1/*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_HASH_H
14#define _CRYPTO_HASH_H
15
16#include <linux/crypto.h>
17
18struct crypto_ahash;
19
20/**
21 * DOC: Message Digest Algorithm Definitions
22 *
23 * These data structures define modular message digest algorithm
24 * implementations, managed via crypto_register_ahash(),
25 * crypto_register_shash(), crypto_unregister_ahash() and
26 * crypto_unregister_shash().
27 */
28
29/**
30 * struct hash_alg_common - define properties of message digest
31 * @digestsize: Size of the result of the transformation. A buffer of this size
32 *	        must be available to the @final and @finup calls, so they can
33 *	        store the resulting hash into it. For various predefined sizes,
34 *	        search include/crypto/ using
35 *	        git grep _DIGEST_SIZE include/crypto.
36 * @statesize: Size of the block for partial state of the transformation. A
37 *	       buffer of this size must be passed to the @export function as it
38 *	       will save the partial state of the transformation into it. On the
39 *	       other side, the @import function will load the state from a
40 *	       buffer of this size as well.
41 * @base: Start of data structure of cipher algorithm. The common data
42 *	  structure of crypto_alg contains information common to all ciphers.
43 *	  The hash_alg_common data structure now adds the hash-specific
44 *	  information.
45 */
46struct hash_alg_common {
47	unsigned int digestsize;
48	unsigned int statesize;
49
50	struct crypto_alg base;
51};
52
53struct ahash_request {
54	struct crypto_async_request base;
55
56	unsigned int nbytes;
57	struct scatterlist *src;
58	u8 *result;
59
60	/* This field may only be used by the ahash API code. */
61	void *priv;
62
63	void *__ctx[] CRYPTO_MINALIGN_ATTR;
64};
65
66/**
67 * struct ahash_alg - asynchronous message digest definition
68 * @init: Initialize the transformation context. Intended only to initialize the
69 *	  state of the HASH transformation at the begining. This shall fill in
70 *	  the internal structures used during the entire duration of the whole
71 *	  transformation. No data processing happens at this point.
72 * @update: Push a chunk of data into the driver for transformation. This
73 *	   function actually pushes blocks of data from upper layers into the
74 *	   driver, which then passes those to the hardware as seen fit. This
75 *	   function must not finalize the HASH transformation by calculating the
76 *	   final message digest as this only adds more data into the
77 *	   transformation. This function shall not modify the transformation
78 *	   context, as this function may be called in parallel with the same
79 *	   transformation object. Data processing can happen synchronously
80 *	   [SHASH] or asynchronously [AHASH] at this point.
81 * @final: Retrieve result from the driver. This function finalizes the
82 *	   transformation and retrieves the resulting hash from the driver and
83 *	   pushes it back to upper layers. No data processing happens at this
84 *	   point.
85 * @finup: Combination of @update and @final. This function is effectively a
86 *	   combination of @update and @final calls issued in sequence. As some
87 *	   hardware cannot do @update and @final separately, this callback was
88 *	   added to allow such hardware to be used at least by IPsec. Data
89 *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
90 *	   at this point.
91 * @digest: Combination of @init and @update and @final. This function
92 *	    effectively behaves as the entire chain of operations, @init,
93 *	    @update and @final issued in sequence. Just like @finup, this was
94 *	    added for hardware which cannot do even the @finup, but can only do
95 *	    the whole transformation in one run. Data processing can happen
96 *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
97 * @setkey: Set optional key used by the hashing algorithm. Intended to push
98 *	    optional key used by the hashing algorithm from upper layers into
99 *	    the driver. This function can store the key in the transformation
100 *	    context or can outright program it into the hardware. In the former
101 *	    case, one must be careful to program the key into the hardware at
102 *	    appropriate time and one must be careful that .setkey() can be
103 *	    called multiple times during the existence of the transformation
104 *	    object. Not  all hashing algorithms do implement this function as it
105 *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
106 *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
107 *	    this function. This function must be called before any other of the
108 *	    @init, @update, @final, @finup, @digest is called. No data
109 *	    processing happens at this point.
110 * @export: Export partial state of the transformation. This function dumps the
111 *	    entire state of the ongoing transformation into a provided block of
112 *	    data so it can be @import 'ed back later on. This is useful in case
113 *	    you want to save partial result of the transformation after
114 *	    processing certain amount of data and reload this partial result
115 *	    multiple times later on for multiple re-use. No data processing
116 *	    happens at this point.
117 * @import: Import partial state of the transformation. This function loads the
118 *	    entire state of the ongoing transformation from a provided block of
119 *	    data so the transformation can continue from this point onward. No
120 *	    data processing happens at this point.
121 * @halg: see struct hash_alg_common
122 */
123struct ahash_alg {
124	int (*init)(struct ahash_request *req);
125	int (*update)(struct ahash_request *req);
126	int (*final)(struct ahash_request *req);
127	int (*finup)(struct ahash_request *req);
128	int (*digest)(struct ahash_request *req);
129	int (*export)(struct ahash_request *req, void *out);
130	int (*import)(struct ahash_request *req, const void *in);
131	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
132		      unsigned int keylen);
133
134	struct hash_alg_common halg;
135};
136
137struct shash_desc {
138	struct crypto_shash *tfm;
139	u32 flags;
140
141	void *__ctx[] CRYPTO_MINALIGN_ATTR;
142};
143
144#define SHASH_DESC_ON_STACK(shash, ctx)				  \
145	char __##shash##_desc[sizeof(struct shash_desc) +	  \
146		crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
147	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
148
149/**
150 * struct shash_alg - synchronous message digest definition
151 * @init: see struct ahash_alg
152 * @update: see struct ahash_alg
153 * @final: see struct ahash_alg
154 * @finup: see struct ahash_alg
155 * @digest: see struct ahash_alg
156 * @export: see struct ahash_alg
157 * @import: see struct ahash_alg
158 * @setkey: see struct ahash_alg
159 * @digestsize: see struct ahash_alg
160 * @statesize: see struct ahash_alg
161 * @descsize: Size of the operational state for the message digest. This state
162 * 	      size is the memory size that needs to be allocated for
163 *	      shash_desc.__ctx
164 * @base: internally used
165 */
166struct shash_alg {
167	int (*init)(struct shash_desc *desc);
168	int (*update)(struct shash_desc *desc, const u8 *data,
169		      unsigned int len);
170	int (*final)(struct shash_desc *desc, u8 *out);
171	int (*finup)(struct shash_desc *desc, const u8 *data,
172		     unsigned int len, u8 *out);
173	int (*digest)(struct shash_desc *desc, const u8 *data,
174		      unsigned int len, u8 *out);
175	int (*export)(struct shash_desc *desc, void *out);
176	int (*import)(struct shash_desc *desc, const void *in);
177	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
178		      unsigned int keylen);
179
180	unsigned int descsize;
181
182	/* These fields must match hash_alg_common. */
183	unsigned int digestsize
184		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
185	unsigned int statesize;
186
187	struct crypto_alg base;
188};
189
190struct crypto_ahash {
191	int (*init)(struct ahash_request *req);
192	int (*update)(struct ahash_request *req);
193	int (*final)(struct ahash_request *req);
194	int (*finup)(struct ahash_request *req);
195	int (*digest)(struct ahash_request *req);
196	int (*export)(struct ahash_request *req, void *out);
197	int (*import)(struct ahash_request *req, const void *in);
198	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
199		      unsigned int keylen);
200
201	unsigned int reqsize;
202	bool has_setkey;
203	struct crypto_tfm base;
204};
205
206struct crypto_shash {
207	unsigned int descsize;
208	struct crypto_tfm base;
209};
210
211/**
212 * DOC: Asynchronous Message Digest API
213 *
214 * The asynchronous message digest API is used with the ciphers of type
215 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
216 *
217 * The asynchronous cipher operation discussion provided for the
218 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
219 */
220
221static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
222{
223	return container_of(tfm, struct crypto_ahash, base);
224}
225
226/**
227 * crypto_alloc_ahash() - allocate ahash cipher handle
228 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
229 *	      ahash cipher
230 * @type: specifies the type of the cipher
231 * @mask: specifies the mask for the cipher
232 *
233 * Allocate a cipher handle for an ahash. The returned struct
234 * crypto_ahash is the cipher handle that is required for any subsequent
235 * API invocation for that ahash.
236 *
237 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
238 *	   of an error, PTR_ERR() returns the error code.
239 */
240struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
241					u32 mask);
242
243static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
244{
245	return &tfm->base;
246}
247
248/**
249 * crypto_free_ahash() - zeroize and free the ahash handle
250 * @tfm: cipher handle to be freed
251 */
252static inline void crypto_free_ahash(struct crypto_ahash *tfm)
253{
254	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
255}
256
257static inline unsigned int crypto_ahash_alignmask(
258	struct crypto_ahash *tfm)
259{
260	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
261}
262
263static inline struct hash_alg_common *__crypto_hash_alg_common(
264	struct crypto_alg *alg)
265{
266	return container_of(alg, struct hash_alg_common, base);
267}
268
269static inline struct hash_alg_common *crypto_hash_alg_common(
270	struct crypto_ahash *tfm)
271{
272	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
273}
274
275/**
276 * crypto_ahash_digestsize() - obtain message digest size
277 * @tfm: cipher handle
278 *
279 * The size for the message digest created by the message digest cipher
280 * referenced with the cipher handle is returned.
281 *
282 *
283 * Return: message digest size of cipher
284 */
285static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
286{
287	return crypto_hash_alg_common(tfm)->digestsize;
288}
289
290static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
291{
292	return crypto_hash_alg_common(tfm)->statesize;
293}
294
295static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
296{
297	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
298}
299
300static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
301{
302	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
303}
304
305static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
306{
307	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
308}
309
310/**
311 * crypto_ahash_reqtfm() - obtain cipher handle from request
312 * @req: asynchronous request handle that contains the reference to the ahash
313 *	 cipher handle
314 *
315 * Return the ahash cipher handle that is registered with the asynchronous
316 * request handle ahash_request.
317 *
318 * Return: ahash cipher handle
319 */
320static inline struct crypto_ahash *crypto_ahash_reqtfm(
321	struct ahash_request *req)
322{
323	return __crypto_ahash_cast(req->base.tfm);
324}
325
326/**
327 * crypto_ahash_reqsize() - obtain size of the request data structure
328 * @tfm: cipher handle
329 *
330 * Return the size of the ahash state size. With the crypto_ahash_export
331 * function, the caller can export the state into a buffer whose size is
332 * defined with this function.
333 *
334 * Return: size of the ahash state
335 */
336static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
337{
338	return tfm->reqsize;
339}
340
341static inline void *ahash_request_ctx(struct ahash_request *req)
342{
343	return req->__ctx;
344}
345
346/**
347 * crypto_ahash_setkey - set key for cipher handle
348 * @tfm: cipher handle
349 * @key: buffer holding the key
350 * @keylen: length of the key in bytes
351 *
352 * The caller provided key is set for the ahash cipher. The cipher
353 * handle must point to a keyed hash in order for this function to succeed.
354 *
355 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
356 */
357int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
358			unsigned int keylen);
359
360static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
361{
362	return tfm->has_setkey;
363}
364
365/**
366 * crypto_ahash_finup() - update and finalize message digest
367 * @req: reference to the ahash_request handle that holds all information
368 *	 needed to perform the cipher operation
369 *
370 * This function is a "short-hand" for the function calls of
371 * crypto_ahash_update and crypto_shash_final. The parameters have the same
372 * meaning as discussed for those separate functions.
373 *
374 * Return: 0 if the message digest creation was successful; < 0 if an error
375 *	   occurred
376 */
377int crypto_ahash_finup(struct ahash_request *req);
378
379/**
380 * crypto_ahash_final() - calculate message digest
381 * @req: reference to the ahash_request handle that holds all information
382 *	 needed to perform the cipher operation
383 *
384 * Finalize the message digest operation and create the message digest
385 * based on all data added to the cipher handle. The message digest is placed
386 * into the output buffer registered with the ahash_request handle.
387 *
388 * Return: 0 if the message digest creation was successful; < 0 if an error
389 *	   occurred
390 */
391int crypto_ahash_final(struct ahash_request *req);
392
393/**
394 * crypto_ahash_digest() - calculate message digest for a buffer
395 * @req: reference to the ahash_request handle that holds all information
396 *	 needed to perform the cipher operation
397 *
398 * This function is a "short-hand" for the function calls of crypto_ahash_init,
399 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
400 * meaning as discussed for those separate three functions.
401 *
402 * Return: 0 if the message digest creation was successful; < 0 if an error
403 *	   occurred
404 */
405int crypto_ahash_digest(struct ahash_request *req);
406
407/**
408 * crypto_ahash_export() - extract current message digest state
409 * @req: reference to the ahash_request handle whose state is exported
410 * @out: output buffer of sufficient size that can hold the hash state
411 *
412 * This function exports the hash state of the ahash_request handle into the
413 * caller-allocated output buffer out which must have sufficient size (e.g. by
414 * calling crypto_ahash_reqsize).
415 *
416 * Return: 0 if the export was successful; < 0 if an error occurred
417 */
418static inline int crypto_ahash_export(struct ahash_request *req, void *out)
419{
420	return crypto_ahash_reqtfm(req)->export(req, out);
421}
422
423/**
424 * crypto_ahash_import() - import message digest state
425 * @req: reference to ahash_request handle the state is imported into
426 * @in: buffer holding the state
427 *
428 * This function imports the hash state into the ahash_request handle from the
429 * input buffer. That buffer should have been generated with the
430 * crypto_ahash_export function.
431 *
432 * Return: 0 if the import was successful; < 0 if an error occurred
433 */
434static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
435{
436	return crypto_ahash_reqtfm(req)->import(req, in);
437}
438
439/**
440 * crypto_ahash_init() - (re)initialize message digest handle
441 * @req: ahash_request handle that already is initialized with all necessary
442 *	 data using the ahash_request_* API functions
443 *
444 * The call (re-)initializes the message digest referenced by the ahash_request
445 * handle. Any potentially existing state created by previous operations is
446 * discarded.
447 *
448 * Return: 0 if the message digest initialization was successful; < 0 if an
449 *	   error occurred
450 */
451static inline int crypto_ahash_init(struct ahash_request *req)
452{
453	return crypto_ahash_reqtfm(req)->init(req);
454}
455
456/**
457 * crypto_ahash_update() - add data to message digest for processing
458 * @req: ahash_request handle that was previously initialized with the
459 *	 crypto_ahash_init call.
460 *
461 * Updates the message digest state of the &ahash_request handle. The input data
462 * is pointed to by the scatter/gather list registered in the &ahash_request
463 * handle
464 *
465 * Return: 0 if the message digest update was successful; < 0 if an error
466 *	   occurred
467 */
468static inline int crypto_ahash_update(struct ahash_request *req)
469{
470	return crypto_ahash_reqtfm(req)->update(req);
471}
472
473/**
474 * DOC: Asynchronous Hash Request Handle
475 *
476 * The &ahash_request data structure contains all pointers to data
477 * required for the asynchronous cipher operation. This includes the cipher
478 * handle (which can be used by multiple &ahash_request instances), pointer
479 * to plaintext and the message digest output buffer, asynchronous callback
480 * function, etc. It acts as a handle to the ahash_request_* API calls in a
481 * similar way as ahash handle to the crypto_ahash_* API calls.
482 */
483
484/**
485 * ahash_request_set_tfm() - update cipher handle reference in request
486 * @req: request handle to be modified
487 * @tfm: cipher handle that shall be added to the request handle
488 *
489 * Allow the caller to replace the existing ahash handle in the request
490 * data structure with a different one.
491 */
492static inline void ahash_request_set_tfm(struct ahash_request *req,
493					 struct crypto_ahash *tfm)
494{
495	req->base.tfm = crypto_ahash_tfm(tfm);
496}
497
498/**
499 * ahash_request_alloc() - allocate request data structure
500 * @tfm: cipher handle to be registered with the request
501 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
502 *
503 * Allocate the request data structure that must be used with the ahash
504 * message digest API calls. During
505 * the allocation, the provided ahash handle
506 * is registered in the request data structure.
507 *
508 * Return: allocated request handle in case of success; IS_ERR() is true in case
509 *	   of an error, PTR_ERR() returns the error code.
510 */
511static inline struct ahash_request *ahash_request_alloc(
512	struct crypto_ahash *tfm, gfp_t gfp)
513{
514	struct ahash_request *req;
515
516	req = kmalloc(sizeof(struct ahash_request) +
517		      crypto_ahash_reqsize(tfm), gfp);
518
519	if (likely(req))
520		ahash_request_set_tfm(req, tfm);
521
522	return req;
523}
524
525/**
526 * ahash_request_free() - zeroize and free the request data structure
527 * @req: request data structure cipher handle to be freed
528 */
529static inline void ahash_request_free(struct ahash_request *req)
530{
531	kzfree(req);
532}
533
534static inline struct ahash_request *ahash_request_cast(
535	struct crypto_async_request *req)
536{
537	return container_of(req, struct ahash_request, base);
538}
539
540/**
541 * ahash_request_set_callback() - set asynchronous callback function
542 * @req: request handle
543 * @flags: specify zero or an ORing of the flags
544 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
545 *	   increase the wait queue beyond the initial maximum size;
546 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
547 * @compl: callback function pointer to be registered with the request handle
548 * @data: The data pointer refers to memory that is not used by the kernel
549 *	  crypto API, but provided to the callback function for it to use. Here,
550 *	  the caller can provide a reference to memory the callback function can
551 *	  operate on. As the callback function is invoked asynchronously to the
552 *	  related functionality, it may need to access data structures of the
553 *	  related functionality which can be referenced using this pointer. The
554 *	  callback function can access the memory via the "data" field in the
555 *	  &crypto_async_request data structure provided to the callback function.
556 *
557 * This function allows setting the callback function that is triggered once
558 * the cipher operation completes.
559 *
560 * The callback function is registered with the &ahash_request handle and
561 * must comply with the following template
562 *
563 *	void callback_function(struct crypto_async_request *req, int error)
564 */
565static inline void ahash_request_set_callback(struct ahash_request *req,
566					      u32 flags,
567					      crypto_completion_t compl,
568					      void *data)
569{
570	req->base.complete = compl;
571	req->base.data = data;
572	req->base.flags = flags;
573}
574
575/**
576 * ahash_request_set_crypt() - set data buffers
577 * @req: ahash_request handle to be updated
578 * @src: source scatter/gather list
579 * @result: buffer that is filled with the message digest -- the caller must
580 *	    ensure that the buffer has sufficient space by, for example, calling
581 *	    crypto_ahash_digestsize()
582 * @nbytes: number of bytes to process from the source scatter/gather list
583 *
584 * By using this call, the caller references the source scatter/gather list.
585 * The source scatter/gather list points to the data the message digest is to
586 * be calculated for.
587 */
588static inline void ahash_request_set_crypt(struct ahash_request *req,
589					   struct scatterlist *src, u8 *result,
590					   unsigned int nbytes)
591{
592	req->src = src;
593	req->nbytes = nbytes;
594	req->result = result;
595}
596
597/**
598 * DOC: Synchronous Message Digest API
599 *
600 * The synchronous message digest API is used with the ciphers of type
601 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
602 *
603 * The message digest API is able to maintain state information for the
604 * caller.
605 *
606 * The synchronous message digest API can store user-related context in in its
607 * shash_desc request data structure.
608 */
609
610/**
611 * crypto_alloc_shash() - allocate message digest handle
612 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
613 *	      message digest cipher
614 * @type: specifies the type of the cipher
615 * @mask: specifies the mask for the cipher
616 *
617 * Allocate a cipher handle for a message digest. The returned &struct
618 * crypto_shash is the cipher handle that is required for any subsequent
619 * API invocation for that message digest.
620 *
621 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
622 *	   of an error, PTR_ERR() returns the error code.
623 */
624struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
625					u32 mask);
626
627static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
628{
629	return &tfm->base;
630}
631
632/**
633 * crypto_free_shash() - zeroize and free the message digest handle
634 * @tfm: cipher handle to be freed
635 */
636static inline void crypto_free_shash(struct crypto_shash *tfm)
637{
638	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
639}
640
641static inline unsigned int crypto_shash_alignmask(
642	struct crypto_shash *tfm)
643{
644	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
645}
646
647/**
648 * crypto_shash_blocksize() - obtain block size for cipher
649 * @tfm: cipher handle
650 *
651 * The block size for the message digest cipher referenced with the cipher
652 * handle is returned.
653 *
654 * Return: block size of cipher
655 */
656static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
657{
658	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
659}
660
661static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
662{
663	return container_of(alg, struct shash_alg, base);
664}
665
666static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
667{
668	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
669}
670
671/**
672 * crypto_shash_digestsize() - obtain message digest size
673 * @tfm: cipher handle
674 *
675 * The size for the message digest created by the message digest cipher
676 * referenced with the cipher handle is returned.
677 *
678 * Return: digest size of cipher
679 */
680static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
681{
682	return crypto_shash_alg(tfm)->digestsize;
683}
684
685static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
686{
687	return crypto_shash_alg(tfm)->statesize;
688}
689
690static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
691{
692	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
693}
694
695static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
696{
697	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
698}
699
700static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
701{
702	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
703}
704
705/**
706 * crypto_shash_descsize() - obtain the operational state size
707 * @tfm: cipher handle
708 *
709 * The size of the operational state the cipher needs during operation is
710 * returned for the hash referenced with the cipher handle. This size is
711 * required to calculate the memory requirements to allow the caller allocating
712 * sufficient memory for operational state.
713 *
714 * The operational state is defined with struct shash_desc where the size of
715 * that data structure is to be calculated as
716 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
717 *
718 * Return: size of the operational state
719 */
720static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
721{
722	return tfm->descsize;
723}
724
725static inline void *shash_desc_ctx(struct shash_desc *desc)
726{
727	return desc->__ctx;
728}
729
730/**
731 * crypto_shash_setkey() - set key for message digest
732 * @tfm: cipher handle
733 * @key: buffer holding the key
734 * @keylen: length of the key in bytes
735 *
736 * The caller provided key is set for the keyed message digest cipher. The
737 * cipher handle must point to a keyed message digest cipher in order for this
738 * function to succeed.
739 *
740 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
741 */
742int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
743			unsigned int keylen);
744
745/**
746 * crypto_shash_digest() - calculate message digest for buffer
747 * @desc: see crypto_shash_final()
748 * @data: see crypto_shash_update()
749 * @len: see crypto_shash_update()
750 * @out: see crypto_shash_final()
751 *
752 * This function is a "short-hand" for the function calls of crypto_shash_init,
753 * crypto_shash_update and crypto_shash_final. The parameters have the same
754 * meaning as discussed for those separate three functions.
755 *
756 * Return: 0 if the message digest creation was successful; < 0 if an error
757 *	   occurred
758 */
759int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
760			unsigned int len, u8 *out);
761
762/**
763 * crypto_shash_export() - extract operational state for message digest
764 * @desc: reference to the operational state handle whose state is exported
765 * @out: output buffer of sufficient size that can hold the hash state
766 *
767 * This function exports the hash state of the operational state handle into the
768 * caller-allocated output buffer out which must have sufficient size (e.g. by
769 * calling crypto_shash_descsize).
770 *
771 * Return: 0 if the export creation was successful; < 0 if an error occurred
772 */
773static inline int crypto_shash_export(struct shash_desc *desc, void *out)
774{
775	return crypto_shash_alg(desc->tfm)->export(desc, out);
776}
777
778/**
779 * crypto_shash_import() - import operational state
780 * @desc: reference to the operational state handle the state imported into
781 * @in: buffer holding the state
782 *
783 * This function imports the hash state into the operational state handle from
784 * the input buffer. That buffer should have been generated with the
785 * crypto_ahash_export function.
786 *
787 * Return: 0 if the import was successful; < 0 if an error occurred
788 */
789static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
790{
791	return crypto_shash_alg(desc->tfm)->import(desc, in);
792}
793
794/**
795 * crypto_shash_init() - (re)initialize message digest
796 * @desc: operational state handle that is already filled
797 *
798 * The call (re-)initializes the message digest referenced by the
799 * operational state handle. Any potentially existing state created by
800 * previous operations is discarded.
801 *
802 * Return: 0 if the message digest initialization was successful; < 0 if an
803 *	   error occurred
804 */
805static inline int crypto_shash_init(struct shash_desc *desc)
806{
807	return crypto_shash_alg(desc->tfm)->init(desc);
808}
809
810/**
811 * crypto_shash_update() - add data to message digest for processing
812 * @desc: operational state handle that is already initialized
813 * @data: input data to be added to the message digest
814 * @len: length of the input data
815 *
816 * Updates the message digest state of the operational state handle.
817 *
818 * Return: 0 if the message digest update was successful; < 0 if an error
819 *	   occurred
820 */
821int crypto_shash_update(struct shash_desc *desc, const u8 *data,
822			unsigned int len);
823
824/**
825 * crypto_shash_final() - calculate message digest
826 * @desc: operational state handle that is already filled with data
827 * @out: output buffer filled with the message digest
828 *
829 * Finalize the message digest operation and create the message digest
830 * based on all data added to the cipher handle. The message digest is placed
831 * into the output buffer. The caller must ensure that the output buffer is
832 * large enough by using crypto_shash_digestsize.
833 *
834 * Return: 0 if the message digest creation was successful; < 0 if an error
835 *	   occurred
836 */
837int crypto_shash_final(struct shash_desc *desc, u8 *out);
838
839/**
840 * crypto_shash_finup() - calculate message digest of buffer
841 * @desc: see crypto_shash_final()
842 * @data: see crypto_shash_update()
843 * @len: see crypto_shash_update()
844 * @out: see crypto_shash_final()
845 *
846 * This function is a "short-hand" for the function calls of
847 * crypto_shash_update and crypto_shash_final. The parameters have the same
848 * meaning as discussed for those separate functions.
849 *
850 * Return: 0 if the message digest creation was successful; < 0 if an error
851 *	   occurred
852 */
853int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
854		       unsigned int len, u8 *out);
855
856#endif	/* _CRYPTO_HASH_H */
857