1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Author: Adrian Hunter
20 */
21
22#include "ubifs.h"
23
24/*
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
33 *
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
39 *
40 * The number of orphans that can fit in a LEB is:
41 *
42 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43 *
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45 *
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted.  Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space.  There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
53 */
54
55static int dbg_check_orphans(struct ubifs_info *c);
56
57/**
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
61 *
62 * Add an orphan. This function is called when an inodes link count drops to
63 * zero.
64 */
65int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
66{
67	struct ubifs_orphan *orphan, *o;
68	struct rb_node **p, *parent = NULL;
69
70	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
71	if (!orphan)
72		return -ENOMEM;
73	orphan->inum = inum;
74	orphan->new = 1;
75
76	spin_lock(&c->orphan_lock);
77	if (c->tot_orphans >= c->max_orphans) {
78		spin_unlock(&c->orphan_lock);
79		kfree(orphan);
80		return -ENFILE;
81	}
82	p = &c->orph_tree.rb_node;
83	while (*p) {
84		parent = *p;
85		o = rb_entry(parent, struct ubifs_orphan, rb);
86		if (inum < o->inum)
87			p = &(*p)->rb_left;
88		else if (inum > o->inum)
89			p = &(*p)->rb_right;
90		else {
91			ubifs_err(c, "orphaned twice");
92			spin_unlock(&c->orphan_lock);
93			kfree(orphan);
94			return 0;
95		}
96	}
97	c->tot_orphans += 1;
98	c->new_orphans += 1;
99	rb_link_node(&orphan->rb, parent, p);
100	rb_insert_color(&orphan->rb, &c->orph_tree);
101	list_add_tail(&orphan->list, &c->orph_list);
102	list_add_tail(&orphan->new_list, &c->orph_new);
103	spin_unlock(&c->orphan_lock);
104	dbg_gen("ino %lu", (unsigned long)inum);
105	return 0;
106}
107
108/**
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
112 *
113 * Delete an orphan. This function is called when an inode is deleted.
114 */
115void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
116{
117	struct ubifs_orphan *o;
118	struct rb_node *p;
119
120	spin_lock(&c->orphan_lock);
121	p = c->orph_tree.rb_node;
122	while (p) {
123		o = rb_entry(p, struct ubifs_orphan, rb);
124		if (inum < o->inum)
125			p = p->rb_left;
126		else if (inum > o->inum)
127			p = p->rb_right;
128		else {
129			if (o->del) {
130				spin_unlock(&c->orphan_lock);
131				dbg_gen("deleted twice ino %lu",
132					(unsigned long)inum);
133				return;
134			}
135			if (o->cmt) {
136				o->del = 1;
137				o->dnext = c->orph_dnext;
138				c->orph_dnext = o;
139				spin_unlock(&c->orphan_lock);
140				dbg_gen("delete later ino %lu",
141					(unsigned long)inum);
142				return;
143			}
144			rb_erase(p, &c->orph_tree);
145			list_del(&o->list);
146			c->tot_orphans -= 1;
147			if (o->new) {
148				list_del(&o->new_list);
149				c->new_orphans -= 1;
150			}
151			spin_unlock(&c->orphan_lock);
152			kfree(o);
153			dbg_gen("inum %lu", (unsigned long)inum);
154			return;
155		}
156	}
157	spin_unlock(&c->orphan_lock);
158	ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
159	dump_stack();
160}
161
162/**
163 * ubifs_orphan_start_commit - start commit of orphans.
164 * @c: UBIFS file-system description object
165 *
166 * Start commit of orphans.
167 */
168int ubifs_orphan_start_commit(struct ubifs_info *c)
169{
170	struct ubifs_orphan *orphan, **last;
171
172	spin_lock(&c->orphan_lock);
173	last = &c->orph_cnext;
174	list_for_each_entry(orphan, &c->orph_new, new_list) {
175		ubifs_assert(orphan->new);
176		ubifs_assert(!orphan->cmt);
177		orphan->new = 0;
178		orphan->cmt = 1;
179		*last = orphan;
180		last = &orphan->cnext;
181	}
182	*last = NULL;
183	c->cmt_orphans = c->new_orphans;
184	c->new_orphans = 0;
185	dbg_cmt("%d orphans to commit", c->cmt_orphans);
186	INIT_LIST_HEAD(&c->orph_new);
187	if (c->tot_orphans == 0)
188		c->no_orphs = 1;
189	else
190		c->no_orphs = 0;
191	spin_unlock(&c->orphan_lock);
192	return 0;
193}
194
195/**
196 * avail_orphs - calculate available space.
197 * @c: UBIFS file-system description object
198 *
199 * This function returns the number of orphans that can be written in the
200 * available space.
201 */
202static int avail_orphs(struct ubifs_info *c)
203{
204	int avail_lebs, avail, gap;
205
206	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
207	avail = avail_lebs *
208	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
209	gap = c->leb_size - c->ohead_offs;
210	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
211		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
212	return avail;
213}
214
215/**
216 * tot_avail_orphs - calculate total space.
217 * @c: UBIFS file-system description object
218 *
219 * This function returns the number of orphans that can be written in half
220 * the total space. That leaves half the space for adding new orphans.
221 */
222static int tot_avail_orphs(struct ubifs_info *c)
223{
224	int avail_lebs, avail;
225
226	avail_lebs = c->orph_lebs;
227	avail = avail_lebs *
228	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
229	return avail / 2;
230}
231
232/**
233 * do_write_orph_node - write a node to the orphan head.
234 * @c: UBIFS file-system description object
235 * @len: length of node
236 * @atomic: write atomically
237 *
238 * This function writes a node to the orphan head from the orphan buffer. If
239 * %atomic is not zero, then the write is done atomically. On success, %0 is
240 * returned, otherwise a negative error code is returned.
241 */
242static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
243{
244	int err = 0;
245
246	if (atomic) {
247		ubifs_assert(c->ohead_offs == 0);
248		ubifs_prepare_node(c, c->orph_buf, len, 1);
249		len = ALIGN(len, c->min_io_size);
250		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
251	} else {
252		if (c->ohead_offs == 0) {
253			/* Ensure LEB has been unmapped */
254			err = ubifs_leb_unmap(c, c->ohead_lnum);
255			if (err)
256				return err;
257		}
258		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
259				       c->ohead_offs);
260	}
261	return err;
262}
263
264/**
265 * write_orph_node - write an orphan node.
266 * @c: UBIFS file-system description object
267 * @atomic: write atomically
268 *
269 * This function builds an orphan node from the cnext list and writes it to the
270 * orphan head. On success, %0 is returned, otherwise a negative error code
271 * is returned.
272 */
273static int write_orph_node(struct ubifs_info *c, int atomic)
274{
275	struct ubifs_orphan *orphan, *cnext;
276	struct ubifs_orph_node *orph;
277	int gap, err, len, cnt, i;
278
279	ubifs_assert(c->cmt_orphans > 0);
280	gap = c->leb_size - c->ohead_offs;
281	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
282		c->ohead_lnum += 1;
283		c->ohead_offs = 0;
284		gap = c->leb_size;
285		if (c->ohead_lnum > c->orph_last) {
286			/*
287			 * We limit the number of orphans so that this should
288			 * never happen.
289			 */
290			ubifs_err(c, "out of space in orphan area");
291			return -EINVAL;
292		}
293	}
294	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
295	if (cnt > c->cmt_orphans)
296		cnt = c->cmt_orphans;
297	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
298	ubifs_assert(c->orph_buf);
299	orph = c->orph_buf;
300	orph->ch.node_type = UBIFS_ORPH_NODE;
301	spin_lock(&c->orphan_lock);
302	cnext = c->orph_cnext;
303	for (i = 0; i < cnt; i++) {
304		orphan = cnext;
305		ubifs_assert(orphan->cmt);
306		orph->inos[i] = cpu_to_le64(orphan->inum);
307		orphan->cmt = 0;
308		cnext = orphan->cnext;
309		orphan->cnext = NULL;
310	}
311	c->orph_cnext = cnext;
312	c->cmt_orphans -= cnt;
313	spin_unlock(&c->orphan_lock);
314	if (c->cmt_orphans)
315		orph->cmt_no = cpu_to_le64(c->cmt_no);
316	else
317		/* Mark the last node of the commit */
318		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
319	ubifs_assert(c->ohead_offs + len <= c->leb_size);
320	ubifs_assert(c->ohead_lnum >= c->orph_first);
321	ubifs_assert(c->ohead_lnum <= c->orph_last);
322	err = do_write_orph_node(c, len, atomic);
323	c->ohead_offs += ALIGN(len, c->min_io_size);
324	c->ohead_offs = ALIGN(c->ohead_offs, 8);
325	return err;
326}
327
328/**
329 * write_orph_nodes - write orphan nodes until there are no more to commit.
330 * @c: UBIFS file-system description object
331 * @atomic: write atomically
332 *
333 * This function writes orphan nodes for all the orphans to commit. On success,
334 * %0 is returned, otherwise a negative error code is returned.
335 */
336static int write_orph_nodes(struct ubifs_info *c, int atomic)
337{
338	int err;
339
340	while (c->cmt_orphans > 0) {
341		err = write_orph_node(c, atomic);
342		if (err)
343			return err;
344	}
345	if (atomic) {
346		int lnum;
347
348		/* Unmap any unused LEBs after consolidation */
349		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
350			err = ubifs_leb_unmap(c, lnum);
351			if (err)
352				return err;
353		}
354	}
355	return 0;
356}
357
358/**
359 * consolidate - consolidate the orphan area.
360 * @c: UBIFS file-system description object
361 *
362 * This function enables consolidation by putting all the orphans into the list
363 * to commit. The list is in the order that the orphans were added, and the
364 * LEBs are written atomically in order, so at no time can orphans be lost by
365 * an unclean unmount.
366 *
367 * This function returns %0 on success and a negative error code on failure.
368 */
369static int consolidate(struct ubifs_info *c)
370{
371	int tot_avail = tot_avail_orphs(c), err = 0;
372
373	spin_lock(&c->orphan_lock);
374	dbg_cmt("there is space for %d orphans and there are %d",
375		tot_avail, c->tot_orphans);
376	if (c->tot_orphans - c->new_orphans <= tot_avail) {
377		struct ubifs_orphan *orphan, **last;
378		int cnt = 0;
379
380		/* Change the cnext list to include all non-new orphans */
381		last = &c->orph_cnext;
382		list_for_each_entry(orphan, &c->orph_list, list) {
383			if (orphan->new)
384				continue;
385			orphan->cmt = 1;
386			*last = orphan;
387			last = &orphan->cnext;
388			cnt += 1;
389		}
390		*last = NULL;
391		ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
392		c->cmt_orphans = cnt;
393		c->ohead_lnum = c->orph_first;
394		c->ohead_offs = 0;
395	} else {
396		/*
397		 * We limit the number of orphans so that this should
398		 * never happen.
399		 */
400		ubifs_err(c, "out of space in orphan area");
401		err = -EINVAL;
402	}
403	spin_unlock(&c->orphan_lock);
404	return err;
405}
406
407/**
408 * commit_orphans - commit orphans.
409 * @c: UBIFS file-system description object
410 *
411 * This function commits orphans to flash. On success, %0 is returned,
412 * otherwise a negative error code is returned.
413 */
414static int commit_orphans(struct ubifs_info *c)
415{
416	int avail, atomic = 0, err;
417
418	ubifs_assert(c->cmt_orphans > 0);
419	avail = avail_orphs(c);
420	if (avail < c->cmt_orphans) {
421		/* Not enough space to write new orphans, so consolidate */
422		err = consolidate(c);
423		if (err)
424			return err;
425		atomic = 1;
426	}
427	err = write_orph_nodes(c, atomic);
428	return err;
429}
430
431/**
432 * erase_deleted - erase the orphans marked for deletion.
433 * @c: UBIFS file-system description object
434 *
435 * During commit, the orphans being committed cannot be deleted, so they are
436 * marked for deletion and deleted by this function. Also, the recovery
437 * adds killed orphans to the deletion list, and therefore they are deleted
438 * here too.
439 */
440static void erase_deleted(struct ubifs_info *c)
441{
442	struct ubifs_orphan *orphan, *dnext;
443
444	spin_lock(&c->orphan_lock);
445	dnext = c->orph_dnext;
446	while (dnext) {
447		orphan = dnext;
448		dnext = orphan->dnext;
449		ubifs_assert(!orphan->new);
450		ubifs_assert(orphan->del);
451		rb_erase(&orphan->rb, &c->orph_tree);
452		list_del(&orphan->list);
453		c->tot_orphans -= 1;
454		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
455		kfree(orphan);
456	}
457	c->orph_dnext = NULL;
458	spin_unlock(&c->orphan_lock);
459}
460
461/**
462 * ubifs_orphan_end_commit - end commit of orphans.
463 * @c: UBIFS file-system description object
464 *
465 * End commit of orphans.
466 */
467int ubifs_orphan_end_commit(struct ubifs_info *c)
468{
469	int err;
470
471	if (c->cmt_orphans != 0) {
472		err = commit_orphans(c);
473		if (err)
474			return err;
475	}
476	erase_deleted(c);
477	err = dbg_check_orphans(c);
478	return err;
479}
480
481/**
482 * ubifs_clear_orphans - erase all LEBs used for orphans.
483 * @c: UBIFS file-system description object
484 *
485 * If recovery is not required, then the orphans from the previous session
486 * are not needed. This function locates the LEBs used to record
487 * orphans, and un-maps them.
488 */
489int ubifs_clear_orphans(struct ubifs_info *c)
490{
491	int lnum, err;
492
493	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
494		err = ubifs_leb_unmap(c, lnum);
495		if (err)
496			return err;
497	}
498	c->ohead_lnum = c->orph_first;
499	c->ohead_offs = 0;
500	return 0;
501}
502
503/**
504 * insert_dead_orphan - insert an orphan.
505 * @c: UBIFS file-system description object
506 * @inum: orphan inode number
507 *
508 * This function is a helper to the 'do_kill_orphans()' function. The orphan
509 * must be kept until the next commit, so it is added to the rb-tree and the
510 * deletion list.
511 */
512static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
513{
514	struct ubifs_orphan *orphan, *o;
515	struct rb_node **p, *parent = NULL;
516
517	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
518	if (!orphan)
519		return -ENOMEM;
520	orphan->inum = inum;
521
522	p = &c->orph_tree.rb_node;
523	while (*p) {
524		parent = *p;
525		o = rb_entry(parent, struct ubifs_orphan, rb);
526		if (inum < o->inum)
527			p = &(*p)->rb_left;
528		else if (inum > o->inum)
529			p = &(*p)->rb_right;
530		else {
531			/* Already added - no problem */
532			kfree(orphan);
533			return 0;
534		}
535	}
536	c->tot_orphans += 1;
537	rb_link_node(&orphan->rb, parent, p);
538	rb_insert_color(&orphan->rb, &c->orph_tree);
539	list_add_tail(&orphan->list, &c->orph_list);
540	orphan->del = 1;
541	orphan->dnext = c->orph_dnext;
542	c->orph_dnext = orphan;
543	dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
544		c->new_orphans, c->tot_orphans);
545	return 0;
546}
547
548/**
549 * do_kill_orphans - remove orphan inodes from the index.
550 * @c: UBIFS file-system description object
551 * @sleb: scanned LEB
552 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
553 * @outofdate: whether the LEB is out of date is returned here
554 * @last_flagged: whether the end orphan node is encountered
555 *
556 * This function is a helper to the 'kill_orphans()' function. It goes through
557 * every orphan node in a LEB and for every inode number recorded, removes
558 * all keys for that inode from the TNC.
559 */
560static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
561			   unsigned long long *last_cmt_no, int *outofdate,
562			   int *last_flagged)
563{
564	struct ubifs_scan_node *snod;
565	struct ubifs_orph_node *orph;
566	unsigned long long cmt_no;
567	ino_t inum;
568	int i, n, err, first = 1;
569
570	list_for_each_entry(snod, &sleb->nodes, list) {
571		if (snod->type != UBIFS_ORPH_NODE) {
572			ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
573				  snod->type, sleb->lnum, snod->offs);
574			ubifs_dump_node(c, snod->node);
575			return -EINVAL;
576		}
577
578		orph = snod->node;
579
580		/* Check commit number */
581		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
582		/*
583		 * The commit number on the master node may be less, because
584		 * of a failed commit. If there are several failed commits in a
585		 * row, the commit number written on orphan nodes will continue
586		 * to increase (because the commit number is adjusted here) even
587		 * though the commit number on the master node stays the same
588		 * because the master node has not been re-written.
589		 */
590		if (cmt_no > c->cmt_no)
591			c->cmt_no = cmt_no;
592		if (cmt_no < *last_cmt_no && *last_flagged) {
593			/*
594			 * The last orphan node had a higher commit number and
595			 * was flagged as the last written for that commit
596			 * number. That makes this orphan node, out of date.
597			 */
598			if (!first) {
599				ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
600					  cmt_no, sleb->lnum, snod->offs);
601				ubifs_dump_node(c, snod->node);
602				return -EINVAL;
603			}
604			dbg_rcvry("out of date LEB %d", sleb->lnum);
605			*outofdate = 1;
606			return 0;
607		}
608
609		if (first)
610			first = 0;
611
612		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
613		for (i = 0; i < n; i++) {
614			inum = le64_to_cpu(orph->inos[i]);
615			dbg_rcvry("deleting orphaned inode %lu",
616				  (unsigned long)inum);
617			err = ubifs_tnc_remove_ino(c, inum);
618			if (err)
619				return err;
620			err = insert_dead_orphan(c, inum);
621			if (err)
622				return err;
623		}
624
625		*last_cmt_no = cmt_no;
626		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
627			dbg_rcvry("last orph node for commit %llu at %d:%d",
628				  cmt_no, sleb->lnum, snod->offs);
629			*last_flagged = 1;
630		} else
631			*last_flagged = 0;
632	}
633
634	return 0;
635}
636
637/**
638 * kill_orphans - remove all orphan inodes from the index.
639 * @c: UBIFS file-system description object
640 *
641 * If recovery is required, then orphan inodes recorded during the previous
642 * session (which ended with an unclean unmount) must be deleted from the index.
643 * This is done by updating the TNC, but since the index is not updated until
644 * the next commit, the LEBs where the orphan information is recorded are not
645 * erased until the next commit.
646 */
647static int kill_orphans(struct ubifs_info *c)
648{
649	unsigned long long last_cmt_no = 0;
650	int lnum, err = 0, outofdate = 0, last_flagged = 0;
651
652	c->ohead_lnum = c->orph_first;
653	c->ohead_offs = 0;
654	/* Check no-orphans flag and skip this if no orphans */
655	if (c->no_orphs) {
656		dbg_rcvry("no orphans");
657		return 0;
658	}
659	/*
660	 * Orph nodes always start at c->orph_first and are written to each
661	 * successive LEB in turn. Generally unused LEBs will have been unmapped
662	 * but may contain out of date orphan nodes if the unmap didn't go
663	 * through. In addition, the last orphan node written for each commit is
664	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
665	 * there are orphan nodes from the next commit (i.e. the commit did not
666	 * complete successfully). In that case, no orphans will have been lost
667	 * due to the way that orphans are written, and any orphans added will
668	 * be valid orphans anyway and so can be deleted.
669	 */
670	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
671		struct ubifs_scan_leb *sleb;
672
673		dbg_rcvry("LEB %d", lnum);
674		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
675		if (IS_ERR(sleb)) {
676			if (PTR_ERR(sleb) == -EUCLEAN)
677				sleb = ubifs_recover_leb(c, lnum, 0,
678							 c->sbuf, -1);
679			if (IS_ERR(sleb)) {
680				err = PTR_ERR(sleb);
681				break;
682			}
683		}
684		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
685				      &last_flagged);
686		if (err || outofdate) {
687			ubifs_scan_destroy(sleb);
688			break;
689		}
690		if (sleb->endpt) {
691			c->ohead_lnum = lnum;
692			c->ohead_offs = sleb->endpt;
693		}
694		ubifs_scan_destroy(sleb);
695	}
696	return err;
697}
698
699/**
700 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
701 * @c: UBIFS file-system description object
702 * @unclean: indicates recovery from unclean unmount
703 * @read_only: indicates read only mount
704 *
705 * This function is called when mounting to erase orphans from the previous
706 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
707 * orphans are deleted.
708 */
709int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
710{
711	int err = 0;
712
713	c->max_orphans = tot_avail_orphs(c);
714
715	if (!read_only) {
716		c->orph_buf = vmalloc(c->leb_size);
717		if (!c->orph_buf)
718			return -ENOMEM;
719	}
720
721	if (unclean)
722		err = kill_orphans(c);
723	else if (!read_only)
724		err = ubifs_clear_orphans(c);
725
726	return err;
727}
728
729/*
730 * Everything below is related to debugging.
731 */
732
733struct check_orphan {
734	struct rb_node rb;
735	ino_t inum;
736};
737
738struct check_info {
739	unsigned long last_ino;
740	unsigned long tot_inos;
741	unsigned long missing;
742	unsigned long long leaf_cnt;
743	struct ubifs_ino_node *node;
744	struct rb_root root;
745};
746
747static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
748{
749	struct ubifs_orphan *o;
750	struct rb_node *p;
751
752	spin_lock(&c->orphan_lock);
753	p = c->orph_tree.rb_node;
754	while (p) {
755		o = rb_entry(p, struct ubifs_orphan, rb);
756		if (inum < o->inum)
757			p = p->rb_left;
758		else if (inum > o->inum)
759			p = p->rb_right;
760		else {
761			spin_unlock(&c->orphan_lock);
762			return 1;
763		}
764	}
765	spin_unlock(&c->orphan_lock);
766	return 0;
767}
768
769static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
770{
771	struct check_orphan *orphan, *o;
772	struct rb_node **p, *parent = NULL;
773
774	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
775	if (!orphan)
776		return -ENOMEM;
777	orphan->inum = inum;
778
779	p = &root->rb_node;
780	while (*p) {
781		parent = *p;
782		o = rb_entry(parent, struct check_orphan, rb);
783		if (inum < o->inum)
784			p = &(*p)->rb_left;
785		else if (inum > o->inum)
786			p = &(*p)->rb_right;
787		else {
788			kfree(orphan);
789			return 0;
790		}
791	}
792	rb_link_node(&orphan->rb, parent, p);
793	rb_insert_color(&orphan->rb, root);
794	return 0;
795}
796
797static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
798{
799	struct check_orphan *o;
800	struct rb_node *p;
801
802	p = root->rb_node;
803	while (p) {
804		o = rb_entry(p, struct check_orphan, rb);
805		if (inum < o->inum)
806			p = p->rb_left;
807		else if (inum > o->inum)
808			p = p->rb_right;
809		else
810			return 1;
811	}
812	return 0;
813}
814
815static void dbg_free_check_tree(struct rb_root *root)
816{
817	struct check_orphan *o, *n;
818
819	rbtree_postorder_for_each_entry_safe(o, n, root, rb)
820		kfree(o);
821}
822
823static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
824			    void *priv)
825{
826	struct check_info *ci = priv;
827	ino_t inum;
828	int err;
829
830	inum = key_inum(c, &zbr->key);
831	if (inum != ci->last_ino) {
832		/* Lowest node type is the inode node, so it comes first */
833		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
834			ubifs_err(c, "found orphan node ino %lu, type %d",
835				  (unsigned long)inum, key_type(c, &zbr->key));
836		ci->last_ino = inum;
837		ci->tot_inos += 1;
838		err = ubifs_tnc_read_node(c, zbr, ci->node);
839		if (err) {
840			ubifs_err(c, "node read failed, error %d", err);
841			return err;
842		}
843		if (ci->node->nlink == 0)
844			/* Must be recorded as an orphan */
845			if (!dbg_find_check_orphan(&ci->root, inum) &&
846			    !dbg_find_orphan(c, inum)) {
847				ubifs_err(c, "missing orphan, ino %lu",
848					  (unsigned long)inum);
849				ci->missing += 1;
850			}
851	}
852	ci->leaf_cnt += 1;
853	return 0;
854}
855
856static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
857{
858	struct ubifs_scan_node *snod;
859	struct ubifs_orph_node *orph;
860	ino_t inum;
861	int i, n, err;
862
863	list_for_each_entry(snod, &sleb->nodes, list) {
864		cond_resched();
865		if (snod->type != UBIFS_ORPH_NODE)
866			continue;
867		orph = snod->node;
868		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
869		for (i = 0; i < n; i++) {
870			inum = le64_to_cpu(orph->inos[i]);
871			err = dbg_ins_check_orphan(&ci->root, inum);
872			if (err)
873				return err;
874		}
875	}
876	return 0;
877}
878
879static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
880{
881	int lnum, err = 0;
882	void *buf;
883
884	/* Check no-orphans flag and skip this if no orphans */
885	if (c->no_orphs)
886		return 0;
887
888	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
889	if (!buf) {
890		ubifs_err(c, "cannot allocate memory to check orphans");
891		return 0;
892	}
893
894	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
895		struct ubifs_scan_leb *sleb;
896
897		sleb = ubifs_scan(c, lnum, 0, buf, 0);
898		if (IS_ERR(sleb)) {
899			err = PTR_ERR(sleb);
900			break;
901		}
902
903		err = dbg_read_orphans(ci, sleb);
904		ubifs_scan_destroy(sleb);
905		if (err)
906			break;
907	}
908
909	vfree(buf);
910	return err;
911}
912
913static int dbg_check_orphans(struct ubifs_info *c)
914{
915	struct check_info ci;
916	int err;
917
918	if (!dbg_is_chk_orph(c))
919		return 0;
920
921	ci.last_ino = 0;
922	ci.tot_inos = 0;
923	ci.missing  = 0;
924	ci.leaf_cnt = 0;
925	ci.root = RB_ROOT;
926	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
927	if (!ci.node) {
928		ubifs_err(c, "out of memory");
929		return -ENOMEM;
930	}
931
932	err = dbg_scan_orphans(c, &ci);
933	if (err)
934		goto out;
935
936	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
937	if (err) {
938		ubifs_err(c, "cannot scan TNC, error %d", err);
939		goto out;
940	}
941
942	if (ci.missing) {
943		ubifs_err(c, "%lu missing orphan(s)", ci.missing);
944		err = -EINVAL;
945		goto out;
946	}
947
948	dbg_cmt("last inode number is %lu", ci.last_ino);
949	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
950	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
951
952out:
953	dbg_free_check_tree(&ci.root);
954	kfree(ci.node);
955	return err;
956}
957