1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <linux/page-flags-layout.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator.  */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service.  That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38enum {
39	MIGRATE_UNMOVABLE,
40	MIGRATE_RECLAIMABLE,
41	MIGRATE_MOVABLE,
42	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45	/*
46	 * MIGRATE_CMA migration type is designed to mimic the way
47	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48	 * from MIGRATE_CMA pageblocks and page allocator never
49	 * implicitly change migration type of MIGRATE_CMA pageblock.
50	 *
51	 * The way to use it is to change migratetype of a range of
52	 * pageblocks to MIGRATE_CMA which can be done by
53	 * __free_pageblock_cma() function.  What is important though
54	 * is that a range of pageblocks must be aligned to
55	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56	 * a single pageblock.
57	 */
58	MIGRATE_CMA,
59#endif
60#ifdef CONFIG_MEMORY_ISOLATION
61	MIGRATE_ISOLATE,	/* can't allocate from here */
62#endif
63	MIGRATE_TYPES
64};
65
66#ifdef CONFIG_CMA
67#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68#else
69#  define is_migrate_cma(migratetype) false
70#endif
71
72#define for_each_migratetype_order(order, type) \
73	for (order = 0; order < MAX_ORDER; order++) \
74		for (type = 0; type < MIGRATE_TYPES; type++)
75
76extern int page_group_by_mobility_disabled;
77
78#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80
81#define get_pageblock_migratetype(page)					\
82	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
83			PB_migrate_end, MIGRATETYPE_MASK)
84
85static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86{
87	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89					MIGRATETYPE_MASK);
90}
91
92struct free_area {
93	struct list_head	free_list[MIGRATE_TYPES];
94	unsigned long		nr_free;
95};
96
97struct pglist_data;
98
99/*
100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101 * So add a wild amount of padding here to ensure that they fall into separate
102 * cachelines.  There are very few zone structures in the machine, so space
103 * consumption is not a concern here.
104 */
105#if defined(CONFIG_SMP)
106struct zone_padding {
107	char x[0];
108} ____cacheline_internodealigned_in_smp;
109#define ZONE_PADDING(name)	struct zone_padding name;
110#else
111#define ZONE_PADDING(name)
112#endif
113
114enum zone_stat_item {
115	/* First 128 byte cacheline (assuming 64 bit words) */
116	NR_FREE_PAGES,
117	NR_ALLOC_BATCH,
118	NR_LRU_BASE,
119	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
121	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
122	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
123	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
124	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
125	NR_ANON_PAGES,	/* Mapped anonymous pages */
126	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
127			   only modified from process context */
128	NR_FILE_PAGES,
129	NR_FILE_DIRTY,
130	NR_WRITEBACK,
131	NR_SLAB_RECLAIMABLE,
132	NR_SLAB_UNRECLAIMABLE,
133	NR_PAGETABLE,		/* used for pagetables */
134	NR_KERNEL_STACK,
135	/* Second 128 byte cacheline */
136	NR_UNSTABLE_NFS,	/* NFS unstable pages */
137	NR_BOUNCE,
138	NR_VMSCAN_WRITE,
139	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
140	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
141	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
142	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
143	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
144	NR_DIRTIED,		/* page dirtyings since bootup */
145	NR_WRITTEN,		/* page writings since bootup */
146	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
147#ifdef CONFIG_NUMA
148	NUMA_HIT,		/* allocated in intended node */
149	NUMA_MISS,		/* allocated in non intended node */
150	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
151	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
152	NUMA_LOCAL,		/* allocation from local node */
153	NUMA_OTHER,		/* allocation from other node */
154#endif
155	WORKINGSET_REFAULT,
156	WORKINGSET_ACTIVATE,
157	WORKINGSET_NODERECLAIM,
158	NR_ANON_TRANSPARENT_HUGEPAGES,
159	NR_FREE_CMA_PAGES,
160	NR_VM_ZONE_STAT_ITEMS };
161
162/*
163 * We do arithmetic on the LRU lists in various places in the code,
164 * so it is important to keep the active lists LRU_ACTIVE higher in
165 * the array than the corresponding inactive lists, and to keep
166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167 *
168 * This has to be kept in sync with the statistics in zone_stat_item
169 * above and the descriptions in vmstat_text in mm/vmstat.c
170 */
171#define LRU_BASE 0
172#define LRU_ACTIVE 1
173#define LRU_FILE 2
174
175enum lru_list {
176	LRU_INACTIVE_ANON = LRU_BASE,
177	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180	LRU_UNEVICTABLE,
181	NR_LRU_LISTS
182};
183
184#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185
186#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187
188static inline int is_file_lru(enum lru_list lru)
189{
190	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191}
192
193static inline int is_active_lru(enum lru_list lru)
194{
195	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196}
197
198static inline int is_unevictable_lru(enum lru_list lru)
199{
200	return (lru == LRU_UNEVICTABLE);
201}
202
203struct zone_reclaim_stat {
204	/*
205	 * The pageout code in vmscan.c keeps track of how many of the
206	 * mem/swap backed and file backed pages are referenced.
207	 * The higher the rotated/scanned ratio, the more valuable
208	 * that cache is.
209	 *
210	 * The anon LRU stats live in [0], file LRU stats in [1]
211	 */
212	unsigned long		recent_rotated[2];
213	unsigned long		recent_scanned[2];
214};
215
216struct lruvec {
217	struct list_head lists[NR_LRU_LISTS];
218	struct zone_reclaim_stat reclaim_stat;
219#ifdef CONFIG_MEMCG
220	struct zone *zone;
221#endif
222};
223
224/* Mask used at gathering information at once (see memcontrol.c) */
225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
228
229/* Isolate clean file */
230#define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
231/* Isolate unmapped file */
232#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
233/* Isolate for asynchronous migration */
234#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
235/* Isolate unevictable pages */
236#define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
237
238/* LRU Isolation modes. */
239typedef unsigned __bitwise__ isolate_mode_t;
240
241enum zone_watermarks {
242	WMARK_MIN,
243	WMARK_LOW,
244	WMARK_HIGH,
245	NR_WMARK
246};
247
248#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251
252struct per_cpu_pages {
253	int count;		/* number of pages in the list */
254	int high;		/* high watermark, emptying needed */
255	int batch;		/* chunk size for buddy add/remove */
256
257	/* Lists of pages, one per migrate type stored on the pcp-lists */
258	struct list_head lists[MIGRATE_PCPTYPES];
259};
260
261struct per_cpu_pageset {
262	struct per_cpu_pages pcp;
263#ifdef CONFIG_NUMA
264	s8 expire;
265#endif
266#ifdef CONFIG_SMP
267	s8 stat_threshold;
268	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269#endif
270};
271
272#endif /* !__GENERATING_BOUNDS.H */
273
274enum zone_type {
275#ifdef CONFIG_ZONE_DMA
276	/*
277	 * ZONE_DMA is used when there are devices that are not able
278	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279	 * carve out the portion of memory that is needed for these devices.
280	 * The range is arch specific.
281	 *
282	 * Some examples
283	 *
284	 * Architecture		Limit
285	 * ---------------------------
286	 * parisc, ia64, sparc	<4G
287	 * s390			<2G
288	 * arm			Various
289	 * alpha		Unlimited or 0-16MB.
290	 *
291	 * i386, x86_64 and multiple other arches
292	 * 			<16M.
293	 */
294	ZONE_DMA,
295#endif
296#ifdef CONFIG_ZONE_DMA32
297	/*
298	 * x86_64 needs two ZONE_DMAs because it supports devices that are
299	 * only able to do DMA to the lower 16M but also 32 bit devices that
300	 * can only do DMA areas below 4G.
301	 */
302	ZONE_DMA32,
303#endif
304	/*
305	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306	 * performed on pages in ZONE_NORMAL if the DMA devices support
307	 * transfers to all addressable memory.
308	 */
309	ZONE_NORMAL,
310#ifdef CONFIG_HIGHMEM
311	/*
312	 * A memory area that is only addressable by the kernel through
313	 * mapping portions into its own address space. This is for example
314	 * used by i386 to allow the kernel to address the memory beyond
315	 * 900MB. The kernel will set up special mappings (page
316	 * table entries on i386) for each page that the kernel needs to
317	 * access.
318	 */
319	ZONE_HIGHMEM,
320#endif
321	ZONE_MOVABLE,
322	__MAX_NR_ZONES
323};
324
325#ifndef __GENERATING_BOUNDS_H
326
327struct zone {
328	/* Read-mostly fields */
329
330	/* zone watermarks, access with *_wmark_pages(zone) macros */
331	unsigned long watermark[NR_WMARK];
332
333	/*
334	 * We don't know if the memory that we're going to allocate will be freeable
335	 * or/and it will be released eventually, so to avoid totally wasting several
336	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
337	 * to run OOM on the lower zones despite there's tons of freeable ram
338	 * on the higher zones). This array is recalculated at runtime if the
339	 * sysctl_lowmem_reserve_ratio sysctl changes.
340	 */
341	long lowmem_reserve[MAX_NR_ZONES];
342
343#ifdef CONFIG_NUMA
344	int node;
345#endif
346
347	/*
348	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
349	 * this zone's LRU.  Maintained by the pageout code.
350	 */
351	unsigned int inactive_ratio;
352
353	struct pglist_data	*zone_pgdat;
354	struct per_cpu_pageset __percpu *pageset;
355
356	/*
357	 * This is a per-zone reserve of pages that should not be
358	 * considered dirtyable memory.
359	 */
360	unsigned long		dirty_balance_reserve;
361
362#ifndef CONFIG_SPARSEMEM
363	/*
364	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
365	 * In SPARSEMEM, this map is stored in struct mem_section
366	 */
367	unsigned long		*pageblock_flags;
368#endif /* CONFIG_SPARSEMEM */
369
370#ifdef CONFIG_NUMA
371	/*
372	 * zone reclaim becomes active if more unmapped pages exist.
373	 */
374	unsigned long		min_unmapped_pages;
375	unsigned long		min_slab_pages;
376#endif /* CONFIG_NUMA */
377
378	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
379	unsigned long		zone_start_pfn;
380
381	/*
382	 * spanned_pages is the total pages spanned by the zone, including
383	 * holes, which is calculated as:
384	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
385	 *
386	 * present_pages is physical pages existing within the zone, which
387	 * is calculated as:
388	 *	present_pages = spanned_pages - absent_pages(pages in holes);
389	 *
390	 * managed_pages is present pages managed by the buddy system, which
391	 * is calculated as (reserved_pages includes pages allocated by the
392	 * bootmem allocator):
393	 *	managed_pages = present_pages - reserved_pages;
394	 *
395	 * So present_pages may be used by memory hotplug or memory power
396	 * management logic to figure out unmanaged pages by checking
397	 * (present_pages - managed_pages). And managed_pages should be used
398	 * by page allocator and vm scanner to calculate all kinds of watermarks
399	 * and thresholds.
400	 *
401	 * Locking rules:
402	 *
403	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
404	 * It is a seqlock because it has to be read outside of zone->lock,
405	 * and it is done in the main allocator path.  But, it is written
406	 * quite infrequently.
407	 *
408	 * The span_seq lock is declared along with zone->lock because it is
409	 * frequently read in proximity to zone->lock.  It's good to
410	 * give them a chance of being in the same cacheline.
411	 *
412	 * Write access to present_pages at runtime should be protected by
413	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
414	 * present_pages should get_online_mems() to get a stable value.
415	 *
416	 * Read access to managed_pages should be safe because it's unsigned
417	 * long. Write access to zone->managed_pages and totalram_pages are
418	 * protected by managed_page_count_lock at runtime. Idealy only
419	 * adjust_managed_page_count() should be used instead of directly
420	 * touching zone->managed_pages and totalram_pages.
421	 */
422	unsigned long		managed_pages;
423	unsigned long		spanned_pages;
424	unsigned long		present_pages;
425
426	const char		*name;
427
428	/*
429	 * Number of MIGRATE_RESERVE page block. To maintain for just
430	 * optimization. Protected by zone->lock.
431	 */
432	int			nr_migrate_reserve_block;
433
434#ifdef CONFIG_MEMORY_ISOLATION
435	/*
436	 * Number of isolated pageblock. It is used to solve incorrect
437	 * freepage counting problem due to racy retrieving migratetype
438	 * of pageblock. Protected by zone->lock.
439	 */
440	unsigned long		nr_isolate_pageblock;
441#endif
442
443#ifdef CONFIG_MEMORY_HOTPLUG
444	/* see spanned/present_pages for more description */
445	seqlock_t		span_seqlock;
446#endif
447
448	/*
449	 * wait_table		-- the array holding the hash table
450	 * wait_table_hash_nr_entries	-- the size of the hash table array
451	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
452	 *
453	 * The purpose of all these is to keep track of the people
454	 * waiting for a page to become available and make them
455	 * runnable again when possible. The trouble is that this
456	 * consumes a lot of space, especially when so few things
457	 * wait on pages at a given time. So instead of using
458	 * per-page waitqueues, we use a waitqueue hash table.
459	 *
460	 * The bucket discipline is to sleep on the same queue when
461	 * colliding and wake all in that wait queue when removing.
462	 * When something wakes, it must check to be sure its page is
463	 * truly available, a la thundering herd. The cost of a
464	 * collision is great, but given the expected load of the
465	 * table, they should be so rare as to be outweighed by the
466	 * benefits from the saved space.
467	 *
468	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
469	 * primary users of these fields, and in mm/page_alloc.c
470	 * free_area_init_core() performs the initialization of them.
471	 */
472	wait_queue_head_t	*wait_table;
473	unsigned long		wait_table_hash_nr_entries;
474	unsigned long		wait_table_bits;
475
476	ZONE_PADDING(_pad1_)
477	/* free areas of different sizes */
478	struct free_area	free_area[MAX_ORDER];
479
480	/* zone flags, see below */
481	unsigned long		flags;
482
483	/* Write-intensive fields used from the page allocator */
484	spinlock_t		lock;
485
486	ZONE_PADDING(_pad2_)
487
488	/* Write-intensive fields used by page reclaim */
489
490	/* Fields commonly accessed by the page reclaim scanner */
491	spinlock_t		lru_lock;
492	struct lruvec		lruvec;
493
494	/* Evictions & activations on the inactive file list */
495	atomic_long_t		inactive_age;
496
497	/*
498	 * When free pages are below this point, additional steps are taken
499	 * when reading the number of free pages to avoid per-cpu counter
500	 * drift allowing watermarks to be breached
501	 */
502	unsigned long percpu_drift_mark;
503
504#if defined CONFIG_COMPACTION || defined CONFIG_CMA
505	/* pfn where compaction free scanner should start */
506	unsigned long		compact_cached_free_pfn;
507	/* pfn where async and sync compaction migration scanner should start */
508	unsigned long		compact_cached_migrate_pfn[2];
509#endif
510
511#ifdef CONFIG_COMPACTION
512	/*
513	 * On compaction failure, 1<<compact_defer_shift compactions
514	 * are skipped before trying again. The number attempted since
515	 * last failure is tracked with compact_considered.
516	 */
517	unsigned int		compact_considered;
518	unsigned int		compact_defer_shift;
519	int			compact_order_failed;
520#endif
521
522#if defined CONFIG_COMPACTION || defined CONFIG_CMA
523	/* Set to true when the PG_migrate_skip bits should be cleared */
524	bool			compact_blockskip_flush;
525#endif
526
527	ZONE_PADDING(_pad3_)
528	/* Zone statistics */
529	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
530} ____cacheline_internodealigned_in_smp;
531
532enum zone_flags {
533	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
534	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
535	ZONE_CONGESTED,			/* zone has many dirty pages backed by
536					 * a congested BDI
537					 */
538	ZONE_DIRTY,			/* reclaim scanning has recently found
539					 * many dirty file pages at the tail
540					 * of the LRU.
541					 */
542	ZONE_WRITEBACK,			/* reclaim scanning has recently found
543					 * many pages under writeback
544					 */
545	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
546};
547
548static inline unsigned long zone_end_pfn(const struct zone *zone)
549{
550	return zone->zone_start_pfn + zone->spanned_pages;
551}
552
553static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
554{
555	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
556}
557
558static inline bool zone_is_initialized(struct zone *zone)
559{
560	return !!zone->wait_table;
561}
562
563static inline bool zone_is_empty(struct zone *zone)
564{
565	return zone->spanned_pages == 0;
566}
567
568/*
569 * The "priority" of VM scanning is how much of the queues we will scan in one
570 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
571 * queues ("queue_length >> 12") during an aging round.
572 */
573#define DEF_PRIORITY 12
574
575/* Maximum number of zones on a zonelist */
576#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
577
578#ifdef CONFIG_NUMA
579
580/*
581 * The NUMA zonelists are doubled because we need zonelists that restrict the
582 * allocations to a single node for __GFP_THISNODE.
583 *
584 * [0]	: Zonelist with fallback
585 * [1]	: No fallback (__GFP_THISNODE)
586 */
587#define MAX_ZONELISTS 2
588
589
590/*
591 * We cache key information from each zonelist for smaller cache
592 * footprint when scanning for free pages in get_page_from_freelist().
593 *
594 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
595 *    up short of free memory since the last time (last_fullzone_zap)
596 *    we zero'd fullzones.
597 * 2) The array z_to_n[] maps each zone in the zonelist to its node
598 *    id, so that we can efficiently evaluate whether that node is
599 *    set in the current tasks mems_allowed.
600 *
601 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
602 * indexed by a zones offset in the zonelist zones[] array.
603 *
604 * The get_page_from_freelist() routine does two scans.  During the
605 * first scan, we skip zones whose corresponding bit in 'fullzones'
606 * is set or whose corresponding node in current->mems_allowed (which
607 * comes from cpusets) is not set.  During the second scan, we bypass
608 * this zonelist_cache, to ensure we look methodically at each zone.
609 *
610 * Once per second, we zero out (zap) fullzones, forcing us to
611 * reconsider nodes that might have regained more free memory.
612 * The field last_full_zap is the time we last zapped fullzones.
613 *
614 * This mechanism reduces the amount of time we waste repeatedly
615 * reexaming zones for free memory when they just came up low on
616 * memory momentarilly ago.
617 *
618 * The zonelist_cache struct members logically belong in struct
619 * zonelist.  However, the mempolicy zonelists constructed for
620 * MPOL_BIND are intentionally variable length (and usually much
621 * shorter).  A general purpose mechanism for handling structs with
622 * multiple variable length members is more mechanism than we want
623 * here.  We resort to some special case hackery instead.
624 *
625 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
626 * part because they are shorter), so we put the fixed length stuff
627 * at the front of the zonelist struct, ending in a variable length
628 * zones[], as is needed by MPOL_BIND.
629 *
630 * Then we put the optional zonelist cache on the end of the zonelist
631 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
632 * the fixed length portion at the front of the struct.  This pointer
633 * both enables us to find the zonelist cache, and in the case of
634 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
635 * to know that the zonelist cache is not there.
636 *
637 * The end result is that struct zonelists come in two flavors:
638 *  1) The full, fixed length version, shown below, and
639 *  2) The custom zonelists for MPOL_BIND.
640 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
641 *
642 * Even though there may be multiple CPU cores on a node modifying
643 * fullzones or last_full_zap in the same zonelist_cache at the same
644 * time, we don't lock it.  This is just hint data - if it is wrong now
645 * and then, the allocator will still function, perhaps a bit slower.
646 */
647
648
649struct zonelist_cache {
650	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
651	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
652	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
653};
654#else
655#define MAX_ZONELISTS 1
656struct zonelist_cache;
657#endif
658
659/*
660 * This struct contains information about a zone in a zonelist. It is stored
661 * here to avoid dereferences into large structures and lookups of tables
662 */
663struct zoneref {
664	struct zone *zone;	/* Pointer to actual zone */
665	int zone_idx;		/* zone_idx(zoneref->zone) */
666};
667
668/*
669 * One allocation request operates on a zonelist. A zonelist
670 * is a list of zones, the first one is the 'goal' of the
671 * allocation, the other zones are fallback zones, in decreasing
672 * priority.
673 *
674 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
675 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
676 * *
677 * To speed the reading of the zonelist, the zonerefs contain the zone index
678 * of the entry being read. Helper functions to access information given
679 * a struct zoneref are
680 *
681 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
682 * zonelist_zone_idx()	- Return the index of the zone for an entry
683 * zonelist_node_idx()	- Return the index of the node for an entry
684 */
685struct zonelist {
686	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
687	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
688#ifdef CONFIG_NUMA
689	struct zonelist_cache zlcache;			     // optional ...
690#endif
691};
692
693#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
694struct node_active_region {
695	unsigned long start_pfn;
696	unsigned long end_pfn;
697	int nid;
698};
699#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
700
701#ifndef CONFIG_DISCONTIGMEM
702/* The array of struct pages - for discontigmem use pgdat->lmem_map */
703extern struct page *mem_map;
704#endif
705
706/*
707 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
708 * (mostly NUMA machines?) to denote a higher-level memory zone than the
709 * zone denotes.
710 *
711 * On NUMA machines, each NUMA node would have a pg_data_t to describe
712 * it's memory layout.
713 *
714 * Memory statistics and page replacement data structures are maintained on a
715 * per-zone basis.
716 */
717struct bootmem_data;
718typedef struct pglist_data {
719	struct zone node_zones[MAX_NR_ZONES];
720	struct zonelist node_zonelists[MAX_ZONELISTS];
721	int nr_zones;
722#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
723	struct page *node_mem_map;
724#ifdef CONFIG_PAGE_EXTENSION
725	struct page_ext *node_page_ext;
726#endif
727#endif
728#ifndef CONFIG_NO_BOOTMEM
729	struct bootmem_data *bdata;
730#endif
731#ifdef CONFIG_MEMORY_HOTPLUG
732	/*
733	 * Must be held any time you expect node_start_pfn, node_present_pages
734	 * or node_spanned_pages stay constant.  Holding this will also
735	 * guarantee that any pfn_valid() stays that way.
736	 *
737	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
738	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
739	 *
740	 * Nests above zone->lock and zone->span_seqlock
741	 */
742	spinlock_t node_size_lock;
743#endif
744	unsigned long node_start_pfn;
745	unsigned long node_present_pages; /* total number of physical pages */
746	unsigned long node_spanned_pages; /* total size of physical page
747					     range, including holes */
748	int node_id;
749	wait_queue_head_t kswapd_wait;
750	wait_queue_head_t pfmemalloc_wait;
751	struct task_struct *kswapd;	/* Protected by
752					   mem_hotplug_begin/end() */
753	int kswapd_max_order;
754	enum zone_type classzone_idx;
755#ifdef CONFIG_NUMA_BALANCING
756	/* Lock serializing the migrate rate limiting window */
757	spinlock_t numabalancing_migrate_lock;
758
759	/* Rate limiting time interval */
760	unsigned long numabalancing_migrate_next_window;
761
762	/* Number of pages migrated during the rate limiting time interval */
763	unsigned long numabalancing_migrate_nr_pages;
764#endif
765} pg_data_t;
766
767#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
768#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
769#ifdef CONFIG_FLAT_NODE_MEM_MAP
770#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
771#else
772#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
773#endif
774#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
775
776#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
777#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
778
779static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
780{
781	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
782}
783
784static inline bool pgdat_is_empty(pg_data_t *pgdat)
785{
786	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
787}
788
789#include <linux/memory_hotplug.h>
790
791extern struct mutex zonelists_mutex;
792void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
793void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
794bool zone_watermark_ok(struct zone *z, unsigned int order,
795		unsigned long mark, int classzone_idx, int alloc_flags);
796bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
797		unsigned long mark, int classzone_idx, int alloc_flags);
798enum memmap_context {
799	MEMMAP_EARLY,
800	MEMMAP_HOTPLUG,
801};
802extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
803				     unsigned long size,
804				     enum memmap_context context);
805
806extern void lruvec_init(struct lruvec *lruvec);
807
808static inline struct zone *lruvec_zone(struct lruvec *lruvec)
809{
810#ifdef CONFIG_MEMCG
811	return lruvec->zone;
812#else
813	return container_of(lruvec, struct zone, lruvec);
814#endif
815}
816
817#ifdef CONFIG_HAVE_MEMORY_PRESENT
818void memory_present(int nid, unsigned long start, unsigned long end);
819#else
820static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
821#endif
822
823#ifdef CONFIG_HAVE_MEMORYLESS_NODES
824int local_memory_node(int node_id);
825#else
826static inline int local_memory_node(int node_id) { return node_id; };
827#endif
828
829#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
830unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
831#endif
832
833/*
834 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
835 */
836#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
837
838static inline int populated_zone(struct zone *zone)
839{
840	return (!!zone->present_pages);
841}
842
843extern int movable_zone;
844
845#ifdef CONFIG_HIGHMEM
846static inline int zone_movable_is_highmem(void)
847{
848#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
849	return movable_zone == ZONE_HIGHMEM;
850#else
851	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
852#endif
853}
854#endif
855
856static inline int is_highmem_idx(enum zone_type idx)
857{
858#ifdef CONFIG_HIGHMEM
859	return (idx == ZONE_HIGHMEM ||
860		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
861#else
862	return 0;
863#endif
864}
865
866/**
867 * is_highmem - helper function to quickly check if a struct zone is a
868 *              highmem zone or not.  This is an attempt to keep references
869 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
870 * @zone - pointer to struct zone variable
871 */
872static inline int is_highmem(struct zone *zone)
873{
874#ifdef CONFIG_HIGHMEM
875	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
876	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
877	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
878		zone_movable_is_highmem());
879#else
880	return 0;
881#endif
882}
883
884/* These two functions are used to setup the per zone pages min values */
885struct ctl_table;
886int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
887					void __user *, size_t *, loff_t *);
888extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
889int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
890					void __user *, size_t *, loff_t *);
891int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
892					void __user *, size_t *, loff_t *);
893int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
894			void __user *, size_t *, loff_t *);
895int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
896			void __user *, size_t *, loff_t *);
897
898extern int numa_zonelist_order_handler(struct ctl_table *, int,
899			void __user *, size_t *, loff_t *);
900extern char numa_zonelist_order[];
901#define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
902
903#ifndef CONFIG_NEED_MULTIPLE_NODES
904
905extern struct pglist_data contig_page_data;
906#define NODE_DATA(nid)		(&contig_page_data)
907#define NODE_MEM_MAP(nid)	mem_map
908
909#else /* CONFIG_NEED_MULTIPLE_NODES */
910
911#include <asm/mmzone.h>
912
913#endif /* !CONFIG_NEED_MULTIPLE_NODES */
914
915extern struct pglist_data *first_online_pgdat(void);
916extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
917extern struct zone *next_zone(struct zone *zone);
918
919/**
920 * for_each_online_pgdat - helper macro to iterate over all online nodes
921 * @pgdat - pointer to a pg_data_t variable
922 */
923#define for_each_online_pgdat(pgdat)			\
924	for (pgdat = first_online_pgdat();		\
925	     pgdat;					\
926	     pgdat = next_online_pgdat(pgdat))
927/**
928 * for_each_zone - helper macro to iterate over all memory zones
929 * @zone - pointer to struct zone variable
930 *
931 * The user only needs to declare the zone variable, for_each_zone
932 * fills it in.
933 */
934#define for_each_zone(zone)			        \
935	for (zone = (first_online_pgdat())->node_zones; \
936	     zone;					\
937	     zone = next_zone(zone))
938
939#define for_each_populated_zone(zone)		        \
940	for (zone = (first_online_pgdat())->node_zones; \
941	     zone;					\
942	     zone = next_zone(zone))			\
943		if (!populated_zone(zone))		\
944			; /* do nothing */		\
945		else
946
947static inline struct zone *zonelist_zone(struct zoneref *zoneref)
948{
949	return zoneref->zone;
950}
951
952static inline int zonelist_zone_idx(struct zoneref *zoneref)
953{
954	return zoneref->zone_idx;
955}
956
957static inline int zonelist_node_idx(struct zoneref *zoneref)
958{
959#ifdef CONFIG_NUMA
960	/* zone_to_nid not available in this context */
961	return zoneref->zone->node;
962#else
963	return 0;
964#endif /* CONFIG_NUMA */
965}
966
967/**
968 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
969 * @z - The cursor used as a starting point for the search
970 * @highest_zoneidx - The zone index of the highest zone to return
971 * @nodes - An optional nodemask to filter the zonelist with
972 *
973 * This function returns the next zone at or below a given zone index that is
974 * within the allowed nodemask using a cursor as the starting point for the
975 * search. The zoneref returned is a cursor that represents the current zone
976 * being examined. It should be advanced by one before calling
977 * next_zones_zonelist again.
978 */
979struct zoneref *next_zones_zonelist(struct zoneref *z,
980					enum zone_type highest_zoneidx,
981					nodemask_t *nodes);
982
983/**
984 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
985 * @zonelist - The zonelist to search for a suitable zone
986 * @highest_zoneidx - The zone index of the highest zone to return
987 * @nodes - An optional nodemask to filter the zonelist with
988 * @zone - The first suitable zone found is returned via this parameter
989 *
990 * This function returns the first zone at or below a given zone index that is
991 * within the allowed nodemask. The zoneref returned is a cursor that can be
992 * used to iterate the zonelist with next_zones_zonelist by advancing it by
993 * one before calling.
994 */
995static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
996					enum zone_type highest_zoneidx,
997					nodemask_t *nodes,
998					struct zone **zone)
999{
1000	struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
1001							highest_zoneidx, nodes);
1002	*zone = zonelist_zone(z);
1003	return z;
1004}
1005
1006/**
1007 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1008 * @zone - The current zone in the iterator
1009 * @z - The current pointer within zonelist->zones being iterated
1010 * @zlist - The zonelist being iterated
1011 * @highidx - The zone index of the highest zone to return
1012 * @nodemask - Nodemask allowed by the allocator
1013 *
1014 * This iterator iterates though all zones at or below a given zone index and
1015 * within a given nodemask
1016 */
1017#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1018	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1019		zone;							\
1020		z = next_zones_zonelist(++z, highidx, nodemask),	\
1021			zone = zonelist_zone(z))			\
1022
1023/**
1024 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1025 * @zone - The current zone in the iterator
1026 * @z - The current pointer within zonelist->zones being iterated
1027 * @zlist - The zonelist being iterated
1028 * @highidx - The zone index of the highest zone to return
1029 *
1030 * This iterator iterates though all zones at or below a given zone index.
1031 */
1032#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1033	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1034
1035#ifdef CONFIG_SPARSEMEM
1036#include <asm/sparsemem.h>
1037#endif
1038
1039#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1040	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1041static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1042{
1043	return 0;
1044}
1045#endif
1046
1047#ifdef CONFIG_FLATMEM
1048#define pfn_to_nid(pfn)		(0)
1049#endif
1050
1051#ifdef CONFIG_SPARSEMEM
1052
1053/*
1054 * SECTION_SHIFT    		#bits space required to store a section #
1055 *
1056 * PA_SECTION_SHIFT		physical address to/from section number
1057 * PFN_SECTION_SHIFT		pfn to/from section number
1058 */
1059#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1060#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1061
1062#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1063
1064#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1065#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1066
1067#define SECTION_BLOCKFLAGS_BITS \
1068	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1069
1070#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1071#error Allocator MAX_ORDER exceeds SECTION_SIZE
1072#endif
1073
1074#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1075#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1076
1077#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1078#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1079
1080struct page;
1081struct page_ext;
1082struct mem_section {
1083	/*
1084	 * This is, logically, a pointer to an array of struct
1085	 * pages.  However, it is stored with some other magic.
1086	 * (see sparse.c::sparse_init_one_section())
1087	 *
1088	 * Additionally during early boot we encode node id of
1089	 * the location of the section here to guide allocation.
1090	 * (see sparse.c::memory_present())
1091	 *
1092	 * Making it a UL at least makes someone do a cast
1093	 * before using it wrong.
1094	 */
1095	unsigned long section_mem_map;
1096
1097	/* See declaration of similar field in struct zone */
1098	unsigned long *pageblock_flags;
1099#ifdef CONFIG_PAGE_EXTENSION
1100	/*
1101	 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1102	 * section. (see page_ext.h about this.)
1103	 */
1104	struct page_ext *page_ext;
1105	unsigned long pad;
1106#endif
1107	/*
1108	 * WARNING: mem_section must be a power-of-2 in size for the
1109	 * calculation and use of SECTION_ROOT_MASK to make sense.
1110	 */
1111};
1112
1113#ifdef CONFIG_SPARSEMEM_EXTREME
1114#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1115#else
1116#define SECTIONS_PER_ROOT	1
1117#endif
1118
1119#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1120#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1121#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1122
1123#ifdef CONFIG_SPARSEMEM_EXTREME
1124extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1125#else
1126extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1127#endif
1128
1129static inline struct mem_section *__nr_to_section(unsigned long nr)
1130{
1131	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1132		return NULL;
1133	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1134}
1135extern int __section_nr(struct mem_section* ms);
1136extern unsigned long usemap_size(void);
1137
1138/*
1139 * We use the lower bits of the mem_map pointer to store
1140 * a little bit of information.  There should be at least
1141 * 3 bits here due to 32-bit alignment.
1142 */
1143#define	SECTION_MARKED_PRESENT	(1UL<<0)
1144#define SECTION_HAS_MEM_MAP	(1UL<<1)
1145#define SECTION_MAP_LAST_BIT	(1UL<<2)
1146#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1147#define SECTION_NID_SHIFT	2
1148
1149static inline struct page *__section_mem_map_addr(struct mem_section *section)
1150{
1151	unsigned long map = section->section_mem_map;
1152	map &= SECTION_MAP_MASK;
1153	return (struct page *)map;
1154}
1155
1156static inline int present_section(struct mem_section *section)
1157{
1158	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1159}
1160
1161static inline int present_section_nr(unsigned long nr)
1162{
1163	return present_section(__nr_to_section(nr));
1164}
1165
1166static inline int valid_section(struct mem_section *section)
1167{
1168	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1169}
1170
1171static inline int valid_section_nr(unsigned long nr)
1172{
1173	return valid_section(__nr_to_section(nr));
1174}
1175
1176static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1177{
1178	return __nr_to_section(pfn_to_section_nr(pfn));
1179}
1180
1181#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1182static inline int pfn_valid(unsigned long pfn)
1183{
1184	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1185		return 0;
1186	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1187}
1188#endif
1189
1190static inline int pfn_present(unsigned long pfn)
1191{
1192	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1193		return 0;
1194	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1195}
1196
1197/*
1198 * These are _only_ used during initialisation, therefore they
1199 * can use __initdata ...  They could have names to indicate
1200 * this restriction.
1201 */
1202#ifdef CONFIG_NUMA
1203#define pfn_to_nid(pfn)							\
1204({									\
1205	unsigned long __pfn_to_nid_pfn = (pfn);				\
1206	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1207})
1208#else
1209#define pfn_to_nid(pfn)		(0)
1210#endif
1211
1212#define early_pfn_valid(pfn)	pfn_valid(pfn)
1213void sparse_init(void);
1214#else
1215#define sparse_init()	do {} while (0)
1216#define sparse_index_init(_sec, _nid)  do {} while (0)
1217#endif /* CONFIG_SPARSEMEM */
1218
1219#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1220bool early_pfn_in_nid(unsigned long pfn, int nid);
1221#else
1222#define early_pfn_in_nid(pfn, nid)	(1)
1223#endif
1224
1225#ifndef early_pfn_valid
1226#define early_pfn_valid(pfn)	(1)
1227#endif
1228
1229void memory_present(int nid, unsigned long start, unsigned long end);
1230unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1231
1232/*
1233 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1234 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1235 * pfn_valid_within() should be used in this case; we optimise this away
1236 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1237 */
1238#ifdef CONFIG_HOLES_IN_ZONE
1239#define pfn_valid_within(pfn) pfn_valid(pfn)
1240#else
1241#define pfn_valid_within(pfn) (1)
1242#endif
1243
1244#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1245/*
1246 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1247 * associated with it or not. In FLATMEM, it is expected that holes always
1248 * have valid memmap as long as there is valid PFNs either side of the hole.
1249 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1250 * entire section.
1251 *
1252 * However, an ARM, and maybe other embedded architectures in the future
1253 * free memmap backing holes to save memory on the assumption the memmap is
1254 * never used. The page_zone linkages are then broken even though pfn_valid()
1255 * returns true. A walker of the full memmap must then do this additional
1256 * check to ensure the memmap they are looking at is sane by making sure
1257 * the zone and PFN linkages are still valid. This is expensive, but walkers
1258 * of the full memmap are extremely rare.
1259 */
1260int memmap_valid_within(unsigned long pfn,
1261					struct page *page, struct zone *zone);
1262#else
1263static inline int memmap_valid_within(unsigned long pfn,
1264					struct page *page, struct zone *zone)
1265{
1266	return 1;
1267}
1268#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1269
1270#endif /* !__GENERATING_BOUNDS.H */
1271#endif /* !__ASSEMBLY__ */
1272#endif /* _LINUX_MMZONE_H */
1273