1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30 
31 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
32 extern unsigned long max_mapnr;
33 
set_max_mapnr(unsigned long limit)34 static inline void set_max_mapnr(unsigned long limit)
35 {
36 	max_mapnr = limit;
37 }
38 #else
set_max_mapnr(unsigned long limit)39 static inline void set_max_mapnr(unsigned long limit) { }
40 #endif
41 
42 extern unsigned long totalram_pages;
43 extern void * high_memory;
44 extern int page_cluster;
45 
46 #ifdef CONFIG_SYSCTL
47 extern int sysctl_legacy_va_layout;
48 #else
49 #define sysctl_legacy_va_layout 0
50 #endif
51 
52 #include <asm/page.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55 
56 #ifndef __pa_symbol
57 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
58 #endif
59 
60 /*
61  * To prevent common memory management code establishing
62  * a zero page mapping on a read fault.
63  * This macro should be defined within <asm/pgtable.h>.
64  * s390 does this to prevent multiplexing of hardware bits
65  * related to the physical page in case of virtualization.
66  */
67 #ifndef mm_forbids_zeropage
68 #define mm_forbids_zeropage(X)	(0)
69 #endif
70 
71 extern unsigned long sysctl_user_reserve_kbytes;
72 extern unsigned long sysctl_admin_reserve_kbytes;
73 
74 extern int sysctl_overcommit_memory;
75 extern int sysctl_overcommit_ratio;
76 extern unsigned long sysctl_overcommit_kbytes;
77 
78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 				    size_t *, loff_t *);
80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 				    size_t *, loff_t *);
82 
83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84 
85 /* to align the pointer to the (next) page boundary */
86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87 
88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90 
91 /*
92  * Linux kernel virtual memory manager primitives.
93  * The idea being to have a "virtual" mm in the same way
94  * we have a virtual fs - giving a cleaner interface to the
95  * mm details, and allowing different kinds of memory mappings
96  * (from shared memory to executable loading to arbitrary
97  * mmap() functions).
98  */
99 
100 extern struct kmem_cache *vm_area_cachep;
101 
102 #ifndef CONFIG_MMU
103 extern struct rb_root nommu_region_tree;
104 extern struct rw_semaphore nommu_region_sem;
105 
106 extern unsigned int kobjsize(const void *objp);
107 #endif
108 
109 /*
110  * vm_flags in vm_area_struct, see mm_types.h.
111  */
112 #define VM_NONE		0x00000000
113 
114 #define VM_READ		0x00000001	/* currently active flags */
115 #define VM_WRITE	0x00000002
116 #define VM_EXEC		0x00000004
117 #define VM_SHARED	0x00000008
118 
119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
121 #define VM_MAYWRITE	0x00000020
122 #define VM_MAYEXEC	0x00000040
123 #define VM_MAYSHARE	0x00000080
124 
125 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
126 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
127 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
128 
129 #define VM_LOCKED	0x00002000
130 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
131 
132 					/* Used by sys_madvise() */
133 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
134 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
135 
136 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
137 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
138 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
139 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
140 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
141 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
142 #define VM_ARCH_2	0x02000000
143 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
144 
145 #ifdef CONFIG_MEM_SOFT_DIRTY
146 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
147 #else
148 # define VM_SOFTDIRTY	0
149 #endif
150 
151 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
152 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
153 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
154 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
155 
156 #if defined(CONFIG_X86)
157 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
158 #elif defined(CONFIG_PPC)
159 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
160 #elif defined(CONFIG_PARISC)
161 # define VM_GROWSUP	VM_ARCH_1
162 #elif defined(CONFIG_METAG)
163 # define VM_GROWSUP	VM_ARCH_1
164 #elif defined(CONFIG_IA64)
165 # define VM_GROWSUP	VM_ARCH_1
166 #elif !defined(CONFIG_MMU)
167 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
168 #endif
169 
170 #if defined(CONFIG_X86)
171 /* MPX specific bounds table or bounds directory */
172 # define VM_MPX		VM_ARCH_2
173 #endif
174 
175 #ifndef VM_GROWSUP
176 # define VM_GROWSUP	VM_NONE
177 #endif
178 
179 /* Bits set in the VMA until the stack is in its final location */
180 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
181 
182 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
183 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184 #endif
185 
186 #ifdef CONFIG_STACK_GROWSUP
187 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188 #else
189 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190 #endif
191 
192 /*
193  * Special vmas that are non-mergable, non-mlock()able.
194  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
195  */
196 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
197 
198 /* This mask defines which mm->def_flags a process can inherit its parent */
199 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
200 
201 /*
202  * mapping from the currently active vm_flags protection bits (the
203  * low four bits) to a page protection mask..
204  */
205 extern pgprot_t protection_map[16];
206 
207 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
208 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
209 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
210 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
211 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
212 #define FAULT_FLAG_TRIED	0x20	/* Second try */
213 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
214 
215 /*
216  * vm_fault is filled by the the pagefault handler and passed to the vma's
217  * ->fault function. The vma's ->fault is responsible for returning a bitmask
218  * of VM_FAULT_xxx flags that give details about how the fault was handled.
219  *
220  * pgoff should be used in favour of virtual_address, if possible.
221  */
222 struct vm_fault {
223 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
224 	pgoff_t pgoff;			/* Logical page offset based on vma */
225 	void __user *virtual_address;	/* Faulting virtual address */
226 
227 	struct page *cow_page;		/* Handler may choose to COW */
228 	struct page *page;		/* ->fault handlers should return a
229 					 * page here, unless VM_FAULT_NOPAGE
230 					 * is set (which is also implied by
231 					 * VM_FAULT_ERROR).
232 					 */
233 	/* for ->map_pages() only */
234 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
235 					 * max_pgoff inclusive */
236 	pte_t *pte;			/* pte entry associated with ->pgoff */
237 };
238 
239 /*
240  * These are the virtual MM functions - opening of an area, closing and
241  * unmapping it (needed to keep files on disk up-to-date etc), pointer
242  * to the functions called when a no-page or a wp-page exception occurs.
243  */
244 struct vm_operations_struct {
245 	void (*open)(struct vm_area_struct * area);
246 	void (*close)(struct vm_area_struct * area);
247 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
248 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
249 
250 	/* notification that a previously read-only page is about to become
251 	 * writable, if an error is returned it will cause a SIGBUS */
252 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
253 
254 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
255 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
256 
257 	/* called by access_process_vm when get_user_pages() fails, typically
258 	 * for use by special VMAs that can switch between memory and hardware
259 	 */
260 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
261 		      void *buf, int len, int write);
262 
263 	/* Called by the /proc/PID/maps code to ask the vma whether it
264 	 * has a special name.  Returning non-NULL will also cause this
265 	 * vma to be dumped unconditionally. */
266 	const char *(*name)(struct vm_area_struct *vma);
267 
268 #ifdef CONFIG_NUMA
269 	/*
270 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
271 	 * to hold the policy upon return.  Caller should pass NULL @new to
272 	 * remove a policy and fall back to surrounding context--i.e. do not
273 	 * install a MPOL_DEFAULT policy, nor the task or system default
274 	 * mempolicy.
275 	 */
276 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
277 
278 	/*
279 	 * get_policy() op must add reference [mpol_get()] to any policy at
280 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
281 	 * in mm/mempolicy.c will do this automatically.
282 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
283 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
284 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
285 	 * must return NULL--i.e., do not "fallback" to task or system default
286 	 * policy.
287 	 */
288 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
289 					unsigned long addr);
290 #endif
291 	/*
292 	 * Called by vm_normal_page() for special PTEs to find the
293 	 * page for @addr.  This is useful if the default behavior
294 	 * (using pte_page()) would not find the correct page.
295 	 */
296 	struct page *(*find_special_page)(struct vm_area_struct *vma,
297 					  unsigned long addr);
298 };
299 
300 struct mmu_gather;
301 struct inode;
302 
303 #define page_private(page)		((page)->private)
304 #define set_page_private(page, v)	((page)->private = (v))
305 
306 /* It's valid only if the page is free path or free_list */
set_freepage_migratetype(struct page * page,int migratetype)307 static inline void set_freepage_migratetype(struct page *page, int migratetype)
308 {
309 	page->index = migratetype;
310 }
311 
312 /* It's valid only if the page is free path or free_list */
get_freepage_migratetype(struct page * page)313 static inline int get_freepage_migratetype(struct page *page)
314 {
315 	return page->index;
316 }
317 
318 /*
319  * FIXME: take this include out, include page-flags.h in
320  * files which need it (119 of them)
321  */
322 #include <linux/page-flags.h>
323 #include <linux/huge_mm.h>
324 
325 /*
326  * Methods to modify the page usage count.
327  *
328  * What counts for a page usage:
329  * - cache mapping   (page->mapping)
330  * - private data    (page->private)
331  * - page mapped in a task's page tables, each mapping
332  *   is counted separately
333  *
334  * Also, many kernel routines increase the page count before a critical
335  * routine so they can be sure the page doesn't go away from under them.
336  */
337 
338 /*
339  * Drop a ref, return true if the refcount fell to zero (the page has no users)
340  */
put_page_testzero(struct page * page)341 static inline int put_page_testzero(struct page *page)
342 {
343 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
344 	return atomic_dec_and_test(&page->_count);
345 }
346 
347 /*
348  * Try to grab a ref unless the page has a refcount of zero, return false if
349  * that is the case.
350  * This can be called when MMU is off so it must not access
351  * any of the virtual mappings.
352  */
get_page_unless_zero(struct page * page)353 static inline int get_page_unless_zero(struct page *page)
354 {
355 	return atomic_inc_not_zero(&page->_count);
356 }
357 
358 /*
359  * Try to drop a ref unless the page has a refcount of one, return false if
360  * that is the case.
361  * This is to make sure that the refcount won't become zero after this drop.
362  * This can be called when MMU is off so it must not access
363  * any of the virtual mappings.
364  */
put_page_unless_one(struct page * page)365 static inline int put_page_unless_one(struct page *page)
366 {
367 	return atomic_add_unless(&page->_count, -1, 1);
368 }
369 
370 extern int page_is_ram(unsigned long pfn);
371 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
372 
373 /* Support for virtually mapped pages */
374 struct page *vmalloc_to_page(const void *addr);
375 unsigned long vmalloc_to_pfn(const void *addr);
376 
377 /*
378  * Determine if an address is within the vmalloc range
379  *
380  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
381  * is no special casing required.
382  */
is_vmalloc_addr(const void * x)383 static inline int is_vmalloc_addr(const void *x)
384 {
385 #ifdef CONFIG_MMU
386 	unsigned long addr = (unsigned long)x;
387 
388 	return addr >= VMALLOC_START && addr < VMALLOC_END;
389 #else
390 	return 0;
391 #endif
392 }
393 #ifdef CONFIG_MMU
394 extern int is_vmalloc_or_module_addr(const void *x);
395 #else
is_vmalloc_or_module_addr(const void * x)396 static inline int is_vmalloc_or_module_addr(const void *x)
397 {
398 	return 0;
399 }
400 #endif
401 
402 extern void kvfree(const void *addr);
403 
compound_lock(struct page * page)404 static inline void compound_lock(struct page *page)
405 {
406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
407 	VM_BUG_ON_PAGE(PageSlab(page), page);
408 	bit_spin_lock(PG_compound_lock, &page->flags);
409 #endif
410 }
411 
compound_unlock(struct page * page)412 static inline void compound_unlock(struct page *page)
413 {
414 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
415 	VM_BUG_ON_PAGE(PageSlab(page), page);
416 	bit_spin_unlock(PG_compound_lock, &page->flags);
417 #endif
418 }
419 
compound_lock_irqsave(struct page * page)420 static inline unsigned long compound_lock_irqsave(struct page *page)
421 {
422 	unsigned long uninitialized_var(flags);
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 	local_irq_save(flags);
425 	compound_lock(page);
426 #endif
427 	return flags;
428 }
429 
compound_unlock_irqrestore(struct page * page,unsigned long flags)430 static inline void compound_unlock_irqrestore(struct page *page,
431 					      unsigned long flags)
432 {
433 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
434 	compound_unlock(page);
435 	local_irq_restore(flags);
436 #endif
437 }
438 
compound_head_by_tail(struct page * tail)439 static inline struct page *compound_head_by_tail(struct page *tail)
440 {
441 	struct page *head = tail->first_page;
442 
443 	/*
444 	 * page->first_page may be a dangling pointer to an old
445 	 * compound page, so recheck that it is still a tail
446 	 * page before returning.
447 	 */
448 	smp_rmb();
449 	if (likely(PageTail(tail)))
450 		return head;
451 	return tail;
452 }
453 
454 /*
455  * Since either compound page could be dismantled asynchronously in THP
456  * or we access asynchronously arbitrary positioned struct page, there
457  * would be tail flag race. To handle this race, we should call
458  * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
459  */
compound_head(struct page * page)460 static inline struct page *compound_head(struct page *page)
461 {
462 	if (unlikely(PageTail(page)))
463 		return compound_head_by_tail(page);
464 	return page;
465 }
466 
467 /*
468  * If we access compound page synchronously such as access to
469  * allocated page, there is no need to handle tail flag race, so we can
470  * check tail flag directly without any synchronization primitive.
471  */
compound_head_fast(struct page * page)472 static inline struct page *compound_head_fast(struct page *page)
473 {
474 	if (unlikely(PageTail(page)))
475 		return page->first_page;
476 	return page;
477 }
478 
479 /*
480  * The atomic page->_mapcount, starts from -1: so that transitions
481  * both from it and to it can be tracked, using atomic_inc_and_test
482  * and atomic_add_negative(-1).
483  */
page_mapcount_reset(struct page * page)484 static inline void page_mapcount_reset(struct page *page)
485 {
486 	atomic_set(&(page)->_mapcount, -1);
487 }
488 
page_mapcount(struct page * page)489 static inline int page_mapcount(struct page *page)
490 {
491 	VM_BUG_ON_PAGE(PageSlab(page), page);
492 	return atomic_read(&page->_mapcount) + 1;
493 }
494 
page_count(struct page * page)495 static inline int page_count(struct page *page)
496 {
497 	return atomic_read(&compound_head(page)->_count);
498 }
499 
__compound_tail_refcounted(struct page * page)500 static inline bool __compound_tail_refcounted(struct page *page)
501 {
502 	return !PageSlab(page) && !PageHeadHuge(page);
503 }
504 
505 /*
506  * This takes a head page as parameter and tells if the
507  * tail page reference counting can be skipped.
508  *
509  * For this to be safe, PageSlab and PageHeadHuge must remain true on
510  * any given page where they return true here, until all tail pins
511  * have been released.
512  */
compound_tail_refcounted(struct page * page)513 static inline bool compound_tail_refcounted(struct page *page)
514 {
515 	VM_BUG_ON_PAGE(!PageHead(page), page);
516 	return __compound_tail_refcounted(page);
517 }
518 
get_huge_page_tail(struct page * page)519 static inline void get_huge_page_tail(struct page *page)
520 {
521 	/*
522 	 * __split_huge_page_refcount() cannot run from under us.
523 	 */
524 	VM_BUG_ON_PAGE(!PageTail(page), page);
525 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
526 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
527 	if (compound_tail_refcounted(page->first_page))
528 		atomic_inc(&page->_mapcount);
529 }
530 
531 extern bool __get_page_tail(struct page *page);
532 
get_page(struct page * page)533 static inline void get_page(struct page *page)
534 {
535 	if (unlikely(PageTail(page)))
536 		if (likely(__get_page_tail(page)))
537 			return;
538 	/*
539 	 * Getting a normal page or the head of a compound page
540 	 * requires to already have an elevated page->_count.
541 	 */
542 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
543 	atomic_inc(&page->_count);
544 }
545 
virt_to_head_page(const void * x)546 static inline struct page *virt_to_head_page(const void *x)
547 {
548 	struct page *page = virt_to_page(x);
549 
550 	/*
551 	 * We don't need to worry about synchronization of tail flag
552 	 * when we call virt_to_head_page() since it is only called for
553 	 * already allocated page and this page won't be freed until
554 	 * this virt_to_head_page() is finished. So use _fast variant.
555 	 */
556 	return compound_head_fast(page);
557 }
558 
559 /*
560  * Setup the page count before being freed into the page allocator for
561  * the first time (boot or memory hotplug)
562  */
init_page_count(struct page * page)563 static inline void init_page_count(struct page *page)
564 {
565 	atomic_set(&page->_count, 1);
566 }
567 
568 void put_page(struct page *page);
569 void put_pages_list(struct list_head *pages);
570 
571 void split_page(struct page *page, unsigned int order);
572 int split_free_page(struct page *page);
573 
574 /*
575  * Compound pages have a destructor function.  Provide a
576  * prototype for that function and accessor functions.
577  * These are _only_ valid on the head of a PG_compound page.
578  */
579 
set_compound_page_dtor(struct page * page,compound_page_dtor * dtor)580 static inline void set_compound_page_dtor(struct page *page,
581 						compound_page_dtor *dtor)
582 {
583 	page[1].compound_dtor = dtor;
584 }
585 
get_compound_page_dtor(struct page * page)586 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
587 {
588 	return page[1].compound_dtor;
589 }
590 
compound_order(struct page * page)591 static inline unsigned int compound_order(struct page *page)
592 {
593 	if (!PageHead(page))
594 		return 0;
595 	return page[1].compound_order;
596 }
597 
set_compound_order(struct page * page,unsigned long order)598 static inline void set_compound_order(struct page *page, unsigned long order)
599 {
600 	page[1].compound_order = order;
601 }
602 
603 #ifdef CONFIG_MMU
604 /*
605  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
606  * servicing faults for write access.  In the normal case, do always want
607  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
608  * that do not have writing enabled, when used by access_process_vm.
609  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)610 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
611 {
612 	if (likely(vma->vm_flags & VM_WRITE))
613 		pte = pte_mkwrite(pte);
614 	return pte;
615 }
616 
617 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
618 		struct page *page, pte_t *pte, bool write, bool anon);
619 #endif
620 
621 /*
622  * Multiple processes may "see" the same page. E.g. for untouched
623  * mappings of /dev/null, all processes see the same page full of
624  * zeroes, and text pages of executables and shared libraries have
625  * only one copy in memory, at most, normally.
626  *
627  * For the non-reserved pages, page_count(page) denotes a reference count.
628  *   page_count() == 0 means the page is free. page->lru is then used for
629  *   freelist management in the buddy allocator.
630  *   page_count() > 0  means the page has been allocated.
631  *
632  * Pages are allocated by the slab allocator in order to provide memory
633  * to kmalloc and kmem_cache_alloc. In this case, the management of the
634  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
635  * unless a particular usage is carefully commented. (the responsibility of
636  * freeing the kmalloc memory is the caller's, of course).
637  *
638  * A page may be used by anyone else who does a __get_free_page().
639  * In this case, page_count still tracks the references, and should only
640  * be used through the normal accessor functions. The top bits of page->flags
641  * and page->virtual store page management information, but all other fields
642  * are unused and could be used privately, carefully. The management of this
643  * page is the responsibility of the one who allocated it, and those who have
644  * subsequently been given references to it.
645  *
646  * The other pages (we may call them "pagecache pages") are completely
647  * managed by the Linux memory manager: I/O, buffers, swapping etc.
648  * The following discussion applies only to them.
649  *
650  * A pagecache page contains an opaque `private' member, which belongs to the
651  * page's address_space. Usually, this is the address of a circular list of
652  * the page's disk buffers. PG_private must be set to tell the VM to call
653  * into the filesystem to release these pages.
654  *
655  * A page may belong to an inode's memory mapping. In this case, page->mapping
656  * is the pointer to the inode, and page->index is the file offset of the page,
657  * in units of PAGE_CACHE_SIZE.
658  *
659  * If pagecache pages are not associated with an inode, they are said to be
660  * anonymous pages. These may become associated with the swapcache, and in that
661  * case PG_swapcache is set, and page->private is an offset into the swapcache.
662  *
663  * In either case (swapcache or inode backed), the pagecache itself holds one
664  * reference to the page. Setting PG_private should also increment the
665  * refcount. The each user mapping also has a reference to the page.
666  *
667  * The pagecache pages are stored in a per-mapping radix tree, which is
668  * rooted at mapping->page_tree, and indexed by offset.
669  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
670  * lists, we instead now tag pages as dirty/writeback in the radix tree.
671  *
672  * All pagecache pages may be subject to I/O:
673  * - inode pages may need to be read from disk,
674  * - inode pages which have been modified and are MAP_SHARED may need
675  *   to be written back to the inode on disk,
676  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
677  *   modified may need to be swapped out to swap space and (later) to be read
678  *   back into memory.
679  */
680 
681 /*
682  * The zone field is never updated after free_area_init_core()
683  * sets it, so none of the operations on it need to be atomic.
684  */
685 
686 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
687 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
688 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
689 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
690 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
691 
692 /*
693  * Define the bit shifts to access each section.  For non-existent
694  * sections we define the shift as 0; that plus a 0 mask ensures
695  * the compiler will optimise away reference to them.
696  */
697 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
698 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
699 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
700 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
701 
702 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
703 #ifdef NODE_NOT_IN_PAGE_FLAGS
704 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
705 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
706 						SECTIONS_PGOFF : ZONES_PGOFF)
707 #else
708 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
709 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
710 						NODES_PGOFF : ZONES_PGOFF)
711 #endif
712 
713 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
714 
715 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
716 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
717 #endif
718 
719 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
720 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
721 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
722 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
723 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
724 
page_zonenum(const struct page * page)725 static inline enum zone_type page_zonenum(const struct page *page)
726 {
727 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
728 }
729 
730 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
731 #define SECTION_IN_PAGE_FLAGS
732 #endif
733 
734 /*
735  * The identification function is mainly used by the buddy allocator for
736  * determining if two pages could be buddies. We are not really identifying
737  * the zone since we could be using the section number id if we do not have
738  * node id available in page flags.
739  * We only guarantee that it will return the same value for two combinable
740  * pages in a zone.
741  */
page_zone_id(struct page * page)742 static inline int page_zone_id(struct page *page)
743 {
744 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
745 }
746 
zone_to_nid(struct zone * zone)747 static inline int zone_to_nid(struct zone *zone)
748 {
749 #ifdef CONFIG_NUMA
750 	return zone->node;
751 #else
752 	return 0;
753 #endif
754 }
755 
756 #ifdef NODE_NOT_IN_PAGE_FLAGS
757 extern int page_to_nid(const struct page *page);
758 #else
page_to_nid(const struct page * page)759 static inline int page_to_nid(const struct page *page)
760 {
761 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
762 }
763 #endif
764 
765 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)766 static inline int cpu_pid_to_cpupid(int cpu, int pid)
767 {
768 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
769 }
770 
cpupid_to_pid(int cpupid)771 static inline int cpupid_to_pid(int cpupid)
772 {
773 	return cpupid & LAST__PID_MASK;
774 }
775 
cpupid_to_cpu(int cpupid)776 static inline int cpupid_to_cpu(int cpupid)
777 {
778 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
779 }
780 
cpupid_to_nid(int cpupid)781 static inline int cpupid_to_nid(int cpupid)
782 {
783 	return cpu_to_node(cpupid_to_cpu(cpupid));
784 }
785 
cpupid_pid_unset(int cpupid)786 static inline bool cpupid_pid_unset(int cpupid)
787 {
788 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
789 }
790 
cpupid_cpu_unset(int cpupid)791 static inline bool cpupid_cpu_unset(int cpupid)
792 {
793 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
794 }
795 
__cpupid_match_pid(pid_t task_pid,int cpupid)796 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
797 {
798 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
799 }
800 
801 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
802 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)803 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
804 {
805 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
806 }
807 
page_cpupid_last(struct page * page)808 static inline int page_cpupid_last(struct page *page)
809 {
810 	return page->_last_cpupid;
811 }
page_cpupid_reset_last(struct page * page)812 static inline void page_cpupid_reset_last(struct page *page)
813 {
814 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
815 }
816 #else
page_cpupid_last(struct page * page)817 static inline int page_cpupid_last(struct page *page)
818 {
819 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
820 }
821 
822 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
823 
page_cpupid_reset_last(struct page * page)824 static inline void page_cpupid_reset_last(struct page *page)
825 {
826 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
827 
828 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
829 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
830 }
831 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
832 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)833 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
834 {
835 	return page_to_nid(page); /* XXX */
836 }
837 
page_cpupid_last(struct page * page)838 static inline int page_cpupid_last(struct page *page)
839 {
840 	return page_to_nid(page); /* XXX */
841 }
842 
cpupid_to_nid(int cpupid)843 static inline int cpupid_to_nid(int cpupid)
844 {
845 	return -1;
846 }
847 
cpupid_to_pid(int cpupid)848 static inline int cpupid_to_pid(int cpupid)
849 {
850 	return -1;
851 }
852 
cpupid_to_cpu(int cpupid)853 static inline int cpupid_to_cpu(int cpupid)
854 {
855 	return -1;
856 }
857 
cpu_pid_to_cpupid(int nid,int pid)858 static inline int cpu_pid_to_cpupid(int nid, int pid)
859 {
860 	return -1;
861 }
862 
cpupid_pid_unset(int cpupid)863 static inline bool cpupid_pid_unset(int cpupid)
864 {
865 	return 1;
866 }
867 
page_cpupid_reset_last(struct page * page)868 static inline void page_cpupid_reset_last(struct page *page)
869 {
870 }
871 
cpupid_match_pid(struct task_struct * task,int cpupid)872 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
873 {
874 	return false;
875 }
876 #endif /* CONFIG_NUMA_BALANCING */
877 
page_zone(const struct page * page)878 static inline struct zone *page_zone(const struct page *page)
879 {
880 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
881 }
882 
883 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)884 static inline void set_page_section(struct page *page, unsigned long section)
885 {
886 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
887 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
888 }
889 
page_to_section(const struct page * page)890 static inline unsigned long page_to_section(const struct page *page)
891 {
892 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
893 }
894 #endif
895 
set_page_zone(struct page * page,enum zone_type zone)896 static inline void set_page_zone(struct page *page, enum zone_type zone)
897 {
898 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
899 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
900 }
901 
set_page_node(struct page * page,unsigned long node)902 static inline void set_page_node(struct page *page, unsigned long node)
903 {
904 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
905 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
906 }
907 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)908 static inline void set_page_links(struct page *page, enum zone_type zone,
909 	unsigned long node, unsigned long pfn)
910 {
911 	set_page_zone(page, zone);
912 	set_page_node(page, node);
913 #ifdef SECTION_IN_PAGE_FLAGS
914 	set_page_section(page, pfn_to_section_nr(pfn));
915 #endif
916 }
917 
918 /*
919  * Some inline functions in vmstat.h depend on page_zone()
920  */
921 #include <linux/vmstat.h>
922 
lowmem_page_address(const struct page * page)923 static __always_inline void *lowmem_page_address(const struct page *page)
924 {
925 	return __va(PFN_PHYS(page_to_pfn(page)));
926 }
927 
928 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
929 #define HASHED_PAGE_VIRTUAL
930 #endif
931 
932 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)933 static inline void *page_address(const struct page *page)
934 {
935 	return page->virtual;
936 }
set_page_address(struct page * page,void * address)937 static inline void set_page_address(struct page *page, void *address)
938 {
939 	page->virtual = address;
940 }
941 #define page_address_init()  do { } while(0)
942 #endif
943 
944 #if defined(HASHED_PAGE_VIRTUAL)
945 void *page_address(const struct page *page);
946 void set_page_address(struct page *page, void *virtual);
947 void page_address_init(void);
948 #endif
949 
950 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
951 #define page_address(page) lowmem_page_address(page)
952 #define set_page_address(page, address)  do { } while(0)
953 #define page_address_init()  do { } while(0)
954 #endif
955 
956 extern void *page_rmapping(struct page *page);
957 extern struct anon_vma *page_anon_vma(struct page *page);
958 extern struct address_space *page_mapping(struct page *page);
959 
960 extern struct address_space *__page_file_mapping(struct page *);
961 
962 static inline
page_file_mapping(struct page * page)963 struct address_space *page_file_mapping(struct page *page)
964 {
965 	if (unlikely(PageSwapCache(page)))
966 		return __page_file_mapping(page);
967 
968 	return page->mapping;
969 }
970 
971 /*
972  * Return the pagecache index of the passed page.  Regular pagecache pages
973  * use ->index whereas swapcache pages use ->private
974  */
page_index(struct page * page)975 static inline pgoff_t page_index(struct page *page)
976 {
977 	if (unlikely(PageSwapCache(page)))
978 		return page_private(page);
979 	return page->index;
980 }
981 
982 extern pgoff_t __page_file_index(struct page *page);
983 
984 /*
985  * Return the file index of the page. Regular pagecache pages use ->index
986  * whereas swapcache pages use swp_offset(->private)
987  */
page_file_index(struct page * page)988 static inline pgoff_t page_file_index(struct page *page)
989 {
990 	if (unlikely(PageSwapCache(page)))
991 		return __page_file_index(page);
992 
993 	return page->index;
994 }
995 
996 /*
997  * Return true if this page is mapped into pagetables.
998  */
page_mapped(struct page * page)999 static inline int page_mapped(struct page *page)
1000 {
1001 	return atomic_read(&(page)->_mapcount) >= 0;
1002 }
1003 
1004 /*
1005  * Return true only if the page has been allocated with
1006  * ALLOC_NO_WATERMARKS and the low watermark was not
1007  * met implying that the system is under some pressure.
1008  */
page_is_pfmemalloc(struct page * page)1009 static inline bool page_is_pfmemalloc(struct page *page)
1010 {
1011 	/*
1012 	 * Page index cannot be this large so this must be
1013 	 * a pfmemalloc page.
1014 	 */
1015 	return page->index == -1UL;
1016 }
1017 
1018 /*
1019  * Only to be called by the page allocator on a freshly allocated
1020  * page.
1021  */
set_page_pfmemalloc(struct page * page)1022 static inline void set_page_pfmemalloc(struct page *page)
1023 {
1024 	page->index = -1UL;
1025 }
1026 
clear_page_pfmemalloc(struct page * page)1027 static inline void clear_page_pfmemalloc(struct page *page)
1028 {
1029 	page->index = 0;
1030 }
1031 
1032 /*
1033  * Different kinds of faults, as returned by handle_mm_fault().
1034  * Used to decide whether a process gets delivered SIGBUS or
1035  * just gets major/minor fault counters bumped up.
1036  */
1037 
1038 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1039 
1040 #define VM_FAULT_OOM	0x0001
1041 #define VM_FAULT_SIGBUS	0x0002
1042 #define VM_FAULT_MAJOR	0x0004
1043 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1044 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1045 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1046 #define VM_FAULT_SIGSEGV 0x0040
1047 
1048 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1049 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1050 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1051 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1052 
1053 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1054 
1055 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1056 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1057 			 VM_FAULT_FALLBACK)
1058 
1059 /* Encode hstate index for a hwpoisoned large page */
1060 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1061 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1062 
1063 /*
1064  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1065  */
1066 extern void pagefault_out_of_memory(void);
1067 
1068 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1069 
1070 /*
1071  * Flags passed to show_mem() and show_free_areas() to suppress output in
1072  * various contexts.
1073  */
1074 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1075 
1076 extern void show_free_areas(unsigned int flags);
1077 extern bool skip_free_areas_node(unsigned int flags, int nid);
1078 
1079 int shmem_zero_setup(struct vm_area_struct *);
1080 #ifdef CONFIG_SHMEM
1081 bool shmem_mapping(struct address_space *mapping);
1082 #else
shmem_mapping(struct address_space * mapping)1083 static inline bool shmem_mapping(struct address_space *mapping)
1084 {
1085 	return false;
1086 }
1087 #endif
1088 
1089 extern int can_do_mlock(void);
1090 extern int user_shm_lock(size_t, struct user_struct *);
1091 extern void user_shm_unlock(size_t, struct user_struct *);
1092 
1093 /*
1094  * Parameter block passed down to zap_pte_range in exceptional cases.
1095  */
1096 struct zap_details {
1097 	struct address_space *check_mapping;	/* Check page->mapping if set */
1098 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1099 	pgoff_t last_index;			/* Highest page->index to unmap */
1100 };
1101 
1102 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1103 		pte_t pte);
1104 
1105 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1106 		unsigned long size);
1107 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1108 		unsigned long size, struct zap_details *);
1109 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1110 		unsigned long start, unsigned long end);
1111 
1112 /**
1113  * mm_walk - callbacks for walk_page_range
1114  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1115  *	       this handler is required to be able to handle
1116  *	       pmd_trans_huge() pmds.  They may simply choose to
1117  *	       split_huge_page() instead of handling it explicitly.
1118  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1119  * @pte_hole: if set, called for each hole at all levels
1120  * @hugetlb_entry: if set, called for each hugetlb entry
1121  * @test_walk: caller specific callback function to determine whether
1122  *             we walk over the current vma or not. A positive returned
1123  *             value means "do page table walk over the current vma,"
1124  *             and a negative one means "abort current page table walk
1125  *             right now." 0 means "skip the current vma."
1126  * @mm:        mm_struct representing the target process of page table walk
1127  * @vma:       vma currently walked (NULL if walking outside vmas)
1128  * @private:   private data for callbacks' usage
1129  *
1130  * (see the comment on walk_page_range() for more details)
1131  */
1132 struct mm_walk {
1133 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1134 			 unsigned long next, struct mm_walk *walk);
1135 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1136 			 unsigned long next, struct mm_walk *walk);
1137 	int (*pte_hole)(unsigned long addr, unsigned long next,
1138 			struct mm_walk *walk);
1139 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1140 			     unsigned long addr, unsigned long next,
1141 			     struct mm_walk *walk);
1142 	int (*test_walk)(unsigned long addr, unsigned long next,
1143 			struct mm_walk *walk);
1144 	struct mm_struct *mm;
1145 	struct vm_area_struct *vma;
1146 	void *private;
1147 };
1148 
1149 int walk_page_range(unsigned long addr, unsigned long end,
1150 		struct mm_walk *walk);
1151 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1152 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1153 		unsigned long end, unsigned long floor, unsigned long ceiling);
1154 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1155 			struct vm_area_struct *vma);
1156 void unmap_mapping_range(struct address_space *mapping,
1157 		loff_t const holebegin, loff_t const holelen, int even_cows);
1158 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1159 	unsigned long *pfn);
1160 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1161 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1162 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1163 			void *buf, int len, int write);
1164 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1165 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1166 		loff_t const holebegin, loff_t const holelen)
1167 {
1168 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1169 }
1170 
1171 extern void truncate_pagecache(struct inode *inode, loff_t new);
1172 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1173 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1174 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1175 int truncate_inode_page(struct address_space *mapping, struct page *page);
1176 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1177 int invalidate_inode_page(struct page *page);
1178 
1179 #ifdef CONFIG_MMU
1180 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1181 			unsigned long address, unsigned int flags);
1182 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1183 			    unsigned long address, unsigned int fault_flags);
1184 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)1185 static inline int handle_mm_fault(struct mm_struct *mm,
1186 			struct vm_area_struct *vma, unsigned long address,
1187 			unsigned int flags)
1188 {
1189 	/* should never happen if there's no MMU */
1190 	BUG();
1191 	return VM_FAULT_SIGBUS;
1192 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)1193 static inline int fixup_user_fault(struct task_struct *tsk,
1194 		struct mm_struct *mm, unsigned long address,
1195 		unsigned int fault_flags)
1196 {
1197 	/* should never happen if there's no MMU */
1198 	BUG();
1199 	return -EFAULT;
1200 }
1201 #endif
1202 
1203 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1204 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1205 		void *buf, int len, int write);
1206 
1207 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1208 		      unsigned long start, unsigned long nr_pages,
1209 		      unsigned int foll_flags, struct page **pages,
1210 		      struct vm_area_struct **vmas, int *nonblocking);
1211 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212 		    unsigned long start, unsigned long nr_pages,
1213 		    int write, int force, struct page **pages,
1214 		    struct vm_area_struct **vmas);
1215 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1216 		    unsigned long start, unsigned long nr_pages,
1217 		    int write, int force, struct page **pages,
1218 		    int *locked);
1219 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1220 			       unsigned long start, unsigned long nr_pages,
1221 			       int write, int force, struct page **pages,
1222 			       unsigned int gup_flags);
1223 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1224 		    unsigned long start, unsigned long nr_pages,
1225 		    int write, int force, struct page **pages);
1226 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1227 			struct page **pages);
1228 struct kvec;
1229 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1230 			struct page **pages);
1231 int get_kernel_page(unsigned long start, int write, struct page **pages);
1232 struct page *get_dump_page(unsigned long addr);
1233 
1234 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1235 extern void do_invalidatepage(struct page *page, unsigned int offset,
1236 			      unsigned int length);
1237 
1238 int __set_page_dirty_nobuffers(struct page *page);
1239 int __set_page_dirty_no_writeback(struct page *page);
1240 int redirty_page_for_writepage(struct writeback_control *wbc,
1241 				struct page *page);
1242 void account_page_dirtied(struct page *page, struct address_space *mapping);
1243 void account_page_cleaned(struct page *page, struct address_space *mapping);
1244 int set_page_dirty(struct page *page);
1245 int set_page_dirty_lock(struct page *page);
1246 int clear_page_dirty_for_io(struct page *page);
1247 
1248 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1249 
1250 /* Is the vma a continuation of the stack vma above it? */
vma_growsdown(struct vm_area_struct * vma,unsigned long addr)1251 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1252 {
1253 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1254 }
1255 
stack_guard_page_start(struct vm_area_struct * vma,unsigned long addr)1256 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1257 					     unsigned long addr)
1258 {
1259 	return (vma->vm_flags & VM_GROWSDOWN) &&
1260 		(vma->vm_start == addr) &&
1261 		!vma_growsdown(vma->vm_prev, addr);
1262 }
1263 
1264 /* Is the vma a continuation of the stack vma below it? */
vma_growsup(struct vm_area_struct * vma,unsigned long addr)1265 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1266 {
1267 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1268 }
1269 
stack_guard_page_end(struct vm_area_struct * vma,unsigned long addr)1270 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1271 					   unsigned long addr)
1272 {
1273 	return (vma->vm_flags & VM_GROWSUP) &&
1274 		(vma->vm_end == addr) &&
1275 		!vma_growsup(vma->vm_next, addr);
1276 }
1277 
1278 extern struct task_struct *task_of_stack(struct task_struct *task,
1279 				struct vm_area_struct *vma, bool in_group);
1280 
1281 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1282 		unsigned long old_addr, struct vm_area_struct *new_vma,
1283 		unsigned long new_addr, unsigned long len,
1284 		bool need_rmap_locks);
1285 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1286 			      unsigned long end, pgprot_t newprot,
1287 			      int dirty_accountable, int prot_numa);
1288 extern int mprotect_fixup(struct vm_area_struct *vma,
1289 			  struct vm_area_struct **pprev, unsigned long start,
1290 			  unsigned long end, unsigned long newflags);
1291 
1292 /*
1293  * doesn't attempt to fault and will return short.
1294  */
1295 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1296 			  struct page **pages);
1297 /*
1298  * per-process(per-mm_struct) statistics.
1299  */
get_mm_counter(struct mm_struct * mm,int member)1300 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1301 {
1302 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1303 
1304 #ifdef SPLIT_RSS_COUNTING
1305 	/*
1306 	 * counter is updated in asynchronous manner and may go to minus.
1307 	 * But it's never be expected number for users.
1308 	 */
1309 	if (val < 0)
1310 		val = 0;
1311 #endif
1312 	return (unsigned long)val;
1313 }
1314 
add_mm_counter(struct mm_struct * mm,int member,long value)1315 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1316 {
1317 	atomic_long_add(value, &mm->rss_stat.count[member]);
1318 }
1319 
inc_mm_counter(struct mm_struct * mm,int member)1320 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1321 {
1322 	atomic_long_inc(&mm->rss_stat.count[member]);
1323 }
1324 
dec_mm_counter(struct mm_struct * mm,int member)1325 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1326 {
1327 	atomic_long_dec(&mm->rss_stat.count[member]);
1328 }
1329 
get_mm_rss(struct mm_struct * mm)1330 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1331 {
1332 	return get_mm_counter(mm, MM_FILEPAGES) +
1333 		get_mm_counter(mm, MM_ANONPAGES);
1334 }
1335 
get_mm_hiwater_rss(struct mm_struct * mm)1336 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1337 {
1338 	return max(mm->hiwater_rss, get_mm_rss(mm));
1339 }
1340 
get_mm_hiwater_vm(struct mm_struct * mm)1341 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1342 {
1343 	return max(mm->hiwater_vm, mm->total_vm);
1344 }
1345 
update_hiwater_rss(struct mm_struct * mm)1346 static inline void update_hiwater_rss(struct mm_struct *mm)
1347 {
1348 	unsigned long _rss = get_mm_rss(mm);
1349 
1350 	if ((mm)->hiwater_rss < _rss)
1351 		(mm)->hiwater_rss = _rss;
1352 }
1353 
update_hiwater_vm(struct mm_struct * mm)1354 static inline void update_hiwater_vm(struct mm_struct *mm)
1355 {
1356 	if (mm->hiwater_vm < mm->total_vm)
1357 		mm->hiwater_vm = mm->total_vm;
1358 }
1359 
reset_mm_hiwater_rss(struct mm_struct * mm)1360 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1361 {
1362 	mm->hiwater_rss = get_mm_rss(mm);
1363 }
1364 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1365 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1366 					 struct mm_struct *mm)
1367 {
1368 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1369 
1370 	if (*maxrss < hiwater_rss)
1371 		*maxrss = hiwater_rss;
1372 }
1373 
1374 #if defined(SPLIT_RSS_COUNTING)
1375 void sync_mm_rss(struct mm_struct *mm);
1376 #else
sync_mm_rss(struct mm_struct * mm)1377 static inline void sync_mm_rss(struct mm_struct *mm)
1378 {
1379 }
1380 #endif
1381 
1382 int vma_wants_writenotify(struct vm_area_struct *vma);
1383 
1384 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1385 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1386 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1387 				    spinlock_t **ptl)
1388 {
1389 	pte_t *ptep;
1390 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1391 	return ptep;
1392 }
1393 
1394 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1395 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1396 						unsigned long address)
1397 {
1398 	return 0;
1399 }
1400 #else
1401 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1402 #endif
1403 
1404 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1405 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1406 						unsigned long address)
1407 {
1408 	return 0;
1409 }
1410 
mm_nr_pmds_init(struct mm_struct * mm)1411 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1412 
mm_nr_pmds(struct mm_struct * mm)1413 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1414 {
1415 	return 0;
1416 }
1417 
mm_inc_nr_pmds(struct mm_struct * mm)1418 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1419 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1420 
1421 #else
1422 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1423 
mm_nr_pmds_init(struct mm_struct * mm)1424 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1425 {
1426 	atomic_long_set(&mm->nr_pmds, 0);
1427 }
1428 
mm_nr_pmds(struct mm_struct * mm)1429 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1430 {
1431 	return atomic_long_read(&mm->nr_pmds);
1432 }
1433 
mm_inc_nr_pmds(struct mm_struct * mm)1434 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1435 {
1436 	atomic_long_inc(&mm->nr_pmds);
1437 }
1438 
mm_dec_nr_pmds(struct mm_struct * mm)1439 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1440 {
1441 	atomic_long_dec(&mm->nr_pmds);
1442 }
1443 #endif
1444 
1445 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1446 		pmd_t *pmd, unsigned long address);
1447 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1448 
1449 /*
1450  * The following ifdef needed to get the 4level-fixup.h header to work.
1451  * Remove it when 4level-fixup.h has been removed.
1452  */
1453 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1454 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1455 {
1456 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1457 		NULL: pud_offset(pgd, address);
1458 }
1459 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1460 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1461 {
1462 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1463 		NULL: pmd_offset(pud, address);
1464 }
1465 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1466 
1467 #if USE_SPLIT_PTE_PTLOCKS
1468 #if ALLOC_SPLIT_PTLOCKS
1469 void __init ptlock_cache_init(void);
1470 extern bool ptlock_alloc(struct page *page);
1471 extern void ptlock_free(struct page *page);
1472 
ptlock_ptr(struct page * page)1473 static inline spinlock_t *ptlock_ptr(struct page *page)
1474 {
1475 	return page->ptl;
1476 }
1477 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1478 static inline void ptlock_cache_init(void)
1479 {
1480 }
1481 
ptlock_alloc(struct page * page)1482 static inline bool ptlock_alloc(struct page *page)
1483 {
1484 	return true;
1485 }
1486 
ptlock_free(struct page * page)1487 static inline void ptlock_free(struct page *page)
1488 {
1489 }
1490 
ptlock_ptr(struct page * page)1491 static inline spinlock_t *ptlock_ptr(struct page *page)
1492 {
1493 	return &page->ptl;
1494 }
1495 #endif /* ALLOC_SPLIT_PTLOCKS */
1496 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1497 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1498 {
1499 	return ptlock_ptr(pmd_page(*pmd));
1500 }
1501 
ptlock_init(struct page * page)1502 static inline bool ptlock_init(struct page *page)
1503 {
1504 	/*
1505 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1506 	 * with 0. Make sure nobody took it in use in between.
1507 	 *
1508 	 * It can happen if arch try to use slab for page table allocation:
1509 	 * slab code uses page->slab_cache and page->first_page (for tail
1510 	 * pages), which share storage with page->ptl.
1511 	 */
1512 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1513 	if (!ptlock_alloc(page))
1514 		return false;
1515 	spin_lock_init(ptlock_ptr(page));
1516 	return true;
1517 }
1518 
1519 /* Reset page->mapping so free_pages_check won't complain. */
pte_lock_deinit(struct page * page)1520 static inline void pte_lock_deinit(struct page *page)
1521 {
1522 	page->mapping = NULL;
1523 	ptlock_free(page);
1524 }
1525 
1526 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1527 /*
1528  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1529  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1530 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1531 {
1532 	return &mm->page_table_lock;
1533 }
ptlock_cache_init(void)1534 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1535 static inline bool ptlock_init(struct page *page) { return true; }
pte_lock_deinit(struct page * page)1536 static inline void pte_lock_deinit(struct page *page) {}
1537 #endif /* USE_SPLIT_PTE_PTLOCKS */
1538 
pgtable_init(void)1539 static inline void pgtable_init(void)
1540 {
1541 	ptlock_cache_init();
1542 	pgtable_cache_init();
1543 }
1544 
pgtable_page_ctor(struct page * page)1545 static inline bool pgtable_page_ctor(struct page *page)
1546 {
1547 	inc_zone_page_state(page, NR_PAGETABLE);
1548 	return ptlock_init(page);
1549 }
1550 
pgtable_page_dtor(struct page * page)1551 static inline void pgtable_page_dtor(struct page *page)
1552 {
1553 	pte_lock_deinit(page);
1554 	dec_zone_page_state(page, NR_PAGETABLE);
1555 }
1556 
1557 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1558 ({							\
1559 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1560 	pte_t *__pte = pte_offset_map(pmd, address);	\
1561 	*(ptlp) = __ptl;				\
1562 	spin_lock(__ptl);				\
1563 	__pte;						\
1564 })
1565 
1566 #define pte_unmap_unlock(pte, ptl)	do {		\
1567 	spin_unlock(ptl);				\
1568 	pte_unmap(pte);					\
1569 } while (0)
1570 
1571 #define pte_alloc_map(mm, vma, pmd, address)				\
1572 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1573 							pmd, address))?	\
1574 	 NULL: pte_offset_map(pmd, address))
1575 
1576 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1577 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1578 							pmd, address))?	\
1579 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1580 
1581 #define pte_alloc_kernel(pmd, address)			\
1582 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1583 		NULL: pte_offset_kernel(pmd, address))
1584 
1585 #if USE_SPLIT_PMD_PTLOCKS
1586 
pmd_to_page(pmd_t * pmd)1587 static struct page *pmd_to_page(pmd_t *pmd)
1588 {
1589 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1590 	return virt_to_page((void *)((unsigned long) pmd & mask));
1591 }
1592 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1593 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1594 {
1595 	return ptlock_ptr(pmd_to_page(pmd));
1596 }
1597 
pgtable_pmd_page_ctor(struct page * page)1598 static inline bool pgtable_pmd_page_ctor(struct page *page)
1599 {
1600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601 	page->pmd_huge_pte = NULL;
1602 #endif
1603 	return ptlock_init(page);
1604 }
1605 
pgtable_pmd_page_dtor(struct page * page)1606 static inline void pgtable_pmd_page_dtor(struct page *page)
1607 {
1608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1610 #endif
1611 	ptlock_free(page);
1612 }
1613 
1614 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1615 
1616 #else
1617 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1618 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1619 {
1620 	return &mm->page_table_lock;
1621 }
1622 
pgtable_pmd_page_ctor(struct page * page)1623 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)1624 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1625 
1626 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1627 
1628 #endif
1629 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)1630 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1631 {
1632 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1633 	spin_lock(ptl);
1634 	return ptl;
1635 }
1636 
1637 extern void free_area_init(unsigned long * zones_size);
1638 extern void free_area_init_node(int nid, unsigned long * zones_size,
1639 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1640 extern void free_initmem(void);
1641 
1642 /*
1643  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1644  * into the buddy system. The freed pages will be poisoned with pattern
1645  * "poison" if it's within range [0, UCHAR_MAX].
1646  * Return pages freed into the buddy system.
1647  */
1648 extern unsigned long free_reserved_area(void *start, void *end,
1649 					int poison, char *s);
1650 
1651 #ifdef	CONFIG_HIGHMEM
1652 /*
1653  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1654  * and totalram_pages.
1655  */
1656 extern void free_highmem_page(struct page *page);
1657 #endif
1658 
1659 extern void adjust_managed_page_count(struct page *page, long count);
1660 extern void mem_init_print_info(const char *str);
1661 
1662 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)1663 static inline void __free_reserved_page(struct page *page)
1664 {
1665 	ClearPageReserved(page);
1666 	init_page_count(page);
1667 	__free_page(page);
1668 }
1669 
free_reserved_page(struct page * page)1670 static inline void free_reserved_page(struct page *page)
1671 {
1672 	__free_reserved_page(page);
1673 	adjust_managed_page_count(page, 1);
1674 }
1675 
mark_page_reserved(struct page * page)1676 static inline void mark_page_reserved(struct page *page)
1677 {
1678 	SetPageReserved(page);
1679 	adjust_managed_page_count(page, -1);
1680 }
1681 
1682 /*
1683  * Default method to free all the __init memory into the buddy system.
1684  * The freed pages will be poisoned with pattern "poison" if it's within
1685  * range [0, UCHAR_MAX].
1686  * Return pages freed into the buddy system.
1687  */
free_initmem_default(int poison)1688 static inline unsigned long free_initmem_default(int poison)
1689 {
1690 	extern char __init_begin[], __init_end[];
1691 
1692 	return free_reserved_area(&__init_begin, &__init_end,
1693 				  poison, "unused kernel");
1694 }
1695 
get_num_physpages(void)1696 static inline unsigned long get_num_physpages(void)
1697 {
1698 	int nid;
1699 	unsigned long phys_pages = 0;
1700 
1701 	for_each_online_node(nid)
1702 		phys_pages += node_present_pages(nid);
1703 
1704 	return phys_pages;
1705 }
1706 
1707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1708 /*
1709  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1710  * zones, allocate the backing mem_map and account for memory holes in a more
1711  * architecture independent manner. This is a substitute for creating the
1712  * zone_sizes[] and zholes_size[] arrays and passing them to
1713  * free_area_init_node()
1714  *
1715  * An architecture is expected to register range of page frames backed by
1716  * physical memory with memblock_add[_node]() before calling
1717  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1718  * usage, an architecture is expected to do something like
1719  *
1720  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1721  * 							 max_highmem_pfn};
1722  * for_each_valid_physical_page_range()
1723  * 	memblock_add_node(base, size, nid)
1724  * free_area_init_nodes(max_zone_pfns);
1725  *
1726  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1727  * registered physical page range.  Similarly
1728  * sparse_memory_present_with_active_regions() calls memory_present() for
1729  * each range when SPARSEMEM is enabled.
1730  *
1731  * See mm/page_alloc.c for more information on each function exposed by
1732  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1733  */
1734 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1735 unsigned long node_map_pfn_alignment(void);
1736 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1737 						unsigned long end_pfn);
1738 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1739 						unsigned long end_pfn);
1740 extern void get_pfn_range_for_nid(unsigned int nid,
1741 			unsigned long *start_pfn, unsigned long *end_pfn);
1742 extern unsigned long find_min_pfn_with_active_regions(void);
1743 extern void free_bootmem_with_active_regions(int nid,
1744 						unsigned long max_low_pfn);
1745 extern void sparse_memory_present_with_active_regions(int nid);
1746 
1747 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1748 
1749 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1750     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn)1751 static inline int __early_pfn_to_nid(unsigned long pfn)
1752 {
1753 	return 0;
1754 }
1755 #else
1756 /* please see mm/page_alloc.c */
1757 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1758 /* there is a per-arch backend function. */
1759 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1760 #endif
1761 
1762 extern void set_dma_reserve(unsigned long new_dma_reserve);
1763 extern void memmap_init_zone(unsigned long, int, unsigned long,
1764 				unsigned long, enum memmap_context);
1765 extern void setup_per_zone_wmarks(void);
1766 extern int __meminit init_per_zone_wmark_min(void);
1767 extern void mem_init(void);
1768 extern void __init mmap_init(void);
1769 extern void show_mem(unsigned int flags);
1770 extern void si_meminfo(struct sysinfo * val);
1771 extern void si_meminfo_node(struct sysinfo *val, int nid);
1772 
1773 extern __printf(3, 4)
1774 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1775 		const char *fmt, ...);
1776 
1777 extern void setup_per_cpu_pageset(void);
1778 
1779 extern void zone_pcp_update(struct zone *zone);
1780 extern void zone_pcp_reset(struct zone *zone);
1781 
1782 /* page_alloc.c */
1783 extern int min_free_kbytes;
1784 
1785 /* nommu.c */
1786 extern atomic_long_t mmap_pages_allocated;
1787 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1788 
1789 /* interval_tree.c */
1790 void vma_interval_tree_insert(struct vm_area_struct *node,
1791 			      struct rb_root *root);
1792 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1793 				    struct vm_area_struct *prev,
1794 				    struct rb_root *root);
1795 void vma_interval_tree_remove(struct vm_area_struct *node,
1796 			      struct rb_root *root);
1797 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1798 				unsigned long start, unsigned long last);
1799 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1800 				unsigned long start, unsigned long last);
1801 
1802 #define vma_interval_tree_foreach(vma, root, start, last)		\
1803 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1804 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1805 
1806 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1807 				   struct rb_root *root);
1808 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1809 				   struct rb_root *root);
1810 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1811 	struct rb_root *root, unsigned long start, unsigned long last);
1812 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1813 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1814 #ifdef CONFIG_DEBUG_VM_RB
1815 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1816 #endif
1817 
1818 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1819 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1820 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1821 
1822 /* mmap.c */
1823 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1824 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1825 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1826 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1827 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1828 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1829 	struct mempolicy *);
1830 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1831 extern int split_vma(struct mm_struct *,
1832 	struct vm_area_struct *, unsigned long addr, int new_below);
1833 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1834 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1835 	struct rb_node **, struct rb_node *);
1836 extern void unlink_file_vma(struct vm_area_struct *);
1837 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1838 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1839 	bool *need_rmap_locks);
1840 extern void exit_mmap(struct mm_struct *);
1841 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)1842 static inline int check_data_rlimit(unsigned long rlim,
1843 				    unsigned long new,
1844 				    unsigned long start,
1845 				    unsigned long end_data,
1846 				    unsigned long start_data)
1847 {
1848 	if (rlim < RLIM_INFINITY) {
1849 		if (((new - start) + (end_data - start_data)) > rlim)
1850 			return -ENOSPC;
1851 	}
1852 
1853 	return 0;
1854 }
1855 
1856 extern int mm_take_all_locks(struct mm_struct *mm);
1857 extern void mm_drop_all_locks(struct mm_struct *mm);
1858 
1859 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1860 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1861 
1862 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1863 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1864 				   unsigned long addr, unsigned long len,
1865 				   unsigned long flags,
1866 				   const struct vm_special_mapping *spec);
1867 /* This is an obsolete alternative to _install_special_mapping. */
1868 extern int install_special_mapping(struct mm_struct *mm,
1869 				   unsigned long addr, unsigned long len,
1870 				   unsigned long flags, struct page **pages);
1871 
1872 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1873 
1874 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1875 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1876 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1877 	unsigned long len, unsigned long prot, unsigned long flags,
1878 	unsigned long pgoff, unsigned long *populate);
1879 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1880 
1881 #ifdef CONFIG_MMU
1882 extern int __mm_populate(unsigned long addr, unsigned long len,
1883 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)1884 static inline void mm_populate(unsigned long addr, unsigned long len)
1885 {
1886 	/* Ignore errors */
1887 	(void) __mm_populate(addr, len, 1);
1888 }
1889 #else
mm_populate(unsigned long addr,unsigned long len)1890 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1891 #endif
1892 
1893 /* These take the mm semaphore themselves */
1894 extern unsigned long vm_brk(unsigned long, unsigned long);
1895 extern int vm_munmap(unsigned long, size_t);
1896 extern unsigned long vm_mmap(struct file *, unsigned long,
1897         unsigned long, unsigned long,
1898         unsigned long, unsigned long);
1899 
1900 struct vm_unmapped_area_info {
1901 #define VM_UNMAPPED_AREA_TOPDOWN 1
1902 	unsigned long flags;
1903 	unsigned long length;
1904 	unsigned long low_limit;
1905 	unsigned long high_limit;
1906 	unsigned long align_mask;
1907 	unsigned long align_offset;
1908 };
1909 
1910 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1911 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1912 
1913 /*
1914  * Search for an unmapped address range.
1915  *
1916  * We are looking for a range that:
1917  * - does not intersect with any VMA;
1918  * - is contained within the [low_limit, high_limit) interval;
1919  * - is at least the desired size.
1920  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1921  */
1922 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)1923 vm_unmapped_area(struct vm_unmapped_area_info *info)
1924 {
1925 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1926 		return unmapped_area_topdown(info);
1927 	else
1928 		return unmapped_area(info);
1929 }
1930 
1931 /* truncate.c */
1932 extern void truncate_inode_pages(struct address_space *, loff_t);
1933 extern void truncate_inode_pages_range(struct address_space *,
1934 				       loff_t lstart, loff_t lend);
1935 extern void truncate_inode_pages_final(struct address_space *);
1936 
1937 /* generic vm_area_ops exported for stackable file systems */
1938 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1939 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1940 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1941 
1942 /* mm/page-writeback.c */
1943 int write_one_page(struct page *page, int wait);
1944 void task_dirty_inc(struct task_struct *tsk);
1945 
1946 /* readahead.c */
1947 #define VM_MAX_READAHEAD	128	/* kbytes */
1948 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1949 
1950 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1951 			pgoff_t offset, unsigned long nr_to_read);
1952 
1953 void page_cache_sync_readahead(struct address_space *mapping,
1954 			       struct file_ra_state *ra,
1955 			       struct file *filp,
1956 			       pgoff_t offset,
1957 			       unsigned long size);
1958 
1959 void page_cache_async_readahead(struct address_space *mapping,
1960 				struct file_ra_state *ra,
1961 				struct file *filp,
1962 				struct page *pg,
1963 				pgoff_t offset,
1964 				unsigned long size);
1965 
1966 unsigned long max_sane_readahead(unsigned long nr);
1967 
1968 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1969 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1970 
1971 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1972 extern int expand_downwards(struct vm_area_struct *vma,
1973 		unsigned long address);
1974 #if VM_GROWSUP
1975 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1976 #else
1977   #define expand_upwards(vma, address) (0)
1978 #endif
1979 
1980 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1981 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1982 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1983 					     struct vm_area_struct **pprev);
1984 
1985 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1986    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1987 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1988 {
1989 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1990 
1991 	if (vma && end_addr <= vma->vm_start)
1992 		vma = NULL;
1993 	return vma;
1994 }
1995 
vma_pages(struct vm_area_struct * vma)1996 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1997 {
1998 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1999 }
2000 
2001 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2002 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2003 				unsigned long vm_start, unsigned long vm_end)
2004 {
2005 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2006 
2007 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2008 		vma = NULL;
2009 
2010 	return vma;
2011 }
2012 
2013 #ifdef CONFIG_MMU
2014 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2015 void vma_set_page_prot(struct vm_area_struct *vma);
2016 #else
vm_get_page_prot(unsigned long vm_flags)2017 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2018 {
2019 	return __pgprot(0);
2020 }
vma_set_page_prot(struct vm_area_struct * vma)2021 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2022 {
2023 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2024 }
2025 #endif
2026 
2027 #ifdef CONFIG_NUMA_BALANCING
2028 unsigned long change_prot_numa(struct vm_area_struct *vma,
2029 			unsigned long start, unsigned long end);
2030 #endif
2031 
2032 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2033 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2034 			unsigned long pfn, unsigned long size, pgprot_t);
2035 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2036 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2037 			unsigned long pfn);
2038 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2039 			unsigned long pfn);
2040 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2041 
2042 
2043 struct page *follow_page_mask(struct vm_area_struct *vma,
2044 			      unsigned long address, unsigned int foll_flags,
2045 			      unsigned int *page_mask);
2046 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)2047 static inline struct page *follow_page(struct vm_area_struct *vma,
2048 		unsigned long address, unsigned int foll_flags)
2049 {
2050 	unsigned int unused_page_mask;
2051 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2052 }
2053 
2054 #define FOLL_WRITE	0x01	/* check pte is writable */
2055 #define FOLL_TOUCH	0x02	/* mark page accessed */
2056 #define FOLL_GET	0x04	/* do get_page on page */
2057 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2058 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2059 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2060 				 * and return without waiting upon it */
2061 #define FOLL_POPULATE	0x40	/* fault in page */
2062 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2063 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2064 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2065 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2066 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2067 
2068 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2069 			void *data);
2070 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2071 			       unsigned long size, pte_fn_t fn, void *data);
2072 
2073 #ifdef CONFIG_PROC_FS
2074 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2075 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)2076 static inline void vm_stat_account(struct mm_struct *mm,
2077 			unsigned long flags, struct file *file, long pages)
2078 {
2079 	mm->total_vm += pages;
2080 }
2081 #endif /* CONFIG_PROC_FS */
2082 
2083 #ifdef CONFIG_DEBUG_PAGEALLOC
2084 extern bool _debug_pagealloc_enabled;
2085 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2086 
debug_pagealloc_enabled(void)2087 static inline bool debug_pagealloc_enabled(void)
2088 {
2089 	return _debug_pagealloc_enabled;
2090 }
2091 
2092 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2093 kernel_map_pages(struct page *page, int numpages, int enable)
2094 {
2095 	if (!debug_pagealloc_enabled())
2096 		return;
2097 
2098 	__kernel_map_pages(page, numpages, enable);
2099 }
2100 #ifdef CONFIG_HIBERNATION
2101 extern bool kernel_page_present(struct page *page);
2102 #endif /* CONFIG_HIBERNATION */
2103 #else
2104 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2105 kernel_map_pages(struct page *page, int numpages, int enable) {}
2106 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2107 static inline bool kernel_page_present(struct page *page) { return true; }
2108 #endif /* CONFIG_HIBERNATION */
2109 #endif
2110 
2111 #ifdef __HAVE_ARCH_GATE_AREA
2112 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2113 extern int in_gate_area_no_mm(unsigned long addr);
2114 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2115 #else
get_gate_vma(struct mm_struct * mm)2116 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2117 {
2118 	return NULL;
2119 }
in_gate_area_no_mm(unsigned long addr)2120 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2121 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2122 {
2123 	return 0;
2124 }
2125 #endif	/* __HAVE_ARCH_GATE_AREA */
2126 
2127 #ifdef CONFIG_SYSCTL
2128 extern int sysctl_drop_caches;
2129 int drop_caches_sysctl_handler(struct ctl_table *, int,
2130 					void __user *, size_t *, loff_t *);
2131 #endif
2132 
2133 void drop_slab(void);
2134 void drop_slab_node(int nid);
2135 
2136 #ifndef CONFIG_MMU
2137 #define randomize_va_space 0
2138 #else
2139 extern int randomize_va_space;
2140 #endif
2141 
2142 const char * arch_vma_name(struct vm_area_struct *vma);
2143 void print_vma_addr(char *prefix, unsigned long rip);
2144 
2145 void sparse_mem_maps_populate_node(struct page **map_map,
2146 				   unsigned long pnum_begin,
2147 				   unsigned long pnum_end,
2148 				   unsigned long map_count,
2149 				   int nodeid);
2150 
2151 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2152 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2153 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2154 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2155 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2156 void *vmemmap_alloc_block(unsigned long size, int node);
2157 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2158 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2159 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2160 			       int node);
2161 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2162 void vmemmap_populate_print_last(void);
2163 #ifdef CONFIG_MEMORY_HOTPLUG
2164 void vmemmap_free(unsigned long start, unsigned long end);
2165 #endif
2166 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2167 				  unsigned long size);
2168 
2169 enum mf_flags {
2170 	MF_COUNT_INCREASED = 1 << 0,
2171 	MF_ACTION_REQUIRED = 1 << 1,
2172 	MF_MUST_KILL = 1 << 2,
2173 	MF_SOFT_OFFLINE = 1 << 3,
2174 };
2175 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2176 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2177 extern int unpoison_memory(unsigned long pfn);
2178 extern int sysctl_memory_failure_early_kill;
2179 extern int sysctl_memory_failure_recovery;
2180 extern void shake_page(struct page *p, int access);
2181 extern atomic_long_t num_poisoned_pages;
2182 extern int soft_offline_page(struct page *page, int flags);
2183 
2184 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2185 extern void clear_huge_page(struct page *page,
2186 			    unsigned long addr,
2187 			    unsigned int pages_per_huge_page);
2188 extern void copy_user_huge_page(struct page *dst, struct page *src,
2189 				unsigned long addr, struct vm_area_struct *vma,
2190 				unsigned int pages_per_huge_page);
2191 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2192 
2193 extern struct page_ext_operations debug_guardpage_ops;
2194 extern struct page_ext_operations page_poisoning_ops;
2195 
2196 #ifdef CONFIG_DEBUG_PAGEALLOC
2197 extern unsigned int _debug_guardpage_minorder;
2198 extern bool _debug_guardpage_enabled;
2199 
debug_guardpage_minorder(void)2200 static inline unsigned int debug_guardpage_minorder(void)
2201 {
2202 	return _debug_guardpage_minorder;
2203 }
2204 
debug_guardpage_enabled(void)2205 static inline bool debug_guardpage_enabled(void)
2206 {
2207 	return _debug_guardpage_enabled;
2208 }
2209 
page_is_guard(struct page * page)2210 static inline bool page_is_guard(struct page *page)
2211 {
2212 	struct page_ext *page_ext;
2213 
2214 	if (!debug_guardpage_enabled())
2215 		return false;
2216 
2217 	page_ext = lookup_page_ext(page);
2218 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2219 }
2220 #else
debug_guardpage_minorder(void)2221 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2222 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2223 static inline bool page_is_guard(struct page *page) { return false; }
2224 #endif /* CONFIG_DEBUG_PAGEALLOC */
2225 
2226 #if MAX_NUMNODES > 1
2227 void __init setup_nr_node_ids(void);
2228 #else
setup_nr_node_ids(void)2229 static inline void setup_nr_node_ids(void) {}
2230 #endif
2231 
2232 #endif /* __KERNEL__ */
2233 #endif /* _LINUX_MM_H */
2234