1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
4#ifndef __ASSEMBLY__
5#ifdef CONFIG_MMU
6
7#include <linux/mm_types.h>
8#include <linux/bug.h>
9#include <linux/errno.h>
10
11#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
12	CONFIG_PGTABLE_LEVELS
13#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
14#endif
15
16/*
17 * On almost all architectures and configurations, 0 can be used as the
18 * upper ceiling to free_pgtables(): on many architectures it has the same
19 * effect as using TASK_SIZE.  However, there is one configuration which
20 * must impose a more careful limit, to avoid freeing kernel pgtables.
21 */
22#ifndef USER_PGTABLES_CEILING
23#define USER_PGTABLES_CEILING	0UL
24#endif
25
26#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
27extern int ptep_set_access_flags(struct vm_area_struct *vma,
28				 unsigned long address, pte_t *ptep,
29				 pte_t entry, int dirty);
30#endif
31
32#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
33extern int pmdp_set_access_flags(struct vm_area_struct *vma,
34				 unsigned long address, pmd_t *pmdp,
35				 pmd_t entry, int dirty);
36#endif
37
38#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
39static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
40					    unsigned long address,
41					    pte_t *ptep)
42{
43	pte_t pte = *ptep;
44	int r = 1;
45	if (!pte_young(pte))
46		r = 0;
47	else
48		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
49	return r;
50}
51#endif
52
53#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE
55static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56					    unsigned long address,
57					    pmd_t *pmdp)
58{
59	pmd_t pmd = *pmdp;
60	int r = 1;
61	if (!pmd_young(pmd))
62		r = 0;
63	else
64		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
65	return r;
66}
67#else /* CONFIG_TRANSPARENT_HUGEPAGE */
68static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
69					    unsigned long address,
70					    pmd_t *pmdp)
71{
72	BUG();
73	return 0;
74}
75#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
76#endif
77
78#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
79int ptep_clear_flush_young(struct vm_area_struct *vma,
80			   unsigned long address, pte_t *ptep);
81#endif
82
83#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
84int pmdp_clear_flush_young(struct vm_area_struct *vma,
85			   unsigned long address, pmd_t *pmdp);
86#endif
87
88#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
89static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
90				       unsigned long address,
91				       pte_t *ptep)
92{
93	pte_t pte = *ptep;
94	pte_clear(mm, address, ptep);
95	return pte;
96}
97#endif
98
99#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
100#ifdef CONFIG_TRANSPARENT_HUGEPAGE
101static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
102				       unsigned long address,
103				       pmd_t *pmdp)
104{
105	pmd_t pmd = *pmdp;
106	pmd_clear(pmdp);
107	return pmd;
108}
109#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
110#endif
111
112#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
113#ifdef CONFIG_TRANSPARENT_HUGEPAGE
114static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
115					    unsigned long address, pmd_t *pmdp,
116					    int full)
117{
118	return pmdp_get_and_clear(mm, address, pmdp);
119}
120#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
121#endif
122
123#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
124static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
125					    unsigned long address, pte_t *ptep,
126					    int full)
127{
128	pte_t pte;
129	pte = ptep_get_and_clear(mm, address, ptep);
130	return pte;
131}
132#endif
133
134/*
135 * Some architectures may be able to avoid expensive synchronization
136 * primitives when modifications are made to PTE's which are already
137 * not present, or in the process of an address space destruction.
138 */
139#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
140static inline void pte_clear_not_present_full(struct mm_struct *mm,
141					      unsigned long address,
142					      pte_t *ptep,
143					      int full)
144{
145	pte_clear(mm, address, ptep);
146}
147#endif
148
149#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
150extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
151			      unsigned long address,
152			      pte_t *ptep);
153#endif
154
155#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
156extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
157			      unsigned long address,
158			      pmd_t *pmdp);
159#endif
160
161#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
162struct mm_struct;
163static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
164{
165	pte_t old_pte = *ptep;
166	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
167}
168#endif
169
170#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
171#ifdef CONFIG_TRANSPARENT_HUGEPAGE
172static inline void pmdp_set_wrprotect(struct mm_struct *mm,
173				      unsigned long address, pmd_t *pmdp)
174{
175	pmd_t old_pmd = *pmdp;
176	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
177}
178#else /* CONFIG_TRANSPARENT_HUGEPAGE */
179static inline void pmdp_set_wrprotect(struct mm_struct *mm,
180				      unsigned long address, pmd_t *pmdp)
181{
182	BUG();
183}
184#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185#endif
186
187#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
188extern void pmdp_splitting_flush(struct vm_area_struct *vma,
189				 unsigned long address, pmd_t *pmdp);
190#endif
191
192#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
193extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
194				       pgtable_t pgtable);
195#endif
196
197#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
198extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
199#endif
200
201#ifndef __HAVE_ARCH_PMDP_INVALIDATE
202extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
203			    pmd_t *pmdp);
204#endif
205
206#ifndef __HAVE_ARCH_PTE_SAME
207static inline int pte_same(pte_t pte_a, pte_t pte_b)
208{
209	return pte_val(pte_a) == pte_val(pte_b);
210}
211#endif
212
213#ifndef __HAVE_ARCH_PTE_UNUSED
214/*
215 * Some architectures provide facilities to virtualization guests
216 * so that they can flag allocated pages as unused. This allows the
217 * host to transparently reclaim unused pages. This function returns
218 * whether the pte's page is unused.
219 */
220static inline int pte_unused(pte_t pte)
221{
222	return 0;
223}
224#endif
225
226#ifndef __HAVE_ARCH_PMD_SAME
227#ifdef CONFIG_TRANSPARENT_HUGEPAGE
228static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
229{
230	return pmd_val(pmd_a) == pmd_val(pmd_b);
231}
232#else /* CONFIG_TRANSPARENT_HUGEPAGE */
233static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
234{
235	BUG();
236	return 0;
237}
238#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
239#endif
240
241#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
242#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
243#endif
244
245#ifndef __HAVE_ARCH_MOVE_PTE
246#define move_pte(pte, prot, old_addr, new_addr)	(pte)
247#endif
248
249#ifndef pte_accessible
250# define pte_accessible(mm, pte)	((void)(pte), 1)
251#endif
252
253#ifndef flush_tlb_fix_spurious_fault
254#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
255#endif
256
257#ifndef pgprot_noncached
258#define pgprot_noncached(prot)	(prot)
259#endif
260
261#ifndef pgprot_writecombine
262#define pgprot_writecombine pgprot_noncached
263#endif
264
265#ifndef pgprot_device
266#define pgprot_device pgprot_noncached
267#endif
268
269#ifndef pgprot_modify
270#define pgprot_modify pgprot_modify
271static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
272{
273	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
274		newprot = pgprot_noncached(newprot);
275	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
276		newprot = pgprot_writecombine(newprot);
277	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
278		newprot = pgprot_device(newprot);
279	return newprot;
280}
281#endif
282
283/*
284 * When walking page tables, get the address of the next boundary,
285 * or the end address of the range if that comes earlier.  Although no
286 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
287 */
288
289#define pgd_addr_end(addr, end)						\
290({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
291	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
292})
293
294#ifndef pud_addr_end
295#define pud_addr_end(addr, end)						\
296({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
297	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
298})
299#endif
300
301#ifndef pmd_addr_end
302#define pmd_addr_end(addr, end)						\
303({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
304	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
305})
306#endif
307
308/*
309 * When walking page tables, we usually want to skip any p?d_none entries;
310 * and any p?d_bad entries - reporting the error before resetting to none.
311 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
312 */
313void pgd_clear_bad(pgd_t *);
314void pud_clear_bad(pud_t *);
315void pmd_clear_bad(pmd_t *);
316
317static inline int pgd_none_or_clear_bad(pgd_t *pgd)
318{
319	if (pgd_none(*pgd))
320		return 1;
321	if (unlikely(pgd_bad(*pgd))) {
322		pgd_clear_bad(pgd);
323		return 1;
324	}
325	return 0;
326}
327
328static inline int pud_none_or_clear_bad(pud_t *pud)
329{
330	if (pud_none(*pud))
331		return 1;
332	if (unlikely(pud_bad(*pud))) {
333		pud_clear_bad(pud);
334		return 1;
335	}
336	return 0;
337}
338
339static inline int pmd_none_or_clear_bad(pmd_t *pmd)
340{
341	if (pmd_none(*pmd))
342		return 1;
343	if (unlikely(pmd_bad(*pmd))) {
344		pmd_clear_bad(pmd);
345		return 1;
346	}
347	return 0;
348}
349
350static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
351					     unsigned long addr,
352					     pte_t *ptep)
353{
354	/*
355	 * Get the current pte state, but zero it out to make it
356	 * non-present, preventing the hardware from asynchronously
357	 * updating it.
358	 */
359	return ptep_get_and_clear(mm, addr, ptep);
360}
361
362static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
363					     unsigned long addr,
364					     pte_t *ptep, pte_t pte)
365{
366	/*
367	 * The pte is non-present, so there's no hardware state to
368	 * preserve.
369	 */
370	set_pte_at(mm, addr, ptep, pte);
371}
372
373#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
374/*
375 * Start a pte protection read-modify-write transaction, which
376 * protects against asynchronous hardware modifications to the pte.
377 * The intention is not to prevent the hardware from making pte
378 * updates, but to prevent any updates it may make from being lost.
379 *
380 * This does not protect against other software modifications of the
381 * pte; the appropriate pte lock must be held over the transation.
382 *
383 * Note that this interface is intended to be batchable, meaning that
384 * ptep_modify_prot_commit may not actually update the pte, but merely
385 * queue the update to be done at some later time.  The update must be
386 * actually committed before the pte lock is released, however.
387 */
388static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
389					   unsigned long addr,
390					   pte_t *ptep)
391{
392	return __ptep_modify_prot_start(mm, addr, ptep);
393}
394
395/*
396 * Commit an update to a pte, leaving any hardware-controlled bits in
397 * the PTE unmodified.
398 */
399static inline void ptep_modify_prot_commit(struct mm_struct *mm,
400					   unsigned long addr,
401					   pte_t *ptep, pte_t pte)
402{
403	__ptep_modify_prot_commit(mm, addr, ptep, pte);
404}
405#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
406#endif /* CONFIG_MMU */
407
408/*
409 * A facility to provide lazy MMU batching.  This allows PTE updates and
410 * page invalidations to be delayed until a call to leave lazy MMU mode
411 * is issued.  Some architectures may benefit from doing this, and it is
412 * beneficial for both shadow and direct mode hypervisors, which may batch
413 * the PTE updates which happen during this window.  Note that using this
414 * interface requires that read hazards be removed from the code.  A read
415 * hazard could result in the direct mode hypervisor case, since the actual
416 * write to the page tables may not yet have taken place, so reads though
417 * a raw PTE pointer after it has been modified are not guaranteed to be
418 * up to date.  This mode can only be entered and left under the protection of
419 * the page table locks for all page tables which may be modified.  In the UP
420 * case, this is required so that preemption is disabled, and in the SMP case,
421 * it must synchronize the delayed page table writes properly on other CPUs.
422 */
423#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
424#define arch_enter_lazy_mmu_mode()	do {} while (0)
425#define arch_leave_lazy_mmu_mode()	do {} while (0)
426#define arch_flush_lazy_mmu_mode()	do {} while (0)
427#endif
428
429/*
430 * A facility to provide batching of the reload of page tables and
431 * other process state with the actual context switch code for
432 * paravirtualized guests.  By convention, only one of the batched
433 * update (lazy) modes (CPU, MMU) should be active at any given time,
434 * entry should never be nested, and entry and exits should always be
435 * paired.  This is for sanity of maintaining and reasoning about the
436 * kernel code.  In this case, the exit (end of the context switch) is
437 * in architecture-specific code, and so doesn't need a generic
438 * definition.
439 */
440#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
441#define arch_start_context_switch(prev)	do {} while (0)
442#endif
443
444#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
445static inline int pte_soft_dirty(pte_t pte)
446{
447	return 0;
448}
449
450static inline int pmd_soft_dirty(pmd_t pmd)
451{
452	return 0;
453}
454
455static inline pte_t pte_mksoft_dirty(pte_t pte)
456{
457	return pte;
458}
459
460static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
461{
462	return pmd;
463}
464
465static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
466{
467	return pte;
468}
469
470static inline int pte_swp_soft_dirty(pte_t pte)
471{
472	return 0;
473}
474
475static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
476{
477	return pte;
478}
479#endif
480
481#ifndef __HAVE_PFNMAP_TRACKING
482/*
483 * Interfaces that can be used by architecture code to keep track of
484 * memory type of pfn mappings specified by the remap_pfn_range,
485 * vm_insert_pfn.
486 */
487
488/*
489 * track_pfn_remap is called when a _new_ pfn mapping is being established
490 * by remap_pfn_range() for physical range indicated by pfn and size.
491 */
492static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
493				  unsigned long pfn, unsigned long addr,
494				  unsigned long size)
495{
496	return 0;
497}
498
499/*
500 * track_pfn_insert is called when a _new_ single pfn is established
501 * by vm_insert_pfn().
502 */
503static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
504				   unsigned long pfn)
505{
506	return 0;
507}
508
509/*
510 * track_pfn_copy is called when vma that is covering the pfnmap gets
511 * copied through copy_page_range().
512 */
513static inline int track_pfn_copy(struct vm_area_struct *vma)
514{
515	return 0;
516}
517
518/*
519 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
520 * untrack can be called for a specific region indicated by pfn and size or
521 * can be for the entire vma (in which case pfn, size are zero).
522 */
523static inline void untrack_pfn(struct vm_area_struct *vma,
524			       unsigned long pfn, unsigned long size)
525{
526}
527#else
528extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
529			   unsigned long pfn, unsigned long addr,
530			   unsigned long size);
531extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
532			    unsigned long pfn);
533extern int track_pfn_copy(struct vm_area_struct *vma);
534extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
535			unsigned long size);
536#endif
537
538#ifdef __HAVE_COLOR_ZERO_PAGE
539static inline int is_zero_pfn(unsigned long pfn)
540{
541	extern unsigned long zero_pfn;
542	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
543	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
544}
545
546#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
547
548#else
549static inline int is_zero_pfn(unsigned long pfn)
550{
551	extern unsigned long zero_pfn;
552	return pfn == zero_pfn;
553}
554
555static inline unsigned long my_zero_pfn(unsigned long addr)
556{
557	extern unsigned long zero_pfn;
558	return zero_pfn;
559}
560#endif
561
562#ifdef CONFIG_MMU
563
564#ifndef CONFIG_TRANSPARENT_HUGEPAGE
565static inline int pmd_trans_huge(pmd_t pmd)
566{
567	return 0;
568}
569static inline int pmd_trans_splitting(pmd_t pmd)
570{
571	return 0;
572}
573#ifndef __HAVE_ARCH_PMD_WRITE
574static inline int pmd_write(pmd_t pmd)
575{
576	BUG();
577	return 0;
578}
579#endif /* __HAVE_ARCH_PMD_WRITE */
580#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
581
582#ifndef pmd_read_atomic
583static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
584{
585	/*
586	 * Depend on compiler for an atomic pmd read. NOTE: this is
587	 * only going to work, if the pmdval_t isn't larger than
588	 * an unsigned long.
589	 */
590	return *pmdp;
591}
592#endif
593
594#ifndef pmd_move_must_withdraw
595static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
596					 spinlock_t *old_pmd_ptl)
597{
598	/*
599	 * With split pmd lock we also need to move preallocated
600	 * PTE page table if new_pmd is on different PMD page table.
601	 */
602	return new_pmd_ptl != old_pmd_ptl;
603}
604#endif
605
606/*
607 * This function is meant to be used by sites walking pagetables with
608 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
609 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
610 * into a null pmd and the transhuge page fault can convert a null pmd
611 * into an hugepmd or into a regular pmd (if the hugepage allocation
612 * fails). While holding the mmap_sem in read mode the pmd becomes
613 * stable and stops changing under us only if it's not null and not a
614 * transhuge pmd. When those races occurs and this function makes a
615 * difference vs the standard pmd_none_or_clear_bad, the result is
616 * undefined so behaving like if the pmd was none is safe (because it
617 * can return none anyway). The compiler level barrier() is critically
618 * important to compute the two checks atomically on the same pmdval.
619 *
620 * For 32bit kernels with a 64bit large pmd_t this automatically takes
621 * care of reading the pmd atomically to avoid SMP race conditions
622 * against pmd_populate() when the mmap_sem is hold for reading by the
623 * caller (a special atomic read not done by "gcc" as in the generic
624 * version above, is also needed when THP is disabled because the page
625 * fault can populate the pmd from under us).
626 */
627static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
628{
629	pmd_t pmdval = pmd_read_atomic(pmd);
630	/*
631	 * The barrier will stabilize the pmdval in a register or on
632	 * the stack so that it will stop changing under the code.
633	 *
634	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
635	 * pmd_read_atomic is allowed to return a not atomic pmdval
636	 * (for example pointing to an hugepage that has never been
637	 * mapped in the pmd). The below checks will only care about
638	 * the low part of the pmd with 32bit PAE x86 anyway, with the
639	 * exception of pmd_none(). So the important thing is that if
640	 * the low part of the pmd is found null, the high part will
641	 * be also null or the pmd_none() check below would be
642	 * confused.
643	 */
644#ifdef CONFIG_TRANSPARENT_HUGEPAGE
645	barrier();
646#endif
647	if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
648		return 1;
649	if (unlikely(pmd_bad(pmdval))) {
650		pmd_clear_bad(pmd);
651		return 1;
652	}
653	return 0;
654}
655
656/*
657 * This is a noop if Transparent Hugepage Support is not built into
658 * the kernel. Otherwise it is equivalent to
659 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
660 * places that already verified the pmd is not none and they want to
661 * walk ptes while holding the mmap sem in read mode (write mode don't
662 * need this). If THP is not enabled, the pmd can't go away under the
663 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
664 * run a pmd_trans_unstable before walking the ptes after
665 * split_huge_page_pmd returns (because it may have run when the pmd
666 * become null, but then a page fault can map in a THP and not a
667 * regular page).
668 */
669static inline int pmd_trans_unstable(pmd_t *pmd)
670{
671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
672	return pmd_none_or_trans_huge_or_clear_bad(pmd);
673#else
674	return 0;
675#endif
676}
677
678#ifndef CONFIG_NUMA_BALANCING
679/*
680 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
681 * the only case the kernel cares is for NUMA balancing and is only ever set
682 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
683 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
684 * is the responsibility of the caller to distinguish between PROT_NONE
685 * protections and NUMA hinting fault protections.
686 */
687static inline int pte_protnone(pte_t pte)
688{
689	return 0;
690}
691
692static inline int pmd_protnone(pmd_t pmd)
693{
694	return 0;
695}
696#endif /* CONFIG_NUMA_BALANCING */
697
698#endif /* CONFIG_MMU */
699
700#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
701int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
702int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
703int pud_clear_huge(pud_t *pud);
704int pmd_clear_huge(pmd_t *pmd);
705#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
706static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
707{
708	return 0;
709}
710static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
711{
712	return 0;
713}
714static inline int pud_clear_huge(pud_t *pud)
715{
716	return 0;
717}
718static inline int pmd_clear_huge(pmd_t *pmd)
719{
720	return 0;
721}
722#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
723
724#endif /* !__ASSEMBLY__ */
725
726#ifndef io_remap_pfn_range
727#define io_remap_pfn_range remap_pfn_range
728#endif
729
730#endif /* _ASM_GENERIC_PGTABLE_H */
731