data)1055 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1056 		unsigned long, data)
1057 {
1058 	struct task_struct *child;
1059 	long ret;
1060 
1061 	if (request == PTRACE_TRACEME) {
1062 		ret = ptrace_traceme();
1063 		if (!ret)
1064 			arch_ptrace_attach(current);
1065 		goto out;
1066 	}
1067 
1068 	child = ptrace_get_task_struct(pid);
1069 	if (IS_ERR(child)) {
1070 		ret = PTR_ERR(child);
1071 		goto out;
1072 	}
1073 
1074 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1075 		ret = ptrace_attach(child, request, addr, data);
1076 		/*
1077 		 * Some architectures need to do book-keeping after
1078 		 * a ptrace attach.
1079 		 */
1080 		if (!ret)
1081 			arch_ptrace_attach(child);
1082 		goto out_put_task_struct;
1083 	}
1084 
1085 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1086 				  request == PTRACE_INTERRUPT);
1087 	if (ret < 0)
1088 		goto out_put_task_struct;
1089 
1090 	ret = arch_ptrace(child, request, addr, data);
1091 	if (ret || request != PTRACE_DETACH)
1092 		ptrace_unfreeze_traced(child);
1093 
1094  out_put_task_struct:
1095 	put_task_struct(child);
1096  out:
1097 	return ret;
1098 }
1099 
generic_ptrace_peekdata(struct task_struct * tsk,unsigned long addr,unsigned long data)1100 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1101 			    unsigned long data)
1102 {
1103 	unsigned long tmp;
1104 	int copied;
1105 
1106 	copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
1107 	if (copied != sizeof(tmp))
1108 		return -EIO;
1109 	return put_user(tmp, (unsigned long __user *)data);
1110 }
1111 
generic_ptrace_pokedata(struct task_struct * tsk,unsigned long addr,unsigned long data)1112 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1113 			    unsigned long data)
1114 {
1115 	int copied;
1116 
1117 	copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
1118 	return (copied == sizeof(data)) ? 0 : -EIO;
1119 }
1120 
1121 #if defined CONFIG_COMPAT
1122 
compat_ptrace_request(struct task_struct * child,compat_long_t request,compat_ulong_t addr,compat_ulong_t data)1123 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1124 			  compat_ulong_t addr, compat_ulong_t data)
1125 {
1126 	compat_ulong_t __user *datap = compat_ptr(data);
1127 	compat_ulong_t word;
1128 	siginfo_t siginfo;
1129 	int ret;
1130 
1131 	switch (request) {
1132 	case PTRACE_PEEKTEXT:
1133 	case PTRACE_PEEKDATA:
1134 		ret = access_process_vm(child, addr, &word, sizeof(word), 0);
1135 		if (ret != sizeof(word))
1136 			ret = -EIO;
1137 		else
1138 			ret = put_user(word, datap);
1139 		break;
1140 
1141 	case PTRACE_POKETEXT:
1142 	case PTRACE_POKEDATA:
1143 		ret = access_process_vm(child, addr, &data, sizeof(data), 1);
1144 		ret = (ret != sizeof(data) ? -EIO : 0);
1145 		break;
1146 
1147 	case PTRACE_GETEVENTMSG:
1148 		ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1149 		break;
1150 
1151 	case PTRACE_GETSIGINFO:
1152 		ret = ptrace_getsiginfo(child, &siginfo);
1153 		if (!ret)
1154 			ret = copy_siginfo_to_user32(
1155 				(struct compat_siginfo __user *) datap,
1156 				&siginfo);
1157 		break;
1158 
1159 	case PTRACE_SETSIGINFO:
1160 		memset(&siginfo, 0, sizeof siginfo);
1161 		if (copy_siginfo_from_user32(
1162 			    &siginfo, (struct compat_siginfo __user *) datap))
1163 			ret = -EFAULT;
1164 		else
1165 			ret = ptrace_setsiginfo(child, &siginfo);
1166 		break;
1167 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1168 	case PTRACE_GETREGSET:
1169 	case PTRACE_SETREGSET:
1170 	{
1171 		struct iovec kiov;
1172 		struct compat_iovec __user *uiov =
1173 			(struct compat_iovec __user *) datap;
1174 		compat_uptr_t ptr;
1175 		compat_size_t len;
1176 
1177 		if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1178 			return -EFAULT;
1179 
1180 		if (__get_user(ptr, &uiov->iov_base) ||
1181 		    __get_user(len, &uiov->iov_len))
1182 			return -EFAULT;
1183 
1184 		kiov.iov_base = compat_ptr(ptr);
1185 		kiov.iov_len = len;
1186 
1187 		ret = ptrace_regset(child, request, addr, &kiov);
1188 		if (!ret)
1189 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1190 		break;
1191 	}
1192 #endif
1193 
1194 	default:
1195 		ret = ptrace_request(child, request, addr, data);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
COMPAT_SYSCALL_DEFINE4(ptrace,compat_long_t,request,compat_long_t,pid,compat_long_t,addr,compat_long_t,data)1201 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1202 		       compat_long_t, addr, compat_long_t, data)
1203 {
1204 	struct task_struct *child;
1205 	long ret;
1206 
1207 	if (request == PTRACE_TRACEME) {
1208 		ret = ptrace_traceme();
1209 		goto out;
1210 	}
1211 
1212 	child = ptrace_get_task_struct(pid);
1213 	if (IS_ERR(child)) {
1214 		ret = PTR_ERR(child);
1215 		goto out;
1216 	}
1217 
1218 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1219 		ret = ptrace_attach(child, request, addr, data);
1220 		/*
1221 		 * Some architectures need to do book-keeping after
1222 		 * a ptrace attach.
1223 		 */
1224 		if (!ret)
1225 			arch_ptrace_attach(child);
1226 		goto out_put_task_struct;
1227 	}
1228 
1229 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1230 				  request == PTRACE_INTERRUPT);
1231 	if (!ret) {
1232 		ret = compat_arch_ptrace(child, request, addr, data);
1233 		if (ret || request != PTRACE_DETACH)
1234 			ptrace_unfreeze_traced(child);
1235 	}
1236 
1237  out_put_task_struct:
1238 	put_task_struct(child);
1239  out:
1240 	return ret;
1241 }
1242 #endif	/* CONFIG_COMPAT */
1243