1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 #include <asm/current.h>
10 #include <uapi/linux/wait.h>
11 
12 typedef struct __wait_queue wait_queue_t;
13 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
14 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 
16 /* __wait_queue::flags */
17 #define WQ_FLAG_EXCLUSIVE	0x01
18 #define WQ_FLAG_WOKEN		0x02
19 
20 struct __wait_queue {
21 	unsigned int		flags;
22 	void			*private;
23 	wait_queue_func_t	func;
24 	struct list_head	task_list;
25 };
26 
27 struct wait_bit_key {
28 	void			*flags;
29 	int			bit_nr;
30 #define WAIT_ATOMIC_T_BIT_NR	-1
31 	unsigned long		timeout;
32 };
33 
34 struct wait_bit_queue {
35 	struct wait_bit_key	key;
36 	wait_queue_t		wait;
37 };
38 
39 struct __wait_queue_head {
40 	spinlock_t		lock;
41 	struct list_head	task_list;
42 };
43 typedef struct __wait_queue_head wait_queue_head_t;
44 
45 struct task_struct;
46 
47 /*
48  * Macros for declaration and initialisaton of the datatypes
49  */
50 
51 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
52 	.private	= tsk,						\
53 	.func		= default_wake_function,			\
54 	.task_list	= { NULL, NULL } }
55 
56 #define DECLARE_WAITQUEUE(name, tsk)					\
57 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
58 
59 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
60 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
61 	.task_list	= { &(name).task_list, &(name).task_list } }
62 
63 #define DECLARE_WAIT_QUEUE_HEAD(name) \
64 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
65 
66 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
67 	{ .flags = word, .bit_nr = bit, }
68 
69 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
70 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
71 
72 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
73 
74 #define init_waitqueue_head(q)				\
75 	do {						\
76 		static struct lock_class_key __key;	\
77 							\
78 		__init_waitqueue_head((q), #q, &__key);	\
79 	} while (0)
80 
81 #ifdef CONFIG_LOCKDEP
82 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
83 	({ init_waitqueue_head(&name); name; })
84 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
85 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
86 #else
87 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
88 #endif
89 
init_waitqueue_entry(wait_queue_t * q,struct task_struct * p)90 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
91 {
92 	q->flags	= 0;
93 	q->private	= p;
94 	q->func		= default_wake_function;
95 }
96 
97 static inline void
init_waitqueue_func_entry(wait_queue_t * q,wait_queue_func_t func)98 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
99 {
100 	q->flags	= 0;
101 	q->private	= NULL;
102 	q->func		= func;
103 }
104 
waitqueue_active(wait_queue_head_t * q)105 static inline int waitqueue_active(wait_queue_head_t *q)
106 {
107 	return !list_empty(&q->task_list);
108 }
109 
110 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
111 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
112 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
113 
__add_wait_queue(wait_queue_head_t * head,wait_queue_t * new)114 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
115 {
116 	list_add(&new->task_list, &head->task_list);
117 }
118 
119 /*
120  * Used for wake-one threads:
121  */
122 static inline void
__add_wait_queue_exclusive(wait_queue_head_t * q,wait_queue_t * wait)123 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
124 {
125 	wait->flags |= WQ_FLAG_EXCLUSIVE;
126 	__add_wait_queue(q, wait);
127 }
128 
__add_wait_queue_tail(wait_queue_head_t * head,wait_queue_t * new)129 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
130 					 wait_queue_t *new)
131 {
132 	list_add_tail(&new->task_list, &head->task_list);
133 }
134 
135 static inline void
__add_wait_queue_tail_exclusive(wait_queue_head_t * q,wait_queue_t * wait)136 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
137 {
138 	wait->flags |= WQ_FLAG_EXCLUSIVE;
139 	__add_wait_queue_tail(q, wait);
140 }
141 
142 static inline void
__remove_wait_queue(wait_queue_head_t * head,wait_queue_t * old)143 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
144 {
145 	list_del(&old->task_list);
146 }
147 
148 typedef int wait_bit_action_f(struct wait_bit_key *);
149 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
150 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
151 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
152 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
153 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
154 void __wake_up_bit(wait_queue_head_t *, void *, int);
155 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
156 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
157 void wake_up_bit(void *, int);
158 void wake_up_atomic_t(atomic_t *);
159 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
160 int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
161 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
162 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
163 wait_queue_head_t *bit_waitqueue(void *, int);
164 
165 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
166 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
167 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
168 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
169 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
170 
171 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
172 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
173 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
174 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
175 
176 /*
177  * Wakeup macros to be used to report events to the targets.
178  */
179 #define wake_up_poll(x, m)						\
180 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
181 #define wake_up_locked_poll(x, m)					\
182 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
183 #define wake_up_interruptible_poll(x, m)				\
184 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
185 #define wake_up_interruptible_sync_poll(x, m)				\
186 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
187 
188 #define ___wait_cond_timeout(condition)					\
189 ({									\
190 	bool __cond = (condition);					\
191 	if (__cond && !__ret)						\
192 		__ret = 1;						\
193 	__cond || !__ret;						\
194 })
195 
196 #define ___wait_is_interruptible(state)					\
197 	(!__builtin_constant_p(state) ||				\
198 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
199 
200 /*
201  * The below macro ___wait_event() has an explicit shadow of the __ret
202  * variable when used from the wait_event_*() macros.
203  *
204  * This is so that both can use the ___wait_cond_timeout() construct
205  * to wrap the condition.
206  *
207  * The type inconsistency of the wait_event_*() __ret variable is also
208  * on purpose; we use long where we can return timeout values and int
209  * otherwise.
210  */
211 
212 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
213 ({									\
214 	__label__ __out;						\
215 	wait_queue_t __wait;						\
216 	long __ret = ret;	/* explicit shadow */			\
217 									\
218 	INIT_LIST_HEAD(&__wait.task_list);				\
219 	if (exclusive)							\
220 		__wait.flags = WQ_FLAG_EXCLUSIVE;			\
221 	else								\
222 		__wait.flags = 0;					\
223 									\
224 	for (;;) {							\
225 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
226 									\
227 		if (condition)						\
228 			break;						\
229 									\
230 		if (___wait_is_interruptible(state) && __int) {		\
231 			__ret = __int;					\
232 			if (exclusive) {				\
233 				abort_exclusive_wait(&wq, &__wait,	\
234 						     state, NULL);	\
235 				goto __out;				\
236 			}						\
237 			break;						\
238 		}							\
239 									\
240 		cmd;							\
241 	}								\
242 	finish_wait(&wq, &__wait);					\
243 __out:	__ret;								\
244 })
245 
246 #define __wait_event(wq, condition)					\
247 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
248 			    schedule())
249 
250 /**
251  * wait_event - sleep until a condition gets true
252  * @wq: the waitqueue to wait on
253  * @condition: a C expression for the event to wait for
254  *
255  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
256  * @condition evaluates to true. The @condition is checked each time
257  * the waitqueue @wq is woken up.
258  *
259  * wake_up() has to be called after changing any variable that could
260  * change the result of the wait condition.
261  */
262 #define wait_event(wq, condition)					\
263 do {									\
264 	might_sleep();							\
265 	if (condition)							\
266 		break;							\
267 	__wait_event(wq, condition);					\
268 } while (0)
269 
270 #define __io_wait_event(wq, condition)					\
271 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
272 			    io_schedule())
273 
274 /*
275  * io_wait_event() -- like wait_event() but with io_schedule()
276  */
277 #define io_wait_event(wq, condition)					\
278 do {									\
279 	might_sleep();							\
280 	if (condition)							\
281 		break;							\
282 	__io_wait_event(wq, condition);					\
283 } while (0)
284 
285 #define __wait_event_freezable(wq, condition)				\
286 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
287 			    schedule(); try_to_freeze())
288 
289 /**
290  * wait_event - sleep (or freeze) until a condition gets true
291  * @wq: the waitqueue to wait on
292  * @condition: a C expression for the event to wait for
293  *
294  * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
295  * to system load) until the @condition evaluates to true. The
296  * @condition is checked each time the waitqueue @wq is woken up.
297  *
298  * wake_up() has to be called after changing any variable that could
299  * change the result of the wait condition.
300  */
301 #define wait_event_freezable(wq, condition)				\
302 ({									\
303 	int __ret = 0;							\
304 	might_sleep();							\
305 	if (!(condition))						\
306 		__ret = __wait_event_freezable(wq, condition);		\
307 	__ret;								\
308 })
309 
310 #define __wait_event_timeout(wq, condition, timeout)			\
311 	___wait_event(wq, ___wait_cond_timeout(condition),		\
312 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
313 		      __ret = schedule_timeout(__ret))
314 
315 /**
316  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
317  * @wq: the waitqueue to wait on
318  * @condition: a C expression for the event to wait for
319  * @timeout: timeout, in jiffies
320  *
321  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
322  * @condition evaluates to true. The @condition is checked each time
323  * the waitqueue @wq is woken up.
324  *
325  * wake_up() has to be called after changing any variable that could
326  * change the result of the wait condition.
327  *
328  * Returns:
329  * 0 if the @condition evaluated to %false after the @timeout elapsed,
330  * 1 if the @condition evaluated to %true after the @timeout elapsed,
331  * or the remaining jiffies (at least 1) if the @condition evaluated
332  * to %true before the @timeout elapsed.
333  */
334 #define wait_event_timeout(wq, condition, timeout)			\
335 ({									\
336 	long __ret = timeout;						\
337 	might_sleep();							\
338 	if (!___wait_cond_timeout(condition))				\
339 		__ret = __wait_event_timeout(wq, condition, timeout);	\
340 	__ret;								\
341 })
342 
343 #define __wait_event_freezable_timeout(wq, condition, timeout)		\
344 	___wait_event(wq, ___wait_cond_timeout(condition),		\
345 		      TASK_INTERRUPTIBLE, 0, timeout,			\
346 		      __ret = schedule_timeout(__ret); try_to_freeze())
347 
348 /*
349  * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
350  * increasing load and is freezable.
351  */
352 #define wait_event_freezable_timeout(wq, condition, timeout)		\
353 ({									\
354 	long __ret = timeout;						\
355 	might_sleep();							\
356 	if (!___wait_cond_timeout(condition))				\
357 		__ret = __wait_event_freezable_timeout(wq, condition, timeout);	\
358 	__ret;								\
359 })
360 
361 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
362 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
363 			    cmd1; schedule(); cmd2)
364 
365 /**
366  * wait_event_cmd - sleep until a condition gets true
367  * @wq: the waitqueue to wait on
368  * @condition: a C expression for the event to wait for
369  * @cmd1: the command will be executed before sleep
370  * @cmd2: the command will be executed after sleep
371  *
372  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
373  * @condition evaluates to true. The @condition is checked each time
374  * the waitqueue @wq is woken up.
375  *
376  * wake_up() has to be called after changing any variable that could
377  * change the result of the wait condition.
378  */
379 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
380 do {									\
381 	if (condition)							\
382 		break;							\
383 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
384 } while (0)
385 
386 #define __wait_event_interruptible(wq, condition)			\
387 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
388 		      schedule())
389 
390 /**
391  * wait_event_interruptible - sleep until a condition gets true
392  * @wq: the waitqueue to wait on
393  * @condition: a C expression for the event to wait for
394  *
395  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
396  * @condition evaluates to true or a signal is received.
397  * The @condition is checked each time the waitqueue @wq is woken up.
398  *
399  * wake_up() has to be called after changing any variable that could
400  * change the result of the wait condition.
401  *
402  * The function will return -ERESTARTSYS if it was interrupted by a
403  * signal and 0 if @condition evaluated to true.
404  */
405 #define wait_event_interruptible(wq, condition)				\
406 ({									\
407 	int __ret = 0;							\
408 	might_sleep();							\
409 	if (!(condition))						\
410 		__ret = __wait_event_interruptible(wq, condition);	\
411 	__ret;								\
412 })
413 
414 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
415 	___wait_event(wq, ___wait_cond_timeout(condition),		\
416 		      TASK_INTERRUPTIBLE, 0, timeout,			\
417 		      __ret = schedule_timeout(__ret))
418 
419 /**
420  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
421  * @wq: the waitqueue to wait on
422  * @condition: a C expression for the event to wait for
423  * @timeout: timeout, in jiffies
424  *
425  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
426  * @condition evaluates to true or a signal is received.
427  * The @condition is checked each time the waitqueue @wq is woken up.
428  *
429  * wake_up() has to be called after changing any variable that could
430  * change the result of the wait condition.
431  *
432  * Returns:
433  * 0 if the @condition evaluated to %false after the @timeout elapsed,
434  * 1 if the @condition evaluated to %true after the @timeout elapsed,
435  * the remaining jiffies (at least 1) if the @condition evaluated
436  * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
437  * interrupted by a signal.
438  */
439 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
440 ({									\
441 	long __ret = timeout;						\
442 	might_sleep();							\
443 	if (!___wait_cond_timeout(condition))				\
444 		__ret = __wait_event_interruptible_timeout(wq,		\
445 						condition, timeout);	\
446 	__ret;								\
447 })
448 
449 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
450 ({									\
451 	int __ret = 0;							\
452 	struct hrtimer_sleeper __t;					\
453 									\
454 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
455 			      HRTIMER_MODE_REL);			\
456 	hrtimer_init_sleeper(&__t, current);				\
457 	if ((timeout).tv64 != KTIME_MAX)				\
458 		hrtimer_start_range_ns(&__t.timer, timeout,		\
459 				       current->timer_slack_ns,		\
460 				       HRTIMER_MODE_REL);		\
461 									\
462 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
463 		if (!__t.task) {					\
464 			__ret = -ETIME;					\
465 			break;						\
466 		}							\
467 		schedule());						\
468 									\
469 	hrtimer_cancel(&__t.timer);					\
470 	destroy_hrtimer_on_stack(&__t.timer);				\
471 	__ret;								\
472 })
473 
474 /**
475  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
476  * @wq: the waitqueue to wait on
477  * @condition: a C expression for the event to wait for
478  * @timeout: timeout, as a ktime_t
479  *
480  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
481  * @condition evaluates to true or a signal is received.
482  * The @condition is checked each time the waitqueue @wq is woken up.
483  *
484  * wake_up() has to be called after changing any variable that could
485  * change the result of the wait condition.
486  *
487  * The function returns 0 if @condition became true, or -ETIME if the timeout
488  * elapsed.
489  */
490 #define wait_event_hrtimeout(wq, condition, timeout)			\
491 ({									\
492 	int __ret = 0;							\
493 	might_sleep();							\
494 	if (!(condition))						\
495 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
496 					       TASK_UNINTERRUPTIBLE);	\
497 	__ret;								\
498 })
499 
500 /**
501  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
502  * @wq: the waitqueue to wait on
503  * @condition: a C expression for the event to wait for
504  * @timeout: timeout, as a ktime_t
505  *
506  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
507  * @condition evaluates to true or a signal is received.
508  * The @condition is checked each time the waitqueue @wq is woken up.
509  *
510  * wake_up() has to be called after changing any variable that could
511  * change the result of the wait condition.
512  *
513  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
514  * interrupted by a signal, or -ETIME if the timeout elapsed.
515  */
516 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
517 ({									\
518 	long __ret = 0;							\
519 	might_sleep();							\
520 	if (!(condition))						\
521 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
522 					       TASK_INTERRUPTIBLE);	\
523 	__ret;								\
524 })
525 
526 #define __wait_event_interruptible_exclusive(wq, condition)		\
527 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
528 		      schedule())
529 
530 #define wait_event_interruptible_exclusive(wq, condition)		\
531 ({									\
532 	int __ret = 0;							\
533 	might_sleep();							\
534 	if (!(condition))						\
535 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
536 	__ret;								\
537 })
538 
539 
540 #define __wait_event_freezable_exclusive(wq, condition)			\
541 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
542 			schedule(); try_to_freeze())
543 
544 #define wait_event_freezable_exclusive(wq, condition)			\
545 ({									\
546 	int __ret = 0;							\
547 	might_sleep();							\
548 	if (!(condition))						\
549 		__ret = __wait_event_freezable_exclusive(wq, condition);\
550 	__ret;								\
551 })
552 
553 
554 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
555 ({									\
556 	int __ret = 0;							\
557 	DEFINE_WAIT(__wait);						\
558 	if (exclusive)							\
559 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
560 	do {								\
561 		if (likely(list_empty(&__wait.task_list)))		\
562 			__add_wait_queue_tail(&(wq), &__wait);		\
563 		set_current_state(TASK_INTERRUPTIBLE);			\
564 		if (signal_pending(current)) {				\
565 			__ret = -ERESTARTSYS;				\
566 			break;						\
567 		}							\
568 		if (irq)						\
569 			spin_unlock_irq(&(wq).lock);			\
570 		else							\
571 			spin_unlock(&(wq).lock);			\
572 		schedule();						\
573 		if (irq)						\
574 			spin_lock_irq(&(wq).lock);			\
575 		else							\
576 			spin_lock(&(wq).lock);				\
577 	} while (!(condition));						\
578 	__remove_wait_queue(&(wq), &__wait);				\
579 	__set_current_state(TASK_RUNNING);				\
580 	__ret;								\
581 })
582 
583 
584 /**
585  * wait_event_interruptible_locked - sleep until a condition gets true
586  * @wq: the waitqueue to wait on
587  * @condition: a C expression for the event to wait for
588  *
589  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
590  * @condition evaluates to true or a signal is received.
591  * The @condition is checked each time the waitqueue @wq is woken up.
592  *
593  * It must be called with wq.lock being held.  This spinlock is
594  * unlocked while sleeping but @condition testing is done while lock
595  * is held and when this macro exits the lock is held.
596  *
597  * The lock is locked/unlocked using spin_lock()/spin_unlock()
598  * functions which must match the way they are locked/unlocked outside
599  * of this macro.
600  *
601  * wake_up_locked() has to be called after changing any variable that could
602  * change the result of the wait condition.
603  *
604  * The function will return -ERESTARTSYS if it was interrupted by a
605  * signal and 0 if @condition evaluated to true.
606  */
607 #define wait_event_interruptible_locked(wq, condition)			\
608 	((condition)							\
609 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
610 
611 /**
612  * wait_event_interruptible_locked_irq - sleep until a condition gets true
613  * @wq: the waitqueue to wait on
614  * @condition: a C expression for the event to wait for
615  *
616  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
617  * @condition evaluates to true or a signal is received.
618  * The @condition is checked each time the waitqueue @wq is woken up.
619  *
620  * It must be called with wq.lock being held.  This spinlock is
621  * unlocked while sleeping but @condition testing is done while lock
622  * is held and when this macro exits the lock is held.
623  *
624  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
625  * functions which must match the way they are locked/unlocked outside
626  * of this macro.
627  *
628  * wake_up_locked() has to be called after changing any variable that could
629  * change the result of the wait condition.
630  *
631  * The function will return -ERESTARTSYS if it was interrupted by a
632  * signal and 0 if @condition evaluated to true.
633  */
634 #define wait_event_interruptible_locked_irq(wq, condition)		\
635 	((condition)							\
636 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
637 
638 /**
639  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
640  * @wq: the waitqueue to wait on
641  * @condition: a C expression for the event to wait for
642  *
643  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
644  * @condition evaluates to true or a signal is received.
645  * The @condition is checked each time the waitqueue @wq is woken up.
646  *
647  * It must be called with wq.lock being held.  This spinlock is
648  * unlocked while sleeping but @condition testing is done while lock
649  * is held and when this macro exits the lock is held.
650  *
651  * The lock is locked/unlocked using spin_lock()/spin_unlock()
652  * functions which must match the way they are locked/unlocked outside
653  * of this macro.
654  *
655  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
656  * set thus when other process waits process on the list if this
657  * process is awaken further processes are not considered.
658  *
659  * wake_up_locked() has to be called after changing any variable that could
660  * change the result of the wait condition.
661  *
662  * The function will return -ERESTARTSYS if it was interrupted by a
663  * signal and 0 if @condition evaluated to true.
664  */
665 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
666 	((condition)							\
667 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
668 
669 /**
670  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
671  * @wq: the waitqueue to wait on
672  * @condition: a C expression for the event to wait for
673  *
674  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
675  * @condition evaluates to true or a signal is received.
676  * The @condition is checked each time the waitqueue @wq is woken up.
677  *
678  * It must be called with wq.lock being held.  This spinlock is
679  * unlocked while sleeping but @condition testing is done while lock
680  * is held and when this macro exits the lock is held.
681  *
682  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
683  * functions which must match the way they are locked/unlocked outside
684  * of this macro.
685  *
686  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
687  * set thus when other process waits process on the list if this
688  * process is awaken further processes are not considered.
689  *
690  * wake_up_locked() has to be called after changing any variable that could
691  * change the result of the wait condition.
692  *
693  * The function will return -ERESTARTSYS if it was interrupted by a
694  * signal and 0 if @condition evaluated to true.
695  */
696 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
697 	((condition)							\
698 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
699 
700 
701 #define __wait_event_killable(wq, condition)				\
702 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
703 
704 /**
705  * wait_event_killable - sleep until a condition gets true
706  * @wq: the waitqueue to wait on
707  * @condition: a C expression for the event to wait for
708  *
709  * The process is put to sleep (TASK_KILLABLE) until the
710  * @condition evaluates to true or a signal is received.
711  * The @condition is checked each time the waitqueue @wq is woken up.
712  *
713  * wake_up() has to be called after changing any variable that could
714  * change the result of the wait condition.
715  *
716  * The function will return -ERESTARTSYS if it was interrupted by a
717  * signal and 0 if @condition evaluated to true.
718  */
719 #define wait_event_killable(wq, condition)				\
720 ({									\
721 	int __ret = 0;							\
722 	might_sleep();							\
723 	if (!(condition))						\
724 		__ret = __wait_event_killable(wq, condition);		\
725 	__ret;								\
726 })
727 
728 
729 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
730 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
731 			    spin_unlock_irq(&lock);			\
732 			    cmd;					\
733 			    schedule();					\
734 			    spin_lock_irq(&lock))
735 
736 /**
737  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
738  *			     condition is checked under the lock. This
739  *			     is expected to be called with the lock
740  *			     taken.
741  * @wq: the waitqueue to wait on
742  * @condition: a C expression for the event to wait for
743  * @lock: a locked spinlock_t, which will be released before cmd
744  *	  and schedule() and reacquired afterwards.
745  * @cmd: a command which is invoked outside the critical section before
746  *	 sleep
747  *
748  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
749  * @condition evaluates to true. The @condition is checked each time
750  * the waitqueue @wq is woken up.
751  *
752  * wake_up() has to be called after changing any variable that could
753  * change the result of the wait condition.
754  *
755  * This is supposed to be called while holding the lock. The lock is
756  * dropped before invoking the cmd and going to sleep and is reacquired
757  * afterwards.
758  */
759 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
760 do {									\
761 	if (condition)							\
762 		break;							\
763 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
764 } while (0)
765 
766 /**
767  * wait_event_lock_irq - sleep until a condition gets true. The
768  *			 condition is checked under the lock. This
769  *			 is expected to be called with the lock
770  *			 taken.
771  * @wq: the waitqueue to wait on
772  * @condition: a C expression for the event to wait for
773  * @lock: a locked spinlock_t, which will be released before schedule()
774  *	  and reacquired afterwards.
775  *
776  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
777  * @condition evaluates to true. The @condition is checked each time
778  * the waitqueue @wq is woken up.
779  *
780  * wake_up() has to be called after changing any variable that could
781  * change the result of the wait condition.
782  *
783  * This is supposed to be called while holding the lock. The lock is
784  * dropped before going to sleep and is reacquired afterwards.
785  */
786 #define wait_event_lock_irq(wq, condition, lock)			\
787 do {									\
788 	if (condition)							\
789 		break;							\
790 	__wait_event_lock_irq(wq, condition, lock, );			\
791 } while (0)
792 
793 
794 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
795 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
796 		      spin_unlock_irq(&lock);				\
797 		      cmd;						\
798 		      schedule();					\
799 		      spin_lock_irq(&lock))
800 
801 /**
802  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
803  *		The condition is checked under the lock. This is expected to
804  *		be called with the lock taken.
805  * @wq: the waitqueue to wait on
806  * @condition: a C expression for the event to wait for
807  * @lock: a locked spinlock_t, which will be released before cmd and
808  *	  schedule() and reacquired afterwards.
809  * @cmd: a command which is invoked outside the critical section before
810  *	 sleep
811  *
812  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
813  * @condition evaluates to true or a signal is received. The @condition is
814  * checked each time the waitqueue @wq is woken up.
815  *
816  * wake_up() has to be called after changing any variable that could
817  * change the result of the wait condition.
818  *
819  * This is supposed to be called while holding the lock. The lock is
820  * dropped before invoking the cmd and going to sleep and is reacquired
821  * afterwards.
822  *
823  * The macro will return -ERESTARTSYS if it was interrupted by a signal
824  * and 0 if @condition evaluated to true.
825  */
826 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
827 ({									\
828 	int __ret = 0;							\
829 	if (!(condition))						\
830 		__ret = __wait_event_interruptible_lock_irq(wq,		\
831 						condition, lock, cmd);	\
832 	__ret;								\
833 })
834 
835 /**
836  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
837  *		The condition is checked under the lock. This is expected
838  *		to be called with the lock taken.
839  * @wq: the waitqueue to wait on
840  * @condition: a C expression for the event to wait for
841  * @lock: a locked spinlock_t, which will be released before schedule()
842  *	  and reacquired afterwards.
843  *
844  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
845  * @condition evaluates to true or signal is received. The @condition is
846  * checked each time the waitqueue @wq is woken up.
847  *
848  * wake_up() has to be called after changing any variable that could
849  * change the result of the wait condition.
850  *
851  * This is supposed to be called while holding the lock. The lock is
852  * dropped before going to sleep and is reacquired afterwards.
853  *
854  * The macro will return -ERESTARTSYS if it was interrupted by a signal
855  * and 0 if @condition evaluated to true.
856  */
857 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
858 ({									\
859 	int __ret = 0;							\
860 	if (!(condition))						\
861 		__ret = __wait_event_interruptible_lock_irq(wq,		\
862 						condition, lock,);	\
863 	__ret;								\
864 })
865 
866 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
867 						    lock, timeout)	\
868 	___wait_event(wq, ___wait_cond_timeout(condition),		\
869 		      TASK_INTERRUPTIBLE, 0, timeout,			\
870 		      spin_unlock_irq(&lock);				\
871 		      __ret = schedule_timeout(__ret);			\
872 		      spin_lock_irq(&lock));
873 
874 /**
875  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
876  *		true or a timeout elapses. The condition is checked under
877  *		the lock. This is expected to be called with the lock taken.
878  * @wq: the waitqueue to wait on
879  * @condition: a C expression for the event to wait for
880  * @lock: a locked spinlock_t, which will be released before schedule()
881  *	  and reacquired afterwards.
882  * @timeout: timeout, in jiffies
883  *
884  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
885  * @condition evaluates to true or signal is received. The @condition is
886  * checked each time the waitqueue @wq is woken up.
887  *
888  * wake_up() has to be called after changing any variable that could
889  * change the result of the wait condition.
890  *
891  * This is supposed to be called while holding the lock. The lock is
892  * dropped before going to sleep and is reacquired afterwards.
893  *
894  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
895  * was interrupted by a signal, and the remaining jiffies otherwise
896  * if the condition evaluated to true before the timeout elapsed.
897  */
898 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
899 						  timeout)		\
900 ({									\
901 	long __ret = timeout;						\
902 	if (!___wait_cond_timeout(condition))				\
903 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
904 					wq, condition, lock, timeout);	\
905 	__ret;								\
906 })
907 
908 /*
909  * Waitqueues which are removed from the waitqueue_head at wakeup time
910  */
911 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
912 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
913 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
914 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
915 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
916 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
917 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
918 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
919 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
920 
921 #define DEFINE_WAIT_FUNC(name, function)				\
922 	wait_queue_t name = {						\
923 		.private	= current,				\
924 		.func		= function,				\
925 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
926 	}
927 
928 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
929 
930 #define DEFINE_WAIT_BIT(name, word, bit)				\
931 	struct wait_bit_queue name = {					\
932 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
933 		.wait	= {						\
934 			.private	= current,			\
935 			.func		= wake_bit_function,		\
936 			.task_list	=				\
937 				LIST_HEAD_INIT((name).wait.task_list),	\
938 		},							\
939 	}
940 
941 #define init_wait(wait)							\
942 	do {								\
943 		(wait)->private = current;				\
944 		(wait)->func = autoremove_wake_function;		\
945 		INIT_LIST_HEAD(&(wait)->task_list);			\
946 		(wait)->flags = 0;					\
947 	} while (0)
948 
949 
950 extern int bit_wait(struct wait_bit_key *);
951 extern int bit_wait_io(struct wait_bit_key *);
952 extern int bit_wait_timeout(struct wait_bit_key *);
953 extern int bit_wait_io_timeout(struct wait_bit_key *);
954 
955 /**
956  * wait_on_bit - wait for a bit to be cleared
957  * @word: the word being waited on, a kernel virtual address
958  * @bit: the bit of the word being waited on
959  * @mode: the task state to sleep in
960  *
961  * There is a standard hashed waitqueue table for generic use. This
962  * is the part of the hashtable's accessor API that waits on a bit.
963  * For instance, if one were to have waiters on a bitflag, one would
964  * call wait_on_bit() in threads waiting for the bit to clear.
965  * One uses wait_on_bit() where one is waiting for the bit to clear,
966  * but has no intention of setting it.
967  * Returned value will be zero if the bit was cleared, or non-zero
968  * if the process received a signal and the mode permitted wakeup
969  * on that signal.
970  */
971 static inline int
wait_on_bit(void * word,int bit,unsigned mode)972 wait_on_bit(void *word, int bit, unsigned mode)
973 {
974 	might_sleep();
975 	if (!test_bit(bit, word))
976 		return 0;
977 	return out_of_line_wait_on_bit(word, bit,
978 				       bit_wait,
979 				       mode);
980 }
981 
982 /**
983  * wait_on_bit_io - wait for a bit to be cleared
984  * @word: the word being waited on, a kernel virtual address
985  * @bit: the bit of the word being waited on
986  * @mode: the task state to sleep in
987  *
988  * Use the standard hashed waitqueue table to wait for a bit
989  * to be cleared.  This is similar to wait_on_bit(), but calls
990  * io_schedule() instead of schedule() for the actual waiting.
991  *
992  * Returned value will be zero if the bit was cleared, or non-zero
993  * if the process received a signal and the mode permitted wakeup
994  * on that signal.
995  */
996 static inline int
wait_on_bit_io(void * word,int bit,unsigned mode)997 wait_on_bit_io(void *word, int bit, unsigned mode)
998 {
999 	might_sleep();
1000 	if (!test_bit(bit, word))
1001 		return 0;
1002 	return out_of_line_wait_on_bit(word, bit,
1003 				       bit_wait_io,
1004 				       mode);
1005 }
1006 
1007 /**
1008  * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
1009  * @word: the word being waited on, a kernel virtual address
1010  * @bit: the bit of the word being waited on
1011  * @mode: the task state to sleep in
1012  * @timeout: timeout, in jiffies
1013  *
1014  * Use the standard hashed waitqueue table to wait for a bit
1015  * to be cleared. This is similar to wait_on_bit(), except also takes a
1016  * timeout parameter.
1017  *
1018  * Returned value will be zero if the bit was cleared before the
1019  * @timeout elapsed, or non-zero if the @timeout elapsed or process
1020  * received a signal and the mode permitted wakeup on that signal.
1021  */
1022 static inline int
wait_on_bit_timeout(void * word,int bit,unsigned mode,unsigned long timeout)1023 wait_on_bit_timeout(void *word, int bit, unsigned mode, unsigned long timeout)
1024 {
1025 	might_sleep();
1026 	if (!test_bit(bit, word))
1027 		return 0;
1028 	return out_of_line_wait_on_bit_timeout(word, bit,
1029 					       bit_wait_timeout,
1030 					       mode, timeout);
1031 }
1032 
1033 /**
1034  * wait_on_bit_action - wait for a bit to be cleared
1035  * @word: the word being waited on, a kernel virtual address
1036  * @bit: the bit of the word being waited on
1037  * @action: the function used to sleep, which may take special actions
1038  * @mode: the task state to sleep in
1039  *
1040  * Use the standard hashed waitqueue table to wait for a bit
1041  * to be cleared, and allow the waiting action to be specified.
1042  * This is like wait_on_bit() but allows fine control of how the waiting
1043  * is done.
1044  *
1045  * Returned value will be zero if the bit was cleared, or non-zero
1046  * if the process received a signal and the mode permitted wakeup
1047  * on that signal.
1048  */
1049 static inline int
wait_on_bit_action(void * word,int bit,wait_bit_action_f * action,unsigned mode)1050 wait_on_bit_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
1051 {
1052 	might_sleep();
1053 	if (!test_bit(bit, word))
1054 		return 0;
1055 	return out_of_line_wait_on_bit(word, bit, action, mode);
1056 }
1057 
1058 /**
1059  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
1060  * @word: the word being waited on, a kernel virtual address
1061  * @bit: the bit of the word being waited on
1062  * @mode: the task state to sleep in
1063  *
1064  * There is a standard hashed waitqueue table for generic use. This
1065  * is the part of the hashtable's accessor API that waits on a bit
1066  * when one intends to set it, for instance, trying to lock bitflags.
1067  * For instance, if one were to have waiters trying to set bitflag
1068  * and waiting for it to clear before setting it, one would call
1069  * wait_on_bit() in threads waiting to be able to set the bit.
1070  * One uses wait_on_bit_lock() where one is waiting for the bit to
1071  * clear with the intention of setting it, and when done, clearing it.
1072  *
1073  * Returns zero if the bit was (eventually) found to be clear and was
1074  * set.  Returns non-zero if a signal was delivered to the process and
1075  * the @mode allows that signal to wake the process.
1076  */
1077 static inline int
wait_on_bit_lock(void * word,int bit,unsigned mode)1078 wait_on_bit_lock(void *word, int bit, unsigned mode)
1079 {
1080 	might_sleep();
1081 	if (!test_and_set_bit(bit, word))
1082 		return 0;
1083 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
1084 }
1085 
1086 /**
1087  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
1088  * @word: the word being waited on, a kernel virtual address
1089  * @bit: the bit of the word being waited on
1090  * @mode: the task state to sleep in
1091  *
1092  * Use the standard hashed waitqueue table to wait for a bit
1093  * to be cleared and then to atomically set it.  This is similar
1094  * to wait_on_bit(), but calls io_schedule() instead of schedule()
1095  * for the actual waiting.
1096  *
1097  * Returns zero if the bit was (eventually) found to be clear and was
1098  * set.  Returns non-zero if a signal was delivered to the process and
1099  * the @mode allows that signal to wake the process.
1100  */
1101 static inline int
wait_on_bit_lock_io(void * word,int bit,unsigned mode)1102 wait_on_bit_lock_io(void *word, int bit, unsigned mode)
1103 {
1104 	might_sleep();
1105 	if (!test_and_set_bit(bit, word))
1106 		return 0;
1107 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
1108 }
1109 
1110 /**
1111  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
1112  * @word: the word being waited on, a kernel virtual address
1113  * @bit: the bit of the word being waited on
1114  * @action: the function used to sleep, which may take special actions
1115  * @mode: the task state to sleep in
1116  *
1117  * Use the standard hashed waitqueue table to wait for a bit
1118  * to be cleared and then to set it, and allow the waiting action
1119  * to be specified.
1120  * This is like wait_on_bit() but allows fine control of how the waiting
1121  * is done.
1122  *
1123  * Returns zero if the bit was (eventually) found to be clear and was
1124  * set.  Returns non-zero if a signal was delivered to the process and
1125  * the @mode allows that signal to wake the process.
1126  */
1127 static inline int
wait_on_bit_lock_action(void * word,int bit,wait_bit_action_f * action,unsigned mode)1128 wait_on_bit_lock_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
1129 {
1130 	might_sleep();
1131 	if (!test_and_set_bit(bit, word))
1132 		return 0;
1133 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1134 }
1135 
1136 /**
1137  * wait_on_atomic_t - Wait for an atomic_t to become 0
1138  * @val: The atomic value being waited on, a kernel virtual address
1139  * @action: the function used to sleep, which may take special actions
1140  * @mode: the task state to sleep in
1141  *
1142  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1143  * the purpose of getting a waitqueue, but we set the key to a bit number
1144  * outside of the target 'word'.
1145  */
1146 static inline
wait_on_atomic_t(atomic_t * val,int (* action)(atomic_t *),unsigned mode)1147 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1148 {
1149 	might_sleep();
1150 	if (atomic_read(val) == 0)
1151 		return 0;
1152 	return out_of_line_wait_on_atomic_t(val, action, mode);
1153 }
1154 
1155 #endif /* _LINUX_WAIT_H */
1156