1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
m_hash(struct vfsmount * mnt,struct dentry * dentry)81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
mp_hash(struct dentry * dentry)89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
mnt_alloc_id(struct mount * mnt)100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
mnt_free_id(struct mount * mnt)117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
mnt_alloc_group_id(struct mount * mnt)132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
mnt_release_group_id(struct mount * mnt)151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
mnt_add_count(struct mount * mnt,int n)163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
mnt_get_count(struct mount * mnt)177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
drop_mountpoint(struct fs_pin * p)193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 	struct mount *m = container_of(p, struct mount, mnt_umount);
196 	dput(m->mnt_ex_mountpoint);
197 	pin_remove(p);
198 	mntput(&m->mnt);
199 }
200 
alloc_vfsmnt(const char * name)201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 	if (mnt) {
205 		int err;
206 
207 		err = mnt_alloc_id(mnt);
208 		if (err)
209 			goto out_free_cache;
210 
211 		if (name) {
212 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 			if (!mnt->mnt_devname)
214 				goto out_free_id;
215 		}
216 
217 #ifdef CONFIG_SMP
218 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 		if (!mnt->mnt_pcp)
220 			goto out_free_devname;
221 
222 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 		mnt->mnt_count = 1;
225 		mnt->mnt_writers = 0;
226 #endif
227 
228 		INIT_HLIST_NODE(&mnt->mnt_hash);
229 		INIT_LIST_HEAD(&mnt->mnt_child);
230 		INIT_LIST_HEAD(&mnt->mnt_mounts);
231 		INIT_LIST_HEAD(&mnt->mnt_list);
232 		INIT_LIST_HEAD(&mnt->mnt_expire);
233 		INIT_LIST_HEAD(&mnt->mnt_share);
234 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 		INIT_LIST_HEAD(&mnt->mnt_slave);
236 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
__mnt_is_readonly(struct vfsmount * mnt)274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
mnt_inc_writers(struct mount * mnt)284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
mnt_dec_writers(struct mount * mnt)293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
mnt_get_writers(struct mount * mnt)302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
mnt_is_readonly(struct vfsmount * mnt)318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
__mnt_want_write(struct vfsmount * m)343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
mnt_want_write(struct vfsmount * m)382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
mnt_clone_write(struct vfsmount * mnt)406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
__mnt_want_write_file(struct file * file)425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  */
mnt_want_write_file(struct file * file)440 int mnt_want_write_file(struct file *file)
441 {
442 	int ret;
443 
444 	sb_start_write(file->f_path.mnt->mnt_sb);
445 	ret = __mnt_want_write_file(file);
446 	if (ret)
447 		sb_end_write(file->f_path.mnt->mnt_sb);
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451 
452 /**
453  * __mnt_drop_write - give up write access to a mount
454  * @mnt: the mount on which to give up write access
455  *
456  * Tells the low-level filesystem that we are done
457  * performing writes to it.  Must be matched with
458  * __mnt_want_write() call above.
459  */
__mnt_drop_write(struct vfsmount * mnt)460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 	preempt_disable();
463 	mnt_dec_writers(real_mount(mnt));
464 	preempt_enable();
465 }
466 
467 /**
468  * mnt_drop_write - give up write access to a mount
469  * @mnt: the mount on which to give up write access
470  *
471  * Tells the low-level filesystem that we are done performing writes to it and
472  * also allows filesystem to be frozen again.  Must be matched with
473  * mnt_want_write() call above.
474  */
mnt_drop_write(struct vfsmount * mnt)475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 	__mnt_drop_write(mnt);
478 	sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481 
__mnt_drop_write_file(struct file * file)482 void __mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write(file->f_path.mnt);
485 }
486 
mnt_drop_write_file(struct file * file)487 void mnt_drop_write_file(struct file *file)
488 {
489 	mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492 
mnt_make_readonly(struct mount * mnt)493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 	int ret = 0;
496 
497 	lock_mount_hash();
498 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 	/*
500 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 	 * should be visible before we do.
502 	 */
503 	smp_mb();
504 
505 	/*
506 	 * With writers on hold, if this value is zero, then there are
507 	 * definitely no active writers (although held writers may subsequently
508 	 * increment the count, they'll have to wait, and decrement it after
509 	 * seeing MNT_READONLY).
510 	 *
511 	 * It is OK to have counter incremented on one CPU and decremented on
512 	 * another: the sum will add up correctly. The danger would be when we
513 	 * sum up each counter, if we read a counter before it is incremented,
514 	 * but then read another CPU's count which it has been subsequently
515 	 * decremented from -- we would see more decrements than we should.
516 	 * MNT_WRITE_HOLD protects against this scenario, because
517 	 * mnt_want_write first increments count, then smp_mb, then spins on
518 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 	 * we're counting up here.
520 	 */
521 	if (mnt_get_writers(mnt) > 0)
522 		ret = -EBUSY;
523 	else
524 		mnt->mnt.mnt_flags |= MNT_READONLY;
525 	/*
526 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 	 * that become unheld will see MNT_READONLY.
528 	 */
529 	smp_wmb();
530 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 	unlock_mount_hash();
532 	return ret;
533 }
534 
__mnt_unmake_readonly(struct mount * mnt)535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 	lock_mount_hash();
538 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 	unlock_mount_hash();
540 }
541 
sb_prepare_remount_readonly(struct super_block * sb)542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 	struct mount *mnt;
545 	int err = 0;
546 
547 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
548 	if (atomic_long_read(&sb->s_remove_count))
549 		return -EBUSY;
550 
551 	lock_mount_hash();
552 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 			smp_mb();
556 			if (mnt_get_writers(mnt) > 0) {
557 				err = -EBUSY;
558 				break;
559 			}
560 		}
561 	}
562 	if (!err && atomic_long_read(&sb->s_remove_count))
563 		err = -EBUSY;
564 
565 	if (!err) {
566 		sb->s_readonly_remount = 1;
567 		smp_wmb();
568 	}
569 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 	}
573 	unlock_mount_hash();
574 
575 	return err;
576 }
577 
free_vfsmnt(struct mount * mnt)578 static void free_vfsmnt(struct mount *mnt)
579 {
580 	kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 	free_percpu(mnt->mnt_pcp);
583 #endif
584 	kmem_cache_free(mnt_cache, mnt);
585 }
586 
delayed_free_vfsmnt(struct rcu_head * head)587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591 
592 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 	struct mount *mnt;
596 	if (read_seqretry(&mount_lock, seq))
597 		return false;
598 	if (bastard == NULL)
599 		return true;
600 	mnt = real_mount(bastard);
601 	mnt_add_count(mnt, 1);
602 	if (likely(!read_seqretry(&mount_lock, seq)))
603 		return true;
604 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 		mnt_add_count(mnt, -1);
606 		return false;
607 	}
608 	rcu_read_unlock();
609 	mntput(bastard);
610 	rcu_read_lock();
611 	return false;
612 }
613 
614 /*
615  * find the first mount at @dentry on vfsmount @mnt.
616  * call under rcu_read_lock()
617  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
619 {
620 	struct hlist_head *head = m_hash(mnt, dentry);
621 	struct mount *p;
622 
623 	hlist_for_each_entry_rcu(p, head, mnt_hash)
624 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 			return p;
626 	return NULL;
627 }
628 
629 /*
630  * find the last mount at @dentry on vfsmount @mnt.
631  * mount_lock must be held.
632  */
__lookup_mnt_last(struct vfsmount * mnt,struct dentry * dentry)633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634 {
635 	struct mount *p, *res = NULL;
636 	p = __lookup_mnt(mnt, dentry);
637 	if (!p)
638 		goto out;
639 	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 		res = p;
641 	hlist_for_each_entry_continue(p, mnt_hash) {
642 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 			break;
644 		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 			res = p;
646 	}
647 out:
648 	return res;
649 }
650 
651 /*
652  * lookup_mnt - Return the first child mount mounted at path
653  *
654  * "First" means first mounted chronologically.  If you create the
655  * following mounts:
656  *
657  * mount /dev/sda1 /mnt
658  * mount /dev/sda2 /mnt
659  * mount /dev/sda3 /mnt
660  *
661  * Then lookup_mnt() on the base /mnt dentry in the root mount will
662  * return successively the root dentry and vfsmount of /dev/sda1, then
663  * /dev/sda2, then /dev/sda3, then NULL.
664  *
665  * lookup_mnt takes a reference to the found vfsmount.
666  */
lookup_mnt(struct path * path)667 struct vfsmount *lookup_mnt(struct path *path)
668 {
669 	struct mount *child_mnt;
670 	struct vfsmount *m;
671 	unsigned seq;
672 
673 	rcu_read_lock();
674 	do {
675 		seq = read_seqbegin(&mount_lock);
676 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 		m = child_mnt ? &child_mnt->mnt : NULL;
678 	} while (!legitimize_mnt(m, seq));
679 	rcu_read_unlock();
680 	return m;
681 }
682 
683 /*
684  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685  *                         current mount namespace.
686  *
687  * The common case is dentries are not mountpoints at all and that
688  * test is handled inline.  For the slow case when we are actually
689  * dealing with a mountpoint of some kind, walk through all of the
690  * mounts in the current mount namespace and test to see if the dentry
691  * is a mountpoint.
692  *
693  * The mount_hashtable is not usable in the context because we
694  * need to identify all mounts that may be in the current mount
695  * namespace not just a mount that happens to have some specified
696  * parent mount.
697  */
__is_local_mountpoint(struct dentry * dentry)698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 	struct mount *mnt;
702 	bool is_covered = false;
703 
704 	if (!d_mountpoint(dentry))
705 		goto out;
706 
707 	down_read(&namespace_sem);
708 	list_for_each_entry(mnt, &ns->list, mnt_list) {
709 		is_covered = (mnt->mnt_mountpoint == dentry);
710 		if (is_covered)
711 			break;
712 	}
713 	up_read(&namespace_sem);
714 out:
715 	return is_covered;
716 }
717 
lookup_mountpoint(struct dentry * dentry)718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 {
720 	struct hlist_head *chain = mp_hash(dentry);
721 	struct mountpoint *mp;
722 
723 	hlist_for_each_entry(mp, chain, m_hash) {
724 		if (mp->m_dentry == dentry) {
725 			/* might be worth a WARN_ON() */
726 			if (d_unlinked(dentry))
727 				return ERR_PTR(-ENOENT);
728 			mp->m_count++;
729 			return mp;
730 		}
731 	}
732 	return NULL;
733 }
734 
new_mountpoint(struct dentry * dentry)735 static struct mountpoint *new_mountpoint(struct dentry *dentry)
736 {
737 	struct hlist_head *chain = mp_hash(dentry);
738 	struct mountpoint *mp;
739 	int ret;
740 
741 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 	if (!mp)
743 		return ERR_PTR(-ENOMEM);
744 
745 	ret = d_set_mounted(dentry);
746 	if (ret) {
747 		kfree(mp);
748 		return ERR_PTR(ret);
749 	}
750 
751 	mp->m_dentry = dentry;
752 	mp->m_count = 1;
753 	hlist_add_head(&mp->m_hash, chain);
754 	INIT_HLIST_HEAD(&mp->m_list);
755 	return mp;
756 }
757 
put_mountpoint(struct mountpoint * mp)758 static void put_mountpoint(struct mountpoint *mp)
759 {
760 	if (!--mp->m_count) {
761 		struct dentry *dentry = mp->m_dentry;
762 		BUG_ON(!hlist_empty(&mp->m_list));
763 		spin_lock(&dentry->d_lock);
764 		dentry->d_flags &= ~DCACHE_MOUNTED;
765 		spin_unlock(&dentry->d_lock);
766 		hlist_del(&mp->m_hash);
767 		kfree(mp);
768 	}
769 }
770 
check_mnt(struct mount * mnt)771 static inline int check_mnt(struct mount *mnt)
772 {
773 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
774 }
775 
776 /*
777  * vfsmount lock must be held for write
778  */
touch_mnt_namespace(struct mnt_namespace * ns)779 static void touch_mnt_namespace(struct mnt_namespace *ns)
780 {
781 	if (ns) {
782 		ns->event = ++event;
783 		wake_up_interruptible(&ns->poll);
784 	}
785 }
786 
787 /*
788  * vfsmount lock must be held for write
789  */
__touch_mnt_namespace(struct mnt_namespace * ns)790 static void __touch_mnt_namespace(struct mnt_namespace *ns)
791 {
792 	if (ns && ns->event != event) {
793 		ns->event = event;
794 		wake_up_interruptible(&ns->poll);
795 	}
796 }
797 
798 /*
799  * vfsmount lock must be held for write
800  */
unhash_mnt(struct mount * mnt)801 static void unhash_mnt(struct mount *mnt)
802 {
803 	mnt->mnt_parent = mnt;
804 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 	list_del_init(&mnt->mnt_child);
806 	hlist_del_init_rcu(&mnt->mnt_hash);
807 	hlist_del_init(&mnt->mnt_mp_list);
808 	put_mountpoint(mnt->mnt_mp);
809 	mnt->mnt_mp = NULL;
810 }
811 
812 /*
813  * vfsmount lock must be held for write
814  */
detach_mnt(struct mount * mnt,struct path * old_path)815 static void detach_mnt(struct mount *mnt, struct path *old_path)
816 {
817 	old_path->dentry = mnt->mnt_mountpoint;
818 	old_path->mnt = &mnt->mnt_parent->mnt;
819 	unhash_mnt(mnt);
820 }
821 
822 /*
823  * vfsmount lock must be held for write
824  */
umount_mnt(struct mount * mnt)825 static void umount_mnt(struct mount *mnt)
826 {
827 	/* old mountpoint will be dropped when we can do that */
828 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829 	unhash_mnt(mnt);
830 }
831 
832 /*
833  * vfsmount lock must be held for write
834  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)835 void mnt_set_mountpoint(struct mount *mnt,
836 			struct mountpoint *mp,
837 			struct mount *child_mnt)
838 {
839 	mp->m_count++;
840 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
841 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842 	child_mnt->mnt_parent = mnt;
843 	child_mnt->mnt_mp = mp;
844 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
845 }
846 
847 /*
848  * vfsmount lock must be held for write
849  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)850 static void attach_mnt(struct mount *mnt,
851 			struct mount *parent,
852 			struct mountpoint *mp)
853 {
854 	mnt_set_mountpoint(parent, mp, mnt);
855 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
857 }
858 
attach_shadowed(struct mount * mnt,struct mount * parent,struct mount * shadows)859 static void attach_shadowed(struct mount *mnt,
860 			struct mount *parent,
861 			struct mount *shadows)
862 {
863 	if (shadows) {
864 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865 		list_add(&mnt->mnt_child, &shadows->mnt_child);
866 	} else {
867 		hlist_add_head_rcu(&mnt->mnt_hash,
868 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
870 	}
871 }
872 
873 /*
874  * vfsmount lock must be held for write
875  */
commit_tree(struct mount * mnt,struct mount * shadows)876 static void commit_tree(struct mount *mnt, struct mount *shadows)
877 {
878 	struct mount *parent = mnt->mnt_parent;
879 	struct mount *m;
880 	LIST_HEAD(head);
881 	struct mnt_namespace *n = parent->mnt_ns;
882 
883 	BUG_ON(parent == mnt);
884 
885 	list_add_tail(&head, &mnt->mnt_list);
886 	list_for_each_entry(m, &head, mnt_list)
887 		m->mnt_ns = n;
888 
889 	list_splice(&head, n->list.prev);
890 
891 	attach_shadowed(mnt, parent, shadows);
892 	touch_mnt_namespace(n);
893 }
894 
next_mnt(struct mount * p,struct mount * root)895 static struct mount *next_mnt(struct mount *p, struct mount *root)
896 {
897 	struct list_head *next = p->mnt_mounts.next;
898 	if (next == &p->mnt_mounts) {
899 		while (1) {
900 			if (p == root)
901 				return NULL;
902 			next = p->mnt_child.next;
903 			if (next != &p->mnt_parent->mnt_mounts)
904 				break;
905 			p = p->mnt_parent;
906 		}
907 	}
908 	return list_entry(next, struct mount, mnt_child);
909 }
910 
skip_mnt_tree(struct mount * p)911 static struct mount *skip_mnt_tree(struct mount *p)
912 {
913 	struct list_head *prev = p->mnt_mounts.prev;
914 	while (prev != &p->mnt_mounts) {
915 		p = list_entry(prev, struct mount, mnt_child);
916 		prev = p->mnt_mounts.prev;
917 	}
918 	return p;
919 }
920 
921 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)922 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
923 {
924 	struct mount *mnt;
925 	struct dentry *root;
926 
927 	if (!type)
928 		return ERR_PTR(-ENODEV);
929 
930 	mnt = alloc_vfsmnt(name);
931 	if (!mnt)
932 		return ERR_PTR(-ENOMEM);
933 
934 	if (flags & MS_KERNMOUNT)
935 		mnt->mnt.mnt_flags = MNT_INTERNAL;
936 
937 	root = mount_fs(type, flags, name, data);
938 	if (IS_ERR(root)) {
939 		mnt_free_id(mnt);
940 		free_vfsmnt(mnt);
941 		return ERR_CAST(root);
942 	}
943 
944 	mnt->mnt.mnt_root = root;
945 	mnt->mnt.mnt_sb = root->d_sb;
946 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947 	mnt->mnt_parent = mnt;
948 	lock_mount_hash();
949 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
950 	unlock_mount_hash();
951 	return &mnt->mnt;
952 }
953 EXPORT_SYMBOL_GPL(vfs_kern_mount);
954 
clone_mnt(struct mount * old,struct dentry * root,int flag)955 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
956 					int flag)
957 {
958 	struct super_block *sb = old->mnt.mnt_sb;
959 	struct mount *mnt;
960 	int err;
961 
962 	mnt = alloc_vfsmnt(old->mnt_devname);
963 	if (!mnt)
964 		return ERR_PTR(-ENOMEM);
965 
966 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967 		mnt->mnt_group_id = 0; /* not a peer of original */
968 	else
969 		mnt->mnt_group_id = old->mnt_group_id;
970 
971 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 		err = mnt_alloc_group_id(mnt);
973 		if (err)
974 			goto out_free;
975 	}
976 
977 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978 	/* Don't allow unprivileged users to change mount flags */
979 	if (flag & CL_UNPRIVILEGED) {
980 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
981 
982 		if (mnt->mnt.mnt_flags & MNT_READONLY)
983 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
984 
985 		if (mnt->mnt.mnt_flags & MNT_NODEV)
986 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
987 
988 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
990 
991 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
993 	}
994 
995 	/* Don't allow unprivileged users to reveal what is under a mount */
996 	if ((flag & CL_UNPRIVILEGED) &&
997 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998 		mnt->mnt.mnt_flags |= MNT_LOCKED;
999 
1000 	atomic_inc(&sb->s_active);
1001 	mnt->mnt.mnt_sb = sb;
1002 	mnt->mnt.mnt_root = dget(root);
1003 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 	mnt->mnt_parent = mnt;
1005 	lock_mount_hash();
1006 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007 	unlock_mount_hash();
1008 
1009 	if ((flag & CL_SLAVE) ||
1010 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 		mnt->mnt_master = old;
1013 		CLEAR_MNT_SHARED(mnt);
1014 	} else if (!(flag & CL_PRIVATE)) {
1015 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 			list_add(&mnt->mnt_share, &old->mnt_share);
1017 		if (IS_MNT_SLAVE(old))
1018 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 		mnt->mnt_master = old->mnt_master;
1020 	}
1021 	if (flag & CL_MAKE_SHARED)
1022 		set_mnt_shared(mnt);
1023 
1024 	/* stick the duplicate mount on the same expiry list
1025 	 * as the original if that was on one */
1026 	if (flag & CL_EXPIRE) {
1027 		if (!list_empty(&old->mnt_expire))
1028 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1029 	}
1030 
1031 	return mnt;
1032 
1033  out_free:
1034 	mnt_free_id(mnt);
1035 	free_vfsmnt(mnt);
1036 	return ERR_PTR(err);
1037 }
1038 
cleanup_mnt(struct mount * mnt)1039 static void cleanup_mnt(struct mount *mnt)
1040 {
1041 	/*
1042 	 * This probably indicates that somebody messed
1043 	 * up a mnt_want/drop_write() pair.  If this
1044 	 * happens, the filesystem was probably unable
1045 	 * to make r/w->r/o transitions.
1046 	 */
1047 	/*
1048 	 * The locking used to deal with mnt_count decrement provides barriers,
1049 	 * so mnt_get_writers() below is safe.
1050 	 */
1051 	WARN_ON(mnt_get_writers(mnt));
1052 	if (unlikely(mnt->mnt_pins.first))
1053 		mnt_pin_kill(mnt);
1054 	fsnotify_vfsmount_delete(&mnt->mnt);
1055 	dput(mnt->mnt.mnt_root);
1056 	deactivate_super(mnt->mnt.mnt_sb);
1057 	mnt_free_id(mnt);
1058 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1059 }
1060 
__cleanup_mnt(struct rcu_head * head)1061 static void __cleanup_mnt(struct rcu_head *head)
1062 {
1063 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1064 }
1065 
1066 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1067 static void delayed_mntput(struct work_struct *unused)
1068 {
1069 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 	struct llist_node *next;
1071 
1072 	for (; node; node = next) {
1073 		next = llist_next(node);
1074 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1075 	}
1076 }
1077 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1078 
mntput_no_expire(struct mount * mnt)1079 static void mntput_no_expire(struct mount *mnt)
1080 {
1081 	rcu_read_lock();
1082 	mnt_add_count(mnt, -1);
1083 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084 		rcu_read_unlock();
1085 		return;
1086 	}
1087 	lock_mount_hash();
1088 	if (mnt_get_count(mnt)) {
1089 		rcu_read_unlock();
1090 		unlock_mount_hash();
1091 		return;
1092 	}
1093 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094 		rcu_read_unlock();
1095 		unlock_mount_hash();
1096 		return;
1097 	}
1098 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1099 	rcu_read_unlock();
1100 
1101 	list_del(&mnt->mnt_instance);
1102 
1103 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104 		struct mount *p, *tmp;
1105 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1106 			umount_mnt(p);
1107 		}
1108 	}
1109 	unlock_mount_hash();
1110 
1111 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112 		struct task_struct *task = current;
1113 		if (likely(!(task->flags & PF_KTHREAD))) {
1114 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1116 				return;
1117 		}
1118 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119 			schedule_delayed_work(&delayed_mntput_work, 1);
1120 		return;
1121 	}
1122 	cleanup_mnt(mnt);
1123 }
1124 
mntput(struct vfsmount * mnt)1125 void mntput(struct vfsmount *mnt)
1126 {
1127 	if (mnt) {
1128 		struct mount *m = real_mount(mnt);
1129 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130 		if (unlikely(m->mnt_expiry_mark))
1131 			m->mnt_expiry_mark = 0;
1132 		mntput_no_expire(m);
1133 	}
1134 }
1135 EXPORT_SYMBOL(mntput);
1136 
mntget(struct vfsmount * mnt)1137 struct vfsmount *mntget(struct vfsmount *mnt)
1138 {
1139 	if (mnt)
1140 		mnt_add_count(real_mount(mnt), 1);
1141 	return mnt;
1142 }
1143 EXPORT_SYMBOL(mntget);
1144 
mnt_clone_internal(struct path * path)1145 struct vfsmount *mnt_clone_internal(struct path *path)
1146 {
1147 	struct mount *p;
1148 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1149 	if (IS_ERR(p))
1150 		return ERR_CAST(p);
1151 	p->mnt.mnt_flags |= MNT_INTERNAL;
1152 	return &p->mnt;
1153 }
1154 
mangle(struct seq_file * m,const char * s)1155 static inline void mangle(struct seq_file *m, const char *s)
1156 {
1157 	seq_escape(m, s, " \t\n\\");
1158 }
1159 
1160 /*
1161  * Simple .show_options callback for filesystems which don't want to
1162  * implement more complex mount option showing.
1163  *
1164  * See also save_mount_options().
1165  */
generic_show_options(struct seq_file * m,struct dentry * root)1166 int generic_show_options(struct seq_file *m, struct dentry *root)
1167 {
1168 	const char *options;
1169 
1170 	rcu_read_lock();
1171 	options = rcu_dereference(root->d_sb->s_options);
1172 
1173 	if (options != NULL && options[0]) {
1174 		seq_putc(m, ',');
1175 		mangle(m, options);
1176 	}
1177 	rcu_read_unlock();
1178 
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL(generic_show_options);
1182 
1183 /*
1184  * If filesystem uses generic_show_options(), this function should be
1185  * called from the fill_super() callback.
1186  *
1187  * The .remount_fs callback usually needs to be handled in a special
1188  * way, to make sure, that previous options are not overwritten if the
1189  * remount fails.
1190  *
1191  * Also note, that if the filesystem's .remount_fs function doesn't
1192  * reset all options to their default value, but changes only newly
1193  * given options, then the displayed options will not reflect reality
1194  * any more.
1195  */
save_mount_options(struct super_block * sb,char * options)1196 void save_mount_options(struct super_block *sb, char *options)
1197 {
1198 	BUG_ON(sb->s_options);
1199 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1200 }
1201 EXPORT_SYMBOL(save_mount_options);
1202 
replace_mount_options(struct super_block * sb,char * options)1203 void replace_mount_options(struct super_block *sb, char *options)
1204 {
1205 	char *old = sb->s_options;
1206 	rcu_assign_pointer(sb->s_options, options);
1207 	if (old) {
1208 		synchronize_rcu();
1209 		kfree(old);
1210 	}
1211 }
1212 EXPORT_SYMBOL(replace_mount_options);
1213 
1214 #ifdef CONFIG_PROC_FS
1215 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1216 static void *m_start(struct seq_file *m, loff_t *pos)
1217 {
1218 	struct proc_mounts *p = proc_mounts(m);
1219 
1220 	down_read(&namespace_sem);
1221 	if (p->cached_event == p->ns->event) {
1222 		void *v = p->cached_mount;
1223 		if (*pos == p->cached_index)
1224 			return v;
1225 		if (*pos == p->cached_index + 1) {
1226 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227 			return p->cached_mount = v;
1228 		}
1229 	}
1230 
1231 	p->cached_event = p->ns->event;
1232 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233 	p->cached_index = *pos;
1234 	return p->cached_mount;
1235 }
1236 
m_next(struct seq_file * m,void * v,loff_t * pos)1237 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1238 {
1239 	struct proc_mounts *p = proc_mounts(m);
1240 
1241 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242 	p->cached_index = *pos;
1243 	return p->cached_mount;
1244 }
1245 
m_stop(struct seq_file * m,void * v)1246 static void m_stop(struct seq_file *m, void *v)
1247 {
1248 	up_read(&namespace_sem);
1249 }
1250 
m_show(struct seq_file * m,void * v)1251 static int m_show(struct seq_file *m, void *v)
1252 {
1253 	struct proc_mounts *p = proc_mounts(m);
1254 	struct mount *r = list_entry(v, struct mount, mnt_list);
1255 	return p->show(m, &r->mnt);
1256 }
1257 
1258 const struct seq_operations mounts_op = {
1259 	.start	= m_start,
1260 	.next	= m_next,
1261 	.stop	= m_stop,
1262 	.show	= m_show,
1263 };
1264 #endif  /* CONFIG_PROC_FS */
1265 
1266 /**
1267  * may_umount_tree - check if a mount tree is busy
1268  * @mnt: root of mount tree
1269  *
1270  * This is called to check if a tree of mounts has any
1271  * open files, pwds, chroots or sub mounts that are
1272  * busy.
1273  */
may_umount_tree(struct vfsmount * m)1274 int may_umount_tree(struct vfsmount *m)
1275 {
1276 	struct mount *mnt = real_mount(m);
1277 	int actual_refs = 0;
1278 	int minimum_refs = 0;
1279 	struct mount *p;
1280 	BUG_ON(!m);
1281 
1282 	/* write lock needed for mnt_get_count */
1283 	lock_mount_hash();
1284 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1285 		actual_refs += mnt_get_count(p);
1286 		minimum_refs += 2;
1287 	}
1288 	unlock_mount_hash();
1289 
1290 	if (actual_refs > minimum_refs)
1291 		return 0;
1292 
1293 	return 1;
1294 }
1295 
1296 EXPORT_SYMBOL(may_umount_tree);
1297 
1298 /**
1299  * may_umount - check if a mount point is busy
1300  * @mnt: root of mount
1301  *
1302  * This is called to check if a mount point has any
1303  * open files, pwds, chroots or sub mounts. If the
1304  * mount has sub mounts this will return busy
1305  * regardless of whether the sub mounts are busy.
1306  *
1307  * Doesn't take quota and stuff into account. IOW, in some cases it will
1308  * give false negatives. The main reason why it's here is that we need
1309  * a non-destructive way to look for easily umountable filesystems.
1310  */
may_umount(struct vfsmount * mnt)1311 int may_umount(struct vfsmount *mnt)
1312 {
1313 	int ret = 1;
1314 	down_read(&namespace_sem);
1315 	lock_mount_hash();
1316 	if (propagate_mount_busy(real_mount(mnt), 2))
1317 		ret = 0;
1318 	unlock_mount_hash();
1319 	up_read(&namespace_sem);
1320 	return ret;
1321 }
1322 
1323 EXPORT_SYMBOL(may_umount);
1324 
1325 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1326 
namespace_unlock(void)1327 static void namespace_unlock(void)
1328 {
1329 	struct hlist_head head;
1330 
1331 	hlist_move_list(&unmounted, &head);
1332 
1333 	up_write(&namespace_sem);
1334 
1335 	if (likely(hlist_empty(&head)))
1336 		return;
1337 
1338 	synchronize_rcu();
1339 
1340 	group_pin_kill(&head);
1341 }
1342 
namespace_lock(void)1343 static inline void namespace_lock(void)
1344 {
1345 	down_write(&namespace_sem);
1346 }
1347 
1348 enum umount_tree_flags {
1349 	UMOUNT_SYNC = 1,
1350 	UMOUNT_PROPAGATE = 2,
1351 	UMOUNT_CONNECTED = 4,
1352 };
1353 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1354 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1355 {
1356 	/* Leaving mounts connected is only valid for lazy umounts */
1357 	if (how & UMOUNT_SYNC)
1358 		return true;
1359 
1360 	/* A mount without a parent has nothing to be connected to */
1361 	if (!mnt_has_parent(mnt))
1362 		return true;
1363 
1364 	/* Because the reference counting rules change when mounts are
1365 	 * unmounted and connected, umounted mounts may not be
1366 	 * connected to mounted mounts.
1367 	 */
1368 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1369 		return true;
1370 
1371 	/* Has it been requested that the mount remain connected? */
1372 	if (how & UMOUNT_CONNECTED)
1373 		return false;
1374 
1375 	/* Is the mount locked such that it needs to remain connected? */
1376 	if (IS_MNT_LOCKED(mnt))
1377 		return false;
1378 
1379 	/* By default disconnect the mount */
1380 	return true;
1381 }
1382 
1383 /*
1384  * mount_lock must be held
1385  * namespace_sem must be held for write
1386  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1387 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1388 {
1389 	LIST_HEAD(tmp_list);
1390 	struct mount *p;
1391 
1392 	if (how & UMOUNT_PROPAGATE)
1393 		propagate_mount_unlock(mnt);
1394 
1395 	/* Gather the mounts to umount */
1396 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1397 		p->mnt.mnt_flags |= MNT_UMOUNT;
1398 		list_move(&p->mnt_list, &tmp_list);
1399 	}
1400 
1401 	/* Hide the mounts from mnt_mounts */
1402 	list_for_each_entry(p, &tmp_list, mnt_list) {
1403 		list_del_init(&p->mnt_child);
1404 	}
1405 
1406 	/* Add propogated mounts to the tmp_list */
1407 	if (how & UMOUNT_PROPAGATE)
1408 		propagate_umount(&tmp_list);
1409 
1410 	while (!list_empty(&tmp_list)) {
1411 		bool disconnect;
1412 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1413 		list_del_init(&p->mnt_expire);
1414 		list_del_init(&p->mnt_list);
1415 		__touch_mnt_namespace(p->mnt_ns);
1416 		p->mnt_ns = NULL;
1417 		if (how & UMOUNT_SYNC)
1418 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1419 
1420 		disconnect = disconnect_mount(p, how);
1421 
1422 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1423 				 disconnect ? &unmounted : NULL);
1424 		if (mnt_has_parent(p)) {
1425 			mnt_add_count(p->mnt_parent, -1);
1426 			if (!disconnect) {
1427 				/* Don't forget about p */
1428 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1429 			} else {
1430 				umount_mnt(p);
1431 			}
1432 		}
1433 		change_mnt_propagation(p, MS_PRIVATE);
1434 	}
1435 }
1436 
1437 static void shrink_submounts(struct mount *mnt);
1438 
do_umount(struct mount * mnt,int flags)1439 static int do_umount(struct mount *mnt, int flags)
1440 {
1441 	struct super_block *sb = mnt->mnt.mnt_sb;
1442 	int retval;
1443 
1444 	retval = security_sb_umount(&mnt->mnt, flags);
1445 	if (retval)
1446 		return retval;
1447 
1448 	/*
1449 	 * Allow userspace to request a mountpoint be expired rather than
1450 	 * unmounting unconditionally. Unmount only happens if:
1451 	 *  (1) the mark is already set (the mark is cleared by mntput())
1452 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1453 	 */
1454 	if (flags & MNT_EXPIRE) {
1455 		if (&mnt->mnt == current->fs->root.mnt ||
1456 		    flags & (MNT_FORCE | MNT_DETACH))
1457 			return -EINVAL;
1458 
1459 		/*
1460 		 * probably don't strictly need the lock here if we examined
1461 		 * all race cases, but it's a slowpath.
1462 		 */
1463 		lock_mount_hash();
1464 		if (mnt_get_count(mnt) != 2) {
1465 			unlock_mount_hash();
1466 			return -EBUSY;
1467 		}
1468 		unlock_mount_hash();
1469 
1470 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1471 			return -EAGAIN;
1472 	}
1473 
1474 	/*
1475 	 * If we may have to abort operations to get out of this
1476 	 * mount, and they will themselves hold resources we must
1477 	 * allow the fs to do things. In the Unix tradition of
1478 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1479 	 * might fail to complete on the first run through as other tasks
1480 	 * must return, and the like. Thats for the mount program to worry
1481 	 * about for the moment.
1482 	 */
1483 
1484 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1485 		sb->s_op->umount_begin(sb);
1486 	}
1487 
1488 	/*
1489 	 * No sense to grab the lock for this test, but test itself looks
1490 	 * somewhat bogus. Suggestions for better replacement?
1491 	 * Ho-hum... In principle, we might treat that as umount + switch
1492 	 * to rootfs. GC would eventually take care of the old vfsmount.
1493 	 * Actually it makes sense, especially if rootfs would contain a
1494 	 * /reboot - static binary that would close all descriptors and
1495 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1496 	 */
1497 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1498 		/*
1499 		 * Special case for "unmounting" root ...
1500 		 * we just try to remount it readonly.
1501 		 */
1502 		if (!capable(CAP_SYS_ADMIN))
1503 			return -EPERM;
1504 		down_write(&sb->s_umount);
1505 		if (!(sb->s_flags & MS_RDONLY))
1506 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1507 		up_write(&sb->s_umount);
1508 		return retval;
1509 	}
1510 
1511 	namespace_lock();
1512 	lock_mount_hash();
1513 	event++;
1514 
1515 	if (flags & MNT_DETACH) {
1516 		if (!list_empty(&mnt->mnt_list))
1517 			umount_tree(mnt, UMOUNT_PROPAGATE);
1518 		retval = 0;
1519 	} else {
1520 		shrink_submounts(mnt);
1521 		retval = -EBUSY;
1522 		if (!propagate_mount_busy(mnt, 2)) {
1523 			if (!list_empty(&mnt->mnt_list))
1524 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1525 			retval = 0;
1526 		}
1527 	}
1528 	unlock_mount_hash();
1529 	namespace_unlock();
1530 	return retval;
1531 }
1532 
1533 /*
1534  * __detach_mounts - lazily unmount all mounts on the specified dentry
1535  *
1536  * During unlink, rmdir, and d_drop it is possible to loose the path
1537  * to an existing mountpoint, and wind up leaking the mount.
1538  * detach_mounts allows lazily unmounting those mounts instead of
1539  * leaking them.
1540  *
1541  * The caller may hold dentry->d_inode->i_mutex.
1542  */
__detach_mounts(struct dentry * dentry)1543 void __detach_mounts(struct dentry *dentry)
1544 {
1545 	struct mountpoint *mp;
1546 	struct mount *mnt;
1547 
1548 	namespace_lock();
1549 	mp = lookup_mountpoint(dentry);
1550 	if (IS_ERR_OR_NULL(mp))
1551 		goto out_unlock;
1552 
1553 	lock_mount_hash();
1554 	while (!hlist_empty(&mp->m_list)) {
1555 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1556 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1557 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1558 			umount_mnt(mnt);
1559 		}
1560 		else umount_tree(mnt, UMOUNT_CONNECTED);
1561 	}
1562 	unlock_mount_hash();
1563 	put_mountpoint(mp);
1564 out_unlock:
1565 	namespace_unlock();
1566 }
1567 
1568 /*
1569  * Is the caller allowed to modify his namespace?
1570  */
may_mount(void)1571 static inline bool may_mount(void)
1572 {
1573 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1574 }
1575 
1576 /*
1577  * Now umount can handle mount points as well as block devices.
1578  * This is important for filesystems which use unnamed block devices.
1579  *
1580  * We now support a flag for forced unmount like the other 'big iron'
1581  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1582  */
1583 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1584 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1585 {
1586 	struct path path;
1587 	struct mount *mnt;
1588 	int retval;
1589 	int lookup_flags = 0;
1590 
1591 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1592 		return -EINVAL;
1593 
1594 	if (!may_mount())
1595 		return -EPERM;
1596 
1597 	if (!(flags & UMOUNT_NOFOLLOW))
1598 		lookup_flags |= LOOKUP_FOLLOW;
1599 
1600 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1601 	if (retval)
1602 		goto out;
1603 	mnt = real_mount(path.mnt);
1604 	retval = -EINVAL;
1605 	if (path.dentry != path.mnt->mnt_root)
1606 		goto dput_and_out;
1607 	if (!check_mnt(mnt))
1608 		goto dput_and_out;
1609 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1610 		goto dput_and_out;
1611 	retval = -EPERM;
1612 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1613 		goto dput_and_out;
1614 
1615 	retval = do_umount(mnt, flags);
1616 dput_and_out:
1617 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1618 	dput(path.dentry);
1619 	mntput_no_expire(mnt);
1620 out:
1621 	return retval;
1622 }
1623 
1624 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1625 
1626 /*
1627  *	The 2.0 compatible umount. No flags.
1628  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1629 SYSCALL_DEFINE1(oldumount, char __user *, name)
1630 {
1631 	return sys_umount(name, 0);
1632 }
1633 
1634 #endif
1635 
is_mnt_ns_file(struct dentry * dentry)1636 static bool is_mnt_ns_file(struct dentry *dentry)
1637 {
1638 	/* Is this a proxy for a mount namespace? */
1639 	return dentry->d_op == &ns_dentry_operations &&
1640 	       dentry->d_fsdata == &mntns_operations;
1641 }
1642 
to_mnt_ns(struct ns_common * ns)1643 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1644 {
1645 	return container_of(ns, struct mnt_namespace, ns);
1646 }
1647 
mnt_ns_loop(struct dentry * dentry)1648 static bool mnt_ns_loop(struct dentry *dentry)
1649 {
1650 	/* Could bind mounting the mount namespace inode cause a
1651 	 * mount namespace loop?
1652 	 */
1653 	struct mnt_namespace *mnt_ns;
1654 	if (!is_mnt_ns_file(dentry))
1655 		return false;
1656 
1657 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1658 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1659 }
1660 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1661 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1662 					int flag)
1663 {
1664 	struct mount *res, *p, *q, *r, *parent;
1665 
1666 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1667 		return ERR_PTR(-EINVAL);
1668 
1669 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1670 		return ERR_PTR(-EINVAL);
1671 
1672 	res = q = clone_mnt(mnt, dentry, flag);
1673 	if (IS_ERR(q))
1674 		return q;
1675 
1676 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1677 
1678 	p = mnt;
1679 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1680 		struct mount *s;
1681 		if (!is_subdir(r->mnt_mountpoint, dentry))
1682 			continue;
1683 
1684 		for (s = r; s; s = next_mnt(s, r)) {
1685 			struct mount *t = NULL;
1686 			if (!(flag & CL_COPY_UNBINDABLE) &&
1687 			    IS_MNT_UNBINDABLE(s)) {
1688 				s = skip_mnt_tree(s);
1689 				continue;
1690 			}
1691 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1692 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1693 				s = skip_mnt_tree(s);
1694 				continue;
1695 			}
1696 			while (p != s->mnt_parent) {
1697 				p = p->mnt_parent;
1698 				q = q->mnt_parent;
1699 			}
1700 			p = s;
1701 			parent = q;
1702 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1703 			if (IS_ERR(q))
1704 				goto out;
1705 			lock_mount_hash();
1706 			list_add_tail(&q->mnt_list, &res->mnt_list);
1707 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1708 			if (!list_empty(&parent->mnt_mounts)) {
1709 				t = list_last_entry(&parent->mnt_mounts,
1710 					struct mount, mnt_child);
1711 				if (t->mnt_mp != p->mnt_mp)
1712 					t = NULL;
1713 			}
1714 			attach_shadowed(q, parent, t);
1715 			unlock_mount_hash();
1716 		}
1717 	}
1718 	return res;
1719 out:
1720 	if (res) {
1721 		lock_mount_hash();
1722 		umount_tree(res, UMOUNT_SYNC);
1723 		unlock_mount_hash();
1724 	}
1725 	return q;
1726 }
1727 
1728 /* Caller should check returned pointer for errors */
1729 
collect_mounts(struct path * path)1730 struct vfsmount *collect_mounts(struct path *path)
1731 {
1732 	struct mount *tree;
1733 	namespace_lock();
1734 	if (!check_mnt(real_mount(path->mnt)))
1735 		tree = ERR_PTR(-EINVAL);
1736 	else
1737 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1738 				 CL_COPY_ALL | CL_PRIVATE);
1739 	namespace_unlock();
1740 	if (IS_ERR(tree))
1741 		return ERR_CAST(tree);
1742 	return &tree->mnt;
1743 }
1744 
drop_collected_mounts(struct vfsmount * mnt)1745 void drop_collected_mounts(struct vfsmount *mnt)
1746 {
1747 	namespace_lock();
1748 	lock_mount_hash();
1749 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1750 	unlock_mount_hash();
1751 	namespace_unlock();
1752 }
1753 
1754 /**
1755  * clone_private_mount - create a private clone of a path
1756  *
1757  * This creates a new vfsmount, which will be the clone of @path.  The new will
1758  * not be attached anywhere in the namespace and will be private (i.e. changes
1759  * to the originating mount won't be propagated into this).
1760  *
1761  * Release with mntput().
1762  */
clone_private_mount(struct path * path)1763 struct vfsmount *clone_private_mount(struct path *path)
1764 {
1765 	struct mount *old_mnt = real_mount(path->mnt);
1766 	struct mount *new_mnt;
1767 
1768 	if (IS_MNT_UNBINDABLE(old_mnt))
1769 		return ERR_PTR(-EINVAL);
1770 
1771 	down_read(&namespace_sem);
1772 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1773 	up_read(&namespace_sem);
1774 	if (IS_ERR(new_mnt))
1775 		return ERR_CAST(new_mnt);
1776 
1777 	return &new_mnt->mnt;
1778 }
1779 EXPORT_SYMBOL_GPL(clone_private_mount);
1780 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1781 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1782 		   struct vfsmount *root)
1783 {
1784 	struct mount *mnt;
1785 	int res = f(root, arg);
1786 	if (res)
1787 		return res;
1788 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1789 		res = f(&mnt->mnt, arg);
1790 		if (res)
1791 			return res;
1792 	}
1793 	return 0;
1794 }
1795 
cleanup_group_ids(struct mount * mnt,struct mount * end)1796 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1797 {
1798 	struct mount *p;
1799 
1800 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1801 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1802 			mnt_release_group_id(p);
1803 	}
1804 }
1805 
invent_group_ids(struct mount * mnt,bool recurse)1806 static int invent_group_ids(struct mount *mnt, bool recurse)
1807 {
1808 	struct mount *p;
1809 
1810 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1811 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1812 			int err = mnt_alloc_group_id(p);
1813 			if (err) {
1814 				cleanup_group_ids(mnt, p);
1815 				return err;
1816 			}
1817 		}
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 /*
1824  *  @source_mnt : mount tree to be attached
1825  *  @nd         : place the mount tree @source_mnt is attached
1826  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1827  *  		   store the parent mount and mountpoint dentry.
1828  *  		   (done when source_mnt is moved)
1829  *
1830  *  NOTE: in the table below explains the semantics when a source mount
1831  *  of a given type is attached to a destination mount of a given type.
1832  * ---------------------------------------------------------------------------
1833  * |         BIND MOUNT OPERATION                                            |
1834  * |**************************************************************************
1835  * | source-->| shared        |       private  |       slave    | unbindable |
1836  * | dest     |               |                |                |            |
1837  * |   |      |               |                |                |            |
1838  * |   v      |               |                |                |            |
1839  * |**************************************************************************
1840  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1841  * |          |               |                |                |            |
1842  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1843  * ***************************************************************************
1844  * A bind operation clones the source mount and mounts the clone on the
1845  * destination mount.
1846  *
1847  * (++)  the cloned mount is propagated to all the mounts in the propagation
1848  * 	 tree of the destination mount and the cloned mount is added to
1849  * 	 the peer group of the source mount.
1850  * (+)   the cloned mount is created under the destination mount and is marked
1851  *       as shared. The cloned mount is added to the peer group of the source
1852  *       mount.
1853  * (+++) the mount is propagated to all the mounts in the propagation tree
1854  *       of the destination mount and the cloned mount is made slave
1855  *       of the same master as that of the source mount. The cloned mount
1856  *       is marked as 'shared and slave'.
1857  * (*)   the cloned mount is made a slave of the same master as that of the
1858  * 	 source mount.
1859  *
1860  * ---------------------------------------------------------------------------
1861  * |         		MOVE MOUNT OPERATION                                 |
1862  * |**************************************************************************
1863  * | source-->| shared        |       private  |       slave    | unbindable |
1864  * | dest     |               |                |                |            |
1865  * |   |      |               |                |                |            |
1866  * |   v      |               |                |                |            |
1867  * |**************************************************************************
1868  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1869  * |          |               |                |                |            |
1870  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1871  * ***************************************************************************
1872  *
1873  * (+)  the mount is moved to the destination. And is then propagated to
1874  * 	all the mounts in the propagation tree of the destination mount.
1875  * (+*)  the mount is moved to the destination.
1876  * (+++)  the mount is moved to the destination and is then propagated to
1877  * 	all the mounts belonging to the destination mount's propagation tree.
1878  * 	the mount is marked as 'shared and slave'.
1879  * (*)	the mount continues to be a slave at the new location.
1880  *
1881  * if the source mount is a tree, the operations explained above is
1882  * applied to each mount in the tree.
1883  * Must be called without spinlocks held, since this function can sleep
1884  * in allocations.
1885  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)1886 static int attach_recursive_mnt(struct mount *source_mnt,
1887 			struct mount *dest_mnt,
1888 			struct mountpoint *dest_mp,
1889 			struct path *parent_path)
1890 {
1891 	HLIST_HEAD(tree_list);
1892 	struct mount *child, *p;
1893 	struct hlist_node *n;
1894 	int err;
1895 
1896 	if (IS_MNT_SHARED(dest_mnt)) {
1897 		err = invent_group_ids(source_mnt, true);
1898 		if (err)
1899 			goto out;
1900 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1901 		lock_mount_hash();
1902 		if (err)
1903 			goto out_cleanup_ids;
1904 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1905 			set_mnt_shared(p);
1906 	} else {
1907 		lock_mount_hash();
1908 	}
1909 	if (parent_path) {
1910 		detach_mnt(source_mnt, parent_path);
1911 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1912 		touch_mnt_namespace(source_mnt->mnt_ns);
1913 	} else {
1914 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1915 		commit_tree(source_mnt, NULL);
1916 	}
1917 
1918 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1919 		struct mount *q;
1920 		hlist_del_init(&child->mnt_hash);
1921 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1922 				      child->mnt_mountpoint);
1923 		commit_tree(child, q);
1924 	}
1925 	unlock_mount_hash();
1926 
1927 	return 0;
1928 
1929  out_cleanup_ids:
1930 	while (!hlist_empty(&tree_list)) {
1931 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1932 		umount_tree(child, UMOUNT_SYNC);
1933 	}
1934 	unlock_mount_hash();
1935 	cleanup_group_ids(source_mnt, NULL);
1936  out:
1937 	return err;
1938 }
1939 
lock_mount(struct path * path)1940 static struct mountpoint *lock_mount(struct path *path)
1941 {
1942 	struct vfsmount *mnt;
1943 	struct dentry *dentry = path->dentry;
1944 retry:
1945 	mutex_lock(&dentry->d_inode->i_mutex);
1946 	if (unlikely(cant_mount(dentry))) {
1947 		mutex_unlock(&dentry->d_inode->i_mutex);
1948 		return ERR_PTR(-ENOENT);
1949 	}
1950 	namespace_lock();
1951 	mnt = lookup_mnt(path);
1952 	if (likely(!mnt)) {
1953 		struct mountpoint *mp = lookup_mountpoint(dentry);
1954 		if (!mp)
1955 			mp = new_mountpoint(dentry);
1956 		if (IS_ERR(mp)) {
1957 			namespace_unlock();
1958 			mutex_unlock(&dentry->d_inode->i_mutex);
1959 			return mp;
1960 		}
1961 		return mp;
1962 	}
1963 	namespace_unlock();
1964 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1965 	path_put(path);
1966 	path->mnt = mnt;
1967 	dentry = path->dentry = dget(mnt->mnt_root);
1968 	goto retry;
1969 }
1970 
unlock_mount(struct mountpoint * where)1971 static void unlock_mount(struct mountpoint *where)
1972 {
1973 	struct dentry *dentry = where->m_dentry;
1974 	put_mountpoint(where);
1975 	namespace_unlock();
1976 	mutex_unlock(&dentry->d_inode->i_mutex);
1977 }
1978 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)1979 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1980 {
1981 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1982 		return -EINVAL;
1983 
1984 	if (d_is_dir(mp->m_dentry) !=
1985 	      d_is_dir(mnt->mnt.mnt_root))
1986 		return -ENOTDIR;
1987 
1988 	return attach_recursive_mnt(mnt, p, mp, NULL);
1989 }
1990 
1991 /*
1992  * Sanity check the flags to change_mnt_propagation.
1993  */
1994 
flags_to_propagation_type(int flags)1995 static int flags_to_propagation_type(int flags)
1996 {
1997 	int type = flags & ~(MS_REC | MS_SILENT);
1998 
1999 	/* Fail if any non-propagation flags are set */
2000 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2001 		return 0;
2002 	/* Only one propagation flag should be set */
2003 	if (!is_power_of_2(type))
2004 		return 0;
2005 	return type;
2006 }
2007 
2008 /*
2009  * recursively change the type of the mountpoint.
2010  */
do_change_type(struct path * path,int flag)2011 static int do_change_type(struct path *path, int flag)
2012 {
2013 	struct mount *m;
2014 	struct mount *mnt = real_mount(path->mnt);
2015 	int recurse = flag & MS_REC;
2016 	int type;
2017 	int err = 0;
2018 
2019 	if (path->dentry != path->mnt->mnt_root)
2020 		return -EINVAL;
2021 
2022 	type = flags_to_propagation_type(flag);
2023 	if (!type)
2024 		return -EINVAL;
2025 
2026 	namespace_lock();
2027 	if (type == MS_SHARED) {
2028 		err = invent_group_ids(mnt, recurse);
2029 		if (err)
2030 			goto out_unlock;
2031 	}
2032 
2033 	lock_mount_hash();
2034 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2035 		change_mnt_propagation(m, type);
2036 	unlock_mount_hash();
2037 
2038  out_unlock:
2039 	namespace_unlock();
2040 	return err;
2041 }
2042 
has_locked_children(struct mount * mnt,struct dentry * dentry)2043 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2044 {
2045 	struct mount *child;
2046 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2047 		if (!is_subdir(child->mnt_mountpoint, dentry))
2048 			continue;
2049 
2050 		if (child->mnt.mnt_flags & MNT_LOCKED)
2051 			return true;
2052 	}
2053 	return false;
2054 }
2055 
2056 /*
2057  * do loopback mount.
2058  */
do_loopback(struct path * path,const char * old_name,int recurse)2059 static int do_loopback(struct path *path, const char *old_name,
2060 				int recurse)
2061 {
2062 	struct path old_path;
2063 	struct mount *mnt = NULL, *old, *parent;
2064 	struct mountpoint *mp;
2065 	int err;
2066 	if (!old_name || !*old_name)
2067 		return -EINVAL;
2068 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2069 	if (err)
2070 		return err;
2071 
2072 	err = -EINVAL;
2073 	if (mnt_ns_loop(old_path.dentry))
2074 		goto out;
2075 
2076 	mp = lock_mount(path);
2077 	err = PTR_ERR(mp);
2078 	if (IS_ERR(mp))
2079 		goto out;
2080 
2081 	old = real_mount(old_path.mnt);
2082 	parent = real_mount(path->mnt);
2083 
2084 	err = -EINVAL;
2085 	if (IS_MNT_UNBINDABLE(old))
2086 		goto out2;
2087 
2088 	if (!check_mnt(parent))
2089 		goto out2;
2090 
2091 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2092 		goto out2;
2093 
2094 	if (!recurse && has_locked_children(old, old_path.dentry))
2095 		goto out2;
2096 
2097 	if (recurse)
2098 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2099 	else
2100 		mnt = clone_mnt(old, old_path.dentry, 0);
2101 
2102 	if (IS_ERR(mnt)) {
2103 		err = PTR_ERR(mnt);
2104 		goto out2;
2105 	}
2106 
2107 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2108 
2109 	err = graft_tree(mnt, parent, mp);
2110 	if (err) {
2111 		lock_mount_hash();
2112 		umount_tree(mnt, UMOUNT_SYNC);
2113 		unlock_mount_hash();
2114 	}
2115 out2:
2116 	unlock_mount(mp);
2117 out:
2118 	path_put(&old_path);
2119 	return err;
2120 }
2121 
change_mount_flags(struct vfsmount * mnt,int ms_flags)2122 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2123 {
2124 	int error = 0;
2125 	int readonly_request = 0;
2126 
2127 	if (ms_flags & MS_RDONLY)
2128 		readonly_request = 1;
2129 	if (readonly_request == __mnt_is_readonly(mnt))
2130 		return 0;
2131 
2132 	if (readonly_request)
2133 		error = mnt_make_readonly(real_mount(mnt));
2134 	else
2135 		__mnt_unmake_readonly(real_mount(mnt));
2136 	return error;
2137 }
2138 
2139 /*
2140  * change filesystem flags. dir should be a physical root of filesystem.
2141  * If you've mounted a non-root directory somewhere and want to do remount
2142  * on it - tough luck.
2143  */
do_remount(struct path * path,int flags,int mnt_flags,void * data)2144 static int do_remount(struct path *path, int flags, int mnt_flags,
2145 		      void *data)
2146 {
2147 	int err;
2148 	struct super_block *sb = path->mnt->mnt_sb;
2149 	struct mount *mnt = real_mount(path->mnt);
2150 
2151 	if (!check_mnt(mnt))
2152 		return -EINVAL;
2153 
2154 	if (path->dentry != path->mnt->mnt_root)
2155 		return -EINVAL;
2156 
2157 	/* Don't allow changing of locked mnt flags.
2158 	 *
2159 	 * No locks need to be held here while testing the various
2160 	 * MNT_LOCK flags because those flags can never be cleared
2161 	 * once they are set.
2162 	 */
2163 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2164 	    !(mnt_flags & MNT_READONLY)) {
2165 		return -EPERM;
2166 	}
2167 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2168 	    !(mnt_flags & MNT_NODEV)) {
2169 		/* Was the nodev implicitly added in mount? */
2170 		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2171 		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2172 			mnt_flags |= MNT_NODEV;
2173 		} else {
2174 			return -EPERM;
2175 		}
2176 	}
2177 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2178 	    !(mnt_flags & MNT_NOSUID)) {
2179 		return -EPERM;
2180 	}
2181 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2182 	    !(mnt_flags & MNT_NOEXEC)) {
2183 		return -EPERM;
2184 	}
2185 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2186 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2187 		return -EPERM;
2188 	}
2189 
2190 	err = security_sb_remount(sb, data);
2191 	if (err)
2192 		return err;
2193 
2194 	down_write(&sb->s_umount);
2195 	if (flags & MS_BIND)
2196 		err = change_mount_flags(path->mnt, flags);
2197 	else if (!capable(CAP_SYS_ADMIN))
2198 		err = -EPERM;
2199 	else
2200 		err = do_remount_sb(sb, flags, data, 0);
2201 	if (!err) {
2202 		lock_mount_hash();
2203 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2204 		mnt->mnt.mnt_flags = mnt_flags;
2205 		touch_mnt_namespace(mnt->mnt_ns);
2206 		unlock_mount_hash();
2207 	}
2208 	up_write(&sb->s_umount);
2209 	return err;
2210 }
2211 
tree_contains_unbindable(struct mount * mnt)2212 static inline int tree_contains_unbindable(struct mount *mnt)
2213 {
2214 	struct mount *p;
2215 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2216 		if (IS_MNT_UNBINDABLE(p))
2217 			return 1;
2218 	}
2219 	return 0;
2220 }
2221 
do_move_mount(struct path * path,const char * old_name)2222 static int do_move_mount(struct path *path, const char *old_name)
2223 {
2224 	struct path old_path, parent_path;
2225 	struct mount *p;
2226 	struct mount *old;
2227 	struct mountpoint *mp;
2228 	int err;
2229 	if (!old_name || !*old_name)
2230 		return -EINVAL;
2231 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2232 	if (err)
2233 		return err;
2234 
2235 	mp = lock_mount(path);
2236 	err = PTR_ERR(mp);
2237 	if (IS_ERR(mp))
2238 		goto out;
2239 
2240 	old = real_mount(old_path.mnt);
2241 	p = real_mount(path->mnt);
2242 
2243 	err = -EINVAL;
2244 	if (!check_mnt(p) || !check_mnt(old))
2245 		goto out1;
2246 
2247 	if (old->mnt.mnt_flags & MNT_LOCKED)
2248 		goto out1;
2249 
2250 	err = -EINVAL;
2251 	if (old_path.dentry != old_path.mnt->mnt_root)
2252 		goto out1;
2253 
2254 	if (!mnt_has_parent(old))
2255 		goto out1;
2256 
2257 	if (d_is_dir(path->dentry) !=
2258 	      d_is_dir(old_path.dentry))
2259 		goto out1;
2260 	/*
2261 	 * Don't move a mount residing in a shared parent.
2262 	 */
2263 	if (IS_MNT_SHARED(old->mnt_parent))
2264 		goto out1;
2265 	/*
2266 	 * Don't move a mount tree containing unbindable mounts to a destination
2267 	 * mount which is shared.
2268 	 */
2269 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2270 		goto out1;
2271 	err = -ELOOP;
2272 	for (; mnt_has_parent(p); p = p->mnt_parent)
2273 		if (p == old)
2274 			goto out1;
2275 
2276 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2277 	if (err)
2278 		goto out1;
2279 
2280 	/* if the mount is moved, it should no longer be expire
2281 	 * automatically */
2282 	list_del_init(&old->mnt_expire);
2283 out1:
2284 	unlock_mount(mp);
2285 out:
2286 	if (!err)
2287 		path_put(&parent_path);
2288 	path_put(&old_path);
2289 	return err;
2290 }
2291 
fs_set_subtype(struct vfsmount * mnt,const char * fstype)2292 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2293 {
2294 	int err;
2295 	const char *subtype = strchr(fstype, '.');
2296 	if (subtype) {
2297 		subtype++;
2298 		err = -EINVAL;
2299 		if (!subtype[0])
2300 			goto err;
2301 	} else
2302 		subtype = "";
2303 
2304 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2305 	err = -ENOMEM;
2306 	if (!mnt->mnt_sb->s_subtype)
2307 		goto err;
2308 	return mnt;
2309 
2310  err:
2311 	mntput(mnt);
2312 	return ERR_PTR(err);
2313 }
2314 
2315 /*
2316  * add a mount into a namespace's mount tree
2317  */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2318 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2319 {
2320 	struct mountpoint *mp;
2321 	struct mount *parent;
2322 	int err;
2323 
2324 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2325 
2326 	mp = lock_mount(path);
2327 	if (IS_ERR(mp))
2328 		return PTR_ERR(mp);
2329 
2330 	parent = real_mount(path->mnt);
2331 	err = -EINVAL;
2332 	if (unlikely(!check_mnt(parent))) {
2333 		/* that's acceptable only for automounts done in private ns */
2334 		if (!(mnt_flags & MNT_SHRINKABLE))
2335 			goto unlock;
2336 		/* ... and for those we'd better have mountpoint still alive */
2337 		if (!parent->mnt_ns)
2338 			goto unlock;
2339 	}
2340 
2341 	/* Refuse the same filesystem on the same mount point */
2342 	err = -EBUSY;
2343 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2344 	    path->mnt->mnt_root == path->dentry)
2345 		goto unlock;
2346 
2347 	err = -EINVAL;
2348 	if (d_is_symlink(newmnt->mnt.mnt_root))
2349 		goto unlock;
2350 
2351 	newmnt->mnt.mnt_flags = mnt_flags;
2352 	err = graft_tree(newmnt, parent, mp);
2353 
2354 unlock:
2355 	unlock_mount(mp);
2356 	return err;
2357 }
2358 
2359 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2360 
2361 /*
2362  * create a new mount for userspace and request it to be added into the
2363  * namespace's tree
2364  */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)2365 static int do_new_mount(struct path *path, const char *fstype, int flags,
2366 			int mnt_flags, const char *name, void *data)
2367 {
2368 	struct file_system_type *type;
2369 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2370 	struct vfsmount *mnt;
2371 	int err;
2372 
2373 	if (!fstype)
2374 		return -EINVAL;
2375 
2376 	type = get_fs_type(fstype);
2377 	if (!type)
2378 		return -ENODEV;
2379 
2380 	if (user_ns != &init_user_ns) {
2381 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2382 			put_filesystem(type);
2383 			return -EPERM;
2384 		}
2385 		/* Only in special cases allow devices from mounts
2386 		 * created outside the initial user namespace.
2387 		 */
2388 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2389 			flags |= MS_NODEV;
2390 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2391 		}
2392 		if (type->fs_flags & FS_USERNS_VISIBLE) {
2393 			if (!fs_fully_visible(type, &mnt_flags)) {
2394 				put_filesystem(type);
2395 				return -EPERM;
2396 			}
2397 		}
2398 	}
2399 
2400 	mnt = vfs_kern_mount(type, flags, name, data);
2401 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2402 	    !mnt->mnt_sb->s_subtype)
2403 		mnt = fs_set_subtype(mnt, fstype);
2404 
2405 	put_filesystem(type);
2406 	if (IS_ERR(mnt))
2407 		return PTR_ERR(mnt);
2408 
2409 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2410 	if (err)
2411 		mntput(mnt);
2412 	return err;
2413 }
2414 
finish_automount(struct vfsmount * m,struct path * path)2415 int finish_automount(struct vfsmount *m, struct path *path)
2416 {
2417 	struct mount *mnt = real_mount(m);
2418 	int err;
2419 	/* The new mount record should have at least 2 refs to prevent it being
2420 	 * expired before we get a chance to add it
2421 	 */
2422 	BUG_ON(mnt_get_count(mnt) < 2);
2423 
2424 	if (m->mnt_sb == path->mnt->mnt_sb &&
2425 	    m->mnt_root == path->dentry) {
2426 		err = -ELOOP;
2427 		goto fail;
2428 	}
2429 
2430 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2431 	if (!err)
2432 		return 0;
2433 fail:
2434 	/* remove m from any expiration list it may be on */
2435 	if (!list_empty(&mnt->mnt_expire)) {
2436 		namespace_lock();
2437 		list_del_init(&mnt->mnt_expire);
2438 		namespace_unlock();
2439 	}
2440 	mntput(m);
2441 	mntput(m);
2442 	return err;
2443 }
2444 
2445 /**
2446  * mnt_set_expiry - Put a mount on an expiration list
2447  * @mnt: The mount to list.
2448  * @expiry_list: The list to add the mount to.
2449  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2450 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2451 {
2452 	namespace_lock();
2453 
2454 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2455 
2456 	namespace_unlock();
2457 }
2458 EXPORT_SYMBOL(mnt_set_expiry);
2459 
2460 /*
2461  * process a list of expirable mountpoints with the intent of discarding any
2462  * mountpoints that aren't in use and haven't been touched since last we came
2463  * here
2464  */
mark_mounts_for_expiry(struct list_head * mounts)2465 void mark_mounts_for_expiry(struct list_head *mounts)
2466 {
2467 	struct mount *mnt, *next;
2468 	LIST_HEAD(graveyard);
2469 
2470 	if (list_empty(mounts))
2471 		return;
2472 
2473 	namespace_lock();
2474 	lock_mount_hash();
2475 
2476 	/* extract from the expiration list every vfsmount that matches the
2477 	 * following criteria:
2478 	 * - only referenced by its parent vfsmount
2479 	 * - still marked for expiry (marked on the last call here; marks are
2480 	 *   cleared by mntput())
2481 	 */
2482 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2483 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2484 			propagate_mount_busy(mnt, 1))
2485 			continue;
2486 		list_move(&mnt->mnt_expire, &graveyard);
2487 	}
2488 	while (!list_empty(&graveyard)) {
2489 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2490 		touch_mnt_namespace(mnt->mnt_ns);
2491 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2492 	}
2493 	unlock_mount_hash();
2494 	namespace_unlock();
2495 }
2496 
2497 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2498 
2499 /*
2500  * Ripoff of 'select_parent()'
2501  *
2502  * search the list of submounts for a given mountpoint, and move any
2503  * shrinkable submounts to the 'graveyard' list.
2504  */
select_submounts(struct mount * parent,struct list_head * graveyard)2505 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2506 {
2507 	struct mount *this_parent = parent;
2508 	struct list_head *next;
2509 	int found = 0;
2510 
2511 repeat:
2512 	next = this_parent->mnt_mounts.next;
2513 resume:
2514 	while (next != &this_parent->mnt_mounts) {
2515 		struct list_head *tmp = next;
2516 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2517 
2518 		next = tmp->next;
2519 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2520 			continue;
2521 		/*
2522 		 * Descend a level if the d_mounts list is non-empty.
2523 		 */
2524 		if (!list_empty(&mnt->mnt_mounts)) {
2525 			this_parent = mnt;
2526 			goto repeat;
2527 		}
2528 
2529 		if (!propagate_mount_busy(mnt, 1)) {
2530 			list_move_tail(&mnt->mnt_expire, graveyard);
2531 			found++;
2532 		}
2533 	}
2534 	/*
2535 	 * All done at this level ... ascend and resume the search
2536 	 */
2537 	if (this_parent != parent) {
2538 		next = this_parent->mnt_child.next;
2539 		this_parent = this_parent->mnt_parent;
2540 		goto resume;
2541 	}
2542 	return found;
2543 }
2544 
2545 /*
2546  * process a list of expirable mountpoints with the intent of discarding any
2547  * submounts of a specific parent mountpoint
2548  *
2549  * mount_lock must be held for write
2550  */
shrink_submounts(struct mount * mnt)2551 static void shrink_submounts(struct mount *mnt)
2552 {
2553 	LIST_HEAD(graveyard);
2554 	struct mount *m;
2555 
2556 	/* extract submounts of 'mountpoint' from the expiration list */
2557 	while (select_submounts(mnt, &graveyard)) {
2558 		while (!list_empty(&graveyard)) {
2559 			m = list_first_entry(&graveyard, struct mount,
2560 						mnt_expire);
2561 			touch_mnt_namespace(m->mnt_ns);
2562 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2563 		}
2564 	}
2565 }
2566 
2567 /*
2568  * Some copy_from_user() implementations do not return the exact number of
2569  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2570  * Note that this function differs from copy_from_user() in that it will oops
2571  * on bad values of `to', rather than returning a short copy.
2572  */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2573 static long exact_copy_from_user(void *to, const void __user * from,
2574 				 unsigned long n)
2575 {
2576 	char *t = to;
2577 	const char __user *f = from;
2578 	char c;
2579 
2580 	if (!access_ok(VERIFY_READ, from, n))
2581 		return n;
2582 
2583 	while (n) {
2584 		if (__get_user(c, f)) {
2585 			memset(t, 0, n);
2586 			break;
2587 		}
2588 		*t++ = c;
2589 		f++;
2590 		n--;
2591 	}
2592 	return n;
2593 }
2594 
copy_mount_options(const void __user * data,unsigned long * where)2595 int copy_mount_options(const void __user * data, unsigned long *where)
2596 {
2597 	int i;
2598 	unsigned long page;
2599 	unsigned long size;
2600 
2601 	*where = 0;
2602 	if (!data)
2603 		return 0;
2604 
2605 	if (!(page = __get_free_page(GFP_KERNEL)))
2606 		return -ENOMEM;
2607 
2608 	/* We only care that *some* data at the address the user
2609 	 * gave us is valid.  Just in case, we'll zero
2610 	 * the remainder of the page.
2611 	 */
2612 	/* copy_from_user cannot cross TASK_SIZE ! */
2613 	size = TASK_SIZE - (unsigned long)data;
2614 	if (size > PAGE_SIZE)
2615 		size = PAGE_SIZE;
2616 
2617 	i = size - exact_copy_from_user((void *)page, data, size);
2618 	if (!i) {
2619 		free_page(page);
2620 		return -EFAULT;
2621 	}
2622 	if (i != PAGE_SIZE)
2623 		memset((char *)page + i, 0, PAGE_SIZE - i);
2624 	*where = page;
2625 	return 0;
2626 }
2627 
copy_mount_string(const void __user * data)2628 char *copy_mount_string(const void __user *data)
2629 {
2630 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2631 }
2632 
2633 /*
2634  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2635  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2636  *
2637  * data is a (void *) that can point to any structure up to
2638  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2639  * information (or be NULL).
2640  *
2641  * Pre-0.97 versions of mount() didn't have a flags word.
2642  * When the flags word was introduced its top half was required
2643  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2644  * Therefore, if this magic number is present, it carries no information
2645  * and must be discarded.
2646  */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)2647 long do_mount(const char *dev_name, const char __user *dir_name,
2648 		const char *type_page, unsigned long flags, void *data_page)
2649 {
2650 	struct path path;
2651 	int retval = 0;
2652 	int mnt_flags = 0;
2653 
2654 	/* Discard magic */
2655 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2656 		flags &= ~MS_MGC_MSK;
2657 
2658 	/* Basic sanity checks */
2659 	if (data_page)
2660 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2661 
2662 	/* ... and get the mountpoint */
2663 	retval = user_path(dir_name, &path);
2664 	if (retval)
2665 		return retval;
2666 
2667 	retval = security_sb_mount(dev_name, &path,
2668 				   type_page, flags, data_page);
2669 	if (!retval && !may_mount())
2670 		retval = -EPERM;
2671 	if (retval)
2672 		goto dput_out;
2673 
2674 	/* Default to relatime unless overriden */
2675 	if (!(flags & MS_NOATIME))
2676 		mnt_flags |= MNT_RELATIME;
2677 
2678 	/* Separate the per-mountpoint flags */
2679 	if (flags & MS_NOSUID)
2680 		mnt_flags |= MNT_NOSUID;
2681 	if (flags & MS_NODEV)
2682 		mnt_flags |= MNT_NODEV;
2683 	if (flags & MS_NOEXEC)
2684 		mnt_flags |= MNT_NOEXEC;
2685 	if (flags & MS_NOATIME)
2686 		mnt_flags |= MNT_NOATIME;
2687 	if (flags & MS_NODIRATIME)
2688 		mnt_flags |= MNT_NODIRATIME;
2689 	if (flags & MS_STRICTATIME)
2690 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2691 	if (flags & MS_RDONLY)
2692 		mnt_flags |= MNT_READONLY;
2693 
2694 	/* The default atime for remount is preservation */
2695 	if ((flags & MS_REMOUNT) &&
2696 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2697 		       MS_STRICTATIME)) == 0)) {
2698 		mnt_flags &= ~MNT_ATIME_MASK;
2699 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2700 	}
2701 
2702 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2703 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2704 		   MS_STRICTATIME);
2705 
2706 	if (flags & MS_REMOUNT)
2707 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2708 				    data_page);
2709 	else if (flags & MS_BIND)
2710 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2711 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2712 		retval = do_change_type(&path, flags);
2713 	else if (flags & MS_MOVE)
2714 		retval = do_move_mount(&path, dev_name);
2715 	else
2716 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2717 				      dev_name, data_page);
2718 dput_out:
2719 	path_put(&path);
2720 	return retval;
2721 }
2722 
free_mnt_ns(struct mnt_namespace * ns)2723 static void free_mnt_ns(struct mnt_namespace *ns)
2724 {
2725 	ns_free_inum(&ns->ns);
2726 	put_user_ns(ns->user_ns);
2727 	kfree(ns);
2728 }
2729 
2730 /*
2731  * Assign a sequence number so we can detect when we attempt to bind
2732  * mount a reference to an older mount namespace into the current
2733  * mount namespace, preventing reference counting loops.  A 64bit
2734  * number incrementing at 10Ghz will take 12,427 years to wrap which
2735  * is effectively never, so we can ignore the possibility.
2736  */
2737 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2738 
alloc_mnt_ns(struct user_namespace * user_ns)2739 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2740 {
2741 	struct mnt_namespace *new_ns;
2742 	int ret;
2743 
2744 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2745 	if (!new_ns)
2746 		return ERR_PTR(-ENOMEM);
2747 	ret = ns_alloc_inum(&new_ns->ns);
2748 	if (ret) {
2749 		kfree(new_ns);
2750 		return ERR_PTR(ret);
2751 	}
2752 	new_ns->ns.ops = &mntns_operations;
2753 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2754 	atomic_set(&new_ns->count, 1);
2755 	new_ns->root = NULL;
2756 	INIT_LIST_HEAD(&new_ns->list);
2757 	init_waitqueue_head(&new_ns->poll);
2758 	new_ns->event = 0;
2759 	new_ns->user_ns = get_user_ns(user_ns);
2760 	return new_ns;
2761 }
2762 
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2763 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2764 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2765 {
2766 	struct mnt_namespace *new_ns;
2767 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2768 	struct mount *p, *q;
2769 	struct mount *old;
2770 	struct mount *new;
2771 	int copy_flags;
2772 
2773 	BUG_ON(!ns);
2774 
2775 	if (likely(!(flags & CLONE_NEWNS))) {
2776 		get_mnt_ns(ns);
2777 		return ns;
2778 	}
2779 
2780 	old = ns->root;
2781 
2782 	new_ns = alloc_mnt_ns(user_ns);
2783 	if (IS_ERR(new_ns))
2784 		return new_ns;
2785 
2786 	namespace_lock();
2787 	/* First pass: copy the tree topology */
2788 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2789 	if (user_ns != ns->user_ns)
2790 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2791 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2792 	if (IS_ERR(new)) {
2793 		namespace_unlock();
2794 		free_mnt_ns(new_ns);
2795 		return ERR_CAST(new);
2796 	}
2797 	new_ns->root = new;
2798 	list_add_tail(&new_ns->list, &new->mnt_list);
2799 
2800 	/*
2801 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2802 	 * as belonging to new namespace.  We have already acquired a private
2803 	 * fs_struct, so tsk->fs->lock is not needed.
2804 	 */
2805 	p = old;
2806 	q = new;
2807 	while (p) {
2808 		q->mnt_ns = new_ns;
2809 		if (new_fs) {
2810 			if (&p->mnt == new_fs->root.mnt) {
2811 				new_fs->root.mnt = mntget(&q->mnt);
2812 				rootmnt = &p->mnt;
2813 			}
2814 			if (&p->mnt == new_fs->pwd.mnt) {
2815 				new_fs->pwd.mnt = mntget(&q->mnt);
2816 				pwdmnt = &p->mnt;
2817 			}
2818 		}
2819 		p = next_mnt(p, old);
2820 		q = next_mnt(q, new);
2821 		if (!q)
2822 			break;
2823 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2824 			p = next_mnt(p, old);
2825 	}
2826 	namespace_unlock();
2827 
2828 	if (rootmnt)
2829 		mntput(rootmnt);
2830 	if (pwdmnt)
2831 		mntput(pwdmnt);
2832 
2833 	return new_ns;
2834 }
2835 
2836 /**
2837  * create_mnt_ns - creates a private namespace and adds a root filesystem
2838  * @mnt: pointer to the new root filesystem mountpoint
2839  */
create_mnt_ns(struct vfsmount * m)2840 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2841 {
2842 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2843 	if (!IS_ERR(new_ns)) {
2844 		struct mount *mnt = real_mount(m);
2845 		mnt->mnt_ns = new_ns;
2846 		new_ns->root = mnt;
2847 		list_add(&mnt->mnt_list, &new_ns->list);
2848 	} else {
2849 		mntput(m);
2850 	}
2851 	return new_ns;
2852 }
2853 
mount_subtree(struct vfsmount * mnt,const char * name)2854 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2855 {
2856 	struct mnt_namespace *ns;
2857 	struct super_block *s;
2858 	struct path path;
2859 	int err;
2860 
2861 	ns = create_mnt_ns(mnt);
2862 	if (IS_ERR(ns))
2863 		return ERR_CAST(ns);
2864 
2865 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2866 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2867 
2868 	put_mnt_ns(ns);
2869 
2870 	if (err)
2871 		return ERR_PTR(err);
2872 
2873 	/* trade a vfsmount reference for active sb one */
2874 	s = path.mnt->mnt_sb;
2875 	atomic_inc(&s->s_active);
2876 	mntput(path.mnt);
2877 	/* lock the sucker */
2878 	down_write(&s->s_umount);
2879 	/* ... and return the root of (sub)tree on it */
2880 	return path.dentry;
2881 }
2882 EXPORT_SYMBOL(mount_subtree);
2883 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)2884 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2885 		char __user *, type, unsigned long, flags, void __user *, data)
2886 {
2887 	int ret;
2888 	char *kernel_type;
2889 	char *kernel_dev;
2890 	unsigned long data_page;
2891 
2892 	kernel_type = copy_mount_string(type);
2893 	ret = PTR_ERR(kernel_type);
2894 	if (IS_ERR(kernel_type))
2895 		goto out_type;
2896 
2897 	kernel_dev = copy_mount_string(dev_name);
2898 	ret = PTR_ERR(kernel_dev);
2899 	if (IS_ERR(kernel_dev))
2900 		goto out_dev;
2901 
2902 	ret = copy_mount_options(data, &data_page);
2903 	if (ret < 0)
2904 		goto out_data;
2905 
2906 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2907 		(void *) data_page);
2908 
2909 	free_page(data_page);
2910 out_data:
2911 	kfree(kernel_dev);
2912 out_dev:
2913 	kfree(kernel_type);
2914 out_type:
2915 	return ret;
2916 }
2917 
2918 /*
2919  * Return true if path is reachable from root
2920  *
2921  * namespace_sem or mount_lock is held
2922  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)2923 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2924 			 const struct path *root)
2925 {
2926 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2927 		dentry = mnt->mnt_mountpoint;
2928 		mnt = mnt->mnt_parent;
2929 	}
2930 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2931 }
2932 
path_is_under(struct path * path1,struct path * path2)2933 int path_is_under(struct path *path1, struct path *path2)
2934 {
2935 	int res;
2936 	read_seqlock_excl(&mount_lock);
2937 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2938 	read_sequnlock_excl(&mount_lock);
2939 	return res;
2940 }
2941 EXPORT_SYMBOL(path_is_under);
2942 
2943 /*
2944  * pivot_root Semantics:
2945  * Moves the root file system of the current process to the directory put_old,
2946  * makes new_root as the new root file system of the current process, and sets
2947  * root/cwd of all processes which had them on the current root to new_root.
2948  *
2949  * Restrictions:
2950  * The new_root and put_old must be directories, and  must not be on the
2951  * same file  system as the current process root. The put_old  must  be
2952  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2953  * pointed to by put_old must yield the same directory as new_root. No other
2954  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2955  *
2956  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2957  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2958  * in this situation.
2959  *
2960  * Notes:
2961  *  - we don't move root/cwd if they are not at the root (reason: if something
2962  *    cared enough to change them, it's probably wrong to force them elsewhere)
2963  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2964  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2965  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2966  *    first.
2967  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)2968 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2969 		const char __user *, put_old)
2970 {
2971 	struct path new, old, parent_path, root_parent, root;
2972 	struct mount *new_mnt, *root_mnt, *old_mnt;
2973 	struct mountpoint *old_mp, *root_mp;
2974 	int error;
2975 
2976 	if (!may_mount())
2977 		return -EPERM;
2978 
2979 	error = user_path_dir(new_root, &new);
2980 	if (error)
2981 		goto out0;
2982 
2983 	error = user_path_dir(put_old, &old);
2984 	if (error)
2985 		goto out1;
2986 
2987 	error = security_sb_pivotroot(&old, &new);
2988 	if (error)
2989 		goto out2;
2990 
2991 	get_fs_root(current->fs, &root);
2992 	old_mp = lock_mount(&old);
2993 	error = PTR_ERR(old_mp);
2994 	if (IS_ERR(old_mp))
2995 		goto out3;
2996 
2997 	error = -EINVAL;
2998 	new_mnt = real_mount(new.mnt);
2999 	root_mnt = real_mount(root.mnt);
3000 	old_mnt = real_mount(old.mnt);
3001 	if (IS_MNT_SHARED(old_mnt) ||
3002 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3003 		IS_MNT_SHARED(root_mnt->mnt_parent))
3004 		goto out4;
3005 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3006 		goto out4;
3007 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3008 		goto out4;
3009 	error = -ENOENT;
3010 	if (d_unlinked(new.dentry))
3011 		goto out4;
3012 	error = -EBUSY;
3013 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3014 		goto out4; /* loop, on the same file system  */
3015 	error = -EINVAL;
3016 	if (root.mnt->mnt_root != root.dentry)
3017 		goto out4; /* not a mountpoint */
3018 	if (!mnt_has_parent(root_mnt))
3019 		goto out4; /* not attached */
3020 	root_mp = root_mnt->mnt_mp;
3021 	if (new.mnt->mnt_root != new.dentry)
3022 		goto out4; /* not a mountpoint */
3023 	if (!mnt_has_parent(new_mnt))
3024 		goto out4; /* not attached */
3025 	/* make sure we can reach put_old from new_root */
3026 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3027 		goto out4;
3028 	/* make certain new is below the root */
3029 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3030 		goto out4;
3031 	root_mp->m_count++; /* pin it so it won't go away */
3032 	lock_mount_hash();
3033 	detach_mnt(new_mnt, &parent_path);
3034 	detach_mnt(root_mnt, &root_parent);
3035 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3036 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3037 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3038 	}
3039 	/* mount old root on put_old */
3040 	attach_mnt(root_mnt, old_mnt, old_mp);
3041 	/* mount new_root on / */
3042 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3043 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3044 	/* A moved mount should not expire automatically */
3045 	list_del_init(&new_mnt->mnt_expire);
3046 	unlock_mount_hash();
3047 	chroot_fs_refs(&root, &new);
3048 	put_mountpoint(root_mp);
3049 	error = 0;
3050 out4:
3051 	unlock_mount(old_mp);
3052 	if (!error) {
3053 		path_put(&root_parent);
3054 		path_put(&parent_path);
3055 	}
3056 out3:
3057 	path_put(&root);
3058 out2:
3059 	path_put(&old);
3060 out1:
3061 	path_put(&new);
3062 out0:
3063 	return error;
3064 }
3065 
init_mount_tree(void)3066 static void __init init_mount_tree(void)
3067 {
3068 	struct vfsmount *mnt;
3069 	struct mnt_namespace *ns;
3070 	struct path root;
3071 	struct file_system_type *type;
3072 
3073 	type = get_fs_type("rootfs");
3074 	if (!type)
3075 		panic("Can't find rootfs type");
3076 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3077 	put_filesystem(type);
3078 	if (IS_ERR(mnt))
3079 		panic("Can't create rootfs");
3080 
3081 	ns = create_mnt_ns(mnt);
3082 	if (IS_ERR(ns))
3083 		panic("Can't allocate initial namespace");
3084 
3085 	init_task.nsproxy->mnt_ns = ns;
3086 	get_mnt_ns(ns);
3087 
3088 	root.mnt = mnt;
3089 	root.dentry = mnt->mnt_root;
3090 	mnt->mnt_flags |= MNT_LOCKED;
3091 
3092 	set_fs_pwd(current->fs, &root);
3093 	set_fs_root(current->fs, &root);
3094 }
3095 
mnt_init(void)3096 void __init mnt_init(void)
3097 {
3098 	unsigned u;
3099 	int err;
3100 
3101 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3102 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3103 
3104 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3105 				sizeof(struct hlist_head),
3106 				mhash_entries, 19,
3107 				0,
3108 				&m_hash_shift, &m_hash_mask, 0, 0);
3109 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3110 				sizeof(struct hlist_head),
3111 				mphash_entries, 19,
3112 				0,
3113 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3114 
3115 	if (!mount_hashtable || !mountpoint_hashtable)
3116 		panic("Failed to allocate mount hash table\n");
3117 
3118 	for (u = 0; u <= m_hash_mask; u++)
3119 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3120 	for (u = 0; u <= mp_hash_mask; u++)
3121 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3122 
3123 	kernfs_init();
3124 
3125 	err = sysfs_init();
3126 	if (err)
3127 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3128 			__func__, err);
3129 	fs_kobj = kobject_create_and_add("fs", NULL);
3130 	if (!fs_kobj)
3131 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3132 	init_rootfs();
3133 	init_mount_tree();
3134 }
3135 
put_mnt_ns(struct mnt_namespace * ns)3136 void put_mnt_ns(struct mnt_namespace *ns)
3137 {
3138 	if (!atomic_dec_and_test(&ns->count))
3139 		return;
3140 	drop_collected_mounts(&ns->root->mnt);
3141 	free_mnt_ns(ns);
3142 }
3143 
kern_mount_data(struct file_system_type * type,void * data)3144 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3145 {
3146 	struct vfsmount *mnt;
3147 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3148 	if (!IS_ERR(mnt)) {
3149 		/*
3150 		 * it is a longterm mount, don't release mnt until
3151 		 * we unmount before file sys is unregistered
3152 		*/
3153 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3154 	}
3155 	return mnt;
3156 }
3157 EXPORT_SYMBOL_GPL(kern_mount_data);
3158 
kern_unmount(struct vfsmount * mnt)3159 void kern_unmount(struct vfsmount *mnt)
3160 {
3161 	/* release long term mount so mount point can be released */
3162 	if (!IS_ERR_OR_NULL(mnt)) {
3163 		real_mount(mnt)->mnt_ns = NULL;
3164 		synchronize_rcu();	/* yecchhh... */
3165 		mntput(mnt);
3166 	}
3167 }
3168 EXPORT_SYMBOL(kern_unmount);
3169 
our_mnt(struct vfsmount * mnt)3170 bool our_mnt(struct vfsmount *mnt)
3171 {
3172 	return check_mnt(real_mount(mnt));
3173 }
3174 
current_chrooted(void)3175 bool current_chrooted(void)
3176 {
3177 	/* Does the current process have a non-standard root */
3178 	struct path ns_root;
3179 	struct path fs_root;
3180 	bool chrooted;
3181 
3182 	/* Find the namespace root */
3183 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3184 	ns_root.dentry = ns_root.mnt->mnt_root;
3185 	path_get(&ns_root);
3186 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3187 		;
3188 
3189 	get_fs_root(current->fs, &fs_root);
3190 
3191 	chrooted = !path_equal(&fs_root, &ns_root);
3192 
3193 	path_put(&fs_root);
3194 	path_put(&ns_root);
3195 
3196 	return chrooted;
3197 }
3198 
fs_fully_visible(struct file_system_type * type,int * new_mnt_flags)3199 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3200 {
3201 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3202 	int new_flags = *new_mnt_flags;
3203 	struct mount *mnt;
3204 	bool visible = false;
3205 
3206 	if (unlikely(!ns))
3207 		return false;
3208 
3209 	down_read(&namespace_sem);
3210 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3211 		struct mount *child;
3212 		if (mnt->mnt.mnt_sb->s_type != type)
3213 			continue;
3214 
3215 		/* This mount is not fully visible if it's root directory
3216 		 * is not the root directory of the filesystem.
3217 		 */
3218 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3219 			continue;
3220 
3221 		/* Verify the mount flags are equal to or more permissive
3222 		 * than the proposed new mount.
3223 		 */
3224 		if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
3225 		    !(new_flags & MNT_READONLY))
3226 			continue;
3227 		if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
3228 		    !(new_flags & MNT_NODEV))
3229 			continue;
3230 		if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
3231 		    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3232 			continue;
3233 
3234 		/* This mount is not fully visible if there are any
3235 		 * locked child mounts that cover anything except for
3236 		 * empty directories.
3237 		 */
3238 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3239 			struct inode *inode = child->mnt_mountpoint->d_inode;
3240 			/* Only worry about locked mounts */
3241 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3242 				continue;
3243 			/* Is the directory permanetly empty? */
3244 			if (!is_empty_dir_inode(inode))
3245 				goto next;
3246 		}
3247 		/* Preserve the locked attributes */
3248 		*new_mnt_flags |= mnt->mnt.mnt_flags & (MNT_LOCK_READONLY | \
3249 							MNT_LOCK_NODEV    | \
3250 							MNT_LOCK_ATIME);
3251 		visible = true;
3252 		goto found;
3253 	next:	;
3254 	}
3255 found:
3256 	up_read(&namespace_sem);
3257 	return visible;
3258 }
3259 
mntns_get(struct task_struct * task)3260 static struct ns_common *mntns_get(struct task_struct *task)
3261 {
3262 	struct ns_common *ns = NULL;
3263 	struct nsproxy *nsproxy;
3264 
3265 	task_lock(task);
3266 	nsproxy = task->nsproxy;
3267 	if (nsproxy) {
3268 		ns = &nsproxy->mnt_ns->ns;
3269 		get_mnt_ns(to_mnt_ns(ns));
3270 	}
3271 	task_unlock(task);
3272 
3273 	return ns;
3274 }
3275 
mntns_put(struct ns_common * ns)3276 static void mntns_put(struct ns_common *ns)
3277 {
3278 	put_mnt_ns(to_mnt_ns(ns));
3279 }
3280 
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)3281 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3282 {
3283 	struct fs_struct *fs = current->fs;
3284 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3285 	struct path root;
3286 
3287 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3288 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3289 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3290 		return -EPERM;
3291 
3292 	if (fs->users != 1)
3293 		return -EINVAL;
3294 
3295 	get_mnt_ns(mnt_ns);
3296 	put_mnt_ns(nsproxy->mnt_ns);
3297 	nsproxy->mnt_ns = mnt_ns;
3298 
3299 	/* Find the root */
3300 	root.mnt    = &mnt_ns->root->mnt;
3301 	root.dentry = mnt_ns->root->mnt.mnt_root;
3302 	path_get(&root);
3303 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3304 		;
3305 
3306 	/* Update the pwd and root */
3307 	set_fs_pwd(fs, &root);
3308 	set_fs_root(fs, &root);
3309 
3310 	path_put(&root);
3311 	return 0;
3312 }
3313 
3314 const struct proc_ns_operations mntns_operations = {
3315 	.name		= "mnt",
3316 	.type		= CLONE_NEWNS,
3317 	.get		= mntns_get,
3318 	.put		= mntns_put,
3319 	.install	= mntns_install,
3320 };
3321