1/*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12#ifndef _LINUX_EDAC_H_
13#define _LINUX_EDAC_H_
14
15#include <linux/atomic.h>
16#include <linux/device.h>
17#include <linux/completion.h>
18#include <linux/workqueue.h>
19#include <linux/debugfs.h>
20
21struct device;
22
23#define EDAC_OPSTATE_INVAL	-1
24#define EDAC_OPSTATE_POLL	0
25#define EDAC_OPSTATE_NMI	1
26#define EDAC_OPSTATE_INT	2
27
28extern int edac_op_state;
29extern int edac_err_assert;
30extern atomic_t edac_handlers;
31extern struct bus_type edac_subsys;
32
33extern int edac_handler_set(void);
34extern void edac_atomic_assert_error(void);
35extern struct bus_type *edac_get_sysfs_subsys(void);
36extern void edac_put_sysfs_subsys(void);
37
38enum {
39	EDAC_REPORTING_ENABLED,
40	EDAC_REPORTING_DISABLED,
41	EDAC_REPORTING_FORCE
42};
43
44extern int edac_report_status;
45#ifdef CONFIG_EDAC
46static inline int get_edac_report_status(void)
47{
48	return edac_report_status;
49}
50
51static inline void set_edac_report_status(int new)
52{
53	edac_report_status = new;
54}
55#else
56static inline int get_edac_report_status(void)
57{
58	return EDAC_REPORTING_DISABLED;
59}
60
61static inline void set_edac_report_status(int new)
62{
63}
64#endif
65
66static inline void opstate_init(void)
67{
68	switch (edac_op_state) {
69	case EDAC_OPSTATE_POLL:
70	case EDAC_OPSTATE_NMI:
71		break;
72	default:
73		edac_op_state = EDAC_OPSTATE_POLL;
74	}
75	return;
76}
77
78/* Max length of a DIMM label*/
79#define EDAC_MC_LABEL_LEN	31
80
81/* Maximum size of the location string */
82#define LOCATION_SIZE 256
83
84/* Defines the maximum number of labels that can be reported */
85#define EDAC_MAX_LABELS		8
86
87/* String used to join two or more labels */
88#define OTHER_LABEL " or "
89
90/**
91 * enum dev_type - describe the type of memory DRAM chips used at the stick
92 * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
93 * @DEV_X1:		1 bit for data
94 * @DEV_X2:		2 bits for data
95 * @DEV_X4:		4 bits for data
96 * @DEV_X8:		8 bits for data
97 * @DEV_X16:		16 bits for data
98 * @DEV_X32:		32 bits for data
99 * @DEV_X64:		64 bits for data
100 *
101 * Typical values are x4 and x8.
102 */
103enum dev_type {
104	DEV_UNKNOWN = 0,
105	DEV_X1,
106	DEV_X2,
107	DEV_X4,
108	DEV_X8,
109	DEV_X16,
110	DEV_X32,		/* Do these parts exist? */
111	DEV_X64			/* Do these parts exist? */
112};
113
114#define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
115#define DEV_FLAG_X1		BIT(DEV_X1)
116#define DEV_FLAG_X2		BIT(DEV_X2)
117#define DEV_FLAG_X4		BIT(DEV_X4)
118#define DEV_FLAG_X8		BIT(DEV_X8)
119#define DEV_FLAG_X16		BIT(DEV_X16)
120#define DEV_FLAG_X32		BIT(DEV_X32)
121#define DEV_FLAG_X64		BIT(DEV_X64)
122
123/**
124 * enum hw_event_mc_err_type - type of the detected error
125 *
126 * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
127 *				corrected error was detected
128 * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
129 *				can't be corrected by ECC, but it is not
130 *				fatal (maybe it is on an unused memory area,
131 *				or the memory controller could recover from
132 *				it for example, by re-trying the operation).
133 * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
134 *				be recovered.
135 */
136enum hw_event_mc_err_type {
137	HW_EVENT_ERR_CORRECTED,
138	HW_EVENT_ERR_UNCORRECTED,
139	HW_EVENT_ERR_FATAL,
140	HW_EVENT_ERR_INFO,
141};
142
143static inline char *mc_event_error_type(const unsigned int err_type)
144{
145	switch (err_type) {
146	case HW_EVENT_ERR_CORRECTED:
147		return "Corrected";
148	case HW_EVENT_ERR_UNCORRECTED:
149		return "Uncorrected";
150	case HW_EVENT_ERR_FATAL:
151		return "Fatal";
152	default:
153	case HW_EVENT_ERR_INFO:
154		return "Info";
155	}
156}
157
158/**
159 * enum mem_type - memory types. For a more detailed reference, please see
160 *			http://en.wikipedia.org/wiki/DRAM
161 *
162 * @MEM_EMPTY		Empty csrow
163 * @MEM_RESERVED:	Reserved csrow type
164 * @MEM_UNKNOWN:	Unknown csrow type
165 * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
166 * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
167 * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
168 * @MEM_SDR:		SDR - Single data rate SDRAM
169 *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
170 *			They use 3 pins for chip select: Pins 0 and 2 are
171 *			for rank 0; pins 1 and 3 are for rank 1, if the memory
172 *			is dual-rank.
173 * @MEM_RDR:		Registered SDR SDRAM
174 * @MEM_DDR:		Double data rate SDRAM
175 *			http://en.wikipedia.org/wiki/DDR_SDRAM
176 * @MEM_RDDR:		Registered Double data rate SDRAM
177 *			This is a variant of the DDR memories.
178 *			A registered memory has a buffer inside it, hiding
179 *			part of the memory details to the memory controller.
180 * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
181 * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
182 *			Those memories are labed as "PC2-" instead of "PC" to
183 *			differenciate from DDR.
184 * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
185 *			and JESD206.
186 *			Those memories are accessed per DIMM slot, and not by
187 *			a chip select signal.
188 * @MEM_RDDR2:		Registered DDR2 RAM
189 *			This is a variant of the DDR2 memories.
190 * @MEM_XDR:		Rambus XDR
191 *			It is an evolution of the original RAMBUS memories,
192 *			created to compete with DDR2. Weren't used on any
193 *			x86 arch, but cell_edac PPC memory controller uses it.
194 * @MEM_DDR3:		DDR3 RAM
195 * @MEM_RDDR3:		Registered DDR3 RAM
196 *			This is a variant of the DDR3 memories.
197 * @MEM_LRDDR3		Load-Reduced DDR3 memory.
198 * @MEM_DDR4:		Unbuffered DDR4 RAM
199 * @MEM_RDDR4:		Registered DDR4 RAM
200 *			This is a variant of the DDR4 memories.
201 */
202enum mem_type {
203	MEM_EMPTY = 0,
204	MEM_RESERVED,
205	MEM_UNKNOWN,
206	MEM_FPM,
207	MEM_EDO,
208	MEM_BEDO,
209	MEM_SDR,
210	MEM_RDR,
211	MEM_DDR,
212	MEM_RDDR,
213	MEM_RMBS,
214	MEM_DDR2,
215	MEM_FB_DDR2,
216	MEM_RDDR2,
217	MEM_XDR,
218	MEM_DDR3,
219	MEM_RDDR3,
220	MEM_LRDDR3,
221	MEM_DDR4,
222	MEM_RDDR4,
223};
224
225#define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
226#define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
227#define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
228#define MEM_FLAG_FPM		BIT(MEM_FPM)
229#define MEM_FLAG_EDO		BIT(MEM_EDO)
230#define MEM_FLAG_BEDO		BIT(MEM_BEDO)
231#define MEM_FLAG_SDR		BIT(MEM_SDR)
232#define MEM_FLAG_RDR		BIT(MEM_RDR)
233#define MEM_FLAG_DDR		BIT(MEM_DDR)
234#define MEM_FLAG_RDDR		BIT(MEM_RDDR)
235#define MEM_FLAG_RMBS		BIT(MEM_RMBS)
236#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
237#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
238#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
239#define MEM_FLAG_XDR            BIT(MEM_XDR)
240#define MEM_FLAG_DDR3		 BIT(MEM_DDR3)
241#define MEM_FLAG_RDDR3		 BIT(MEM_RDDR3)
242
243/**
244 * enum edac-type - Error Detection and Correction capabilities and mode
245 * @EDAC_UNKNOWN:	Unknown if ECC is available
246 * @EDAC_NONE:		Doesn't support ECC
247 * @EDAC_RESERVED:	Reserved ECC type
248 * @EDAC_PARITY:	Detects parity errors
249 * @EDAC_EC:		Error Checking - no correction
250 * @EDAC_SECDED:	Single bit error correction, Double detection
251 * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
252 * @EDAC_S4ECD4ED:	Chipkill x4 devices
253 * @EDAC_S8ECD8ED:	Chipkill x8 devices
254 * @EDAC_S16ECD16ED:	Chipkill x16 devices
255 */
256enum edac_type {
257	EDAC_UNKNOWN =	0,
258	EDAC_NONE,
259	EDAC_RESERVED,
260	EDAC_PARITY,
261	EDAC_EC,
262	EDAC_SECDED,
263	EDAC_S2ECD2ED,
264	EDAC_S4ECD4ED,
265	EDAC_S8ECD8ED,
266	EDAC_S16ECD16ED,
267};
268
269#define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
270#define EDAC_FLAG_NONE		BIT(EDAC_NONE)
271#define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
272#define EDAC_FLAG_EC		BIT(EDAC_EC)
273#define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
274#define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
275#define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
276#define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
277#define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
278
279/**
280 * enum scrub_type - scrubbing capabilities
281 * @SCRUB_UNKNOWN		Unknown if scrubber is available
282 * @SCRUB_NONE:			No scrubber
283 * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
284 * @SCRUB_SW_SRC:		Software scrub only errors
285 * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
286 * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
287 * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
288 * @SCRUB_HW_SRC:		Hardware scrub only errors
289 * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
290 * SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
291 */
292enum scrub_type {
293	SCRUB_UNKNOWN =	0,
294	SCRUB_NONE,
295	SCRUB_SW_PROG,
296	SCRUB_SW_SRC,
297	SCRUB_SW_PROG_SRC,
298	SCRUB_SW_TUNABLE,
299	SCRUB_HW_PROG,
300	SCRUB_HW_SRC,
301	SCRUB_HW_PROG_SRC,
302	SCRUB_HW_TUNABLE
303};
304
305#define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
306#define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
307#define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
308#define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
309#define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
310#define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
311#define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
312#define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
313
314/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
315
316/* EDAC internal operation states */
317#define	OP_ALLOC		0x100
318#define OP_RUNNING_POLL		0x201
319#define OP_RUNNING_INTERRUPT	0x202
320#define OP_RUNNING_POLL_INTR	0x203
321#define OP_OFFLINE		0x300
322
323/*
324 * Concepts used at the EDAC subsystem
325 *
326 * There are several things to be aware of that aren't at all obvious:
327 *
328 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
329 *
330 * These are some of the many terms that are thrown about that don't always
331 * mean what people think they mean (Inconceivable!).  In the interest of
332 * creating a common ground for discussion, terms and their definitions
333 * will be established.
334 *
335 * Memory devices:	The individual DRAM chips on a memory stick.  These
336 *			devices commonly output 4 and 8 bits each (x4, x8).
337 *			Grouping several of these in parallel provides the
338 *			number of bits that the memory controller expects:
339 *			typically 72 bits, in order to provide 64 bits +
340 *			8 bits of ECC data.
341 *
342 * Memory Stick:	A printed circuit board that aggregates multiple
343 *			memory devices in parallel.  In general, this is the
344 *			Field Replaceable Unit (FRU) which gets replaced, in
345 *			the case of excessive errors. Most often it is also
346 *			called DIMM (Dual Inline Memory Module).
347 *
348 * Memory Socket:	A physical connector on the motherboard that accepts
349 *			a single memory stick. Also called as "slot" on several
350 *			datasheets.
351 *
352 * Channel:		A memory controller channel, responsible to communicate
353 *			with a group of DIMMs. Each channel has its own
354 *			independent control (command) and data bus, and can
355 *			be used independently or grouped with other channels.
356 *
357 * Branch:		It is typically the highest hierarchy on a
358 *			Fully-Buffered DIMM memory controller.
359 *			Typically, it contains two channels.
360 *			Two channels at the same branch can be used in single
361 *			mode or in lockstep mode.
362 *			When lockstep is enabled, the cacheline is doubled,
363 *			but it generally brings some performance penalty.
364 *			Also, it is generally not possible to point to just one
365 *			memory stick when an error occurs, as the error
366 *			correction code is calculated using two DIMMs instead
367 *			of one. Due to that, it is capable of correcting more
368 *			errors than on single mode.
369 *
370 * Single-channel:	The data accessed by the memory controller is contained
371 *			into one dimm only. E. g. if the data is 64 bits-wide,
372 *			the data flows to the CPU using one 64 bits parallel
373 *			access.
374 *			Typically used with SDR, DDR, DDR2 and DDR3 memories.
375 *			FB-DIMM and RAMBUS use a different concept for channel,
376 *			so this concept doesn't apply there.
377 *
378 * Double-channel:	The data size accessed by the memory controller is
379 *			interlaced into two dimms, accessed at the same time.
380 *			E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
381 *			the data flows to the CPU using a 128 bits parallel
382 *			access.
383 *
384 * Chip-select row:	This is the name of the DRAM signal used to select the
385 *			DRAM ranks to be accessed. Common chip-select rows for
386 *			single channel are 64 bits, for dual channel 128 bits.
387 *			It may not be visible by the memory controller, as some
388 *			DIMM types have a memory buffer that can hide direct
389 *			access to it from the Memory Controller.
390 *
391 * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memory.
392 *			Motherboards commonly drive two chip-select pins to
393 *			a memory stick. A single-ranked stick, will occupy
394 *			only one of those rows. The other will be unused.
395 *
396 * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
397 *			access different sets of memory devices.  The two
398 *			rows cannot be accessed concurrently.
399 *
400 * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
401 *			A double-sided stick has two chip-select rows which
402 *			access different sets of memory devices. The two
403 *			rows cannot be accessed concurrently. "Double-sided"
404 *			is irrespective of the memory devices being mounted
405 *			on both sides of the memory stick.
406 *
407 * Socket set:		All of the memory sticks that are required for
408 *			a single memory access or all of the memory sticks
409 *			spanned by a chip-select row.  A single socket set
410 *			has two chip-select rows and if double-sided sticks
411 *			are used these will occupy those chip-select rows.
412 *
413 * Bank:		This term is avoided because it is unclear when
414 *			needing to distinguish between chip-select rows and
415 *			socket sets.
416 *
417 * Controller pages:
418 *
419 * Physical pages:
420 *
421 * Virtual pages:
422 *
423 *
424 * STRUCTURE ORGANIZATION AND CHOICES
425 *
426 *
427 *
428 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
429 */
430
431/**
432 * enum edac_mc_layer - memory controller hierarchy layer
433 *
434 * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
435 * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
436 * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
437 * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
438 * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
439 *				as a single memory area. This is used when
440 *				retrieving errors from a firmware driven driver.
441 *
442 * This enum is used by the drivers to tell edac_mc_sysfs what name should
443 * be used when describing a memory stick location.
444 */
445enum edac_mc_layer_type {
446	EDAC_MC_LAYER_BRANCH,
447	EDAC_MC_LAYER_CHANNEL,
448	EDAC_MC_LAYER_SLOT,
449	EDAC_MC_LAYER_CHIP_SELECT,
450	EDAC_MC_LAYER_ALL_MEM,
451};
452
453/**
454 * struct edac_mc_layer - describes the memory controller hierarchy
455 * @layer:		layer type
456 * @size:		number of components per layer. For example,
457 *			if the channel layer has two channels, size = 2
458 * @is_virt_csrow:	This layer is part of the "csrow" when old API
459 *			compatibility mode is enabled. Otherwise, it is
460 *			a channel
461 */
462struct edac_mc_layer {
463	enum edac_mc_layer_type	type;
464	unsigned		size;
465	bool			is_virt_csrow;
466};
467
468/*
469 * Maximum number of layers used by the memory controller to uniquely
470 * identify a single memory stick.
471 * NOTE: Changing this constant requires not only to change the constant
472 * below, but also to change the existing code at the core, as there are
473 * some code there that are optimized for 3 layers.
474 */
475#define EDAC_MAX_LAYERS		3
476
477/**
478 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
479 *		   for the element given by [layer0,layer1,layer2] position
480 *
481 * @layers:	a struct edac_mc_layer array, describing how many elements
482 *		were allocated for each layer
483 * @n_layers:	Number of layers at the @layers array
484 * @layer0:	layer0 position
485 * @layer1:	layer1 position. Unused if n_layers < 2
486 * @layer2:	layer2 position. Unused if n_layers < 3
487 *
488 * For 1 layer, this macro returns &var[layer0] - &var
489 * For 2 layers, this macro is similar to allocate a bi-dimensional array
490 *		and to return "&var[layer0][layer1] - &var"
491 * For 3 layers, this macro is similar to allocate a tri-dimensional array
492 *		and to return "&var[layer0][layer1][layer2] - &var"
493 *
494 * A loop could be used here to make it more generic, but, as we only have
495 * 3 layers, this is a little faster.
496 * By design, layers can never be 0 or more than 3. If that ever happens,
497 * a NULL is returned, causing an OOPS during the memory allocation routine,
498 * with would point to the developer that he's doing something wrong.
499 */
500#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
501	int __i;							\
502	if ((nlayers) == 1)						\
503		__i = layer0;						\
504	else if ((nlayers) == 2)					\
505		__i = (layer1) + ((layers[1]).size * (layer0));		\
506	else if ((nlayers) == 3)					\
507		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
508			    ((layers[1]).size * (layer0))));		\
509	else								\
510		__i = -EINVAL;						\
511	__i;								\
512})
513
514/**
515 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
516 *		   for the element given by [layer0,layer1,layer2] position
517 *
518 * @layers:	a struct edac_mc_layer array, describing how many elements
519 *		were allocated for each layer
520 * @var:	name of the var where we want to get the pointer
521 *		(like mci->dimms)
522 * @n_layers:	Number of layers at the @layers array
523 * @layer0:	layer0 position
524 * @layer1:	layer1 position. Unused if n_layers < 2
525 * @layer2:	layer2 position. Unused if n_layers < 3
526 *
527 * For 1 layer, this macro returns &var[layer0]
528 * For 2 layers, this macro is similar to allocate a bi-dimensional array
529 *		and to return "&var[layer0][layer1]"
530 * For 3 layers, this macro is similar to allocate a tri-dimensional array
531 *		and to return "&var[layer0][layer1][layer2]"
532 */
533#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
534	typeof(*var) __p;						\
535	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
536	if (___i < 0)							\
537		__p = NULL;						\
538	else								\
539		__p = (var)[___i];					\
540	__p;								\
541})
542
543struct dimm_info {
544	struct device dev;
545
546	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
547
548	/* Memory location data */
549	unsigned location[EDAC_MAX_LAYERS];
550
551	struct mem_ctl_info *mci;	/* the parent */
552
553	u32 grain;		/* granularity of reported error in bytes */
554	enum dev_type dtype;	/* memory device type */
555	enum mem_type mtype;	/* memory dimm type */
556	enum edac_type edac_mode;	/* EDAC mode for this dimm */
557
558	u32 nr_pages;			/* number of pages on this dimm */
559
560	unsigned csrow, cschannel;	/* Points to the old API data */
561};
562
563/**
564 * struct rank_info - contains the information for one DIMM rank
565 *
566 * @chan_idx:	channel number where the rank is (typically, 0 or 1)
567 * @ce_count:	number of correctable errors for this rank
568 * @csrow:	A pointer to the chip select row structure (the parent
569 *		structure). The location of the rank is given by
570 *		the (csrow->csrow_idx, chan_idx) vector.
571 * @dimm:	A pointer to the DIMM structure, where the DIMM label
572 *		information is stored.
573 *
574 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
575 *	  This is a bad assumption, but it makes this patch easier. Later
576 *	  patches in this series will fix this issue.
577 */
578struct rank_info {
579	int chan_idx;
580	struct csrow_info *csrow;
581	struct dimm_info *dimm;
582
583	u32 ce_count;		/* Correctable Errors for this csrow */
584};
585
586struct csrow_info {
587	struct device dev;
588
589	/* Used only by edac_mc_find_csrow_by_page() */
590	unsigned long first_page;	/* first page number in csrow */
591	unsigned long last_page;	/* last page number in csrow */
592	unsigned long page_mask;	/* used for interleaving -
593					 * 0UL for non intlv */
594
595	int csrow_idx;			/* the chip-select row */
596
597	u32 ue_count;		/* Uncorrectable Errors for this csrow */
598	u32 ce_count;		/* Correctable Errors for this csrow */
599
600	struct mem_ctl_info *mci;	/* the parent */
601
602	/* channel information for this csrow */
603	u32 nr_channels;
604	struct rank_info **channels;
605};
606
607/*
608 * struct errcount_attribute - used to store the several error counts
609 */
610struct errcount_attribute_data {
611	int n_layers;
612	int pos[EDAC_MAX_LAYERS];
613	int layer0, layer1, layer2;
614};
615
616/**
617 * edac_raw_error_desc - Raw error report structure
618 * @grain:			minimum granularity for an error report, in bytes
619 * @error_count:		number of errors of the same type
620 * @top_layer:			top layer of the error (layer[0])
621 * @mid_layer:			middle layer of the error (layer[1])
622 * @low_layer:			low layer of the error (layer[2])
623 * @page_frame_number:		page where the error happened
624 * @offset_in_page:		page offset
625 * @syndrome:			syndrome of the error (or 0 if unknown or if
626 * 				the syndrome is not applicable)
627 * @msg:			error message
628 * @location:			location of the error
629 * @label:			label of the affected DIMM(s)
630 * @other_detail:		other driver-specific detail about the error
631 * @enable_per_layer_report:	if false, the error affects all layers
632 *				(typically, a memory controller error)
633 */
634struct edac_raw_error_desc {
635	/*
636	 * NOTE: everything before grain won't be cleaned by
637	 * edac_raw_error_desc_clean()
638	 */
639	char location[LOCATION_SIZE];
640	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
641	long grain;
642
643	/* the vars below and grain will be cleaned on every new error report */
644	u16 error_count;
645	int top_layer;
646	int mid_layer;
647	int low_layer;
648	unsigned long page_frame_number;
649	unsigned long offset_in_page;
650	unsigned long syndrome;
651	const char *msg;
652	const char *other_detail;
653	bool enable_per_layer_report;
654};
655
656/* MEMORY controller information structure
657 */
658struct mem_ctl_info {
659	struct device			dev;
660	struct bus_type			*bus;
661
662	struct list_head link;	/* for global list of mem_ctl_info structs */
663
664	struct module *owner;	/* Module owner of this control struct */
665
666	unsigned long mtype_cap;	/* memory types supported by mc */
667	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
668	unsigned long edac_cap;	/* configuration capabilities - this is
669				 * closely related to edac_ctl_cap.  The
670				 * difference is that the controller may be
671				 * capable of s4ecd4ed which would be listed
672				 * in edac_ctl_cap, but if channels aren't
673				 * capable of s4ecd4ed then the edac_cap would
674				 * not have that capability.
675				 */
676	unsigned long scrub_cap;	/* chipset scrub capabilities */
677	enum scrub_type scrub_mode;	/* current scrub mode */
678
679	/* Translates sdram memory scrub rate given in bytes/sec to the
680	   internal representation and configures whatever else needs
681	   to be configured.
682	 */
683	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
684
685	/* Get the current sdram memory scrub rate from the internal
686	   representation and converts it to the closest matching
687	   bandwidth in bytes/sec.
688	 */
689	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
690
691
692	/* pointer to edac checking routine */
693	void (*edac_check) (struct mem_ctl_info * mci);
694
695	/*
696	 * Remaps memory pages: controller pages to physical pages.
697	 * For most MC's, this will be NULL.
698	 */
699	/* FIXME - why not send the phys page to begin with? */
700	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
701					   unsigned long page);
702	int mc_idx;
703	struct csrow_info **csrows;
704	unsigned nr_csrows, num_cschannel;
705
706	/*
707	 * Memory Controller hierarchy
708	 *
709	 * There are basically two types of memory controller: the ones that
710	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
711	 * All old memory controllers enumerate memories per rank, but most
712	 * of the recent drivers enumerate memories per DIMM, instead.
713	 * When the memory controller is per rank, csbased is true.
714	 */
715	unsigned n_layers;
716	struct edac_mc_layer *layers;
717	bool csbased;
718
719	/*
720	 * DIMM info. Will eventually remove the entire csrows_info some day
721	 */
722	unsigned tot_dimms;
723	struct dimm_info **dimms;
724
725	/*
726	 * FIXME - what about controllers on other busses? - IDs must be
727	 * unique.  dev pointer should be sufficiently unique, but
728	 * BUS:SLOT.FUNC numbers may not be unique.
729	 */
730	struct device *pdev;
731	const char *mod_name;
732	const char *mod_ver;
733	const char *ctl_name;
734	const char *dev_name;
735	void *pvt_info;
736	unsigned long start_time;	/* mci load start time (in jiffies) */
737
738	/*
739	 * drivers shouldn't access those fields directly, as the core
740	 * already handles that.
741	 */
742	u32 ce_noinfo_count, ue_noinfo_count;
743	u32 ue_mc, ce_mc;
744	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
745
746	struct completion complete;
747
748	/* Additional top controller level attributes, but specified
749	 * by the low level driver.
750	 *
751	 * Set by the low level driver to provide attributes at the
752	 * controller level.
753	 * An array of structures, NULL terminated
754	 *
755	 * If attributes are desired, then set to array of attributes
756	 * If no attributes are desired, leave NULL
757	 */
758	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
759
760	/* work struct for this MC */
761	struct delayed_work work;
762
763	/*
764	 * Used to report an error - by being at the global struct
765	 * makes the memory allocated by the EDAC core
766	 */
767	struct edac_raw_error_desc error_desc;
768
769	/* the internal state of this controller instance */
770	int op_state;
771
772#ifdef CONFIG_EDAC_DEBUG
773	struct dentry *debugfs;
774	u8 fake_inject_layer[EDAC_MAX_LAYERS];
775	u32 fake_inject_ue;
776	u16 fake_inject_count;
777#endif
778};
779
780/*
781 * Maximum number of memory controllers in the coherent fabric.
782 */
783#define EDAC_MAX_MCS	16
784
785#endif
786