1/*
2 *  linux/fs/nfs/dir.c
3 *
4 *  Copyright (C) 1992  Rick Sladkey
5 *
6 *  nfs directory handling functions
7 *
8 * 10 Apr 1996	Added silly rename for unlink	--okir
9 * 28 Sep 1996	Improved directory cache --okir
10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11 *              Re-implemented silly rename for unlink, newly implemented
12 *              silly rename for nfs_rename() following the suggestions
13 *              of Olaf Kirch (okir) found in this file.
14 *              Following Linus comments on my original hack, this version
15 *              depends only on the dcache stuff and doesn't touch the inode
16 *              layer (iput() and friends).
17 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58	.llseek		= nfs_llseek_dir,
59	.read		= generic_read_dir,
60	.iterate	= nfs_readdir,
61	.open		= nfs_opendir,
62	.release	= nfs_closedir,
63	.fsync		= nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67	.freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72	struct nfs_inode *nfsi = NFS_I(dir);
73	struct nfs_open_dir_context *ctx;
74	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75	if (ctx != NULL) {
76		ctx->duped = 0;
77		ctx->attr_gencount = nfsi->attr_gencount;
78		ctx->dir_cookie = 0;
79		ctx->dup_cookie = 0;
80		ctx->cred = get_rpccred(cred);
81		spin_lock(&dir->i_lock);
82		list_add(&ctx->list, &nfsi->open_files);
83		spin_unlock(&dir->i_lock);
84		return ctx;
85	}
86	return  ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91	spin_lock(&dir->i_lock);
92	list_del(&ctx->list);
93	spin_unlock(&dir->i_lock);
94	put_rpccred(ctx->cred);
95	kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104	int res = 0;
105	struct nfs_open_dir_context *ctx;
106	struct rpc_cred *cred;
107
108	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112	cred = rpc_lookup_cred();
113	if (IS_ERR(cred))
114		return PTR_ERR(cred);
115	ctx = alloc_nfs_open_dir_context(inode, cred);
116	if (IS_ERR(ctx)) {
117		res = PTR_ERR(ctx);
118		goto out;
119	}
120	filp->private_data = ctx;
121	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122		/* This is a mountpoint, so d_revalidate will never
123		 * have been called, so we need to refresh the
124		 * inode (for close-open consistency) ourselves.
125		 */
126		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127	}
128out:
129	put_rpccred(cred);
130	return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137	return 0;
138}
139
140struct nfs_cache_array_entry {
141	u64 cookie;
142	u64 ino;
143	struct qstr string;
144	unsigned char d_type;
145};
146
147struct nfs_cache_array {
148	int size;
149	int eof_index;
150	u64 last_cookie;
151	struct nfs_cache_array_entry array[0];
152};
153
154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155typedef struct {
156	struct file	*file;
157	struct page	*page;
158	struct dir_context *ctx;
159	unsigned long	page_index;
160	u64		*dir_cookie;
161	u64		last_cookie;
162	loff_t		current_index;
163	decode_dirent_t	decode;
164
165	unsigned long	timestamp;
166	unsigned long	gencount;
167	unsigned int	cache_entry_index;
168	unsigned int	plus:1;
169	unsigned int	eof:1;
170} nfs_readdir_descriptor_t;
171
172/*
173 * The caller is responsible for calling nfs_readdir_release_array(page)
174 */
175static
176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177{
178	void *ptr;
179	if (page == NULL)
180		return ERR_PTR(-EIO);
181	ptr = kmap(page);
182	if (ptr == NULL)
183		return ERR_PTR(-ENOMEM);
184	return ptr;
185}
186
187static
188void nfs_readdir_release_array(struct page *page)
189{
190	kunmap(page);
191}
192
193/*
194 * we are freeing strings created by nfs_add_to_readdir_array()
195 */
196static
197void nfs_readdir_clear_array(struct page *page)
198{
199	struct nfs_cache_array *array;
200	int i;
201
202	array = kmap_atomic(page);
203	for (i = 0; i < array->size; i++)
204		kfree(array->array[i].string.name);
205	kunmap_atomic(array);
206}
207
208/*
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
212 */
213static
214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215{
216	string->len = len;
217	string->name = kmemdup(name, len, GFP_KERNEL);
218	if (string->name == NULL)
219		return -ENOMEM;
220	/*
221	 * Avoid a kmemleak false positive. The pointer to the name is stored
222	 * in a page cache page which kmemleak does not scan.
223	 */
224	kmemleak_not_leak(string->name);
225	string->hash = full_name_hash(name, len);
226	return 0;
227}
228
229static
230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231{
232	struct nfs_cache_array *array = nfs_readdir_get_array(page);
233	struct nfs_cache_array_entry *cache_entry;
234	int ret;
235
236	if (IS_ERR(array))
237		return PTR_ERR(array);
238
239	cache_entry = &array->array[array->size];
240
241	/* Check that this entry lies within the page bounds */
242	ret = -ENOSPC;
243	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244		goto out;
245
246	cache_entry->cookie = entry->prev_cookie;
247	cache_entry->ino = entry->ino;
248	cache_entry->d_type = entry->d_type;
249	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250	if (ret)
251		goto out;
252	array->last_cookie = entry->cookie;
253	array->size++;
254	if (entry->eof != 0)
255		array->eof_index = array->size;
256out:
257	nfs_readdir_release_array(page);
258	return ret;
259}
260
261static
262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263{
264	loff_t diff = desc->ctx->pos - desc->current_index;
265	unsigned int index;
266
267	if (diff < 0)
268		goto out_eof;
269	if (diff >= array->size) {
270		if (array->eof_index >= 0)
271			goto out_eof;
272		return -EAGAIN;
273	}
274
275	index = (unsigned int)diff;
276	*desc->dir_cookie = array->array[index].cookie;
277	desc->cache_entry_index = index;
278	return 0;
279out_eof:
280	desc->eof = 1;
281	return -EBADCOOKIE;
282}
283
284static bool
285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286{
287	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288		return false;
289	smp_rmb();
290	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291}
292
293static
294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295{
296	int i;
297	loff_t new_pos;
298	int status = -EAGAIN;
299
300	for (i = 0; i < array->size; i++) {
301		if (array->array[i].cookie == *desc->dir_cookie) {
302			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303			struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305			new_pos = desc->current_index + i;
306			if (ctx->attr_gencount != nfsi->attr_gencount ||
307			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308				ctx->duped = 0;
309				ctx->attr_gencount = nfsi->attr_gencount;
310			} else if (new_pos < desc->ctx->pos) {
311				if (ctx->duped > 0
312				    && ctx->dup_cookie == *desc->dir_cookie) {
313					if (printk_ratelimit()) {
314						pr_notice("NFS: directory %pD2 contains a readdir loop."
315								"Please contact your server vendor.  "
316								"The file: %.*s has duplicate cookie %llu\n",
317								desc->file, array->array[i].string.len,
318								array->array[i].string.name, *desc->dir_cookie);
319					}
320					status = -ELOOP;
321					goto out;
322				}
323				ctx->dup_cookie = *desc->dir_cookie;
324				ctx->duped = -1;
325			}
326			desc->ctx->pos = new_pos;
327			desc->cache_entry_index = i;
328			return 0;
329		}
330	}
331	if (array->eof_index >= 0) {
332		status = -EBADCOOKIE;
333		if (*desc->dir_cookie == array->last_cookie)
334			desc->eof = 1;
335	}
336out:
337	return status;
338}
339
340static
341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342{
343	struct nfs_cache_array *array;
344	int status;
345
346	array = nfs_readdir_get_array(desc->page);
347	if (IS_ERR(array)) {
348		status = PTR_ERR(array);
349		goto out;
350	}
351
352	if (*desc->dir_cookie == 0)
353		status = nfs_readdir_search_for_pos(array, desc);
354	else
355		status = nfs_readdir_search_for_cookie(array, desc);
356
357	if (status == -EAGAIN) {
358		desc->last_cookie = array->last_cookie;
359		desc->current_index += array->size;
360		desc->page_index++;
361	}
362	nfs_readdir_release_array(desc->page);
363out:
364	return status;
365}
366
367/* Fill a page with xdr information before transferring to the cache page */
368static
369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370			struct nfs_entry *entry, struct file *file, struct inode *inode)
371{
372	struct nfs_open_dir_context *ctx = file->private_data;
373	struct rpc_cred	*cred = ctx->cred;
374	unsigned long	timestamp, gencount;
375	int		error;
376
377 again:
378	timestamp = jiffies;
379	gencount = nfs_inc_attr_generation_counter();
380	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381					  NFS_SERVER(inode)->dtsize, desc->plus);
382	if (error < 0) {
383		/* We requested READDIRPLUS, but the server doesn't grok it */
384		if (error == -ENOTSUPP && desc->plus) {
385			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387			desc->plus = 0;
388			goto again;
389		}
390		goto error;
391	}
392	desc->timestamp = timestamp;
393	desc->gencount = gencount;
394error:
395	return error;
396}
397
398static int xdr_decode(nfs_readdir_descriptor_t *desc,
399		      struct nfs_entry *entry, struct xdr_stream *xdr)
400{
401	int error;
402
403	error = desc->decode(xdr, entry, desc->plus);
404	if (error)
405		return error;
406	entry->fattr->time_start = desc->timestamp;
407	entry->fattr->gencount = desc->gencount;
408	return 0;
409}
410
411/* Match file and dirent using either filehandle or fileid
412 * Note: caller is responsible for checking the fsid
413 */
414static
415int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
416{
417	struct nfs_inode *nfsi;
418
419	if (d_really_is_negative(dentry))
420		return 0;
421
422	nfsi = NFS_I(d_inode(dentry));
423	if (entry->fattr->fileid == nfsi->fileid)
424		return 1;
425	if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
426		return 1;
427	return 0;
428}
429
430static
431bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
432{
433	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
434		return false;
435	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
436		return true;
437	if (ctx->pos == 0)
438		return true;
439	return false;
440}
441
442/*
443 * This function is called by the lookup code to request the use of
444 * readdirplus to accelerate any future lookups in the same
445 * directory.
446 */
447static
448void nfs_advise_use_readdirplus(struct inode *dir)
449{
450	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
451}
452
453/*
454 * This function is mainly for use by nfs_getattr().
455 *
456 * If this is an 'ls -l', we want to force use of readdirplus.
457 * Do this by checking if there is an active file descriptor
458 * and calling nfs_advise_use_readdirplus, then forcing a
459 * cache flush.
460 */
461void nfs_force_use_readdirplus(struct inode *dir)
462{
463	if (!list_empty(&NFS_I(dir)->open_files)) {
464		nfs_advise_use_readdirplus(dir);
465		nfs_zap_mapping(dir, dir->i_mapping);
466	}
467}
468
469static
470void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
471{
472	struct qstr filename = QSTR_INIT(entry->name, entry->len);
473	struct dentry *dentry;
474	struct dentry *alias;
475	struct inode *dir = d_inode(parent);
476	struct inode *inode;
477	int status;
478
479	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
480		return;
481	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
482		return;
483	if (filename.name[0] == '.') {
484		if (filename.len == 1)
485			return;
486		if (filename.len == 2 && filename.name[1] == '.')
487			return;
488	}
489	filename.hash = full_name_hash(filename.name, filename.len);
490
491	dentry = d_lookup(parent, &filename);
492	if (dentry != NULL) {
493		/* Is there a mountpoint here? If so, just exit */
494		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
495					&entry->fattr->fsid))
496			goto out;
497		if (nfs_same_file(dentry, entry)) {
498			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
499			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
500			if (!status)
501				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
502			goto out;
503		} else {
504			d_invalidate(dentry);
505			dput(dentry);
506		}
507	}
508
509	dentry = d_alloc(parent, &filename);
510	if (dentry == NULL)
511		return;
512
513	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
514	if (IS_ERR(inode))
515		goto out;
516
517	alias = d_splice_alias(inode, dentry);
518	if (IS_ERR(alias))
519		goto out;
520	else if (alias) {
521		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
522		dput(alias);
523	} else
524		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
525
526out:
527	dput(dentry);
528}
529
530/* Perform conversion from xdr to cache array */
531static
532int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
533				struct page **xdr_pages, struct page *page, unsigned int buflen)
534{
535	struct xdr_stream stream;
536	struct xdr_buf buf;
537	struct page *scratch;
538	struct nfs_cache_array *array;
539	unsigned int count = 0;
540	int status;
541
542	scratch = alloc_page(GFP_KERNEL);
543	if (scratch == NULL)
544		return -ENOMEM;
545
546	if (buflen == 0)
547		goto out_nopages;
548
549	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
550	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
551
552	do {
553		status = xdr_decode(desc, entry, &stream);
554		if (status != 0) {
555			if (status == -EAGAIN)
556				status = 0;
557			break;
558		}
559
560		count++;
561
562		if (desc->plus != 0)
563			nfs_prime_dcache(desc->file->f_path.dentry, entry);
564
565		status = nfs_readdir_add_to_array(entry, page);
566		if (status != 0)
567			break;
568	} while (!entry->eof);
569
570out_nopages:
571	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
572		array = nfs_readdir_get_array(page);
573		if (!IS_ERR(array)) {
574			array->eof_index = array->size;
575			status = 0;
576			nfs_readdir_release_array(page);
577		} else
578			status = PTR_ERR(array);
579	}
580
581	put_page(scratch);
582	return status;
583}
584
585static
586void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
587{
588	unsigned int i;
589	for (i = 0; i < npages; i++)
590		put_page(pages[i]);
591}
592
593static
594void nfs_readdir_free_large_page(void *ptr, struct page **pages,
595		unsigned int npages)
596{
597	nfs_readdir_free_pagearray(pages, npages);
598}
599
600/*
601 * nfs_readdir_large_page will allocate pages that must be freed with a call
602 * to nfs_readdir_free_large_page
603 */
604static
605int nfs_readdir_large_page(struct page **pages, unsigned int npages)
606{
607	unsigned int i;
608
609	for (i = 0; i < npages; i++) {
610		struct page *page = alloc_page(GFP_KERNEL);
611		if (page == NULL)
612			goto out_freepages;
613		pages[i] = page;
614	}
615	return 0;
616
617out_freepages:
618	nfs_readdir_free_pagearray(pages, i);
619	return -ENOMEM;
620}
621
622static
623int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
624{
625	struct page *pages[NFS_MAX_READDIR_PAGES];
626	void *pages_ptr = NULL;
627	struct nfs_entry entry;
628	struct file	*file = desc->file;
629	struct nfs_cache_array *array;
630	int status = -ENOMEM;
631	unsigned int array_size = ARRAY_SIZE(pages);
632
633	entry.prev_cookie = 0;
634	entry.cookie = desc->last_cookie;
635	entry.eof = 0;
636	entry.fh = nfs_alloc_fhandle();
637	entry.fattr = nfs_alloc_fattr();
638	entry.server = NFS_SERVER(inode);
639	if (entry.fh == NULL || entry.fattr == NULL)
640		goto out;
641
642	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
643	if (IS_ERR(entry.label)) {
644		status = PTR_ERR(entry.label);
645		goto out;
646	}
647
648	array = nfs_readdir_get_array(page);
649	if (IS_ERR(array)) {
650		status = PTR_ERR(array);
651		goto out_label_free;
652	}
653	memset(array, 0, sizeof(struct nfs_cache_array));
654	array->eof_index = -1;
655
656	status = nfs_readdir_large_page(pages, array_size);
657	if (status < 0)
658		goto out_release_array;
659	do {
660		unsigned int pglen;
661		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
662
663		if (status < 0)
664			break;
665		pglen = status;
666		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
667		if (status < 0) {
668			if (status == -ENOSPC)
669				status = 0;
670			break;
671		}
672	} while (array->eof_index < 0);
673
674	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
675out_release_array:
676	nfs_readdir_release_array(page);
677out_label_free:
678	nfs4_label_free(entry.label);
679out:
680	nfs_free_fattr(entry.fattr);
681	nfs_free_fhandle(entry.fh);
682	return status;
683}
684
685/*
686 * Now we cache directories properly, by converting xdr information
687 * to an array that can be used for lookups later.  This results in
688 * fewer cache pages, since we can store more information on each page.
689 * We only need to convert from xdr once so future lookups are much simpler
690 */
691static
692int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
693{
694	struct inode	*inode = file_inode(desc->file);
695	int ret;
696
697	ret = nfs_readdir_xdr_to_array(desc, page, inode);
698	if (ret < 0)
699		goto error;
700	SetPageUptodate(page);
701
702	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
703		/* Should never happen */
704		nfs_zap_mapping(inode, inode->i_mapping);
705	}
706	unlock_page(page);
707	return 0;
708 error:
709	unlock_page(page);
710	return ret;
711}
712
713static
714void cache_page_release(nfs_readdir_descriptor_t *desc)
715{
716	if (!desc->page->mapping)
717		nfs_readdir_clear_array(desc->page);
718	page_cache_release(desc->page);
719	desc->page = NULL;
720}
721
722static
723struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
724{
725	return read_cache_page(file_inode(desc->file)->i_mapping,
726			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
727}
728
729/*
730 * Returns 0 if desc->dir_cookie was found on page desc->page_index
731 */
732static
733int find_cache_page(nfs_readdir_descriptor_t *desc)
734{
735	int res;
736
737	desc->page = get_cache_page(desc);
738	if (IS_ERR(desc->page))
739		return PTR_ERR(desc->page);
740
741	res = nfs_readdir_search_array(desc);
742	if (res != 0)
743		cache_page_release(desc);
744	return res;
745}
746
747/* Search for desc->dir_cookie from the beginning of the page cache */
748static inline
749int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
750{
751	int res;
752
753	if (desc->page_index == 0) {
754		desc->current_index = 0;
755		desc->last_cookie = 0;
756	}
757	do {
758		res = find_cache_page(desc);
759	} while (res == -EAGAIN);
760	return res;
761}
762
763/*
764 * Once we've found the start of the dirent within a page: fill 'er up...
765 */
766static
767int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
768{
769	struct file	*file = desc->file;
770	int i = 0;
771	int res = 0;
772	struct nfs_cache_array *array = NULL;
773	struct nfs_open_dir_context *ctx = file->private_data;
774
775	array = nfs_readdir_get_array(desc->page);
776	if (IS_ERR(array)) {
777		res = PTR_ERR(array);
778		goto out;
779	}
780
781	for (i = desc->cache_entry_index; i < array->size; i++) {
782		struct nfs_cache_array_entry *ent;
783
784		ent = &array->array[i];
785		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
786		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
787			desc->eof = 1;
788			break;
789		}
790		desc->ctx->pos++;
791		if (i < (array->size-1))
792			*desc->dir_cookie = array->array[i+1].cookie;
793		else
794			*desc->dir_cookie = array->last_cookie;
795		if (ctx->duped != 0)
796			ctx->duped = 1;
797	}
798	if (array->eof_index >= 0)
799		desc->eof = 1;
800
801	nfs_readdir_release_array(desc->page);
802out:
803	cache_page_release(desc);
804	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
805			(unsigned long long)*desc->dir_cookie, res);
806	return res;
807}
808
809/*
810 * If we cannot find a cookie in our cache, we suspect that this is
811 * because it points to a deleted file, so we ask the server to return
812 * whatever it thinks is the next entry. We then feed this to filldir.
813 * If all goes well, we should then be able to find our way round the
814 * cache on the next call to readdir_search_pagecache();
815 *
816 * NOTE: we cannot add the anonymous page to the pagecache because
817 *	 the data it contains might not be page aligned. Besides,
818 *	 we should already have a complete representation of the
819 *	 directory in the page cache by the time we get here.
820 */
821static inline
822int uncached_readdir(nfs_readdir_descriptor_t *desc)
823{
824	struct page	*page = NULL;
825	int		status;
826	struct inode *inode = file_inode(desc->file);
827	struct nfs_open_dir_context *ctx = desc->file->private_data;
828
829	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
830			(unsigned long long)*desc->dir_cookie);
831
832	page = alloc_page(GFP_HIGHUSER);
833	if (!page) {
834		status = -ENOMEM;
835		goto out;
836	}
837
838	desc->page_index = 0;
839	desc->last_cookie = *desc->dir_cookie;
840	desc->page = page;
841	ctx->duped = 0;
842
843	status = nfs_readdir_xdr_to_array(desc, page, inode);
844	if (status < 0)
845		goto out_release;
846
847	status = nfs_do_filldir(desc);
848
849 out:
850	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
851			__func__, status);
852	return status;
853 out_release:
854	cache_page_release(desc);
855	goto out;
856}
857
858static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
859{
860	struct nfs_inode *nfsi = NFS_I(dir);
861
862	if (nfs_attribute_cache_expired(dir))
863		return true;
864	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
865		return true;
866	return false;
867}
868
869/* The file offset position represents the dirent entry number.  A
870   last cookie cache takes care of the common case of reading the
871   whole directory.
872 */
873static int nfs_readdir(struct file *file, struct dir_context *ctx)
874{
875	struct dentry	*dentry = file->f_path.dentry;
876	struct inode	*inode = d_inode(dentry);
877	nfs_readdir_descriptor_t my_desc,
878			*desc = &my_desc;
879	struct nfs_open_dir_context *dir_ctx = file->private_data;
880	int res = 0;
881
882	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
883			file, (long long)ctx->pos);
884	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
885
886	/*
887	 * ctx->pos points to the dirent entry number.
888	 * *desc->dir_cookie has the cookie for the next entry. We have
889	 * to either find the entry with the appropriate number or
890	 * revalidate the cookie.
891	 */
892	memset(desc, 0, sizeof(*desc));
893
894	desc->file = file;
895	desc->ctx = ctx;
896	desc->dir_cookie = &dir_ctx->dir_cookie;
897	desc->decode = NFS_PROTO(inode)->decode_dirent;
898	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
899
900	nfs_block_sillyrename(dentry);
901	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
902		res = nfs_revalidate_mapping(inode, file->f_mapping);
903	if (res < 0)
904		goto out;
905
906	do {
907		res = readdir_search_pagecache(desc);
908
909		if (res == -EBADCOOKIE) {
910			res = 0;
911			/* This means either end of directory */
912			if (*desc->dir_cookie && desc->eof == 0) {
913				/* Or that the server has 'lost' a cookie */
914				res = uncached_readdir(desc);
915				if (res == 0)
916					continue;
917			}
918			break;
919		}
920		if (res == -ETOOSMALL && desc->plus) {
921			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
922			nfs_zap_caches(inode);
923			desc->page_index = 0;
924			desc->plus = 0;
925			desc->eof = 0;
926			continue;
927		}
928		if (res < 0)
929			break;
930
931		res = nfs_do_filldir(desc);
932		if (res < 0)
933			break;
934	} while (!desc->eof);
935out:
936	nfs_unblock_sillyrename(dentry);
937	if (res > 0)
938		res = 0;
939	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
940	return res;
941}
942
943static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
944{
945	struct inode *inode = file_inode(filp);
946	struct nfs_open_dir_context *dir_ctx = filp->private_data;
947
948	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
949			filp, offset, whence);
950
951	mutex_lock(&inode->i_mutex);
952	switch (whence) {
953		case 1:
954			offset += filp->f_pos;
955		case 0:
956			if (offset >= 0)
957				break;
958		default:
959			offset = -EINVAL;
960			goto out;
961	}
962	if (offset != filp->f_pos) {
963		filp->f_pos = offset;
964		dir_ctx->dir_cookie = 0;
965		dir_ctx->duped = 0;
966	}
967out:
968	mutex_unlock(&inode->i_mutex);
969	return offset;
970}
971
972/*
973 * All directory operations under NFS are synchronous, so fsync()
974 * is a dummy operation.
975 */
976static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
977			 int datasync)
978{
979	struct inode *inode = file_inode(filp);
980
981	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
982
983	mutex_lock(&inode->i_mutex);
984	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
985	mutex_unlock(&inode->i_mutex);
986	return 0;
987}
988
989/**
990 * nfs_force_lookup_revalidate - Mark the directory as having changed
991 * @dir - pointer to directory inode
992 *
993 * This forces the revalidation code in nfs_lookup_revalidate() to do a
994 * full lookup on all child dentries of 'dir' whenever a change occurs
995 * on the server that might have invalidated our dcache.
996 *
997 * The caller should be holding dir->i_lock
998 */
999void nfs_force_lookup_revalidate(struct inode *dir)
1000{
1001	NFS_I(dir)->cache_change_attribute++;
1002}
1003EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1004
1005/*
1006 * A check for whether or not the parent directory has changed.
1007 * In the case it has, we assume that the dentries are untrustworthy
1008 * and may need to be looked up again.
1009 * If rcu_walk prevents us from performing a full check, return 0.
1010 */
1011static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1012			      int rcu_walk)
1013{
1014	int ret;
1015
1016	if (IS_ROOT(dentry))
1017		return 1;
1018	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1019		return 0;
1020	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1021		return 0;
1022	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1023	if (rcu_walk)
1024		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1025	else
1026		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1027	if (ret < 0)
1028		return 0;
1029	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1030		return 0;
1031	return 1;
1032}
1033
1034/*
1035 * Use intent information to check whether or not we're going to do
1036 * an O_EXCL create using this path component.
1037 */
1038static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1039{
1040	if (NFS_PROTO(dir)->version == 2)
1041		return 0;
1042	return flags & LOOKUP_EXCL;
1043}
1044
1045/*
1046 * Inode and filehandle revalidation for lookups.
1047 *
1048 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1049 * or if the intent information indicates that we're about to open this
1050 * particular file and the "nocto" mount flag is not set.
1051 *
1052 */
1053static
1054int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1055{
1056	struct nfs_server *server = NFS_SERVER(inode);
1057	int ret;
1058
1059	if (IS_AUTOMOUNT(inode))
1060		return 0;
1061	/* VFS wants an on-the-wire revalidation */
1062	if (flags & LOOKUP_REVAL)
1063		goto out_force;
1064	/* This is an open(2) */
1065	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1066	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1067		goto out_force;
1068out:
1069	return (inode->i_nlink == 0) ? -ENOENT : 0;
1070out_force:
1071	if (flags & LOOKUP_RCU)
1072		return -ECHILD;
1073	ret = __nfs_revalidate_inode(server, inode);
1074	if (ret != 0)
1075		return ret;
1076	goto out;
1077}
1078
1079/*
1080 * We judge how long we want to trust negative
1081 * dentries by looking at the parent inode mtime.
1082 *
1083 * If parent mtime has changed, we revalidate, else we wait for a
1084 * period corresponding to the parent's attribute cache timeout value.
1085 *
1086 * If LOOKUP_RCU prevents us from performing a full check, return 1
1087 * suggesting a reval is needed.
1088 */
1089static inline
1090int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1091		       unsigned int flags)
1092{
1093	/* Don't revalidate a negative dentry if we're creating a new file */
1094	if (flags & LOOKUP_CREATE)
1095		return 0;
1096	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1097		return 1;
1098	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1099}
1100
1101/*
1102 * This is called every time the dcache has a lookup hit,
1103 * and we should check whether we can really trust that
1104 * lookup.
1105 *
1106 * NOTE! The hit can be a negative hit too, don't assume
1107 * we have an inode!
1108 *
1109 * If the parent directory is seen to have changed, we throw out the
1110 * cached dentry and do a new lookup.
1111 */
1112static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1113{
1114	struct inode *dir;
1115	struct inode *inode;
1116	struct dentry *parent;
1117	struct nfs_fh *fhandle = NULL;
1118	struct nfs_fattr *fattr = NULL;
1119	struct nfs4_label *label = NULL;
1120	int error;
1121
1122	if (flags & LOOKUP_RCU) {
1123		parent = ACCESS_ONCE(dentry->d_parent);
1124		dir = d_inode_rcu(parent);
1125		if (!dir)
1126			return -ECHILD;
1127	} else {
1128		parent = dget_parent(dentry);
1129		dir = d_inode(parent);
1130	}
1131	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1132	inode = d_inode(dentry);
1133
1134	if (!inode) {
1135		if (nfs_neg_need_reval(dir, dentry, flags)) {
1136			if (flags & LOOKUP_RCU)
1137				return -ECHILD;
1138			goto out_bad;
1139		}
1140		goto out_valid_noent;
1141	}
1142
1143	if (is_bad_inode(inode)) {
1144		if (flags & LOOKUP_RCU)
1145			return -ECHILD;
1146		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1147				__func__, dentry);
1148		goto out_bad;
1149	}
1150
1151	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1152		goto out_set_verifier;
1153
1154	/* Force a full look up iff the parent directory has changed */
1155	if (!nfs_is_exclusive_create(dir, flags) &&
1156	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1157
1158		if (nfs_lookup_verify_inode(inode, flags)) {
1159			if (flags & LOOKUP_RCU)
1160				return -ECHILD;
1161			goto out_zap_parent;
1162		}
1163		goto out_valid;
1164	}
1165
1166	if (flags & LOOKUP_RCU)
1167		return -ECHILD;
1168
1169	if (NFS_STALE(inode))
1170		goto out_bad;
1171
1172	error = -ENOMEM;
1173	fhandle = nfs_alloc_fhandle();
1174	fattr = nfs_alloc_fattr();
1175	if (fhandle == NULL || fattr == NULL)
1176		goto out_error;
1177
1178	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1179	if (IS_ERR(label))
1180		goto out_error;
1181
1182	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1183	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1184	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1185	if (error)
1186		goto out_bad;
1187	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1188		goto out_bad;
1189	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1190		goto out_bad;
1191
1192	nfs_setsecurity(inode, fattr, label);
1193
1194	nfs_free_fattr(fattr);
1195	nfs_free_fhandle(fhandle);
1196	nfs4_label_free(label);
1197
1198out_set_verifier:
1199	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1200 out_valid:
1201	/* Success: notify readdir to use READDIRPLUS */
1202	nfs_advise_use_readdirplus(dir);
1203 out_valid_noent:
1204	if (flags & LOOKUP_RCU) {
1205		if (parent != ACCESS_ONCE(dentry->d_parent))
1206			return -ECHILD;
1207	} else
1208		dput(parent);
1209	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1210			__func__, dentry);
1211	return 1;
1212out_zap_parent:
1213	nfs_zap_caches(dir);
1214 out_bad:
1215	WARN_ON(flags & LOOKUP_RCU);
1216	nfs_free_fattr(fattr);
1217	nfs_free_fhandle(fhandle);
1218	nfs4_label_free(label);
1219	nfs_mark_for_revalidate(dir);
1220	if (inode && S_ISDIR(inode->i_mode)) {
1221		/* Purge readdir caches. */
1222		nfs_zap_caches(inode);
1223		/*
1224		 * We can't d_drop the root of a disconnected tree:
1225		 * its d_hash is on the s_anon list and d_drop() would hide
1226		 * it from shrink_dcache_for_unmount(), leading to busy
1227		 * inodes on unmount and further oopses.
1228		 */
1229		if (IS_ROOT(dentry))
1230			goto out_valid;
1231	}
1232	dput(parent);
1233	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1234			__func__, dentry);
1235	return 0;
1236out_error:
1237	WARN_ON(flags & LOOKUP_RCU);
1238	nfs_free_fattr(fattr);
1239	nfs_free_fhandle(fhandle);
1240	nfs4_label_free(label);
1241	dput(parent);
1242	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1243			__func__, dentry, error);
1244	return error;
1245}
1246
1247/*
1248 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1249 * when we don't really care about the dentry name. This is called when a
1250 * pathwalk ends on a dentry that was not found via a normal lookup in the
1251 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1252 *
1253 * In this situation, we just want to verify that the inode itself is OK
1254 * since the dentry might have changed on the server.
1255 */
1256static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1257{
1258	int error;
1259	struct inode *inode = d_inode(dentry);
1260
1261	/*
1262	 * I believe we can only get a negative dentry here in the case of a
1263	 * procfs-style symlink. Just assume it's correct for now, but we may
1264	 * eventually need to do something more here.
1265	 */
1266	if (!inode) {
1267		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1268				__func__, dentry);
1269		return 1;
1270	}
1271
1272	if (is_bad_inode(inode)) {
1273		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1274				__func__, dentry);
1275		return 0;
1276	}
1277
1278	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1279	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1280			__func__, inode->i_ino, error ? "invalid" : "valid");
1281	return !error;
1282}
1283
1284/*
1285 * This is called from dput() when d_count is going to 0.
1286 */
1287static int nfs_dentry_delete(const struct dentry *dentry)
1288{
1289	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1290		dentry, dentry->d_flags);
1291
1292	/* Unhash any dentry with a stale inode */
1293	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1294		return 1;
1295
1296	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1297		/* Unhash it, so that ->d_iput() would be called */
1298		return 1;
1299	}
1300	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1301		/* Unhash it, so that ancestors of killed async unlink
1302		 * files will be cleaned up during umount */
1303		return 1;
1304	}
1305	return 0;
1306
1307}
1308
1309/* Ensure that we revalidate inode->i_nlink */
1310static void nfs_drop_nlink(struct inode *inode)
1311{
1312	spin_lock(&inode->i_lock);
1313	/* drop the inode if we're reasonably sure this is the last link */
1314	if (inode->i_nlink == 1)
1315		clear_nlink(inode);
1316	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1317	spin_unlock(&inode->i_lock);
1318}
1319
1320/*
1321 * Called when the dentry loses inode.
1322 * We use it to clean up silly-renamed files.
1323 */
1324static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1325{
1326	if (S_ISDIR(inode->i_mode))
1327		/* drop any readdir cache as it could easily be old */
1328		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1329
1330	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1331		nfs_complete_unlink(dentry, inode);
1332		nfs_drop_nlink(inode);
1333	}
1334	iput(inode);
1335}
1336
1337static void nfs_d_release(struct dentry *dentry)
1338{
1339	/* free cached devname value, if it survived that far */
1340	if (unlikely(dentry->d_fsdata)) {
1341		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1342			WARN_ON(1);
1343		else
1344			kfree(dentry->d_fsdata);
1345	}
1346}
1347
1348const struct dentry_operations nfs_dentry_operations = {
1349	.d_revalidate	= nfs_lookup_revalidate,
1350	.d_weak_revalidate	= nfs_weak_revalidate,
1351	.d_delete	= nfs_dentry_delete,
1352	.d_iput		= nfs_dentry_iput,
1353	.d_automount	= nfs_d_automount,
1354	.d_release	= nfs_d_release,
1355};
1356EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1357
1358struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1359{
1360	struct dentry *res;
1361	struct dentry *parent;
1362	struct inode *inode = NULL;
1363	struct nfs_fh *fhandle = NULL;
1364	struct nfs_fattr *fattr = NULL;
1365	struct nfs4_label *label = NULL;
1366	int error;
1367
1368	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1369	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1370
1371	res = ERR_PTR(-ENAMETOOLONG);
1372	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1373		goto out;
1374
1375	/*
1376	 * If we're doing an exclusive create, optimize away the lookup
1377	 * but don't hash the dentry.
1378	 */
1379	if (nfs_is_exclusive_create(dir, flags)) {
1380		d_instantiate(dentry, NULL);
1381		res = NULL;
1382		goto out;
1383	}
1384
1385	res = ERR_PTR(-ENOMEM);
1386	fhandle = nfs_alloc_fhandle();
1387	fattr = nfs_alloc_fattr();
1388	if (fhandle == NULL || fattr == NULL)
1389		goto out;
1390
1391	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1392	if (IS_ERR(label))
1393		goto out;
1394
1395	parent = dentry->d_parent;
1396	/* Protect against concurrent sillydeletes */
1397	trace_nfs_lookup_enter(dir, dentry, flags);
1398	nfs_block_sillyrename(parent);
1399	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1400	if (error == -ENOENT)
1401		goto no_entry;
1402	if (error < 0) {
1403		res = ERR_PTR(error);
1404		goto out_unblock_sillyrename;
1405	}
1406	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1407	res = ERR_CAST(inode);
1408	if (IS_ERR(res))
1409		goto out_unblock_sillyrename;
1410
1411	/* Success: notify readdir to use READDIRPLUS */
1412	nfs_advise_use_readdirplus(dir);
1413
1414no_entry:
1415	res = d_splice_alias(inode, dentry);
1416	if (res != NULL) {
1417		if (IS_ERR(res))
1418			goto out_unblock_sillyrename;
1419		dentry = res;
1420	}
1421	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1422out_unblock_sillyrename:
1423	nfs_unblock_sillyrename(parent);
1424	trace_nfs_lookup_exit(dir, dentry, flags, error);
1425	nfs4_label_free(label);
1426out:
1427	nfs_free_fattr(fattr);
1428	nfs_free_fhandle(fhandle);
1429	return res;
1430}
1431EXPORT_SYMBOL_GPL(nfs_lookup);
1432
1433#if IS_ENABLED(CONFIG_NFS_V4)
1434static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1435
1436const struct dentry_operations nfs4_dentry_operations = {
1437	.d_revalidate	= nfs4_lookup_revalidate,
1438	.d_delete	= nfs_dentry_delete,
1439	.d_iput		= nfs_dentry_iput,
1440	.d_automount	= nfs_d_automount,
1441	.d_release	= nfs_d_release,
1442};
1443EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1444
1445static fmode_t flags_to_mode(int flags)
1446{
1447	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1448	if ((flags & O_ACCMODE) != O_WRONLY)
1449		res |= FMODE_READ;
1450	if ((flags & O_ACCMODE) != O_RDONLY)
1451		res |= FMODE_WRITE;
1452	return res;
1453}
1454
1455static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1456{
1457	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1458}
1459
1460static int do_open(struct inode *inode, struct file *filp)
1461{
1462	nfs_fscache_open_file(inode, filp);
1463	return 0;
1464}
1465
1466static int nfs_finish_open(struct nfs_open_context *ctx,
1467			   struct dentry *dentry,
1468			   struct file *file, unsigned open_flags,
1469			   int *opened)
1470{
1471	int err;
1472
1473	if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1474		*opened |= FILE_CREATED;
1475
1476	err = finish_open(file, dentry, do_open, opened);
1477	if (err)
1478		goto out;
1479	nfs_file_set_open_context(file, ctx);
1480
1481out:
1482	return err;
1483}
1484
1485int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1486		    struct file *file, unsigned open_flags,
1487		    umode_t mode, int *opened)
1488{
1489	struct nfs_open_context *ctx;
1490	struct dentry *res;
1491	struct iattr attr = { .ia_valid = ATTR_OPEN };
1492	struct inode *inode;
1493	unsigned int lookup_flags = 0;
1494	int err;
1495
1496	/* Expect a negative dentry */
1497	BUG_ON(d_inode(dentry));
1498
1499	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1500			dir->i_sb->s_id, dir->i_ino, dentry);
1501
1502	err = nfs_check_flags(open_flags);
1503	if (err)
1504		return err;
1505
1506	/* NFS only supports OPEN on regular files */
1507	if ((open_flags & O_DIRECTORY)) {
1508		if (!d_unhashed(dentry)) {
1509			/*
1510			 * Hashed negative dentry with O_DIRECTORY: dentry was
1511			 * revalidated and is fine, no need to perform lookup
1512			 * again
1513			 */
1514			return -ENOENT;
1515		}
1516		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1517		goto no_open;
1518	}
1519
1520	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1521		return -ENAMETOOLONG;
1522
1523	if (open_flags & O_CREAT) {
1524		attr.ia_valid |= ATTR_MODE;
1525		attr.ia_mode = mode & ~current_umask();
1526	}
1527	if (open_flags & O_TRUNC) {
1528		attr.ia_valid |= ATTR_SIZE;
1529		attr.ia_size = 0;
1530	}
1531
1532	ctx = create_nfs_open_context(dentry, open_flags);
1533	err = PTR_ERR(ctx);
1534	if (IS_ERR(ctx))
1535		goto out;
1536
1537	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1538	nfs_block_sillyrename(dentry->d_parent);
1539	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1540	nfs_unblock_sillyrename(dentry->d_parent);
1541	if (IS_ERR(inode)) {
1542		err = PTR_ERR(inode);
1543		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1544		put_nfs_open_context(ctx);
1545		switch (err) {
1546		case -ENOENT:
1547			d_drop(dentry);
1548			d_add(dentry, NULL);
1549			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1550			break;
1551		case -EISDIR:
1552		case -ENOTDIR:
1553			goto no_open;
1554		case -ELOOP:
1555			if (!(open_flags & O_NOFOLLOW))
1556				goto no_open;
1557			break;
1558			/* case -EINVAL: */
1559		default:
1560			break;
1561		}
1562		goto out;
1563	}
1564
1565	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1566	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567	put_nfs_open_context(ctx);
1568out:
1569	return err;
1570
1571no_open:
1572	res = nfs_lookup(dir, dentry, lookup_flags);
1573	err = PTR_ERR(res);
1574	if (IS_ERR(res))
1575		goto out;
1576
1577	return finish_no_open(file, res);
1578}
1579EXPORT_SYMBOL_GPL(nfs_atomic_open);
1580
1581static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1582{
1583	struct inode *inode;
1584	int ret = 0;
1585
1586	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1587		goto no_open;
1588	if (d_mountpoint(dentry))
1589		goto no_open;
1590	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1591		goto no_open;
1592
1593	inode = d_inode(dentry);
1594
1595	/* We can't create new files in nfs_open_revalidate(), so we
1596	 * optimize away revalidation of negative dentries.
1597	 */
1598	if (inode == NULL) {
1599		struct dentry *parent;
1600		struct inode *dir;
1601
1602		if (flags & LOOKUP_RCU) {
1603			parent = ACCESS_ONCE(dentry->d_parent);
1604			dir = d_inode_rcu(parent);
1605			if (!dir)
1606				return -ECHILD;
1607		} else {
1608			parent = dget_parent(dentry);
1609			dir = d_inode(parent);
1610		}
1611		if (!nfs_neg_need_reval(dir, dentry, flags))
1612			ret = 1;
1613		else if (flags & LOOKUP_RCU)
1614			ret = -ECHILD;
1615		if (!(flags & LOOKUP_RCU))
1616			dput(parent);
1617		else if (parent != ACCESS_ONCE(dentry->d_parent))
1618			return -ECHILD;
1619		goto out;
1620	}
1621
1622	/* NFS only supports OPEN on regular files */
1623	if (!S_ISREG(inode->i_mode))
1624		goto no_open;
1625	/* We cannot do exclusive creation on a positive dentry */
1626	if (flags & LOOKUP_EXCL)
1627		goto no_open;
1628
1629	/* Let f_op->open() actually open (and revalidate) the file */
1630	ret = 1;
1631
1632out:
1633	return ret;
1634
1635no_open:
1636	return nfs_lookup_revalidate(dentry, flags);
1637}
1638
1639#endif /* CONFIG_NFSV4 */
1640
1641/*
1642 * Code common to create, mkdir, and mknod.
1643 */
1644int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1645				struct nfs_fattr *fattr,
1646				struct nfs4_label *label)
1647{
1648	struct dentry *parent = dget_parent(dentry);
1649	struct inode *dir = d_inode(parent);
1650	struct inode *inode;
1651	int error = -EACCES;
1652
1653	d_drop(dentry);
1654
1655	/* We may have been initialized further down */
1656	if (d_really_is_positive(dentry))
1657		goto out;
1658	if (fhandle->size == 0) {
1659		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1660		if (error)
1661			goto out_error;
1662	}
1663	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1664	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1665		struct nfs_server *server = NFS_SB(dentry->d_sb);
1666		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1667		if (error < 0)
1668			goto out_error;
1669	}
1670	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1671	error = PTR_ERR(inode);
1672	if (IS_ERR(inode))
1673		goto out_error;
1674	d_add(dentry, inode);
1675out:
1676	dput(parent);
1677	return 0;
1678out_error:
1679	nfs_mark_for_revalidate(dir);
1680	dput(parent);
1681	return error;
1682}
1683EXPORT_SYMBOL_GPL(nfs_instantiate);
1684
1685/*
1686 * Following a failed create operation, we drop the dentry rather
1687 * than retain a negative dentry. This avoids a problem in the event
1688 * that the operation succeeded on the server, but an error in the
1689 * reply path made it appear to have failed.
1690 */
1691int nfs_create(struct inode *dir, struct dentry *dentry,
1692		umode_t mode, bool excl)
1693{
1694	struct iattr attr;
1695	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1696	int error;
1697
1698	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1699			dir->i_sb->s_id, dir->i_ino, dentry);
1700
1701	attr.ia_mode = mode;
1702	attr.ia_valid = ATTR_MODE;
1703
1704	trace_nfs_create_enter(dir, dentry, open_flags);
1705	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1706	trace_nfs_create_exit(dir, dentry, open_flags, error);
1707	if (error != 0)
1708		goto out_err;
1709	return 0;
1710out_err:
1711	d_drop(dentry);
1712	return error;
1713}
1714EXPORT_SYMBOL_GPL(nfs_create);
1715
1716/*
1717 * See comments for nfs_proc_create regarding failed operations.
1718 */
1719int
1720nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1721{
1722	struct iattr attr;
1723	int status;
1724
1725	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1726			dir->i_sb->s_id, dir->i_ino, dentry);
1727
1728	if (!new_valid_dev(rdev))
1729		return -EINVAL;
1730
1731	attr.ia_mode = mode;
1732	attr.ia_valid = ATTR_MODE;
1733
1734	trace_nfs_mknod_enter(dir, dentry);
1735	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1736	trace_nfs_mknod_exit(dir, dentry, status);
1737	if (status != 0)
1738		goto out_err;
1739	return 0;
1740out_err:
1741	d_drop(dentry);
1742	return status;
1743}
1744EXPORT_SYMBOL_GPL(nfs_mknod);
1745
1746/*
1747 * See comments for nfs_proc_create regarding failed operations.
1748 */
1749int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1750{
1751	struct iattr attr;
1752	int error;
1753
1754	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1755			dir->i_sb->s_id, dir->i_ino, dentry);
1756
1757	attr.ia_valid = ATTR_MODE;
1758	attr.ia_mode = mode | S_IFDIR;
1759
1760	trace_nfs_mkdir_enter(dir, dentry);
1761	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1762	trace_nfs_mkdir_exit(dir, dentry, error);
1763	if (error != 0)
1764		goto out_err;
1765	return 0;
1766out_err:
1767	d_drop(dentry);
1768	return error;
1769}
1770EXPORT_SYMBOL_GPL(nfs_mkdir);
1771
1772static void nfs_dentry_handle_enoent(struct dentry *dentry)
1773{
1774	if (d_really_is_positive(dentry) && !d_unhashed(dentry))
1775		d_delete(dentry);
1776}
1777
1778int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1779{
1780	int error;
1781
1782	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1783			dir->i_sb->s_id, dir->i_ino, dentry);
1784
1785	trace_nfs_rmdir_enter(dir, dentry);
1786	if (d_really_is_positive(dentry)) {
1787		nfs_wait_on_sillyrename(dentry);
1788		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1789		/* Ensure the VFS deletes this inode */
1790		switch (error) {
1791		case 0:
1792			clear_nlink(d_inode(dentry));
1793			break;
1794		case -ENOENT:
1795			nfs_dentry_handle_enoent(dentry);
1796		}
1797	} else
1798		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1799	trace_nfs_rmdir_exit(dir, dentry, error);
1800
1801	return error;
1802}
1803EXPORT_SYMBOL_GPL(nfs_rmdir);
1804
1805/*
1806 * Remove a file after making sure there are no pending writes,
1807 * and after checking that the file has only one user.
1808 *
1809 * We invalidate the attribute cache and free the inode prior to the operation
1810 * to avoid possible races if the server reuses the inode.
1811 */
1812static int nfs_safe_remove(struct dentry *dentry)
1813{
1814	struct inode *dir = d_inode(dentry->d_parent);
1815	struct inode *inode = d_inode(dentry);
1816	int error = -EBUSY;
1817
1818	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1819
1820	/* If the dentry was sillyrenamed, we simply call d_delete() */
1821	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1822		error = 0;
1823		goto out;
1824	}
1825
1826	trace_nfs_remove_enter(dir, dentry);
1827	if (inode != NULL) {
1828		NFS_PROTO(inode)->return_delegation(inode);
1829		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1830		if (error == 0)
1831			nfs_drop_nlink(inode);
1832	} else
1833		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1834	if (error == -ENOENT)
1835		nfs_dentry_handle_enoent(dentry);
1836	trace_nfs_remove_exit(dir, dentry, error);
1837out:
1838	return error;
1839}
1840
1841/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1842 *  belongs to an active ".nfs..." file and we return -EBUSY.
1843 *
1844 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1845 */
1846int nfs_unlink(struct inode *dir, struct dentry *dentry)
1847{
1848	int error;
1849	int need_rehash = 0;
1850
1851	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1852		dir->i_ino, dentry);
1853
1854	trace_nfs_unlink_enter(dir, dentry);
1855	spin_lock(&dentry->d_lock);
1856	if (d_count(dentry) > 1) {
1857		spin_unlock(&dentry->d_lock);
1858		/* Start asynchronous writeout of the inode */
1859		write_inode_now(d_inode(dentry), 0);
1860		error = nfs_sillyrename(dir, dentry);
1861		goto out;
1862	}
1863	if (!d_unhashed(dentry)) {
1864		__d_drop(dentry);
1865		need_rehash = 1;
1866	}
1867	spin_unlock(&dentry->d_lock);
1868	error = nfs_safe_remove(dentry);
1869	if (!error || error == -ENOENT) {
1870		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1871	} else if (need_rehash)
1872		d_rehash(dentry);
1873out:
1874	trace_nfs_unlink_exit(dir, dentry, error);
1875	return error;
1876}
1877EXPORT_SYMBOL_GPL(nfs_unlink);
1878
1879/*
1880 * To create a symbolic link, most file systems instantiate a new inode,
1881 * add a page to it containing the path, then write it out to the disk
1882 * using prepare_write/commit_write.
1883 *
1884 * Unfortunately the NFS client can't create the in-core inode first
1885 * because it needs a file handle to create an in-core inode (see
1886 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1887 * symlink request has completed on the server.
1888 *
1889 * So instead we allocate a raw page, copy the symname into it, then do
1890 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1891 * now have a new file handle and can instantiate an in-core NFS inode
1892 * and move the raw page into its mapping.
1893 */
1894int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1895{
1896	struct page *page;
1897	char *kaddr;
1898	struct iattr attr;
1899	unsigned int pathlen = strlen(symname);
1900	int error;
1901
1902	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1903		dir->i_ino, dentry, symname);
1904
1905	if (pathlen > PAGE_SIZE)
1906		return -ENAMETOOLONG;
1907
1908	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1909	attr.ia_valid = ATTR_MODE;
1910
1911	page = alloc_page(GFP_HIGHUSER);
1912	if (!page)
1913		return -ENOMEM;
1914
1915	kaddr = kmap_atomic(page);
1916	memcpy(kaddr, symname, pathlen);
1917	if (pathlen < PAGE_SIZE)
1918		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1919	kunmap_atomic(kaddr);
1920
1921	trace_nfs_symlink_enter(dir, dentry);
1922	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1923	trace_nfs_symlink_exit(dir, dentry, error);
1924	if (error != 0) {
1925		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1926			dir->i_sb->s_id, dir->i_ino,
1927			dentry, symname, error);
1928		d_drop(dentry);
1929		__free_page(page);
1930		return error;
1931	}
1932
1933	/*
1934	 * No big deal if we can't add this page to the page cache here.
1935	 * READLINK will get the missing page from the server if needed.
1936	 */
1937	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1938							GFP_KERNEL)) {
1939		SetPageUptodate(page);
1940		unlock_page(page);
1941		/*
1942		 * add_to_page_cache_lru() grabs an extra page refcount.
1943		 * Drop it here to avoid leaking this page later.
1944		 */
1945		page_cache_release(page);
1946	} else
1947		__free_page(page);
1948
1949	return 0;
1950}
1951EXPORT_SYMBOL_GPL(nfs_symlink);
1952
1953int
1954nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1955{
1956	struct inode *inode = d_inode(old_dentry);
1957	int error;
1958
1959	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1960		old_dentry, dentry);
1961
1962	trace_nfs_link_enter(inode, dir, dentry);
1963	NFS_PROTO(inode)->return_delegation(inode);
1964
1965	d_drop(dentry);
1966	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1967	if (error == 0) {
1968		ihold(inode);
1969		d_add(dentry, inode);
1970	}
1971	trace_nfs_link_exit(inode, dir, dentry, error);
1972	return error;
1973}
1974EXPORT_SYMBOL_GPL(nfs_link);
1975
1976/*
1977 * RENAME
1978 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1979 * different file handle for the same inode after a rename (e.g. when
1980 * moving to a different directory). A fail-safe method to do so would
1981 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1982 * rename the old file using the sillyrename stuff. This way, the original
1983 * file in old_dir will go away when the last process iput()s the inode.
1984 *
1985 * FIXED.
1986 *
1987 * It actually works quite well. One needs to have the possibility for
1988 * at least one ".nfs..." file in each directory the file ever gets
1989 * moved or linked to which happens automagically with the new
1990 * implementation that only depends on the dcache stuff instead of
1991 * using the inode layer
1992 *
1993 * Unfortunately, things are a little more complicated than indicated
1994 * above. For a cross-directory move, we want to make sure we can get
1995 * rid of the old inode after the operation.  This means there must be
1996 * no pending writes (if it's a file), and the use count must be 1.
1997 * If these conditions are met, we can drop the dentries before doing
1998 * the rename.
1999 */
2000int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2001		      struct inode *new_dir, struct dentry *new_dentry)
2002{
2003	struct inode *old_inode = d_inode(old_dentry);
2004	struct inode *new_inode = d_inode(new_dentry);
2005	struct dentry *dentry = NULL, *rehash = NULL;
2006	struct rpc_task *task;
2007	int error = -EBUSY;
2008
2009	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2010		 old_dentry, new_dentry,
2011		 d_count(new_dentry));
2012
2013	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2014	/*
2015	 * For non-directories, check whether the target is busy and if so,
2016	 * make a copy of the dentry and then do a silly-rename. If the
2017	 * silly-rename succeeds, the copied dentry is hashed and becomes
2018	 * the new target.
2019	 */
2020	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2021		/*
2022		 * To prevent any new references to the target during the
2023		 * rename, we unhash the dentry in advance.
2024		 */
2025		if (!d_unhashed(new_dentry)) {
2026			d_drop(new_dentry);
2027			rehash = new_dentry;
2028		}
2029
2030		if (d_count(new_dentry) > 2) {
2031			int err;
2032
2033			/* copy the target dentry's name */
2034			dentry = d_alloc(new_dentry->d_parent,
2035					 &new_dentry->d_name);
2036			if (!dentry)
2037				goto out;
2038
2039			/* silly-rename the existing target ... */
2040			err = nfs_sillyrename(new_dir, new_dentry);
2041			if (err)
2042				goto out;
2043
2044			new_dentry = dentry;
2045			rehash = NULL;
2046			new_inode = NULL;
2047		}
2048	}
2049
2050	NFS_PROTO(old_inode)->return_delegation(old_inode);
2051	if (new_inode != NULL)
2052		NFS_PROTO(new_inode)->return_delegation(new_inode);
2053
2054	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2055	if (IS_ERR(task)) {
2056		error = PTR_ERR(task);
2057		goto out;
2058	}
2059
2060	error = rpc_wait_for_completion_task(task);
2061	if (error == 0)
2062		error = task->tk_status;
2063	rpc_put_task(task);
2064	nfs_mark_for_revalidate(old_inode);
2065out:
2066	if (rehash)
2067		d_rehash(rehash);
2068	trace_nfs_rename_exit(old_dir, old_dentry,
2069			new_dir, new_dentry, error);
2070	if (!error) {
2071		if (new_inode != NULL)
2072			nfs_drop_nlink(new_inode);
2073		d_move(old_dentry, new_dentry);
2074		nfs_set_verifier(new_dentry,
2075					nfs_save_change_attribute(new_dir));
2076	} else if (error == -ENOENT)
2077		nfs_dentry_handle_enoent(old_dentry);
2078
2079	/* new dentry created? */
2080	if (dentry)
2081		dput(dentry);
2082	return error;
2083}
2084EXPORT_SYMBOL_GPL(nfs_rename);
2085
2086static DEFINE_SPINLOCK(nfs_access_lru_lock);
2087static LIST_HEAD(nfs_access_lru_list);
2088static atomic_long_t nfs_access_nr_entries;
2089
2090static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2091module_param(nfs_access_max_cachesize, ulong, 0644);
2092MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2093
2094static void nfs_access_free_entry(struct nfs_access_entry *entry)
2095{
2096	put_rpccred(entry->cred);
2097	kfree_rcu(entry, rcu_head);
2098	smp_mb__before_atomic();
2099	atomic_long_dec(&nfs_access_nr_entries);
2100	smp_mb__after_atomic();
2101}
2102
2103static void nfs_access_free_list(struct list_head *head)
2104{
2105	struct nfs_access_entry *cache;
2106
2107	while (!list_empty(head)) {
2108		cache = list_entry(head->next, struct nfs_access_entry, lru);
2109		list_del(&cache->lru);
2110		nfs_access_free_entry(cache);
2111	}
2112}
2113
2114static unsigned long
2115nfs_do_access_cache_scan(unsigned int nr_to_scan)
2116{
2117	LIST_HEAD(head);
2118	struct nfs_inode *nfsi, *next;
2119	struct nfs_access_entry *cache;
2120	long freed = 0;
2121
2122	spin_lock(&nfs_access_lru_lock);
2123	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2124		struct inode *inode;
2125
2126		if (nr_to_scan-- == 0)
2127			break;
2128		inode = &nfsi->vfs_inode;
2129		spin_lock(&inode->i_lock);
2130		if (list_empty(&nfsi->access_cache_entry_lru))
2131			goto remove_lru_entry;
2132		cache = list_entry(nfsi->access_cache_entry_lru.next,
2133				struct nfs_access_entry, lru);
2134		list_move(&cache->lru, &head);
2135		rb_erase(&cache->rb_node, &nfsi->access_cache);
2136		freed++;
2137		if (!list_empty(&nfsi->access_cache_entry_lru))
2138			list_move_tail(&nfsi->access_cache_inode_lru,
2139					&nfs_access_lru_list);
2140		else {
2141remove_lru_entry:
2142			list_del_init(&nfsi->access_cache_inode_lru);
2143			smp_mb__before_atomic();
2144			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2145			smp_mb__after_atomic();
2146		}
2147		spin_unlock(&inode->i_lock);
2148	}
2149	spin_unlock(&nfs_access_lru_lock);
2150	nfs_access_free_list(&head);
2151	return freed;
2152}
2153
2154unsigned long
2155nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2156{
2157	int nr_to_scan = sc->nr_to_scan;
2158	gfp_t gfp_mask = sc->gfp_mask;
2159
2160	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2161		return SHRINK_STOP;
2162	return nfs_do_access_cache_scan(nr_to_scan);
2163}
2164
2165
2166unsigned long
2167nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2168{
2169	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2170}
2171
2172static void
2173nfs_access_cache_enforce_limit(void)
2174{
2175	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2176	unsigned long diff;
2177	unsigned int nr_to_scan;
2178
2179	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2180		return;
2181	nr_to_scan = 100;
2182	diff = nr_entries - nfs_access_max_cachesize;
2183	if (diff < nr_to_scan)
2184		nr_to_scan = diff;
2185	nfs_do_access_cache_scan(nr_to_scan);
2186}
2187
2188static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2189{
2190	struct rb_root *root_node = &nfsi->access_cache;
2191	struct rb_node *n;
2192	struct nfs_access_entry *entry;
2193
2194	/* Unhook entries from the cache */
2195	while ((n = rb_first(root_node)) != NULL) {
2196		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2197		rb_erase(n, root_node);
2198		list_move(&entry->lru, head);
2199	}
2200	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2201}
2202
2203void nfs_access_zap_cache(struct inode *inode)
2204{
2205	LIST_HEAD(head);
2206
2207	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2208		return;
2209	/* Remove from global LRU init */
2210	spin_lock(&nfs_access_lru_lock);
2211	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2212		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2213
2214	spin_lock(&inode->i_lock);
2215	__nfs_access_zap_cache(NFS_I(inode), &head);
2216	spin_unlock(&inode->i_lock);
2217	spin_unlock(&nfs_access_lru_lock);
2218	nfs_access_free_list(&head);
2219}
2220EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2221
2222static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2223{
2224	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2225	struct nfs_access_entry *entry;
2226
2227	while (n != NULL) {
2228		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2229
2230		if (cred < entry->cred)
2231			n = n->rb_left;
2232		else if (cred > entry->cred)
2233			n = n->rb_right;
2234		else
2235			return entry;
2236	}
2237	return NULL;
2238}
2239
2240static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2241{
2242	struct nfs_inode *nfsi = NFS_I(inode);
2243	struct nfs_access_entry *cache;
2244	int err = -ENOENT;
2245
2246	spin_lock(&inode->i_lock);
2247	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2248		goto out_zap;
2249	cache = nfs_access_search_rbtree(inode, cred);
2250	if (cache == NULL)
2251		goto out;
2252	if (!nfs_have_delegated_attributes(inode) &&
2253	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2254		goto out_stale;
2255	res->jiffies = cache->jiffies;
2256	res->cred = cache->cred;
2257	res->mask = cache->mask;
2258	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2259	err = 0;
2260out:
2261	spin_unlock(&inode->i_lock);
2262	return err;
2263out_stale:
2264	rb_erase(&cache->rb_node, &nfsi->access_cache);
2265	list_del(&cache->lru);
2266	spin_unlock(&inode->i_lock);
2267	nfs_access_free_entry(cache);
2268	return -ENOENT;
2269out_zap:
2270	spin_unlock(&inode->i_lock);
2271	nfs_access_zap_cache(inode);
2272	return -ENOENT;
2273}
2274
2275static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2276{
2277	/* Only check the most recently returned cache entry,
2278	 * but do it without locking.
2279	 */
2280	struct nfs_inode *nfsi = NFS_I(inode);
2281	struct nfs_access_entry *cache;
2282	int err = -ECHILD;
2283	struct list_head *lh;
2284
2285	rcu_read_lock();
2286	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2287		goto out;
2288	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2289	cache = list_entry(lh, struct nfs_access_entry, lru);
2290	if (lh == &nfsi->access_cache_entry_lru ||
2291	    cred != cache->cred)
2292		cache = NULL;
2293	if (cache == NULL)
2294		goto out;
2295	if (!nfs_have_delegated_attributes(inode) &&
2296	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2297		goto out;
2298	res->jiffies = cache->jiffies;
2299	res->cred = cache->cred;
2300	res->mask = cache->mask;
2301	err = 0;
2302out:
2303	rcu_read_unlock();
2304	return err;
2305}
2306
2307static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2308{
2309	struct nfs_inode *nfsi = NFS_I(inode);
2310	struct rb_root *root_node = &nfsi->access_cache;
2311	struct rb_node **p = &root_node->rb_node;
2312	struct rb_node *parent = NULL;
2313	struct nfs_access_entry *entry;
2314
2315	spin_lock(&inode->i_lock);
2316	while (*p != NULL) {
2317		parent = *p;
2318		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2319
2320		if (set->cred < entry->cred)
2321			p = &parent->rb_left;
2322		else if (set->cred > entry->cred)
2323			p = &parent->rb_right;
2324		else
2325			goto found;
2326	}
2327	rb_link_node(&set->rb_node, parent, p);
2328	rb_insert_color(&set->rb_node, root_node);
2329	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2330	spin_unlock(&inode->i_lock);
2331	return;
2332found:
2333	rb_replace_node(parent, &set->rb_node, root_node);
2334	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2335	list_del(&entry->lru);
2336	spin_unlock(&inode->i_lock);
2337	nfs_access_free_entry(entry);
2338}
2339
2340void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2341{
2342	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2343	if (cache == NULL)
2344		return;
2345	RB_CLEAR_NODE(&cache->rb_node);
2346	cache->jiffies = set->jiffies;
2347	cache->cred = get_rpccred(set->cred);
2348	cache->mask = set->mask;
2349
2350	/* The above field assignments must be visible
2351	 * before this item appears on the lru.  We cannot easily
2352	 * use rcu_assign_pointer, so just force the memory barrier.
2353	 */
2354	smp_wmb();
2355	nfs_access_add_rbtree(inode, cache);
2356
2357	/* Update accounting */
2358	smp_mb__before_atomic();
2359	atomic_long_inc(&nfs_access_nr_entries);
2360	smp_mb__after_atomic();
2361
2362	/* Add inode to global LRU list */
2363	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2364		spin_lock(&nfs_access_lru_lock);
2365		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2366			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2367					&nfs_access_lru_list);
2368		spin_unlock(&nfs_access_lru_lock);
2369	}
2370	nfs_access_cache_enforce_limit();
2371}
2372EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2373
2374void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2375{
2376	entry->mask = 0;
2377	if (access_result & NFS4_ACCESS_READ)
2378		entry->mask |= MAY_READ;
2379	if (access_result &
2380	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2381		entry->mask |= MAY_WRITE;
2382	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2383		entry->mask |= MAY_EXEC;
2384}
2385EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2386
2387static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2388{
2389	struct nfs_access_entry cache;
2390	int status;
2391
2392	trace_nfs_access_enter(inode);
2393
2394	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2395	if (status != 0)
2396		status = nfs_access_get_cached(inode, cred, &cache);
2397	if (status == 0)
2398		goto out_cached;
2399
2400	status = -ECHILD;
2401	if (mask & MAY_NOT_BLOCK)
2402		goto out;
2403
2404	/* Be clever: ask server to check for all possible rights */
2405	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2406	cache.cred = cred;
2407	cache.jiffies = jiffies;
2408	status = NFS_PROTO(inode)->access(inode, &cache);
2409	if (status != 0) {
2410		if (status == -ESTALE) {
2411			nfs_zap_caches(inode);
2412			if (!S_ISDIR(inode->i_mode))
2413				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2414		}
2415		goto out;
2416	}
2417	nfs_access_add_cache(inode, &cache);
2418out_cached:
2419	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2420		status = -EACCES;
2421out:
2422	trace_nfs_access_exit(inode, status);
2423	return status;
2424}
2425
2426static int nfs_open_permission_mask(int openflags)
2427{
2428	int mask = 0;
2429
2430	if (openflags & __FMODE_EXEC) {
2431		/* ONLY check exec rights */
2432		mask = MAY_EXEC;
2433	} else {
2434		if ((openflags & O_ACCMODE) != O_WRONLY)
2435			mask |= MAY_READ;
2436		if ((openflags & O_ACCMODE) != O_RDONLY)
2437			mask |= MAY_WRITE;
2438	}
2439
2440	return mask;
2441}
2442
2443int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2444{
2445	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2446}
2447EXPORT_SYMBOL_GPL(nfs_may_open);
2448
2449int nfs_permission(struct inode *inode, int mask)
2450{
2451	struct rpc_cred *cred;
2452	int res = 0;
2453
2454	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2455
2456	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2457		goto out;
2458	/* Is this sys_access() ? */
2459	if (mask & (MAY_ACCESS | MAY_CHDIR))
2460		goto force_lookup;
2461
2462	switch (inode->i_mode & S_IFMT) {
2463		case S_IFLNK:
2464			goto out;
2465		case S_IFREG:
2466			break;
2467		case S_IFDIR:
2468			/*
2469			 * Optimize away all write operations, since the server
2470			 * will check permissions when we perform the op.
2471			 */
2472			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2473				goto out;
2474	}
2475
2476force_lookup:
2477	if (!NFS_PROTO(inode)->access)
2478		goto out_notsup;
2479
2480	/* Always try fast lookups first */
2481	rcu_read_lock();
2482	cred = rpc_lookup_cred_nonblock();
2483	if (!IS_ERR(cred))
2484		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2485	else
2486		res = PTR_ERR(cred);
2487	rcu_read_unlock();
2488	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2489		/* Fast lookup failed, try the slow way */
2490		cred = rpc_lookup_cred();
2491		if (!IS_ERR(cred)) {
2492			res = nfs_do_access(inode, cred, mask);
2493			put_rpccred(cred);
2494		} else
2495			res = PTR_ERR(cred);
2496	}
2497out:
2498	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2499		res = -EACCES;
2500
2501	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2502		inode->i_sb->s_id, inode->i_ino, mask, res);
2503	return res;
2504out_notsup:
2505	if (mask & MAY_NOT_BLOCK)
2506		return -ECHILD;
2507
2508	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2509	if (res == 0)
2510		res = generic_permission(inode, mask);
2511	goto out;
2512}
2513EXPORT_SYMBOL_GPL(nfs_permission);
2514
2515/*
2516 * Local variables:
2517 *  version-control: t
2518 *  kept-new-versions: 5
2519 * End:
2520 */
2521