1/*
2 *  linux/kernel/exit.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/freezer.h>
24#include <linux/binfmts.h>
25#include <linux/nsproxy.h>
26#include <linux/pid_namespace.h>
27#include <linux/ptrace.h>
28#include <linux/profile.h>
29#include <linux/mount.h>
30#include <linux/proc_fs.h>
31#include <linux/kthread.h>
32#include <linux/mempolicy.h>
33#include <linux/taskstats_kern.h>
34#include <linux/delayacct.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56
57#include <asm/uaccess.h>
58#include <asm/unistd.h>
59#include <asm/pgtable.h>
60#include <asm/mmu_context.h>
61
62static void exit_mm(struct task_struct *tsk);
63
64static void __unhash_process(struct task_struct *p, bool group_dead)
65{
66	nr_threads--;
67	detach_pid(p, PIDTYPE_PID);
68	if (group_dead) {
69		detach_pid(p, PIDTYPE_PGID);
70		detach_pid(p, PIDTYPE_SID);
71
72		list_del_rcu(&p->tasks);
73		list_del_init(&p->sibling);
74		__this_cpu_dec(process_counts);
75	}
76	list_del_rcu(&p->thread_group);
77	list_del_rcu(&p->thread_node);
78}
79
80/*
81 * This function expects the tasklist_lock write-locked.
82 */
83static void __exit_signal(struct task_struct *tsk)
84{
85	struct signal_struct *sig = tsk->signal;
86	bool group_dead = thread_group_leader(tsk);
87	struct sighand_struct *sighand;
88	struct tty_struct *uninitialized_var(tty);
89	cputime_t utime, stime;
90
91	sighand = rcu_dereference_check(tsk->sighand,
92					lockdep_tasklist_lock_is_held());
93	spin_lock(&sighand->siglock);
94
95	posix_cpu_timers_exit(tsk);
96	if (group_dead) {
97		posix_cpu_timers_exit_group(tsk);
98		tty = sig->tty;
99		sig->tty = NULL;
100	} else {
101		/*
102		 * This can only happen if the caller is de_thread().
103		 * FIXME: this is the temporary hack, we should teach
104		 * posix-cpu-timers to handle this case correctly.
105		 */
106		if (unlikely(has_group_leader_pid(tsk)))
107			posix_cpu_timers_exit_group(tsk);
108
109		/*
110		 * If there is any task waiting for the group exit
111		 * then notify it:
112		 */
113		if (sig->notify_count > 0 && !--sig->notify_count)
114			wake_up_process(sig->group_exit_task);
115
116		if (tsk == sig->curr_target)
117			sig->curr_target = next_thread(tsk);
118	}
119
120	/*
121	 * Accumulate here the counters for all threads as they die. We could
122	 * skip the group leader because it is the last user of signal_struct,
123	 * but we want to avoid the race with thread_group_cputime() which can
124	 * see the empty ->thread_head list.
125	 */
126	task_cputime(tsk, &utime, &stime);
127	write_seqlock(&sig->stats_lock);
128	sig->utime += utime;
129	sig->stime += stime;
130	sig->gtime += task_gtime(tsk);
131	sig->min_flt += tsk->min_flt;
132	sig->maj_flt += tsk->maj_flt;
133	sig->nvcsw += tsk->nvcsw;
134	sig->nivcsw += tsk->nivcsw;
135	sig->inblock += task_io_get_inblock(tsk);
136	sig->oublock += task_io_get_oublock(tsk);
137	task_io_accounting_add(&sig->ioac, &tsk->ioac);
138	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
139	sig->nr_threads--;
140	__unhash_process(tsk, group_dead);
141	write_sequnlock(&sig->stats_lock);
142
143	/*
144	 * Do this under ->siglock, we can race with another thread
145	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
146	 */
147	flush_sigqueue(&tsk->pending);
148	tsk->sighand = NULL;
149	spin_unlock(&sighand->siglock);
150
151	__cleanup_sighand(sighand);
152	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
153	if (group_dead) {
154		flush_sigqueue(&sig->shared_pending);
155		tty_kref_put(tty);
156	}
157}
158
159static void delayed_put_task_struct(struct rcu_head *rhp)
160{
161	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
162
163	perf_event_delayed_put(tsk);
164	trace_sched_process_free(tsk);
165	put_task_struct(tsk);
166}
167
168
169void release_task(struct task_struct *p)
170{
171	struct task_struct *leader;
172	int zap_leader;
173repeat:
174	/* don't need to get the RCU readlock here - the process is dead and
175	 * can't be modifying its own credentials. But shut RCU-lockdep up */
176	rcu_read_lock();
177	atomic_dec(&__task_cred(p)->user->processes);
178	rcu_read_unlock();
179
180	proc_flush_task(p);
181
182	write_lock_irq(&tasklist_lock);
183	ptrace_release_task(p);
184	__exit_signal(p);
185
186	/*
187	 * If we are the last non-leader member of the thread
188	 * group, and the leader is zombie, then notify the
189	 * group leader's parent process. (if it wants notification.)
190	 */
191	zap_leader = 0;
192	leader = p->group_leader;
193	if (leader != p && thread_group_empty(leader)
194			&& leader->exit_state == EXIT_ZOMBIE) {
195		/*
196		 * If we were the last child thread and the leader has
197		 * exited already, and the leader's parent ignores SIGCHLD,
198		 * then we are the one who should release the leader.
199		 */
200		zap_leader = do_notify_parent(leader, leader->exit_signal);
201		if (zap_leader)
202			leader->exit_state = EXIT_DEAD;
203	}
204
205	write_unlock_irq(&tasklist_lock);
206	release_thread(p);
207	call_rcu(&p->rcu, delayed_put_task_struct);
208
209	p = leader;
210	if (unlikely(zap_leader))
211		goto repeat;
212}
213
214/*
215 * Determine if a process group is "orphaned", according to the POSIX
216 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
217 * by terminal-generated stop signals.  Newly orphaned process groups are
218 * to receive a SIGHUP and a SIGCONT.
219 *
220 * "I ask you, have you ever known what it is to be an orphan?"
221 */
222static int will_become_orphaned_pgrp(struct pid *pgrp,
223					struct task_struct *ignored_task)
224{
225	struct task_struct *p;
226
227	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
228		if ((p == ignored_task) ||
229		    (p->exit_state && thread_group_empty(p)) ||
230		    is_global_init(p->real_parent))
231			continue;
232
233		if (task_pgrp(p->real_parent) != pgrp &&
234		    task_session(p->real_parent) == task_session(p))
235			return 0;
236	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
237
238	return 1;
239}
240
241int is_current_pgrp_orphaned(void)
242{
243	int retval;
244
245	read_lock(&tasklist_lock);
246	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
247	read_unlock(&tasklist_lock);
248
249	return retval;
250}
251
252static bool has_stopped_jobs(struct pid *pgrp)
253{
254	struct task_struct *p;
255
256	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257		if (p->signal->flags & SIGNAL_STOP_STOPPED)
258			return true;
259	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260
261	return false;
262}
263
264/*
265 * Check to see if any process groups have become orphaned as
266 * a result of our exiting, and if they have any stopped jobs,
267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
268 */
269static void
270kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
271{
272	struct pid *pgrp = task_pgrp(tsk);
273	struct task_struct *ignored_task = tsk;
274
275	if (!parent)
276		/* exit: our father is in a different pgrp than
277		 * we are and we were the only connection outside.
278		 */
279		parent = tsk->real_parent;
280	else
281		/* reparent: our child is in a different pgrp than
282		 * we are, and it was the only connection outside.
283		 */
284		ignored_task = NULL;
285
286	if (task_pgrp(parent) != pgrp &&
287	    task_session(parent) == task_session(tsk) &&
288	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
289	    has_stopped_jobs(pgrp)) {
290		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
291		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
292	}
293}
294
295#ifdef CONFIG_MEMCG
296/*
297 * A task is exiting.   If it owned this mm, find a new owner for the mm.
298 */
299void mm_update_next_owner(struct mm_struct *mm)
300{
301	struct task_struct *c, *g, *p = current;
302
303retry:
304	/*
305	 * If the exiting or execing task is not the owner, it's
306	 * someone else's problem.
307	 */
308	if (mm->owner != p)
309		return;
310	/*
311	 * The current owner is exiting/execing and there are no other
312	 * candidates.  Do not leave the mm pointing to a possibly
313	 * freed task structure.
314	 */
315	if (atomic_read(&mm->mm_users) <= 1) {
316		mm->owner = NULL;
317		return;
318	}
319
320	read_lock(&tasklist_lock);
321	/*
322	 * Search in the children
323	 */
324	list_for_each_entry(c, &p->children, sibling) {
325		if (c->mm == mm)
326			goto assign_new_owner;
327	}
328
329	/*
330	 * Search in the siblings
331	 */
332	list_for_each_entry(c, &p->real_parent->children, sibling) {
333		if (c->mm == mm)
334			goto assign_new_owner;
335	}
336
337	/*
338	 * Search through everything else, we should not get here often.
339	 */
340	for_each_process(g) {
341		if (g->flags & PF_KTHREAD)
342			continue;
343		for_each_thread(g, c) {
344			if (c->mm == mm)
345				goto assign_new_owner;
346			if (c->mm)
347				break;
348		}
349	}
350	read_unlock(&tasklist_lock);
351	/*
352	 * We found no owner yet mm_users > 1: this implies that we are
353	 * most likely racing with swapoff (try_to_unuse()) or /proc or
354	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
355	 */
356	mm->owner = NULL;
357	return;
358
359assign_new_owner:
360	BUG_ON(c == p);
361	get_task_struct(c);
362	/*
363	 * The task_lock protects c->mm from changing.
364	 * We always want mm->owner->mm == mm
365	 */
366	task_lock(c);
367	/*
368	 * Delay read_unlock() till we have the task_lock()
369	 * to ensure that c does not slip away underneath us
370	 */
371	read_unlock(&tasklist_lock);
372	if (c->mm != mm) {
373		task_unlock(c);
374		put_task_struct(c);
375		goto retry;
376	}
377	mm->owner = c;
378	task_unlock(c);
379	put_task_struct(c);
380}
381#endif /* CONFIG_MEMCG */
382
383/*
384 * Turn us into a lazy TLB process if we
385 * aren't already..
386 */
387static void exit_mm(struct task_struct *tsk)
388{
389	struct mm_struct *mm = tsk->mm;
390	struct core_state *core_state;
391
392	mm_release(tsk, mm);
393	if (!mm)
394		return;
395	sync_mm_rss(mm);
396	/*
397	 * Serialize with any possible pending coredump.
398	 * We must hold mmap_sem around checking core_state
399	 * and clearing tsk->mm.  The core-inducing thread
400	 * will increment ->nr_threads for each thread in the
401	 * group with ->mm != NULL.
402	 */
403	down_read(&mm->mmap_sem);
404	core_state = mm->core_state;
405	if (core_state) {
406		struct core_thread self;
407
408		up_read(&mm->mmap_sem);
409
410		self.task = tsk;
411		self.next = xchg(&core_state->dumper.next, &self);
412		/*
413		 * Implies mb(), the result of xchg() must be visible
414		 * to core_state->dumper.
415		 */
416		if (atomic_dec_and_test(&core_state->nr_threads))
417			complete(&core_state->startup);
418
419		for (;;) {
420			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
421			if (!self.task) /* see coredump_finish() */
422				break;
423			freezable_schedule();
424		}
425		__set_task_state(tsk, TASK_RUNNING);
426		down_read(&mm->mmap_sem);
427	}
428	atomic_inc(&mm->mm_count);
429	BUG_ON(mm != tsk->active_mm);
430	/* more a memory barrier than a real lock */
431	task_lock(tsk);
432	tsk->mm = NULL;
433	up_read(&mm->mmap_sem);
434	enter_lazy_tlb(mm, current);
435	task_unlock(tsk);
436	mm_update_next_owner(mm);
437	mmput(mm);
438	if (test_thread_flag(TIF_MEMDIE))
439		unmark_oom_victim();
440}
441
442static struct task_struct *find_alive_thread(struct task_struct *p)
443{
444	struct task_struct *t;
445
446	for_each_thread(p, t) {
447		if (!(t->flags & PF_EXITING))
448			return t;
449	}
450	return NULL;
451}
452
453static struct task_struct *find_child_reaper(struct task_struct *father)
454	__releases(&tasklist_lock)
455	__acquires(&tasklist_lock)
456{
457	struct pid_namespace *pid_ns = task_active_pid_ns(father);
458	struct task_struct *reaper = pid_ns->child_reaper;
459
460	if (likely(reaper != father))
461		return reaper;
462
463	reaper = find_alive_thread(father);
464	if (reaper) {
465		pid_ns->child_reaper = reaper;
466		return reaper;
467	}
468
469	write_unlock_irq(&tasklist_lock);
470	if (unlikely(pid_ns == &init_pid_ns)) {
471		panic("Attempted to kill init! exitcode=0x%08x\n",
472			father->signal->group_exit_code ?: father->exit_code);
473	}
474	zap_pid_ns_processes(pid_ns);
475	write_lock_irq(&tasklist_lock);
476
477	return father;
478}
479
480/*
481 * When we die, we re-parent all our children, and try to:
482 * 1. give them to another thread in our thread group, if such a member exists
483 * 2. give it to the first ancestor process which prctl'd itself as a
484 *    child_subreaper for its children (like a service manager)
485 * 3. give it to the init process (PID 1) in our pid namespace
486 */
487static struct task_struct *find_new_reaper(struct task_struct *father,
488					   struct task_struct *child_reaper)
489{
490	struct task_struct *thread, *reaper;
491
492	thread = find_alive_thread(father);
493	if (thread)
494		return thread;
495
496	if (father->signal->has_child_subreaper) {
497		/*
498		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
499		 * We start from father to ensure we can not look into another
500		 * namespace, this is safe because all its threads are dead.
501		 */
502		for (reaper = father;
503		     !same_thread_group(reaper, child_reaper);
504		     reaper = reaper->real_parent) {
505			/* call_usermodehelper() descendants need this check */
506			if (reaper == &init_task)
507				break;
508			if (!reaper->signal->is_child_subreaper)
509				continue;
510			thread = find_alive_thread(reaper);
511			if (thread)
512				return thread;
513		}
514	}
515
516	return child_reaper;
517}
518
519/*
520* Any that need to be release_task'd are put on the @dead list.
521 */
522static void reparent_leader(struct task_struct *father, struct task_struct *p,
523				struct list_head *dead)
524{
525	if (unlikely(p->exit_state == EXIT_DEAD))
526		return;
527
528	/* We don't want people slaying init. */
529	p->exit_signal = SIGCHLD;
530
531	/* If it has exited notify the new parent about this child's death. */
532	if (!p->ptrace &&
533	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
534		if (do_notify_parent(p, p->exit_signal)) {
535			p->exit_state = EXIT_DEAD;
536			list_add(&p->ptrace_entry, dead);
537		}
538	}
539
540	kill_orphaned_pgrp(p, father);
541}
542
543/*
544 * This does two things:
545 *
546 * A.  Make init inherit all the child processes
547 * B.  Check to see if any process groups have become orphaned
548 *	as a result of our exiting, and if they have any stopped
549 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
550 */
551static void forget_original_parent(struct task_struct *father,
552					struct list_head *dead)
553{
554	struct task_struct *p, *t, *reaper;
555
556	if (unlikely(!list_empty(&father->ptraced)))
557		exit_ptrace(father, dead);
558
559	/* Can drop and reacquire tasklist_lock */
560	reaper = find_child_reaper(father);
561	if (list_empty(&father->children))
562		return;
563
564	reaper = find_new_reaper(father, reaper);
565	list_for_each_entry(p, &father->children, sibling) {
566		for_each_thread(p, t) {
567			t->real_parent = reaper;
568			BUG_ON((!t->ptrace) != (t->parent == father));
569			if (likely(!t->ptrace))
570				t->parent = t->real_parent;
571			if (t->pdeath_signal)
572				group_send_sig_info(t->pdeath_signal,
573						    SEND_SIG_NOINFO, t);
574		}
575		/*
576		 * If this is a threaded reparent there is no need to
577		 * notify anyone anything has happened.
578		 */
579		if (!same_thread_group(reaper, father))
580			reparent_leader(father, p, dead);
581	}
582	list_splice_tail_init(&father->children, &reaper->children);
583}
584
585/*
586 * Send signals to all our closest relatives so that they know
587 * to properly mourn us..
588 */
589static void exit_notify(struct task_struct *tsk, int group_dead)
590{
591	bool autoreap;
592	struct task_struct *p, *n;
593	LIST_HEAD(dead);
594
595	write_lock_irq(&tasklist_lock);
596	forget_original_parent(tsk, &dead);
597
598	if (group_dead)
599		kill_orphaned_pgrp(tsk->group_leader, NULL);
600
601	if (unlikely(tsk->ptrace)) {
602		int sig = thread_group_leader(tsk) &&
603				thread_group_empty(tsk) &&
604				!ptrace_reparented(tsk) ?
605			tsk->exit_signal : SIGCHLD;
606		autoreap = do_notify_parent(tsk, sig);
607	} else if (thread_group_leader(tsk)) {
608		autoreap = thread_group_empty(tsk) &&
609			do_notify_parent(tsk, tsk->exit_signal);
610	} else {
611		autoreap = true;
612	}
613
614	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
615	if (tsk->exit_state == EXIT_DEAD)
616		list_add(&tsk->ptrace_entry, &dead);
617
618	/* mt-exec, de_thread() is waiting for group leader */
619	if (unlikely(tsk->signal->notify_count < 0))
620		wake_up_process(tsk->signal->group_exit_task);
621	write_unlock_irq(&tasklist_lock);
622
623	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
624		list_del_init(&p->ptrace_entry);
625		release_task(p);
626	}
627}
628
629#ifdef CONFIG_DEBUG_STACK_USAGE
630static void check_stack_usage(void)
631{
632	static DEFINE_SPINLOCK(low_water_lock);
633	static int lowest_to_date = THREAD_SIZE;
634	unsigned long free;
635
636	free = stack_not_used(current);
637
638	if (free >= lowest_to_date)
639		return;
640
641	spin_lock(&low_water_lock);
642	if (free < lowest_to_date) {
643		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
644			current->comm, task_pid_nr(current), free);
645		lowest_to_date = free;
646	}
647	spin_unlock(&low_water_lock);
648}
649#else
650static inline void check_stack_usage(void) {}
651#endif
652
653void do_exit(long code)
654{
655	struct task_struct *tsk = current;
656	int group_dead;
657	TASKS_RCU(int tasks_rcu_i);
658
659	profile_task_exit(tsk);
660
661	WARN_ON(blk_needs_flush_plug(tsk));
662
663	if (unlikely(in_interrupt()))
664		panic("Aiee, killing interrupt handler!");
665	if (unlikely(!tsk->pid))
666		panic("Attempted to kill the idle task!");
667
668	/*
669	 * If do_exit is called because this processes oopsed, it's possible
670	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
671	 * continuing. Amongst other possible reasons, this is to prevent
672	 * mm_release()->clear_child_tid() from writing to a user-controlled
673	 * kernel address.
674	 */
675	set_fs(USER_DS);
676
677	ptrace_event(PTRACE_EVENT_EXIT, code);
678
679	validate_creds_for_do_exit(tsk);
680
681	/*
682	 * We're taking recursive faults here in do_exit. Safest is to just
683	 * leave this task alone and wait for reboot.
684	 */
685	if (unlikely(tsk->flags & PF_EXITING)) {
686		pr_alert("Fixing recursive fault but reboot is needed!\n");
687		/*
688		 * We can do this unlocked here. The futex code uses
689		 * this flag just to verify whether the pi state
690		 * cleanup has been done or not. In the worst case it
691		 * loops once more. We pretend that the cleanup was
692		 * done as there is no way to return. Either the
693		 * OWNER_DIED bit is set by now or we push the blocked
694		 * task into the wait for ever nirwana as well.
695		 */
696		tsk->flags |= PF_EXITPIDONE;
697		set_current_state(TASK_UNINTERRUPTIBLE);
698		schedule();
699	}
700
701	exit_signals(tsk);  /* sets PF_EXITING */
702	/*
703	 * tsk->flags are checked in the futex code to protect against
704	 * an exiting task cleaning up the robust pi futexes.
705	 */
706	smp_mb();
707	raw_spin_unlock_wait(&tsk->pi_lock);
708
709	if (unlikely(in_atomic()))
710		pr_info("note: %s[%d] exited with preempt_count %d\n",
711			current->comm, task_pid_nr(current),
712			preempt_count());
713
714	acct_update_integrals(tsk);
715	/* sync mm's RSS info before statistics gathering */
716	if (tsk->mm)
717		sync_mm_rss(tsk->mm);
718	group_dead = atomic_dec_and_test(&tsk->signal->live);
719	if (group_dead) {
720		hrtimer_cancel(&tsk->signal->real_timer);
721		exit_itimers(tsk->signal);
722		if (tsk->mm)
723			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
724	}
725	acct_collect(code, group_dead);
726	if (group_dead)
727		tty_audit_exit();
728	audit_free(tsk);
729
730	tsk->exit_code = code;
731	taskstats_exit(tsk, group_dead);
732
733	exit_mm(tsk);
734
735	if (group_dead)
736		acct_process();
737	trace_sched_process_exit(tsk);
738
739	exit_sem(tsk);
740	exit_shm(tsk);
741	exit_files(tsk);
742	exit_fs(tsk);
743	if (group_dead)
744		disassociate_ctty(1);
745	exit_task_namespaces(tsk);
746	exit_task_work(tsk);
747	exit_thread();
748
749	/*
750	 * Flush inherited counters to the parent - before the parent
751	 * gets woken up by child-exit notifications.
752	 *
753	 * because of cgroup mode, must be called before cgroup_exit()
754	 */
755	perf_event_exit_task(tsk);
756
757	cgroup_exit(tsk);
758
759	/*
760	 * FIXME: do that only when needed, using sched_exit tracepoint
761	 */
762	flush_ptrace_hw_breakpoint(tsk);
763
764	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
765	exit_notify(tsk, group_dead);
766	proc_exit_connector(tsk);
767#ifdef CONFIG_NUMA
768	task_lock(tsk);
769	mpol_put(tsk->mempolicy);
770	tsk->mempolicy = NULL;
771	task_unlock(tsk);
772#endif
773#ifdef CONFIG_FUTEX
774	if (unlikely(current->pi_state_cache))
775		kfree(current->pi_state_cache);
776#endif
777	/*
778	 * Make sure we are holding no locks:
779	 */
780	debug_check_no_locks_held();
781	/*
782	 * We can do this unlocked here. The futex code uses this flag
783	 * just to verify whether the pi state cleanup has been done
784	 * or not. In the worst case it loops once more.
785	 */
786	tsk->flags |= PF_EXITPIDONE;
787
788	if (tsk->io_context)
789		exit_io_context(tsk);
790
791	if (tsk->splice_pipe)
792		free_pipe_info(tsk->splice_pipe);
793
794	if (tsk->task_frag.page)
795		put_page(tsk->task_frag.page);
796
797	validate_creds_for_do_exit(tsk);
798
799	check_stack_usage();
800	preempt_disable();
801	if (tsk->nr_dirtied)
802		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
803	exit_rcu();
804	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
805
806	/*
807	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
808	 * when the following two conditions become true.
809	 *   - There is race condition of mmap_sem (It is acquired by
810	 *     exit_mm()), and
811	 *   - SMI occurs before setting TASK_RUNINNG.
812	 *     (or hypervisor of virtual machine switches to other guest)
813	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
814	 *
815	 * To avoid it, we have to wait for releasing tsk->pi_lock which
816	 * is held by try_to_wake_up()
817	 */
818	smp_mb();
819	raw_spin_unlock_wait(&tsk->pi_lock);
820
821	/* causes final put_task_struct in finish_task_switch(). */
822	tsk->state = TASK_DEAD;
823	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
824	schedule();
825	BUG();
826	/* Avoid "noreturn function does return".  */
827	for (;;)
828		cpu_relax();	/* For when BUG is null */
829}
830EXPORT_SYMBOL_GPL(do_exit);
831
832void complete_and_exit(struct completion *comp, long code)
833{
834	if (comp)
835		complete(comp);
836
837	do_exit(code);
838}
839EXPORT_SYMBOL(complete_and_exit);
840
841SYSCALL_DEFINE1(exit, int, error_code)
842{
843	do_exit((error_code&0xff)<<8);
844}
845
846/*
847 * Take down every thread in the group.  This is called by fatal signals
848 * as well as by sys_exit_group (below).
849 */
850void
851do_group_exit(int exit_code)
852{
853	struct signal_struct *sig = current->signal;
854
855	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
856
857	if (signal_group_exit(sig))
858		exit_code = sig->group_exit_code;
859	else if (!thread_group_empty(current)) {
860		struct sighand_struct *const sighand = current->sighand;
861
862		spin_lock_irq(&sighand->siglock);
863		if (signal_group_exit(sig))
864			/* Another thread got here before we took the lock.  */
865			exit_code = sig->group_exit_code;
866		else {
867			sig->group_exit_code = exit_code;
868			sig->flags = SIGNAL_GROUP_EXIT;
869			zap_other_threads(current);
870		}
871		spin_unlock_irq(&sighand->siglock);
872	}
873
874	do_exit(exit_code);
875	/* NOTREACHED */
876}
877
878/*
879 * this kills every thread in the thread group. Note that any externally
880 * wait4()-ing process will get the correct exit code - even if this
881 * thread is not the thread group leader.
882 */
883SYSCALL_DEFINE1(exit_group, int, error_code)
884{
885	do_group_exit((error_code & 0xff) << 8);
886	/* NOTREACHED */
887	return 0;
888}
889
890struct wait_opts {
891	enum pid_type		wo_type;
892	int			wo_flags;
893	struct pid		*wo_pid;
894
895	struct siginfo __user	*wo_info;
896	int __user		*wo_stat;
897	struct rusage __user	*wo_rusage;
898
899	wait_queue_t		child_wait;
900	int			notask_error;
901};
902
903static inline
904struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
905{
906	if (type != PIDTYPE_PID)
907		task = task->group_leader;
908	return task->pids[type].pid;
909}
910
911static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
912{
913	return	wo->wo_type == PIDTYPE_MAX ||
914		task_pid_type(p, wo->wo_type) == wo->wo_pid;
915}
916
917static int
918eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
919{
920	if (!eligible_pid(wo, p))
921		return 0;
922
923	/*
924	 * Wait for all children (clone and not) if __WALL is set or
925	 * if it is traced by us.
926	 */
927	if (ptrace || (wo->wo_flags & __WALL))
928		return 1;
929
930	/*
931	 * Otherwise, wait for clone children *only* if __WCLONE is set;
932	 * otherwise, wait for non-clone children *only*.
933	 *
934	 * Note: a "clone" child here is one that reports to its parent
935	 * using a signal other than SIGCHLD, or a non-leader thread which
936	 * we can only see if it is traced by us.
937	 */
938	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
939		return 0;
940
941	return 1;
942}
943
944static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
945				pid_t pid, uid_t uid, int why, int status)
946{
947	struct siginfo __user *infop;
948	int retval = wo->wo_rusage
949		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
950
951	put_task_struct(p);
952	infop = wo->wo_info;
953	if (infop) {
954		if (!retval)
955			retval = put_user(SIGCHLD, &infop->si_signo);
956		if (!retval)
957			retval = put_user(0, &infop->si_errno);
958		if (!retval)
959			retval = put_user((short)why, &infop->si_code);
960		if (!retval)
961			retval = put_user(pid, &infop->si_pid);
962		if (!retval)
963			retval = put_user(uid, &infop->si_uid);
964		if (!retval)
965			retval = put_user(status, &infop->si_status);
966	}
967	if (!retval)
968		retval = pid;
969	return retval;
970}
971
972/*
973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
974 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
975 * the lock and this task is uninteresting.  If we return nonzero, we have
976 * released the lock and the system call should return.
977 */
978static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979{
980	int state, retval, status;
981	pid_t pid = task_pid_vnr(p);
982	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
983	struct siginfo __user *infop;
984
985	if (!likely(wo->wo_flags & WEXITED))
986		return 0;
987
988	if (unlikely(wo->wo_flags & WNOWAIT)) {
989		int exit_code = p->exit_code;
990		int why;
991
992		get_task_struct(p);
993		read_unlock(&tasklist_lock);
994		sched_annotate_sleep();
995
996		if ((exit_code & 0x7f) == 0) {
997			why = CLD_EXITED;
998			status = exit_code >> 8;
999		} else {
1000			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1001			status = exit_code & 0x7f;
1002		}
1003		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1004	}
1005	/*
1006	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1007	 */
1008	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1009		EXIT_TRACE : EXIT_DEAD;
1010	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011		return 0;
1012	/*
1013	 * We own this thread, nobody else can reap it.
1014	 */
1015	read_unlock(&tasklist_lock);
1016	sched_annotate_sleep();
1017
1018	/*
1019	 * Check thread_group_leader() to exclude the traced sub-threads.
1020	 */
1021	if (state == EXIT_DEAD && thread_group_leader(p)) {
1022		struct signal_struct *sig = p->signal;
1023		struct signal_struct *psig = current->signal;
1024		unsigned long maxrss;
1025		cputime_t tgutime, tgstime;
1026
1027		/*
1028		 * The resource counters for the group leader are in its
1029		 * own task_struct.  Those for dead threads in the group
1030		 * are in its signal_struct, as are those for the child
1031		 * processes it has previously reaped.  All these
1032		 * accumulate in the parent's signal_struct c* fields.
1033		 *
1034		 * We don't bother to take a lock here to protect these
1035		 * p->signal fields because the whole thread group is dead
1036		 * and nobody can change them.
1037		 *
1038		 * psig->stats_lock also protects us from our sub-theads
1039		 * which can reap other children at the same time. Until
1040		 * we change k_getrusage()-like users to rely on this lock
1041		 * we have to take ->siglock as well.
1042		 *
1043		 * We use thread_group_cputime_adjusted() to get times for
1044		 * the thread group, which consolidates times for all threads
1045		 * in the group including the group leader.
1046		 */
1047		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1048		spin_lock_irq(&current->sighand->siglock);
1049		write_seqlock(&psig->stats_lock);
1050		psig->cutime += tgutime + sig->cutime;
1051		psig->cstime += tgstime + sig->cstime;
1052		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1053		psig->cmin_flt +=
1054			p->min_flt + sig->min_flt + sig->cmin_flt;
1055		psig->cmaj_flt +=
1056			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1057		psig->cnvcsw +=
1058			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1059		psig->cnivcsw +=
1060			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1061		psig->cinblock +=
1062			task_io_get_inblock(p) +
1063			sig->inblock + sig->cinblock;
1064		psig->coublock +=
1065			task_io_get_oublock(p) +
1066			sig->oublock + sig->coublock;
1067		maxrss = max(sig->maxrss, sig->cmaxrss);
1068		if (psig->cmaxrss < maxrss)
1069			psig->cmaxrss = maxrss;
1070		task_io_accounting_add(&psig->ioac, &p->ioac);
1071		task_io_accounting_add(&psig->ioac, &sig->ioac);
1072		write_sequnlock(&psig->stats_lock);
1073		spin_unlock_irq(&current->sighand->siglock);
1074	}
1075
1076	retval = wo->wo_rusage
1077		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1078	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079		? p->signal->group_exit_code : p->exit_code;
1080	if (!retval && wo->wo_stat)
1081		retval = put_user(status, wo->wo_stat);
1082
1083	infop = wo->wo_info;
1084	if (!retval && infop)
1085		retval = put_user(SIGCHLD, &infop->si_signo);
1086	if (!retval && infop)
1087		retval = put_user(0, &infop->si_errno);
1088	if (!retval && infop) {
1089		int why;
1090
1091		if ((status & 0x7f) == 0) {
1092			why = CLD_EXITED;
1093			status >>= 8;
1094		} else {
1095			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096			status &= 0x7f;
1097		}
1098		retval = put_user((short)why, &infop->si_code);
1099		if (!retval)
1100			retval = put_user(status, &infop->si_status);
1101	}
1102	if (!retval && infop)
1103		retval = put_user(pid, &infop->si_pid);
1104	if (!retval && infop)
1105		retval = put_user(uid, &infop->si_uid);
1106	if (!retval)
1107		retval = pid;
1108
1109	if (state == EXIT_TRACE) {
1110		write_lock_irq(&tasklist_lock);
1111		/* We dropped tasklist, ptracer could die and untrace */
1112		ptrace_unlink(p);
1113
1114		/* If parent wants a zombie, don't release it now */
1115		state = EXIT_ZOMBIE;
1116		if (do_notify_parent(p, p->exit_signal))
1117			state = EXIT_DEAD;
1118		p->exit_state = state;
1119		write_unlock_irq(&tasklist_lock);
1120	}
1121	if (state == EXIT_DEAD)
1122		release_task(p);
1123
1124	return retval;
1125}
1126
1127static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128{
1129	if (ptrace) {
1130		if (task_is_stopped_or_traced(p) &&
1131		    !(p->jobctl & JOBCTL_LISTENING))
1132			return &p->exit_code;
1133	} else {
1134		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135			return &p->signal->group_exit_code;
1136	}
1137	return NULL;
1138}
1139
1140/**
1141 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1142 * @wo: wait options
1143 * @ptrace: is the wait for ptrace
1144 * @p: task to wait for
1145 *
1146 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147 *
1148 * CONTEXT:
1149 * read_lock(&tasklist_lock), which is released if return value is
1150 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1151 *
1152 * RETURNS:
1153 * 0 if wait condition didn't exist and search for other wait conditions
1154 * should continue.  Non-zero return, -errno on failure and @p's pid on
1155 * success, implies that tasklist_lock is released and wait condition
1156 * search should terminate.
1157 */
1158static int wait_task_stopped(struct wait_opts *wo,
1159				int ptrace, struct task_struct *p)
1160{
1161	struct siginfo __user *infop;
1162	int retval, exit_code, *p_code, why;
1163	uid_t uid = 0; /* unneeded, required by compiler */
1164	pid_t pid;
1165
1166	/*
1167	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1168	 */
1169	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1170		return 0;
1171
1172	if (!task_stopped_code(p, ptrace))
1173		return 0;
1174
1175	exit_code = 0;
1176	spin_lock_irq(&p->sighand->siglock);
1177
1178	p_code = task_stopped_code(p, ptrace);
1179	if (unlikely(!p_code))
1180		goto unlock_sig;
1181
1182	exit_code = *p_code;
1183	if (!exit_code)
1184		goto unlock_sig;
1185
1186	if (!unlikely(wo->wo_flags & WNOWAIT))
1187		*p_code = 0;
1188
1189	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1190unlock_sig:
1191	spin_unlock_irq(&p->sighand->siglock);
1192	if (!exit_code)
1193		return 0;
1194
1195	/*
1196	 * Now we are pretty sure this task is interesting.
1197	 * Make sure it doesn't get reaped out from under us while we
1198	 * give up the lock and then examine it below.  We don't want to
1199	 * keep holding onto the tasklist_lock while we call getrusage and
1200	 * possibly take page faults for user memory.
1201	 */
1202	get_task_struct(p);
1203	pid = task_pid_vnr(p);
1204	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205	read_unlock(&tasklist_lock);
1206	sched_annotate_sleep();
1207
1208	if (unlikely(wo->wo_flags & WNOWAIT))
1209		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1210
1211	retval = wo->wo_rusage
1212		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1213	if (!retval && wo->wo_stat)
1214		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1215
1216	infop = wo->wo_info;
1217	if (!retval && infop)
1218		retval = put_user(SIGCHLD, &infop->si_signo);
1219	if (!retval && infop)
1220		retval = put_user(0, &infop->si_errno);
1221	if (!retval && infop)
1222		retval = put_user((short)why, &infop->si_code);
1223	if (!retval && infop)
1224		retval = put_user(exit_code, &infop->si_status);
1225	if (!retval && infop)
1226		retval = put_user(pid, &infop->si_pid);
1227	if (!retval && infop)
1228		retval = put_user(uid, &infop->si_uid);
1229	if (!retval)
1230		retval = pid;
1231	put_task_struct(p);
1232
1233	BUG_ON(!retval);
1234	return retval;
1235}
1236
1237/*
1238 * Handle do_wait work for one task in a live, non-stopped state.
1239 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1240 * the lock and this task is uninteresting.  If we return nonzero, we have
1241 * released the lock and the system call should return.
1242 */
1243static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1244{
1245	int retval;
1246	pid_t pid;
1247	uid_t uid;
1248
1249	if (!unlikely(wo->wo_flags & WCONTINUED))
1250		return 0;
1251
1252	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253		return 0;
1254
1255	spin_lock_irq(&p->sighand->siglock);
1256	/* Re-check with the lock held.  */
1257	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258		spin_unlock_irq(&p->sighand->siglock);
1259		return 0;
1260	}
1261	if (!unlikely(wo->wo_flags & WNOWAIT))
1262		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264	spin_unlock_irq(&p->sighand->siglock);
1265
1266	pid = task_pid_vnr(p);
1267	get_task_struct(p);
1268	read_unlock(&tasklist_lock);
1269	sched_annotate_sleep();
1270
1271	if (!wo->wo_info) {
1272		retval = wo->wo_rusage
1273			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1274		put_task_struct(p);
1275		if (!retval && wo->wo_stat)
1276			retval = put_user(0xffff, wo->wo_stat);
1277		if (!retval)
1278			retval = pid;
1279	} else {
1280		retval = wait_noreap_copyout(wo, p, pid, uid,
1281					     CLD_CONTINUED, SIGCONT);
1282		BUG_ON(retval == 0);
1283	}
1284
1285	return retval;
1286}
1287
1288/*
1289 * Consider @p for a wait by @parent.
1290 *
1291 * -ECHILD should be in ->notask_error before the first call.
1292 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1293 * Returns zero if the search for a child should continue;
1294 * then ->notask_error is 0 if @p is an eligible child,
1295 * or another error from security_task_wait(), or still -ECHILD.
1296 */
1297static int wait_consider_task(struct wait_opts *wo, int ptrace,
1298				struct task_struct *p)
1299{
1300	/*
1301	 * We can race with wait_task_zombie() from another thread.
1302	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1303	 * can't confuse the checks below.
1304	 */
1305	int exit_state = ACCESS_ONCE(p->exit_state);
1306	int ret;
1307
1308	if (unlikely(exit_state == EXIT_DEAD))
1309		return 0;
1310
1311	ret = eligible_child(wo, ptrace, p);
1312	if (!ret)
1313		return ret;
1314
1315	ret = security_task_wait(p);
1316	if (unlikely(ret < 0)) {
1317		/*
1318		 * If we have not yet seen any eligible child,
1319		 * then let this error code replace -ECHILD.
1320		 * A permission error will give the user a clue
1321		 * to look for security policy problems, rather
1322		 * than for mysterious wait bugs.
1323		 */
1324		if (wo->notask_error)
1325			wo->notask_error = ret;
1326		return 0;
1327	}
1328
1329	if (unlikely(exit_state == EXIT_TRACE)) {
1330		/*
1331		 * ptrace == 0 means we are the natural parent. In this case
1332		 * we should clear notask_error, debugger will notify us.
1333		 */
1334		if (likely(!ptrace))
1335			wo->notask_error = 0;
1336		return 0;
1337	}
1338
1339	if (likely(!ptrace) && unlikely(p->ptrace)) {
1340		/*
1341		 * If it is traced by its real parent's group, just pretend
1342		 * the caller is ptrace_do_wait() and reap this child if it
1343		 * is zombie.
1344		 *
1345		 * This also hides group stop state from real parent; otherwise
1346		 * a single stop can be reported twice as group and ptrace stop.
1347		 * If a ptracer wants to distinguish these two events for its
1348		 * own children it should create a separate process which takes
1349		 * the role of real parent.
1350		 */
1351		if (!ptrace_reparented(p))
1352			ptrace = 1;
1353	}
1354
1355	/* slay zombie? */
1356	if (exit_state == EXIT_ZOMBIE) {
1357		/* we don't reap group leaders with subthreads */
1358		if (!delay_group_leader(p)) {
1359			/*
1360			 * A zombie ptracee is only visible to its ptracer.
1361			 * Notification and reaping will be cascaded to the
1362			 * real parent when the ptracer detaches.
1363			 */
1364			if (unlikely(ptrace) || likely(!p->ptrace))
1365				return wait_task_zombie(wo, p);
1366		}
1367
1368		/*
1369		 * Allow access to stopped/continued state via zombie by
1370		 * falling through.  Clearing of notask_error is complex.
1371		 *
1372		 * When !@ptrace:
1373		 *
1374		 * If WEXITED is set, notask_error should naturally be
1375		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1376		 * so, if there are live subthreads, there are events to
1377		 * wait for.  If all subthreads are dead, it's still safe
1378		 * to clear - this function will be called again in finite
1379		 * amount time once all the subthreads are released and
1380		 * will then return without clearing.
1381		 *
1382		 * When @ptrace:
1383		 *
1384		 * Stopped state is per-task and thus can't change once the
1385		 * target task dies.  Only continued and exited can happen.
1386		 * Clear notask_error if WCONTINUED | WEXITED.
1387		 */
1388		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1389			wo->notask_error = 0;
1390	} else {
1391		/*
1392		 * @p is alive and it's gonna stop, continue or exit, so
1393		 * there always is something to wait for.
1394		 */
1395		wo->notask_error = 0;
1396	}
1397
1398	/*
1399	 * Wait for stopped.  Depending on @ptrace, different stopped state
1400	 * is used and the two don't interact with each other.
1401	 */
1402	ret = wait_task_stopped(wo, ptrace, p);
1403	if (ret)
1404		return ret;
1405
1406	/*
1407	 * Wait for continued.  There's only one continued state and the
1408	 * ptracer can consume it which can confuse the real parent.  Don't
1409	 * use WCONTINUED from ptracer.  You don't need or want it.
1410	 */
1411	return wait_task_continued(wo, p);
1412}
1413
1414/*
1415 * Do the work of do_wait() for one thread in the group, @tsk.
1416 *
1417 * -ECHILD should be in ->notask_error before the first call.
1418 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1419 * Returns zero if the search for a child should continue; then
1420 * ->notask_error is 0 if there were any eligible children,
1421 * or another error from security_task_wait(), or still -ECHILD.
1422 */
1423static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1424{
1425	struct task_struct *p;
1426
1427	list_for_each_entry(p, &tsk->children, sibling) {
1428		int ret = wait_consider_task(wo, 0, p);
1429
1430		if (ret)
1431			return ret;
1432	}
1433
1434	return 0;
1435}
1436
1437static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1438{
1439	struct task_struct *p;
1440
1441	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1442		int ret = wait_consider_task(wo, 1, p);
1443
1444		if (ret)
1445			return ret;
1446	}
1447
1448	return 0;
1449}
1450
1451static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1452				int sync, void *key)
1453{
1454	struct wait_opts *wo = container_of(wait, struct wait_opts,
1455						child_wait);
1456	struct task_struct *p = key;
1457
1458	if (!eligible_pid(wo, p))
1459		return 0;
1460
1461	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1462		return 0;
1463
1464	return default_wake_function(wait, mode, sync, key);
1465}
1466
1467void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1468{
1469	__wake_up_sync_key(&parent->signal->wait_chldexit,
1470				TASK_INTERRUPTIBLE, 1, p);
1471}
1472
1473static long do_wait(struct wait_opts *wo)
1474{
1475	struct task_struct *tsk;
1476	int retval;
1477
1478	trace_sched_process_wait(wo->wo_pid);
1479
1480	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1481	wo->child_wait.private = current;
1482	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1483repeat:
1484	/*
1485	 * If there is nothing that can match our critiera just get out.
1486	 * We will clear ->notask_error to zero if we see any child that
1487	 * might later match our criteria, even if we are not able to reap
1488	 * it yet.
1489	 */
1490	wo->notask_error = -ECHILD;
1491	if ((wo->wo_type < PIDTYPE_MAX) &&
1492	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1493		goto notask;
1494
1495	set_current_state(TASK_INTERRUPTIBLE);
1496	read_lock(&tasklist_lock);
1497	tsk = current;
1498	do {
1499		retval = do_wait_thread(wo, tsk);
1500		if (retval)
1501			goto end;
1502
1503		retval = ptrace_do_wait(wo, tsk);
1504		if (retval)
1505			goto end;
1506
1507		if (wo->wo_flags & __WNOTHREAD)
1508			break;
1509	} while_each_thread(current, tsk);
1510	read_unlock(&tasklist_lock);
1511
1512notask:
1513	retval = wo->notask_error;
1514	if (!retval && !(wo->wo_flags & WNOHANG)) {
1515		retval = -ERESTARTSYS;
1516		if (!signal_pending(current)) {
1517			schedule();
1518			goto repeat;
1519		}
1520	}
1521end:
1522	__set_current_state(TASK_RUNNING);
1523	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1524	return retval;
1525}
1526
1527SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1528		infop, int, options, struct rusage __user *, ru)
1529{
1530	struct wait_opts wo;
1531	struct pid *pid = NULL;
1532	enum pid_type type;
1533	long ret;
1534
1535	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1536		return -EINVAL;
1537	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1538		return -EINVAL;
1539
1540	switch (which) {
1541	case P_ALL:
1542		type = PIDTYPE_MAX;
1543		break;
1544	case P_PID:
1545		type = PIDTYPE_PID;
1546		if (upid <= 0)
1547			return -EINVAL;
1548		break;
1549	case P_PGID:
1550		type = PIDTYPE_PGID;
1551		if (upid <= 0)
1552			return -EINVAL;
1553		break;
1554	default:
1555		return -EINVAL;
1556	}
1557
1558	if (type < PIDTYPE_MAX)
1559		pid = find_get_pid(upid);
1560
1561	wo.wo_type	= type;
1562	wo.wo_pid	= pid;
1563	wo.wo_flags	= options;
1564	wo.wo_info	= infop;
1565	wo.wo_stat	= NULL;
1566	wo.wo_rusage	= ru;
1567	ret = do_wait(&wo);
1568
1569	if (ret > 0) {
1570		ret = 0;
1571	} else if (infop) {
1572		/*
1573		 * For a WNOHANG return, clear out all the fields
1574		 * we would set so the user can easily tell the
1575		 * difference.
1576		 */
1577		if (!ret)
1578			ret = put_user(0, &infop->si_signo);
1579		if (!ret)
1580			ret = put_user(0, &infop->si_errno);
1581		if (!ret)
1582			ret = put_user(0, &infop->si_code);
1583		if (!ret)
1584			ret = put_user(0, &infop->si_pid);
1585		if (!ret)
1586			ret = put_user(0, &infop->si_uid);
1587		if (!ret)
1588			ret = put_user(0, &infop->si_status);
1589	}
1590
1591	put_pid(pid);
1592	return ret;
1593}
1594
1595SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1596		int, options, struct rusage __user *, ru)
1597{
1598	struct wait_opts wo;
1599	struct pid *pid = NULL;
1600	enum pid_type type;
1601	long ret;
1602
1603	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1604			__WNOTHREAD|__WCLONE|__WALL))
1605		return -EINVAL;
1606
1607	if (upid == -1)
1608		type = PIDTYPE_MAX;
1609	else if (upid < 0) {
1610		type = PIDTYPE_PGID;
1611		pid = find_get_pid(-upid);
1612	} else if (upid == 0) {
1613		type = PIDTYPE_PGID;
1614		pid = get_task_pid(current, PIDTYPE_PGID);
1615	} else /* upid > 0 */ {
1616		type = PIDTYPE_PID;
1617		pid = find_get_pid(upid);
1618	}
1619
1620	wo.wo_type	= type;
1621	wo.wo_pid	= pid;
1622	wo.wo_flags	= options | WEXITED;
1623	wo.wo_info	= NULL;
1624	wo.wo_stat	= stat_addr;
1625	wo.wo_rusage	= ru;
1626	ret = do_wait(&wo);
1627	put_pid(pid);
1628
1629	return ret;
1630}
1631
1632#ifdef __ARCH_WANT_SYS_WAITPID
1633
1634/*
1635 * sys_waitpid() remains for compatibility. waitpid() should be
1636 * implemented by calling sys_wait4() from libc.a.
1637 */
1638SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1639{
1640	return sys_wait4(pid, stat_addr, options, NULL);
1641}
1642
1643#endif
1644