1#ifndef _LINUX_FIREWIRE_H
2#define _LINUX_FIREWIRE_H
3
4#include <linux/completion.h>
5#include <linux/device.h>
6#include <linux/dma-mapping.h>
7#include <linux/kernel.h>
8#include <linux/kref.h>
9#include <linux/list.h>
10#include <linux/mutex.h>
11#include <linux/spinlock.h>
12#include <linux/sysfs.h>
13#include <linux/timer.h>
14#include <linux/types.h>
15#include <linux/workqueue.h>
16
17#include <linux/atomic.h>
18#include <asm/byteorder.h>
19
20#define CSR_REGISTER_BASE		0xfffff0000000ULL
21
22/* register offsets are relative to CSR_REGISTER_BASE */
23#define CSR_STATE_CLEAR			0x0
24#define CSR_STATE_SET			0x4
25#define CSR_NODE_IDS			0x8
26#define CSR_RESET_START			0xc
27#define CSR_SPLIT_TIMEOUT_HI		0x18
28#define CSR_SPLIT_TIMEOUT_LO		0x1c
29#define CSR_CYCLE_TIME			0x200
30#define CSR_BUS_TIME			0x204
31#define CSR_BUSY_TIMEOUT		0x210
32#define CSR_PRIORITY_BUDGET		0x218
33#define CSR_BUS_MANAGER_ID		0x21c
34#define CSR_BANDWIDTH_AVAILABLE		0x220
35#define CSR_CHANNELS_AVAILABLE		0x224
36#define CSR_CHANNELS_AVAILABLE_HI	0x224
37#define CSR_CHANNELS_AVAILABLE_LO	0x228
38#define CSR_MAINT_UTILITY		0x230
39#define CSR_BROADCAST_CHANNEL		0x234
40#define CSR_CONFIG_ROM			0x400
41#define CSR_CONFIG_ROM_END		0x800
42#define CSR_OMPR			0x900
43#define CSR_OPCR(i)			(0x904 + (i) * 4)
44#define CSR_IMPR			0x980
45#define CSR_IPCR(i)			(0x984 + (i) * 4)
46#define CSR_FCP_COMMAND			0xB00
47#define CSR_FCP_RESPONSE		0xD00
48#define CSR_FCP_END			0xF00
49#define CSR_TOPOLOGY_MAP		0x1000
50#define CSR_TOPOLOGY_MAP_END		0x1400
51#define CSR_SPEED_MAP			0x2000
52#define CSR_SPEED_MAP_END		0x3000
53
54#define CSR_OFFSET		0x40
55#define CSR_LEAF		0x80
56#define CSR_DIRECTORY		0xc0
57
58#define CSR_DESCRIPTOR		0x01
59#define CSR_VENDOR		0x03
60#define CSR_HARDWARE_VERSION	0x04
61#define CSR_UNIT		0x11
62#define CSR_SPECIFIER_ID	0x12
63#define CSR_VERSION		0x13
64#define CSR_DEPENDENT_INFO	0x14
65#define CSR_MODEL		0x17
66#define CSR_DIRECTORY_ID	0x20
67
68struct fw_csr_iterator {
69	const u32 *p;
70	const u32 *end;
71};
72
73void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
74int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
75int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
76
77extern struct bus_type fw_bus_type;
78
79struct fw_card_driver;
80struct fw_node;
81
82struct fw_card {
83	const struct fw_card_driver *driver;
84	struct device *device;
85	struct kref kref;
86	struct completion done;
87
88	int node_id;
89	int generation;
90	int current_tlabel;
91	u64 tlabel_mask;
92	struct list_head transaction_list;
93	u64 reset_jiffies;
94
95	u32 split_timeout_hi;
96	u32 split_timeout_lo;
97	unsigned int split_timeout_cycles;
98	unsigned int split_timeout_jiffies;
99
100	unsigned long long guid;
101	unsigned max_receive;
102	int link_speed;
103	int config_rom_generation;
104
105	spinlock_t lock; /* Take this lock when handling the lists in
106			  * this struct. */
107	struct fw_node *local_node;
108	struct fw_node *root_node;
109	struct fw_node *irm_node;
110	u8 color; /* must be u8 to match the definition in struct fw_node */
111	int gap_count;
112	bool beta_repeaters_present;
113
114	int index;
115	struct list_head link;
116
117	struct list_head phy_receiver_list;
118
119	struct delayed_work br_work; /* bus reset job */
120	bool br_short;
121
122	struct delayed_work bm_work; /* bus manager job */
123	int bm_retries;
124	int bm_generation;
125	int bm_node_id;
126	bool bm_abdicate;
127
128	bool priority_budget_implemented;	/* controller feature */
129	bool broadcast_channel_auto_allocated;	/* controller feature */
130
131	bool broadcast_channel_allocated;
132	u32 broadcast_channel;
133	__be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
134
135	__be32 maint_utility_register;
136};
137
138static inline struct fw_card *fw_card_get(struct fw_card *card)
139{
140	kref_get(&card->kref);
141
142	return card;
143}
144
145void fw_card_release(struct kref *kref);
146
147static inline void fw_card_put(struct fw_card *card)
148{
149	kref_put(&card->kref, fw_card_release);
150}
151
152struct fw_attribute_group {
153	struct attribute_group *groups[2];
154	struct attribute_group group;
155	struct attribute *attrs[13];
156};
157
158enum fw_device_state {
159	FW_DEVICE_INITIALIZING,
160	FW_DEVICE_RUNNING,
161	FW_DEVICE_GONE,
162	FW_DEVICE_SHUTDOWN,
163};
164
165/*
166 * Note, fw_device.generation always has to be read before fw_device.node_id.
167 * Use SMP memory barriers to ensure this.  Otherwise requests will be sent
168 * to an outdated node_id if the generation was updated in the meantime due
169 * to a bus reset.
170 *
171 * Likewise, fw-core will take care to update .node_id before .generation so
172 * that whenever fw_device.generation is current WRT the actual bus generation,
173 * fw_device.node_id is guaranteed to be current too.
174 *
175 * The same applies to fw_device.card->node_id vs. fw_device.generation.
176 *
177 * fw_device.config_rom and fw_device.config_rom_length may be accessed during
178 * the lifetime of any fw_unit belonging to the fw_device, before device_del()
179 * was called on the last fw_unit.  Alternatively, they may be accessed while
180 * holding fw_device_rwsem.
181 */
182struct fw_device {
183	atomic_t state;
184	struct fw_node *node;
185	int node_id;
186	int generation;
187	unsigned max_speed;
188	struct fw_card *card;
189	struct device device;
190
191	struct mutex client_list_mutex;
192	struct list_head client_list;
193
194	const u32 *config_rom;
195	size_t config_rom_length;
196	int config_rom_retries;
197	unsigned is_local:1;
198	unsigned max_rec:4;
199	unsigned cmc:1;
200	unsigned irmc:1;
201	unsigned bc_implemented:2;
202
203	work_func_t workfn;
204	struct delayed_work work;
205	struct fw_attribute_group attribute_group;
206};
207
208static inline struct fw_device *fw_device(struct device *dev)
209{
210	return container_of(dev, struct fw_device, device);
211}
212
213static inline int fw_device_is_shutdown(struct fw_device *device)
214{
215	return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
216}
217
218int fw_device_enable_phys_dma(struct fw_device *device);
219
220/*
221 * fw_unit.directory must not be accessed after device_del(&fw_unit.device).
222 */
223struct fw_unit {
224	struct device device;
225	const u32 *directory;
226	struct fw_attribute_group attribute_group;
227};
228
229static inline struct fw_unit *fw_unit(struct device *dev)
230{
231	return container_of(dev, struct fw_unit, device);
232}
233
234static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
235{
236	get_device(&unit->device);
237
238	return unit;
239}
240
241static inline void fw_unit_put(struct fw_unit *unit)
242{
243	put_device(&unit->device);
244}
245
246static inline struct fw_device *fw_parent_device(struct fw_unit *unit)
247{
248	return fw_device(unit->device.parent);
249}
250
251struct ieee1394_device_id;
252
253struct fw_driver {
254	struct device_driver driver;
255	int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id);
256	/* Called when the parent device sits through a bus reset. */
257	void (*update)(struct fw_unit *unit);
258	void (*remove)(struct fw_unit *unit);
259	const struct ieee1394_device_id *id_table;
260};
261
262struct fw_packet;
263struct fw_request;
264
265typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
266				     struct fw_card *card, int status);
267typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
268					  void *data, size_t length,
269					  void *callback_data);
270/*
271 * This callback handles an inbound request subaction.  It is called in
272 * RCU read-side context, therefore must not sleep.
273 *
274 * The callback should not initiate outbound request subactions directly.
275 * Otherwise there is a danger of recursion of inbound and outbound
276 * transactions from and to the local node.
277 *
278 * The callback is responsible that either fw_send_response() or kfree()
279 * is called on the @request, except for FCP registers for which the core
280 * takes care of that.
281 */
282typedef void (*fw_address_callback_t)(struct fw_card *card,
283				      struct fw_request *request,
284				      int tcode, int destination, int source,
285				      int generation,
286				      unsigned long long offset,
287				      void *data, size_t length,
288				      void *callback_data);
289
290struct fw_packet {
291	int speed;
292	int generation;
293	u32 header[4];
294	size_t header_length;
295	void *payload;
296	size_t payload_length;
297	dma_addr_t payload_bus;
298	bool payload_mapped;
299	u32 timestamp;
300
301	/*
302	 * This callback is called when the packet transmission has completed.
303	 * For successful transmission, the status code is the ack received
304	 * from the destination.  Otherwise it is one of the juju-specific
305	 * rcodes:  RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK.
306	 * The callback can be called from tasklet context and thus
307	 * must never block.
308	 */
309	fw_packet_callback_t callback;
310	int ack;
311	struct list_head link;
312	void *driver_data;
313};
314
315struct fw_transaction {
316	int node_id; /* The generation is implied; it is always the current. */
317	int tlabel;
318	struct list_head link;
319	struct fw_card *card;
320	bool is_split_transaction;
321	struct timer_list split_timeout_timer;
322
323	struct fw_packet packet;
324
325	/*
326	 * The data passed to the callback is valid only during the
327	 * callback.
328	 */
329	fw_transaction_callback_t callback;
330	void *callback_data;
331};
332
333struct fw_address_handler {
334	u64 offset;
335	u64 length;
336	fw_address_callback_t address_callback;
337	void *callback_data;
338	struct list_head link;
339};
340
341struct fw_address_region {
342	u64 start;
343	u64 end;
344};
345
346extern const struct fw_address_region fw_high_memory_region;
347
348int fw_core_add_address_handler(struct fw_address_handler *handler,
349				const struct fw_address_region *region);
350void fw_core_remove_address_handler(struct fw_address_handler *handler);
351void fw_send_response(struct fw_card *card,
352		      struct fw_request *request, int rcode);
353int fw_get_request_speed(struct fw_request *request);
354void fw_send_request(struct fw_card *card, struct fw_transaction *t,
355		     int tcode, int destination_id, int generation, int speed,
356		     unsigned long long offset, void *payload, size_t length,
357		     fw_transaction_callback_t callback, void *callback_data);
358int fw_cancel_transaction(struct fw_card *card,
359			  struct fw_transaction *transaction);
360int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
361		       int generation, int speed, unsigned long long offset,
362		       void *payload, size_t length);
363const char *fw_rcode_string(int rcode);
364
365static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
366{
367	return tag << 14 | channel << 8 | sy;
368}
369
370void fw_schedule_bus_reset(struct fw_card *card, bool delayed,
371			   bool short_reset);
372
373struct fw_descriptor {
374	struct list_head link;
375	size_t length;
376	u32 immediate;
377	u32 key;
378	const u32 *data;
379};
380
381int fw_core_add_descriptor(struct fw_descriptor *desc);
382void fw_core_remove_descriptor(struct fw_descriptor *desc);
383
384/*
385 * The iso packet format allows for an immediate header/payload part
386 * stored in 'header' immediately after the packet info plus an
387 * indirect payload part that is pointer to by the 'payload' field.
388 * Applications can use one or the other or both to implement simple
389 * low-bandwidth streaming (e.g. audio) or more advanced
390 * scatter-gather streaming (e.g. assembling video frame automatically).
391 */
392struct fw_iso_packet {
393	u16 payload_length;	/* Length of indirect payload		*/
394	u32 interrupt:1;	/* Generate interrupt on this packet	*/
395	u32 skip:1;		/* tx: Set to not send packet at all	*/
396				/* rx: Sync bit, wait for matching sy	*/
397	u32 tag:2;		/* tx: Tag in packet header		*/
398	u32 sy:4;		/* tx: Sy in packet header		*/
399	u32 header_length:8;	/* Length of immediate header		*/
400	u32 header[0];		/* tx: Top of 1394 isoch. data_block	*/
401};
402
403#define FW_ISO_CONTEXT_TRANSMIT			0
404#define FW_ISO_CONTEXT_RECEIVE			1
405#define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL	2
406
407#define FW_ISO_CONTEXT_MATCH_TAG0	 1
408#define FW_ISO_CONTEXT_MATCH_TAG1	 2
409#define FW_ISO_CONTEXT_MATCH_TAG2	 4
410#define FW_ISO_CONTEXT_MATCH_TAG3	 8
411#define FW_ISO_CONTEXT_MATCH_ALL_TAGS	15
412
413/*
414 * An iso buffer is just a set of pages mapped for DMA in the
415 * specified direction.  Since the pages are to be used for DMA, they
416 * are not mapped into the kernel virtual address space.  We store the
417 * DMA address in the page private. The helper function
418 * fw_iso_buffer_map() will map the pages into a given vma.
419 */
420struct fw_iso_buffer {
421	enum dma_data_direction direction;
422	struct page **pages;
423	int page_count;
424	int page_count_mapped;
425};
426
427int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
428		       int page_count, enum dma_data_direction direction);
429void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
430size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
431
432struct fw_iso_context;
433typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
434				  u32 cycle, size_t header_length,
435				  void *header, void *data);
436typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
437				     dma_addr_t completed, void *data);
438struct fw_iso_context {
439	struct fw_card *card;
440	int type;
441	int channel;
442	int speed;
443	bool drop_overflow_headers;
444	size_t header_size;
445	union {
446		fw_iso_callback_t sc;
447		fw_iso_mc_callback_t mc;
448	} callback;
449	void *callback_data;
450};
451
452struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
453		int type, int channel, int speed, size_t header_size,
454		fw_iso_callback_t callback, void *callback_data);
455int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
456int fw_iso_context_queue(struct fw_iso_context *ctx,
457			 struct fw_iso_packet *packet,
458			 struct fw_iso_buffer *buffer,
459			 unsigned long payload);
460void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
461int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
462int fw_iso_context_start(struct fw_iso_context *ctx,
463			 int cycle, int sync, int tags);
464int fw_iso_context_stop(struct fw_iso_context *ctx);
465void fw_iso_context_destroy(struct fw_iso_context *ctx);
466void fw_iso_resource_manage(struct fw_card *card, int generation,
467			    u64 channels_mask, int *channel, int *bandwidth,
468			    bool allocate);
469
470extern struct workqueue_struct *fw_workqueue;
471
472#endif /* _LINUX_FIREWIRE_H */
473