1/*
2 *  linux/fs/hfsplus/bnode.c
3 *
4 * Copyright (C) 2001
5 * Brad Boyer (flar@allandria.com)
6 * (C) 2003 Ardis Technologies <roman@ardistech.com>
7 *
8 * Handle basic btree node operations
9 */
10
11#include <linux/string.h>
12#include <linux/slab.h>
13#include <linux/pagemap.h>
14#include <linux/fs.h>
15#include <linux/swap.h>
16
17#include "hfsplus_fs.h"
18#include "hfsplus_raw.h"
19
20/* Copy a specified range of bytes from the raw data of a node */
21void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
22{
23	struct page **pagep;
24	int l;
25
26	off += node->page_offset;
27	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
28	off &= ~PAGE_CACHE_MASK;
29
30	l = min_t(int, len, PAGE_CACHE_SIZE - off);
31	memcpy(buf, kmap(*pagep) + off, l);
32	kunmap(*pagep);
33
34	while ((len -= l) != 0) {
35		buf += l;
36		l = min_t(int, len, PAGE_CACHE_SIZE);
37		memcpy(buf, kmap(*++pagep), l);
38		kunmap(*pagep);
39	}
40}
41
42u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
43{
44	__be16 data;
45	/* TODO: optimize later... */
46	hfs_bnode_read(node, &data, off, 2);
47	return be16_to_cpu(data);
48}
49
50u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
51{
52	u8 data;
53	/* TODO: optimize later... */
54	hfs_bnode_read(node, &data, off, 1);
55	return data;
56}
57
58void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
59{
60	struct hfs_btree *tree;
61	int key_len;
62
63	tree = node->tree;
64	if (node->type == HFS_NODE_LEAF ||
65	    tree->attributes & HFS_TREE_VARIDXKEYS ||
66	    node->tree->cnid == HFSPLUS_ATTR_CNID)
67		key_len = hfs_bnode_read_u16(node, off) + 2;
68	else
69		key_len = tree->max_key_len + 2;
70
71	hfs_bnode_read(node, key, off, key_len);
72}
73
74void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
75{
76	struct page **pagep;
77	int l;
78
79	off += node->page_offset;
80	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
81	off &= ~PAGE_CACHE_MASK;
82
83	l = min_t(int, len, PAGE_CACHE_SIZE - off);
84	memcpy(kmap(*pagep) + off, buf, l);
85	set_page_dirty(*pagep);
86	kunmap(*pagep);
87
88	while ((len -= l) != 0) {
89		buf += l;
90		l = min_t(int, len, PAGE_CACHE_SIZE);
91		memcpy(kmap(*++pagep), buf, l);
92		set_page_dirty(*pagep);
93		kunmap(*pagep);
94	}
95}
96
97void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
98{
99	__be16 v = cpu_to_be16(data);
100	/* TODO: optimize later... */
101	hfs_bnode_write(node, &v, off, 2);
102}
103
104void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
105{
106	struct page **pagep;
107	int l;
108
109	off += node->page_offset;
110	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
111	off &= ~PAGE_CACHE_MASK;
112
113	l = min_t(int, len, PAGE_CACHE_SIZE - off);
114	memset(kmap(*pagep) + off, 0, l);
115	set_page_dirty(*pagep);
116	kunmap(*pagep);
117
118	while ((len -= l) != 0) {
119		l = min_t(int, len, PAGE_CACHE_SIZE);
120		memset(kmap(*++pagep), 0, l);
121		set_page_dirty(*pagep);
122		kunmap(*pagep);
123	}
124}
125
126void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
127		    struct hfs_bnode *src_node, int src, int len)
128{
129	struct hfs_btree *tree;
130	struct page **src_page, **dst_page;
131	int l;
132
133	hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
134	if (!len)
135		return;
136	tree = src_node->tree;
137	src += src_node->page_offset;
138	dst += dst_node->page_offset;
139	src_page = src_node->page + (src >> PAGE_CACHE_SHIFT);
140	src &= ~PAGE_CACHE_MASK;
141	dst_page = dst_node->page + (dst >> PAGE_CACHE_SHIFT);
142	dst &= ~PAGE_CACHE_MASK;
143
144	if (src == dst) {
145		l = min_t(int, len, PAGE_CACHE_SIZE - src);
146		memcpy(kmap(*dst_page) + src, kmap(*src_page) + src, l);
147		kunmap(*src_page);
148		set_page_dirty(*dst_page);
149		kunmap(*dst_page);
150
151		while ((len -= l) != 0) {
152			l = min_t(int, len, PAGE_CACHE_SIZE);
153			memcpy(kmap(*++dst_page), kmap(*++src_page), l);
154			kunmap(*src_page);
155			set_page_dirty(*dst_page);
156			kunmap(*dst_page);
157		}
158	} else {
159		void *src_ptr, *dst_ptr;
160
161		do {
162			src_ptr = kmap(*src_page) + src;
163			dst_ptr = kmap(*dst_page) + dst;
164			if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) {
165				l = PAGE_CACHE_SIZE - src;
166				src = 0;
167				dst += l;
168			} else {
169				l = PAGE_CACHE_SIZE - dst;
170				src += l;
171				dst = 0;
172			}
173			l = min(len, l);
174			memcpy(dst_ptr, src_ptr, l);
175			kunmap(*src_page);
176			set_page_dirty(*dst_page);
177			kunmap(*dst_page);
178			if (!dst)
179				dst_page++;
180			else
181				src_page++;
182		} while ((len -= l));
183	}
184}
185
186void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
187{
188	struct page **src_page, **dst_page;
189	int l;
190
191	hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
192	if (!len)
193		return;
194	src += node->page_offset;
195	dst += node->page_offset;
196	if (dst > src) {
197		src += len - 1;
198		src_page = node->page + (src >> PAGE_CACHE_SHIFT);
199		src = (src & ~PAGE_CACHE_MASK) + 1;
200		dst += len - 1;
201		dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
202		dst = (dst & ~PAGE_CACHE_MASK) + 1;
203
204		if (src == dst) {
205			while (src < len) {
206				memmove(kmap(*dst_page), kmap(*src_page), src);
207				kunmap(*src_page);
208				set_page_dirty(*dst_page);
209				kunmap(*dst_page);
210				len -= src;
211				src = PAGE_CACHE_SIZE;
212				src_page--;
213				dst_page--;
214			}
215			src -= len;
216			memmove(kmap(*dst_page) + src,
217				kmap(*src_page) + src, len);
218			kunmap(*src_page);
219			set_page_dirty(*dst_page);
220			kunmap(*dst_page);
221		} else {
222			void *src_ptr, *dst_ptr;
223
224			do {
225				src_ptr = kmap(*src_page) + src;
226				dst_ptr = kmap(*dst_page) + dst;
227				if (src < dst) {
228					l = src;
229					src = PAGE_CACHE_SIZE;
230					dst -= l;
231				} else {
232					l = dst;
233					src -= l;
234					dst = PAGE_CACHE_SIZE;
235				}
236				l = min(len, l);
237				memmove(dst_ptr - l, src_ptr - l, l);
238				kunmap(*src_page);
239				set_page_dirty(*dst_page);
240				kunmap(*dst_page);
241				if (dst == PAGE_CACHE_SIZE)
242					dst_page--;
243				else
244					src_page--;
245			} while ((len -= l));
246		}
247	} else {
248		src_page = node->page + (src >> PAGE_CACHE_SHIFT);
249		src &= ~PAGE_CACHE_MASK;
250		dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
251		dst &= ~PAGE_CACHE_MASK;
252
253		if (src == dst) {
254			l = min_t(int, len, PAGE_CACHE_SIZE - src);
255			memmove(kmap(*dst_page) + src,
256				kmap(*src_page) + src, l);
257			kunmap(*src_page);
258			set_page_dirty(*dst_page);
259			kunmap(*dst_page);
260
261			while ((len -= l) != 0) {
262				l = min_t(int, len, PAGE_CACHE_SIZE);
263				memmove(kmap(*++dst_page),
264					kmap(*++src_page), l);
265				kunmap(*src_page);
266				set_page_dirty(*dst_page);
267				kunmap(*dst_page);
268			}
269		} else {
270			void *src_ptr, *dst_ptr;
271
272			do {
273				src_ptr = kmap(*src_page) + src;
274				dst_ptr = kmap(*dst_page) + dst;
275				if (PAGE_CACHE_SIZE - src <
276						PAGE_CACHE_SIZE - dst) {
277					l = PAGE_CACHE_SIZE - src;
278					src = 0;
279					dst += l;
280				} else {
281					l = PAGE_CACHE_SIZE - dst;
282					src += l;
283					dst = 0;
284				}
285				l = min(len, l);
286				memmove(dst_ptr, src_ptr, l);
287				kunmap(*src_page);
288				set_page_dirty(*dst_page);
289				kunmap(*dst_page);
290				if (!dst)
291					dst_page++;
292				else
293					src_page++;
294			} while ((len -= l));
295		}
296	}
297}
298
299void hfs_bnode_dump(struct hfs_bnode *node)
300{
301	struct hfs_bnode_desc desc;
302	__be32 cnid;
303	int i, off, key_off;
304
305	hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this);
306	hfs_bnode_read(node, &desc, 0, sizeof(desc));
307	hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n",
308		be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
309		desc.type, desc.height, be16_to_cpu(desc.num_recs));
310
311	off = node->tree->node_size - 2;
312	for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
313		key_off = hfs_bnode_read_u16(node, off);
314		hfs_dbg(BNODE_MOD, " %d", key_off);
315		if (i && node->type == HFS_NODE_INDEX) {
316			int tmp;
317
318			if (node->tree->attributes & HFS_TREE_VARIDXKEYS ||
319					node->tree->cnid == HFSPLUS_ATTR_CNID)
320				tmp = hfs_bnode_read_u16(node, key_off) + 2;
321			else
322				tmp = node->tree->max_key_len + 2;
323			hfs_dbg_cont(BNODE_MOD, " (%d", tmp);
324			hfs_bnode_read(node, &cnid, key_off + tmp, 4);
325			hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid));
326		} else if (i && node->type == HFS_NODE_LEAF) {
327			int tmp;
328
329			tmp = hfs_bnode_read_u16(node, key_off);
330			hfs_dbg_cont(BNODE_MOD, " (%d)", tmp);
331		}
332	}
333	hfs_dbg_cont(BNODE_MOD, "\n");
334}
335
336void hfs_bnode_unlink(struct hfs_bnode *node)
337{
338	struct hfs_btree *tree;
339	struct hfs_bnode *tmp;
340	__be32 cnid;
341
342	tree = node->tree;
343	if (node->prev) {
344		tmp = hfs_bnode_find(tree, node->prev);
345		if (IS_ERR(tmp))
346			return;
347		tmp->next = node->next;
348		cnid = cpu_to_be32(tmp->next);
349		hfs_bnode_write(tmp, &cnid,
350			offsetof(struct hfs_bnode_desc, next), 4);
351		hfs_bnode_put(tmp);
352	} else if (node->type == HFS_NODE_LEAF)
353		tree->leaf_head = node->next;
354
355	if (node->next) {
356		tmp = hfs_bnode_find(tree, node->next);
357		if (IS_ERR(tmp))
358			return;
359		tmp->prev = node->prev;
360		cnid = cpu_to_be32(tmp->prev);
361		hfs_bnode_write(tmp, &cnid,
362			offsetof(struct hfs_bnode_desc, prev), 4);
363		hfs_bnode_put(tmp);
364	} else if (node->type == HFS_NODE_LEAF)
365		tree->leaf_tail = node->prev;
366
367	/* move down? */
368	if (!node->prev && !node->next)
369		hfs_dbg(BNODE_MOD, "hfs_btree_del_level\n");
370	if (!node->parent) {
371		tree->root = 0;
372		tree->depth = 0;
373	}
374	set_bit(HFS_BNODE_DELETED, &node->flags);
375}
376
377static inline int hfs_bnode_hash(u32 num)
378{
379	num = (num >> 16) + num;
380	num += num >> 8;
381	return num & (NODE_HASH_SIZE - 1);
382}
383
384struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
385{
386	struct hfs_bnode *node;
387
388	if (cnid >= tree->node_count) {
389		pr_err("request for non-existent node %d in B*Tree\n",
390		       cnid);
391		return NULL;
392	}
393
394	for (node = tree->node_hash[hfs_bnode_hash(cnid)];
395			node; node = node->next_hash)
396		if (node->this == cnid)
397			return node;
398	return NULL;
399}
400
401static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
402{
403	struct super_block *sb;
404	struct hfs_bnode *node, *node2;
405	struct address_space *mapping;
406	struct page *page;
407	int size, block, i, hash;
408	loff_t off;
409
410	if (cnid >= tree->node_count) {
411		pr_err("request for non-existent node %d in B*Tree\n",
412		       cnid);
413		return NULL;
414	}
415
416	sb = tree->inode->i_sb;
417	size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
418		sizeof(struct page *);
419	node = kzalloc(size, GFP_KERNEL);
420	if (!node)
421		return NULL;
422	node->tree = tree;
423	node->this = cnid;
424	set_bit(HFS_BNODE_NEW, &node->flags);
425	atomic_set(&node->refcnt, 1);
426	hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n",
427		node->tree->cnid, node->this);
428	init_waitqueue_head(&node->lock_wq);
429	spin_lock(&tree->hash_lock);
430	node2 = hfs_bnode_findhash(tree, cnid);
431	if (!node2) {
432		hash = hfs_bnode_hash(cnid);
433		node->next_hash = tree->node_hash[hash];
434		tree->node_hash[hash] = node;
435		tree->node_hash_cnt++;
436	} else {
437		spin_unlock(&tree->hash_lock);
438		kfree(node);
439		wait_event(node2->lock_wq,
440			!test_bit(HFS_BNODE_NEW, &node2->flags));
441		return node2;
442	}
443	spin_unlock(&tree->hash_lock);
444
445	mapping = tree->inode->i_mapping;
446	off = (loff_t)cnid << tree->node_size_shift;
447	block = off >> PAGE_CACHE_SHIFT;
448	node->page_offset = off & ~PAGE_CACHE_MASK;
449	for (i = 0; i < tree->pages_per_bnode; block++, i++) {
450		page = read_mapping_page(mapping, block, NULL);
451		if (IS_ERR(page))
452			goto fail;
453		if (PageError(page)) {
454			page_cache_release(page);
455			goto fail;
456		}
457		node->page[i] = page;
458	}
459
460	return node;
461fail:
462	set_bit(HFS_BNODE_ERROR, &node->flags);
463	return node;
464}
465
466void hfs_bnode_unhash(struct hfs_bnode *node)
467{
468	struct hfs_bnode **p;
469
470	hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n",
471		node->tree->cnid, node->this, atomic_read(&node->refcnt));
472	for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
473	     *p && *p != node; p = &(*p)->next_hash)
474		;
475	BUG_ON(!*p);
476	*p = node->next_hash;
477	node->tree->node_hash_cnt--;
478}
479
480/* Load a particular node out of a tree */
481struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
482{
483	struct hfs_bnode *node;
484	struct hfs_bnode_desc *desc;
485	int i, rec_off, off, next_off;
486	int entry_size, key_size;
487
488	spin_lock(&tree->hash_lock);
489	node = hfs_bnode_findhash(tree, num);
490	if (node) {
491		hfs_bnode_get(node);
492		spin_unlock(&tree->hash_lock);
493		wait_event(node->lock_wq,
494			!test_bit(HFS_BNODE_NEW, &node->flags));
495		if (test_bit(HFS_BNODE_ERROR, &node->flags))
496			goto node_error;
497		return node;
498	}
499	spin_unlock(&tree->hash_lock);
500	node = __hfs_bnode_create(tree, num);
501	if (!node)
502		return ERR_PTR(-ENOMEM);
503	if (test_bit(HFS_BNODE_ERROR, &node->flags))
504		goto node_error;
505	if (!test_bit(HFS_BNODE_NEW, &node->flags))
506		return node;
507
508	desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) +
509			node->page_offset);
510	node->prev = be32_to_cpu(desc->prev);
511	node->next = be32_to_cpu(desc->next);
512	node->num_recs = be16_to_cpu(desc->num_recs);
513	node->type = desc->type;
514	node->height = desc->height;
515	kunmap(node->page[0]);
516
517	switch (node->type) {
518	case HFS_NODE_HEADER:
519	case HFS_NODE_MAP:
520		if (node->height != 0)
521			goto node_error;
522		break;
523	case HFS_NODE_LEAF:
524		if (node->height != 1)
525			goto node_error;
526		break;
527	case HFS_NODE_INDEX:
528		if (node->height <= 1 || node->height > tree->depth)
529			goto node_error;
530		break;
531	default:
532		goto node_error;
533	}
534
535	rec_off = tree->node_size - 2;
536	off = hfs_bnode_read_u16(node, rec_off);
537	if (off != sizeof(struct hfs_bnode_desc))
538		goto node_error;
539	for (i = 1; i <= node->num_recs; off = next_off, i++) {
540		rec_off -= 2;
541		next_off = hfs_bnode_read_u16(node, rec_off);
542		if (next_off <= off ||
543		    next_off > tree->node_size ||
544		    next_off & 1)
545			goto node_error;
546		entry_size = next_off - off;
547		if (node->type != HFS_NODE_INDEX &&
548		    node->type != HFS_NODE_LEAF)
549			continue;
550		key_size = hfs_bnode_read_u16(node, off) + 2;
551		if (key_size >= entry_size || key_size & 1)
552			goto node_error;
553	}
554	clear_bit(HFS_BNODE_NEW, &node->flags);
555	wake_up(&node->lock_wq);
556	return node;
557
558node_error:
559	set_bit(HFS_BNODE_ERROR, &node->flags);
560	clear_bit(HFS_BNODE_NEW, &node->flags);
561	wake_up(&node->lock_wq);
562	hfs_bnode_put(node);
563	return ERR_PTR(-EIO);
564}
565
566void hfs_bnode_free(struct hfs_bnode *node)
567{
568	int i;
569
570	for (i = 0; i < node->tree->pages_per_bnode; i++)
571		if (node->page[i])
572			page_cache_release(node->page[i]);
573	kfree(node);
574}
575
576struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
577{
578	struct hfs_bnode *node;
579	struct page **pagep;
580	int i;
581
582	spin_lock(&tree->hash_lock);
583	node = hfs_bnode_findhash(tree, num);
584	spin_unlock(&tree->hash_lock);
585	if (node) {
586		pr_crit("new node %u already hashed?\n", num);
587		WARN_ON(1);
588		return node;
589	}
590	node = __hfs_bnode_create(tree, num);
591	if (!node)
592		return ERR_PTR(-ENOMEM);
593	if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
594		hfs_bnode_put(node);
595		return ERR_PTR(-EIO);
596	}
597
598	pagep = node->page;
599	memset(kmap(*pagep) + node->page_offset, 0,
600	       min_t(int, PAGE_CACHE_SIZE, tree->node_size));
601	set_page_dirty(*pagep);
602	kunmap(*pagep);
603	for (i = 1; i < tree->pages_per_bnode; i++) {
604		memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE);
605		set_page_dirty(*pagep);
606		kunmap(*pagep);
607	}
608	clear_bit(HFS_BNODE_NEW, &node->flags);
609	wake_up(&node->lock_wq);
610
611	return node;
612}
613
614void hfs_bnode_get(struct hfs_bnode *node)
615{
616	if (node) {
617		atomic_inc(&node->refcnt);
618		hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n",
619			node->tree->cnid, node->this,
620			atomic_read(&node->refcnt));
621	}
622}
623
624/* Dispose of resources used by a node */
625void hfs_bnode_put(struct hfs_bnode *node)
626{
627	if (node) {
628		struct hfs_btree *tree = node->tree;
629		int i;
630
631		hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n",
632			node->tree->cnid, node->this,
633			atomic_read(&node->refcnt));
634		BUG_ON(!atomic_read(&node->refcnt));
635		if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
636			return;
637		for (i = 0; i < tree->pages_per_bnode; i++) {
638			if (!node->page[i])
639				continue;
640			mark_page_accessed(node->page[i]);
641		}
642
643		if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
644			hfs_bnode_unhash(node);
645			spin_unlock(&tree->hash_lock);
646			if (hfs_bnode_need_zeroout(tree))
647				hfs_bnode_clear(node, 0, tree->node_size);
648			hfs_bmap_free(node);
649			hfs_bnode_free(node);
650			return;
651		}
652		spin_unlock(&tree->hash_lock);
653	}
654}
655
656/*
657 * Unused nodes have to be zeroed if this is the catalog tree and
658 * a corresponding flag in the volume header is set.
659 */
660bool hfs_bnode_need_zeroout(struct hfs_btree *tree)
661{
662	struct super_block *sb = tree->inode->i_sb;
663	struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb);
664	const u32 volume_attr = be32_to_cpu(sbi->s_vhdr->attributes);
665
666	return tree->cnid == HFSPLUS_CAT_CNID &&
667		volume_attr & HFSPLUS_VOL_UNUSED_NODE_FIX;
668}
669