1/*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 *   Haiyang Zhang <haiyangz@microsoft.com>
20 *   Hank Janssen  <hjanssen@microsoft.com>
21 *   K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25#ifndef _UAPI_HYPERV_H
26#define _UAPI_HYPERV_H
27
28#include <linux/uuid.h>
29
30/*
31 * Framework version for util services.
32 */
33#define UTIL_FW_MINOR  0
34
35#define UTIL_WS2K8_FW_MAJOR  1
36#define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37
38#define UTIL_FW_MAJOR  3
39#define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40
41
42/*
43 * Implementation of host controlled snapshot of the guest.
44 */
45
46#define VSS_OP_REGISTER 128
47
48enum hv_vss_op {
49	VSS_OP_CREATE = 0,
50	VSS_OP_DELETE,
51	VSS_OP_HOT_BACKUP,
52	VSS_OP_GET_DM_INFO,
53	VSS_OP_BU_COMPLETE,
54	/*
55	 * Following operations are only supported with IC version >= 5.0
56	 */
57	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58	VSS_OP_THAW, /* Unfreeze the file systems */
59	VSS_OP_AUTO_RECOVER,
60	VSS_OP_COUNT /* Number of operations, must be last */
61};
62
63
64/*
65 * Header for all VSS messages.
66 */
67struct hv_vss_hdr {
68	__u8 operation;
69	__u8 reserved[7];
70} __attribute__((packed));
71
72
73/*
74 * Flag values for the hv_vss_check_feature. Linux supports only
75 * one value.
76 */
77#define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
78
79struct hv_vss_check_feature {
80	__u32 flags;
81} __attribute__((packed));
82
83struct hv_vss_check_dm_info {
84	__u32 flags;
85} __attribute__((packed));
86
87struct hv_vss_msg {
88	union {
89		struct hv_vss_hdr vss_hdr;
90		int error;
91	};
92	union {
93		struct hv_vss_check_feature vss_cf;
94		struct hv_vss_check_dm_info dm_info;
95	};
96} __attribute__((packed));
97
98/*
99 * Implementation of a host to guest copy facility.
100 */
101
102#define FCOPY_VERSION_0 0
103#define FCOPY_CURRENT_VERSION FCOPY_VERSION_0
104#define W_MAX_PATH 260
105
106enum hv_fcopy_op {
107	START_FILE_COPY = 0,
108	WRITE_TO_FILE,
109	COMPLETE_FCOPY,
110	CANCEL_FCOPY,
111};
112
113struct hv_fcopy_hdr {
114	__u32 operation;
115	uuid_le service_id0; /* currently unused */
116	uuid_le service_id1; /* currently unused */
117} __attribute__((packed));
118
119#define OVER_WRITE	0x1
120#define CREATE_PATH	0x2
121
122struct hv_start_fcopy {
123	struct hv_fcopy_hdr hdr;
124	__u16 file_name[W_MAX_PATH];
125	__u16 path_name[W_MAX_PATH];
126	__u32 copy_flags;
127	__u64 file_size;
128} __attribute__((packed));
129
130/*
131 * The file is chunked into fragments.
132 */
133#define DATA_FRAGMENT	(6 * 1024)
134
135struct hv_do_fcopy {
136	struct hv_fcopy_hdr hdr;
137	__u32   pad;
138	__u64	offset;
139	__u32	size;
140	__u8	data[DATA_FRAGMENT];
141} __attribute__((packed));
142
143/*
144 * An implementation of HyperV key value pair (KVP) functionality for Linux.
145 *
146 *
147 * Copyright (C) 2010, Novell, Inc.
148 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
149 *
150 */
151
152/*
153 * Maximum value size - used for both key names and value data, and includes
154 * any applicable NULL terminators.
155 *
156 * Note:  This limit is somewhat arbitrary, but falls easily within what is
157 * supported for all native guests (back to Win 2000) and what is reasonable
158 * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
159 * limited to 255 character key names.
160 *
161 * MSDN recommends not storing data values larger than 2048 bytes in the
162 * registry.
163 *
164 * Note:  This value is used in defining the KVP exchange message - this value
165 * cannot be modified without affecting the message size and compatibility.
166 */
167
168/*
169 * bytes, including any null terminators
170 */
171#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
172
173
174/*
175 * Maximum key size - the registry limit for the length of an entry name
176 * is 256 characters, including the null terminator
177 */
178
179#define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
180
181/*
182 * In Linux, we implement the KVP functionality in two components:
183 * 1) The kernel component which is packaged as part of the hv_utils driver
184 * is responsible for communicating with the host and responsible for
185 * implementing the host/guest protocol. 2) A user level daemon that is
186 * responsible for data gathering.
187 *
188 * Host/Guest Protocol: The host iterates over an index and expects the guest
189 * to assign a key name to the index and also return the value corresponding to
190 * the key. The host will have atmost one KVP transaction outstanding at any
191 * given point in time. The host side iteration stops when the guest returns
192 * an error. Microsoft has specified the following mapping of key names to
193 * host specified index:
194 *
195 *	Index		Key Name
196 *	0		FullyQualifiedDomainName
197 *	1		IntegrationServicesVersion
198 *	2		NetworkAddressIPv4
199 *	3		NetworkAddressIPv6
200 *	4		OSBuildNumber
201 *	5		OSName
202 *	6		OSMajorVersion
203 *	7		OSMinorVersion
204 *	8		OSVersion
205 *	9		ProcessorArchitecture
206 *
207 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
208 *
209 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
210 * data gathering functionality in a user mode daemon. The user level daemon
211 * is also responsible for binding the key name to the index as well. The
212 * kernel and user-level daemon communicate using a connector channel.
213 *
214 * The user mode component first registers with the
215 * the kernel component. Subsequently, the kernel component requests, data
216 * for the specified keys. In response to this message the user mode component
217 * fills in the value corresponding to the specified key. We overload the
218 * sequence field in the cn_msg header to define our KVP message types.
219 *
220 *
221 * The kernel component simply acts as a conduit for communication between the
222 * Windows host and the user-level daemon. The kernel component passes up the
223 * index received from the Host to the user-level daemon. If the index is
224 * valid (supported), the corresponding key as well as its
225 * value (both are strings) is returned. If the index is invalid
226 * (not supported), a NULL key string is returned.
227 */
228
229
230/*
231 * Registry value types.
232 */
233
234#define REG_SZ 1
235#define REG_U32 4
236#define REG_U64 8
237
238/*
239 * As we look at expanding the KVP functionality to include
240 * IP injection functionality, we need to maintain binary
241 * compatibility with older daemons.
242 *
243 * The KVP opcodes are defined by the host and it was unfortunate
244 * that I chose to treat the registration operation as part of the
245 * KVP operations defined by the host.
246 * Here is the level of compatibility
247 * (between the user level daemon and the kernel KVP driver) that we
248 * will implement:
249 *
250 * An older daemon will always be supported on a newer driver.
251 * A given user level daemon will require a minimal version of the
252 * kernel driver.
253 * If we cannot handle the version differences, we will fail gracefully
254 * (this can happen when we have a user level daemon that is more
255 * advanced than the KVP driver.
256 *
257 * We will use values used in this handshake for determining if we have
258 * workable user level daemon and the kernel driver. We begin by taking the
259 * registration opcode out of the KVP opcode namespace. We will however,
260 * maintain compatibility with the existing user-level daemon code.
261 */
262
263/*
264 * Daemon code not supporting IP injection (legacy daemon).
265 */
266
267#define KVP_OP_REGISTER	4
268
269/*
270 * Daemon code supporting IP injection.
271 * The KVP opcode field is used to communicate the
272 * registration information; so define a namespace that
273 * will be distinct from the host defined KVP opcode.
274 */
275
276#define KVP_OP_REGISTER1 100
277
278enum hv_kvp_exchg_op {
279	KVP_OP_GET = 0,
280	KVP_OP_SET,
281	KVP_OP_DELETE,
282	KVP_OP_ENUMERATE,
283	KVP_OP_GET_IP_INFO,
284	KVP_OP_SET_IP_INFO,
285	KVP_OP_COUNT /* Number of operations, must be last. */
286};
287
288enum hv_kvp_exchg_pool {
289	KVP_POOL_EXTERNAL = 0,
290	KVP_POOL_GUEST,
291	KVP_POOL_AUTO,
292	KVP_POOL_AUTO_EXTERNAL,
293	KVP_POOL_AUTO_INTERNAL,
294	KVP_POOL_COUNT /* Number of pools, must be last. */
295};
296
297/*
298 * Some Hyper-V status codes.
299 */
300
301#define HV_S_OK				0x00000000
302#define HV_E_FAIL			0x80004005
303#define HV_S_CONT			0x80070103
304#define HV_ERROR_NOT_SUPPORTED		0x80070032
305#define HV_ERROR_MACHINE_LOCKED		0x800704F7
306#define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
307#define HV_INVALIDARG			0x80070057
308#define HV_GUID_NOTFOUND		0x80041002
309#define HV_ERROR_ALREADY_EXISTS		0x80070050
310
311#define ADDR_FAMILY_NONE	0x00
312#define ADDR_FAMILY_IPV4	0x01
313#define ADDR_FAMILY_IPV6	0x02
314
315#define MAX_ADAPTER_ID_SIZE	128
316#define MAX_IP_ADDR_SIZE	1024
317#define MAX_GATEWAY_SIZE	512
318
319
320struct hv_kvp_ipaddr_value {
321	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
322	__u8	addr_family;
323	__u8	dhcp_enabled;
324	__u16	ip_addr[MAX_IP_ADDR_SIZE];
325	__u16	sub_net[MAX_IP_ADDR_SIZE];
326	__u16	gate_way[MAX_GATEWAY_SIZE];
327	__u16	dns_addr[MAX_IP_ADDR_SIZE];
328} __attribute__((packed));
329
330
331struct hv_kvp_hdr {
332	__u8 operation;
333	__u8 pool;
334	__u16 pad;
335} __attribute__((packed));
336
337struct hv_kvp_exchg_msg_value {
338	__u32 value_type;
339	__u32 key_size;
340	__u32 value_size;
341	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
342	union {
343		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
344		__u32 value_u32;
345		__u64 value_u64;
346	};
347} __attribute__((packed));
348
349struct hv_kvp_msg_enumerate {
350	__u32 index;
351	struct hv_kvp_exchg_msg_value data;
352} __attribute__((packed));
353
354struct hv_kvp_msg_get {
355	struct hv_kvp_exchg_msg_value data;
356};
357
358struct hv_kvp_msg_set {
359	struct hv_kvp_exchg_msg_value data;
360};
361
362struct hv_kvp_msg_delete {
363	__u32 key_size;
364	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
365};
366
367struct hv_kvp_register {
368	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
369};
370
371struct hv_kvp_msg {
372	union {
373		struct hv_kvp_hdr	kvp_hdr;
374		int error;
375	};
376	union {
377		struct hv_kvp_msg_get		kvp_get;
378		struct hv_kvp_msg_set		kvp_set;
379		struct hv_kvp_msg_delete	kvp_delete;
380		struct hv_kvp_msg_enumerate	kvp_enum_data;
381		struct hv_kvp_ipaddr_value      kvp_ip_val;
382		struct hv_kvp_register		kvp_register;
383	} body;
384} __attribute__((packed));
385
386struct hv_kvp_ip_msg {
387	__u8 operation;
388	__u8 pool;
389	struct hv_kvp_ipaddr_value      kvp_ip_val;
390} __attribute__((packed));
391
392#endif /* _UAPI_HYPERV_H */
393