1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
mb_correct_addr_and_bit(int * bit,void * addr)372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
mb_test_bit(int bit,void * addr)386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
mb_set_bit(int bit,void * addr)396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
mb_clear_bit(int bit,void * addr)402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
mb_test_and_clear_bit(int bit,void * addr)408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
mb_find_next_zero_bit(void * addr,int max,int start)414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
mb_find_next_bit(void * addr,int max,int start)427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	struct ext4_sb_info *sbi = EXT4_SB(sb);
726 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 	ext4_grpblk_t i = 0;
728 	ext4_grpblk_t first;
729 	ext4_grpblk_t len;
730 	unsigned free = 0;
731 	unsigned fragments = 0;
732 	unsigned long long period = get_cycles();
733 
734 	/* initialize buddy from bitmap which is aggregation
735 	 * of on-disk bitmap and preallocations */
736 	i = mb_find_next_zero_bit(bitmap, max, 0);
737 	grp->bb_first_free = i;
738 	while (i < max) {
739 		fragments++;
740 		first = i;
741 		i = mb_find_next_bit(bitmap, max, i);
742 		len = i - first;
743 		free += len;
744 		if (len > 1)
745 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 		else
747 			grp->bb_counters[0]++;
748 		if (i < max)
749 			i = mb_find_next_zero_bit(bitmap, max, i);
750 	}
751 	grp->bb_fragments = fragments;
752 
753 	if (free != grp->bb_free) {
754 		ext4_grp_locked_error(sb, group, 0, 0,
755 				      "block bitmap and bg descriptor "
756 				      "inconsistent: %u vs %u free clusters",
757 				      free, grp->bb_free);
758 		/*
759 		 * If we intend to continue, we consider group descriptor
760 		 * corrupt and update bb_free using bitmap value
761 		 */
762 		grp->bb_free = free;
763 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 			percpu_counter_sub(&sbi->s_freeclusters_counter,
765 					   grp->bb_free);
766 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 	}
768 	mb_set_largest_free_order(sb, grp);
769 
770 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771 
772 	period = get_cycles() - period;
773 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 	EXT4_SB(sb)->s_mb_buddies_generated++;
775 	EXT4_SB(sb)->s_mb_generation_time += period;
776 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778 
mb_regenerate_buddy(struct ext4_buddy * e4b)779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 	int count;
782 	int order = 1;
783 	void *buddy;
784 
785 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 		ext4_set_bits(buddy, 0, count);
787 	}
788 	e4b->bd_info->bb_fragments = 0;
789 	memset(e4b->bd_info->bb_counters, 0,
790 		sizeof(*e4b->bd_info->bb_counters) *
791 		(e4b->bd_sb->s_blocksize_bits + 2));
792 
793 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 		e4b->bd_bitmap, e4b->bd_group);
795 }
796 
797 /* The buddy information is attached the buddy cache inode
798  * for convenience. The information regarding each group
799  * is loaded via ext4_mb_load_buddy. The information involve
800  * block bitmap and buddy information. The information are
801  * stored in the inode as
802  *
803  * {                        page                        }
804  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805  *
806  *
807  * one block each for bitmap and buddy information.
808  * So for each group we take up 2 blocks. A page can
809  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
810  * So it can have information regarding groups_per_page which
811  * is blocks_per_page/2
812  *
813  * Locking note:  This routine takes the block group lock of all groups
814  * for this page; do not hold this lock when calling this routine!
815  */
816 
ext4_mb_init_cache(struct page * page,char * incore)817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 	ext4_group_t ngroups;
820 	int blocksize;
821 	int blocks_per_page;
822 	int groups_per_page;
823 	int err = 0;
824 	int i;
825 	ext4_group_t first_group, group;
826 	int first_block;
827 	struct super_block *sb;
828 	struct buffer_head *bhs;
829 	struct buffer_head **bh = NULL;
830 	struct inode *inode;
831 	char *data;
832 	char *bitmap;
833 	struct ext4_group_info *grinfo;
834 
835 	mb_debug(1, "init page %lu\n", page->index);
836 
837 	inode = page->mapping->host;
838 	sb = inode->i_sb;
839 	ngroups = ext4_get_groups_count(sb);
840 	blocksize = 1 << inode->i_blkbits;
841 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842 
843 	groups_per_page = blocks_per_page >> 1;
844 	if (groups_per_page == 0)
845 		groups_per_page = 1;
846 
847 	/* allocate buffer_heads to read bitmaps */
848 	if (groups_per_page > 1) {
849 		i = sizeof(struct buffer_head *) * groups_per_page;
850 		bh = kzalloc(i, GFP_NOFS);
851 		if (bh == NULL) {
852 			err = -ENOMEM;
853 			goto out;
854 		}
855 	} else
856 		bh = &bhs;
857 
858 	first_group = page->index * blocks_per_page / 2;
859 
860 	/* read all groups the page covers into the cache */
861 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 		if (group >= ngroups)
863 			break;
864 
865 		grinfo = ext4_get_group_info(sb, group);
866 		/*
867 		 * If page is uptodate then we came here after online resize
868 		 * which added some new uninitialized group info structs, so
869 		 * we must skip all initialized uptodate buddies on the page,
870 		 * which may be currently in use by an allocating task.
871 		 */
872 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 			bh[i] = NULL;
874 			continue;
875 		}
876 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 			err = -ENOMEM;
878 			goto out;
879 		}
880 		mb_debug(1, "read bitmap for group %u\n", group);
881 	}
882 
883 	/* wait for I/O completion */
884 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 			err = -EIO;
887 			goto out;
888 		}
889 	}
890 
891 	first_block = page->index * blocks_per_page;
892 	for (i = 0; i < blocks_per_page; i++) {
893 		group = (first_block + i) >> 1;
894 		if (group >= ngroups)
895 			break;
896 
897 		if (!bh[group - first_group])
898 			/* skip initialized uptodate buddy */
899 			continue;
900 
901 		/*
902 		 * data carry information regarding this
903 		 * particular group in the format specified
904 		 * above
905 		 *
906 		 */
907 		data = page_address(page) + (i * blocksize);
908 		bitmap = bh[group - first_group]->b_data;
909 
910 		/*
911 		 * We place the buddy block and bitmap block
912 		 * close together
913 		 */
914 		if ((first_block + i) & 1) {
915 			/* this is block of buddy */
916 			BUG_ON(incore == NULL);
917 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 				group, page->index, i * blocksize);
919 			trace_ext4_mb_buddy_bitmap_load(sb, group);
920 			grinfo = ext4_get_group_info(sb, group);
921 			grinfo->bb_fragments = 0;
922 			memset(grinfo->bb_counters, 0,
923 			       sizeof(*grinfo->bb_counters) *
924 				(sb->s_blocksize_bits+2));
925 			/*
926 			 * incore got set to the group block bitmap below
927 			 */
928 			ext4_lock_group(sb, group);
929 			/* init the buddy */
930 			memset(data, 0xff, blocksize);
931 			ext4_mb_generate_buddy(sb, data, incore, group);
932 			ext4_unlock_group(sb, group);
933 			incore = NULL;
934 		} else {
935 			/* this is block of bitmap */
936 			BUG_ON(incore != NULL);
937 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 				group, page->index, i * blocksize);
939 			trace_ext4_mb_bitmap_load(sb, group);
940 
941 			/* see comments in ext4_mb_put_pa() */
942 			ext4_lock_group(sb, group);
943 			memcpy(data, bitmap, blocksize);
944 
945 			/* mark all preallocated blks used in in-core bitmap */
946 			ext4_mb_generate_from_pa(sb, data, group);
947 			ext4_mb_generate_from_freelist(sb, data, group);
948 			ext4_unlock_group(sb, group);
949 
950 			/* set incore so that the buddy information can be
951 			 * generated using this
952 			 */
953 			incore = data;
954 		}
955 	}
956 	SetPageUptodate(page);
957 
958 out:
959 	if (bh) {
960 		for (i = 0; i < groups_per_page; i++)
961 			brelse(bh[i]);
962 		if (bh != &bhs)
963 			kfree(bh);
964 	}
965 	return err;
966 }
967 
968 /*
969  * Lock the buddy and bitmap pages. This make sure other parallel init_group
970  * on the same buddy page doesn't happen whild holding the buddy page lock.
971  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
973  */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 		ext4_group_t group, struct ext4_buddy *e4b)
976 {
977 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 	int block, pnum, poff;
979 	int blocks_per_page;
980 	struct page *page;
981 
982 	e4b->bd_buddy_page = NULL;
983 	e4b->bd_bitmap_page = NULL;
984 
985 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
986 	/*
987 	 * the buddy cache inode stores the block bitmap
988 	 * and buddy information in consecutive blocks.
989 	 * So for each group we need two blocks.
990 	 */
991 	block = group * 2;
992 	pnum = block / blocks_per_page;
993 	poff = block % blocks_per_page;
994 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 	if (!page)
996 		return -ENOMEM;
997 	BUG_ON(page->mapping != inode->i_mapping);
998 	e4b->bd_bitmap_page = page;
999 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 
1001 	if (blocks_per_page >= 2) {
1002 		/* buddy and bitmap are on the same page */
1003 		return 0;
1004 	}
1005 
1006 	block++;
1007 	pnum = block / blocks_per_page;
1008 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 	if (!page)
1010 		return -ENOMEM;
1011 	BUG_ON(page->mapping != inode->i_mapping);
1012 	e4b->bd_buddy_page = page;
1013 	return 0;
1014 }
1015 
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1017 {
1018 	if (e4b->bd_bitmap_page) {
1019 		unlock_page(e4b->bd_bitmap_page);
1020 		page_cache_release(e4b->bd_bitmap_page);
1021 	}
1022 	if (e4b->bd_buddy_page) {
1023 		unlock_page(e4b->bd_buddy_page);
1024 		page_cache_release(e4b->bd_buddy_page);
1025 	}
1026 }
1027 
1028 /*
1029  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1030  * block group lock of all groups for this page; do not hold the BG lock when
1031  * calling this routine!
1032  */
1033 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group)1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036 
1037 	struct ext4_group_info *this_grp;
1038 	struct ext4_buddy e4b;
1039 	struct page *page;
1040 	int ret = 0;
1041 
1042 	might_sleep();
1043 	mb_debug(1, "init group %u\n", group);
1044 	this_grp = ext4_get_group_info(sb, group);
1045 	/*
1046 	 * This ensures that we don't reinit the buddy cache
1047 	 * page which map to the group from which we are already
1048 	 * allocating. If we are looking at the buddy cache we would
1049 	 * have taken a reference using ext4_mb_load_buddy and that
1050 	 * would have pinned buddy page to page cache.
1051 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 	 * page accessed.
1053 	 */
1054 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1056 		/*
1057 		 * somebody initialized the group
1058 		 * return without doing anything
1059 		 */
1060 		goto err;
1061 	}
1062 
1063 	page = e4b.bd_bitmap_page;
1064 	ret = ext4_mb_init_cache(page, NULL);
1065 	if (ret)
1066 		goto err;
1067 	if (!PageUptodate(page)) {
1068 		ret = -EIO;
1069 		goto err;
1070 	}
1071 
1072 	if (e4b.bd_buddy_page == NULL) {
1073 		/*
1074 		 * If both the bitmap and buddy are in
1075 		 * the same page we don't need to force
1076 		 * init the buddy
1077 		 */
1078 		ret = 0;
1079 		goto err;
1080 	}
1081 	/* init buddy cache */
1082 	page = e4b.bd_buddy_page;
1083 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 	if (ret)
1085 		goto err;
1086 	if (!PageUptodate(page)) {
1087 		ret = -EIO;
1088 		goto err;
1089 	}
1090 err:
1091 	ext4_mb_put_buddy_page_lock(&e4b);
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1097  * block group lock of all groups for this page; do not hold the BG lock when
1098  * calling this routine!
1099  */
1100 static noinline_for_stack int
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 					struct ext4_buddy *e4b)
1103 {
1104 	int blocks_per_page;
1105 	int block;
1106 	int pnum;
1107 	int poff;
1108 	struct page *page;
1109 	int ret;
1110 	struct ext4_group_info *grp;
1111 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 	struct inode *inode = sbi->s_buddy_cache;
1113 
1114 	might_sleep();
1115 	mb_debug(1, "load group %u\n", group);
1116 
1117 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 	grp = ext4_get_group_info(sb, group);
1119 
1120 	e4b->bd_blkbits = sb->s_blocksize_bits;
1121 	e4b->bd_info = grp;
1122 	e4b->bd_sb = sb;
1123 	e4b->bd_group = group;
1124 	e4b->bd_buddy_page = NULL;
1125 	e4b->bd_bitmap_page = NULL;
1126 
1127 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1128 		/*
1129 		 * we need full data about the group
1130 		 * to make a good selection
1131 		 */
1132 		ret = ext4_mb_init_group(sb, group);
1133 		if (ret)
1134 			return ret;
1135 	}
1136 
1137 	/*
1138 	 * the buddy cache inode stores the block bitmap
1139 	 * and buddy information in consecutive blocks.
1140 	 * So for each group we need two blocks.
1141 	 */
1142 	block = group * 2;
1143 	pnum = block / blocks_per_page;
1144 	poff = block % blocks_per_page;
1145 
1146 	/* we could use find_or_create_page(), but it locks page
1147 	 * what we'd like to avoid in fast path ... */
1148 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 	if (page == NULL || !PageUptodate(page)) {
1150 		if (page)
1151 			/*
1152 			 * drop the page reference and try
1153 			 * to get the page with lock. If we
1154 			 * are not uptodate that implies
1155 			 * somebody just created the page but
1156 			 * is yet to initialize the same. So
1157 			 * wait for it to initialize.
1158 			 */
1159 			page_cache_release(page);
1160 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 		if (page) {
1162 			BUG_ON(page->mapping != inode->i_mapping);
1163 			if (!PageUptodate(page)) {
1164 				ret = ext4_mb_init_cache(page, NULL);
1165 				if (ret) {
1166 					unlock_page(page);
1167 					goto err;
1168 				}
1169 				mb_cmp_bitmaps(e4b, page_address(page) +
1170 					       (poff * sb->s_blocksize));
1171 			}
1172 			unlock_page(page);
1173 		}
1174 	}
1175 	if (page == NULL) {
1176 		ret = -ENOMEM;
1177 		goto err;
1178 	}
1179 	if (!PageUptodate(page)) {
1180 		ret = -EIO;
1181 		goto err;
1182 	}
1183 
1184 	/* Pages marked accessed already */
1185 	e4b->bd_bitmap_page = page;
1186 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187 
1188 	block++;
1189 	pnum = block / blocks_per_page;
1190 	poff = block % blocks_per_page;
1191 
1192 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 	if (page == NULL || !PageUptodate(page)) {
1194 		if (page)
1195 			page_cache_release(page);
1196 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 		if (page) {
1198 			BUG_ON(page->mapping != inode->i_mapping);
1199 			if (!PageUptodate(page)) {
1200 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 				if (ret) {
1202 					unlock_page(page);
1203 					goto err;
1204 				}
1205 			}
1206 			unlock_page(page);
1207 		}
1208 	}
1209 	if (page == NULL) {
1210 		ret = -ENOMEM;
1211 		goto err;
1212 	}
1213 	if (!PageUptodate(page)) {
1214 		ret = -EIO;
1215 		goto err;
1216 	}
1217 
1218 	/* Pages marked accessed already */
1219 	e4b->bd_buddy_page = page;
1220 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 
1222 	BUG_ON(e4b->bd_bitmap_page == NULL);
1223 	BUG_ON(e4b->bd_buddy_page == NULL);
1224 
1225 	return 0;
1226 
1227 err:
1228 	if (page)
1229 		page_cache_release(page);
1230 	if (e4b->bd_bitmap_page)
1231 		page_cache_release(e4b->bd_bitmap_page);
1232 	if (e4b->bd_buddy_page)
1233 		page_cache_release(e4b->bd_buddy_page);
1234 	e4b->bd_buddy = NULL;
1235 	e4b->bd_bitmap = NULL;
1236 	return ret;
1237 }
1238 
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 {
1241 	if (e4b->bd_bitmap_page)
1242 		page_cache_release(e4b->bd_bitmap_page);
1243 	if (e4b->bd_buddy_page)
1244 		page_cache_release(e4b->bd_buddy_page);
1245 }
1246 
1247 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 {
1250 	int order = 1;
1251 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1252 	void *bb;
1253 
1254 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1255 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1256 
1257 	bb = e4b->bd_buddy;
1258 	while (order <= e4b->bd_blkbits + 1) {
1259 		block = block >> 1;
1260 		if (!mb_test_bit(block, bb)) {
1261 			/* this block is part of buddy of order 'order' */
1262 			return order;
1263 		}
1264 		bb += bb_incr;
1265 		bb_incr >>= 1;
1266 		order++;
1267 	}
1268 	return 0;
1269 }
1270 
mb_clear_bits(void * bm,int cur,int len)1271 static void mb_clear_bits(void *bm, int cur, int len)
1272 {
1273 	__u32 *addr;
1274 
1275 	len = cur + len;
1276 	while (cur < len) {
1277 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1278 			/* fast path: clear whole word at once */
1279 			addr = bm + (cur >> 3);
1280 			*addr = 0;
1281 			cur += 32;
1282 			continue;
1283 		}
1284 		mb_clear_bit(cur, bm);
1285 		cur++;
1286 	}
1287 }
1288 
1289 /* clear bits in given range
1290  * will return first found zero bit if any, -1 otherwise
1291  */
mb_test_and_clear_bits(void * bm,int cur,int len)1292 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1293 {
1294 	__u32 *addr;
1295 	int zero_bit = -1;
1296 
1297 	len = cur + len;
1298 	while (cur < len) {
1299 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1300 			/* fast path: clear whole word at once */
1301 			addr = bm + (cur >> 3);
1302 			if (*addr != (__u32)(-1) && zero_bit == -1)
1303 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1304 			*addr = 0;
1305 			cur += 32;
1306 			continue;
1307 		}
1308 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1309 			zero_bit = cur;
1310 		cur++;
1311 	}
1312 
1313 	return zero_bit;
1314 }
1315 
ext4_set_bits(void * bm,int cur,int len)1316 void ext4_set_bits(void *bm, int cur, int len)
1317 {
1318 	__u32 *addr;
1319 
1320 	len = cur + len;
1321 	while (cur < len) {
1322 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1323 			/* fast path: set whole word at once */
1324 			addr = bm + (cur >> 3);
1325 			*addr = 0xffffffff;
1326 			cur += 32;
1327 			continue;
1328 		}
1329 		mb_set_bit(cur, bm);
1330 		cur++;
1331 	}
1332 }
1333 
1334 /*
1335  * _________________________________________________________________ */
1336 
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1337 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1338 {
1339 	if (mb_test_bit(*bit + side, bitmap)) {
1340 		mb_clear_bit(*bit, bitmap);
1341 		(*bit) -= side;
1342 		return 1;
1343 	}
1344 	else {
1345 		(*bit) += side;
1346 		mb_set_bit(*bit, bitmap);
1347 		return -1;
1348 	}
1349 }
1350 
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1351 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1352 {
1353 	int max;
1354 	int order = 1;
1355 	void *buddy = mb_find_buddy(e4b, order, &max);
1356 
1357 	while (buddy) {
1358 		void *buddy2;
1359 
1360 		/* Bits in range [first; last] are known to be set since
1361 		 * corresponding blocks were allocated. Bits in range
1362 		 * (first; last) will stay set because they form buddies on
1363 		 * upper layer. We just deal with borders if they don't
1364 		 * align with upper layer and then go up.
1365 		 * Releasing entire group is all about clearing
1366 		 * single bit of highest order buddy.
1367 		 */
1368 
1369 		/* Example:
1370 		 * ---------------------------------
1371 		 * |   1   |   1   |   1   |   1   |
1372 		 * ---------------------------------
1373 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1374 		 * ---------------------------------
1375 		 *   0   1   2   3   4   5   6   7
1376 		 *      \_____________________/
1377 		 *
1378 		 * Neither [1] nor [6] is aligned to above layer.
1379 		 * Left neighbour [0] is free, so mark it busy,
1380 		 * decrease bb_counters and extend range to
1381 		 * [0; 6]
1382 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1383 		 * mark [6] free, increase bb_counters and shrink range to
1384 		 * [0; 5].
1385 		 * Then shift range to [0; 2], go up and do the same.
1386 		 */
1387 
1388 
1389 		if (first & 1)
1390 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1391 		if (!(last & 1))
1392 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1393 		if (first > last)
1394 			break;
1395 		order++;
1396 
1397 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1398 			mb_clear_bits(buddy, first, last - first + 1);
1399 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1400 			break;
1401 		}
1402 		first >>= 1;
1403 		last >>= 1;
1404 		buddy = buddy2;
1405 	}
1406 }
1407 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1408 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1409 			   int first, int count)
1410 {
1411 	int left_is_free = 0;
1412 	int right_is_free = 0;
1413 	int block;
1414 	int last = first + count - 1;
1415 	struct super_block *sb = e4b->bd_sb;
1416 
1417 	if (WARN_ON(count == 0))
1418 		return;
1419 	BUG_ON(last >= (sb->s_blocksize << 3));
1420 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1421 	/* Don't bother if the block group is corrupt. */
1422 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1423 		return;
1424 
1425 	mb_check_buddy(e4b);
1426 	mb_free_blocks_double(inode, e4b, first, count);
1427 
1428 	e4b->bd_info->bb_free += count;
1429 	if (first < e4b->bd_info->bb_first_free)
1430 		e4b->bd_info->bb_first_free = first;
1431 
1432 	/* access memory sequentially: check left neighbour,
1433 	 * clear range and then check right neighbour
1434 	 */
1435 	if (first != 0)
1436 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1437 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1438 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1439 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1440 
1441 	if (unlikely(block != -1)) {
1442 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1443 		ext4_fsblk_t blocknr;
1444 
1445 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1446 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1447 		ext4_grp_locked_error(sb, e4b->bd_group,
1448 				      inode ? inode->i_ino : 0,
1449 				      blocknr,
1450 				      "freeing already freed block "
1451 				      "(bit %u); block bitmap corrupt.",
1452 				      block);
1453 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1454 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1455 					   e4b->bd_info->bb_free);
1456 		/* Mark the block group as corrupt. */
1457 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1458 			&e4b->bd_info->bb_state);
1459 		mb_regenerate_buddy(e4b);
1460 		goto done;
1461 	}
1462 
1463 	/* let's maintain fragments counter */
1464 	if (left_is_free && right_is_free)
1465 		e4b->bd_info->bb_fragments--;
1466 	else if (!left_is_free && !right_is_free)
1467 		e4b->bd_info->bb_fragments++;
1468 
1469 	/* buddy[0] == bd_bitmap is a special case, so handle
1470 	 * it right away and let mb_buddy_mark_free stay free of
1471 	 * zero order checks.
1472 	 * Check if neighbours are to be coaleasced,
1473 	 * adjust bitmap bb_counters and borders appropriately.
1474 	 */
1475 	if (first & 1) {
1476 		first += !left_is_free;
1477 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1478 	}
1479 	if (!(last & 1)) {
1480 		last -= !right_is_free;
1481 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1482 	}
1483 
1484 	if (first <= last)
1485 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1486 
1487 done:
1488 	mb_set_largest_free_order(sb, e4b->bd_info);
1489 	mb_check_buddy(e4b);
1490 }
1491 
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1492 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1493 				int needed, struct ext4_free_extent *ex)
1494 {
1495 	int next = block;
1496 	int max, order;
1497 	void *buddy;
1498 
1499 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1500 	BUG_ON(ex == NULL);
1501 
1502 	buddy = mb_find_buddy(e4b, 0, &max);
1503 	BUG_ON(buddy == NULL);
1504 	BUG_ON(block >= max);
1505 	if (mb_test_bit(block, buddy)) {
1506 		ex->fe_len = 0;
1507 		ex->fe_start = 0;
1508 		ex->fe_group = 0;
1509 		return 0;
1510 	}
1511 
1512 	/* find actual order */
1513 	order = mb_find_order_for_block(e4b, block);
1514 	block = block >> order;
1515 
1516 	ex->fe_len = 1 << order;
1517 	ex->fe_start = block << order;
1518 	ex->fe_group = e4b->bd_group;
1519 
1520 	/* calc difference from given start */
1521 	next = next - ex->fe_start;
1522 	ex->fe_len -= next;
1523 	ex->fe_start += next;
1524 
1525 	while (needed > ex->fe_len &&
1526 	       mb_find_buddy(e4b, order, &max)) {
1527 
1528 		if (block + 1 >= max)
1529 			break;
1530 
1531 		next = (block + 1) * (1 << order);
1532 		if (mb_test_bit(next, e4b->bd_bitmap))
1533 			break;
1534 
1535 		order = mb_find_order_for_block(e4b, next);
1536 
1537 		block = next >> order;
1538 		ex->fe_len += 1 << order;
1539 	}
1540 
1541 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1542 	return ex->fe_len;
1543 }
1544 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1545 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1546 {
1547 	int ord;
1548 	int mlen = 0;
1549 	int max = 0;
1550 	int cur;
1551 	int start = ex->fe_start;
1552 	int len = ex->fe_len;
1553 	unsigned ret = 0;
1554 	int len0 = len;
1555 	void *buddy;
1556 
1557 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1558 	BUG_ON(e4b->bd_group != ex->fe_group);
1559 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1560 	mb_check_buddy(e4b);
1561 	mb_mark_used_double(e4b, start, len);
1562 
1563 	e4b->bd_info->bb_free -= len;
1564 	if (e4b->bd_info->bb_first_free == start)
1565 		e4b->bd_info->bb_first_free += len;
1566 
1567 	/* let's maintain fragments counter */
1568 	if (start != 0)
1569 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1570 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1571 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1572 	if (mlen && max)
1573 		e4b->bd_info->bb_fragments++;
1574 	else if (!mlen && !max)
1575 		e4b->bd_info->bb_fragments--;
1576 
1577 	/* let's maintain buddy itself */
1578 	while (len) {
1579 		ord = mb_find_order_for_block(e4b, start);
1580 
1581 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1582 			/* the whole chunk may be allocated at once! */
1583 			mlen = 1 << ord;
1584 			buddy = mb_find_buddy(e4b, ord, &max);
1585 			BUG_ON((start >> ord) >= max);
1586 			mb_set_bit(start >> ord, buddy);
1587 			e4b->bd_info->bb_counters[ord]--;
1588 			start += mlen;
1589 			len -= mlen;
1590 			BUG_ON(len < 0);
1591 			continue;
1592 		}
1593 
1594 		/* store for history */
1595 		if (ret == 0)
1596 			ret = len | (ord << 16);
1597 
1598 		/* we have to split large buddy */
1599 		BUG_ON(ord <= 0);
1600 		buddy = mb_find_buddy(e4b, ord, &max);
1601 		mb_set_bit(start >> ord, buddy);
1602 		e4b->bd_info->bb_counters[ord]--;
1603 
1604 		ord--;
1605 		cur = (start >> ord) & ~1U;
1606 		buddy = mb_find_buddy(e4b, ord, &max);
1607 		mb_clear_bit(cur, buddy);
1608 		mb_clear_bit(cur + 1, buddy);
1609 		e4b->bd_info->bb_counters[ord]++;
1610 		e4b->bd_info->bb_counters[ord]++;
1611 	}
1612 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1613 
1614 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1615 	mb_check_buddy(e4b);
1616 
1617 	return ret;
1618 }
1619 
1620 /*
1621  * Must be called under group lock!
1622  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1623 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1624 					struct ext4_buddy *e4b)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1627 	int ret;
1628 
1629 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1630 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1631 
1632 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1633 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1634 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1635 
1636 	/* preallocation can change ac_b_ex, thus we store actually
1637 	 * allocated blocks for history */
1638 	ac->ac_f_ex = ac->ac_b_ex;
1639 
1640 	ac->ac_status = AC_STATUS_FOUND;
1641 	ac->ac_tail = ret & 0xffff;
1642 	ac->ac_buddy = ret >> 16;
1643 
1644 	/*
1645 	 * take the page reference. We want the page to be pinned
1646 	 * so that we don't get a ext4_mb_init_cache_call for this
1647 	 * group until we update the bitmap. That would mean we
1648 	 * double allocate blocks. The reference is dropped
1649 	 * in ext4_mb_release_context
1650 	 */
1651 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1652 	get_page(ac->ac_bitmap_page);
1653 	ac->ac_buddy_page = e4b->bd_buddy_page;
1654 	get_page(ac->ac_buddy_page);
1655 	/* store last allocated for subsequent stream allocation */
1656 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1657 		spin_lock(&sbi->s_md_lock);
1658 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1659 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1660 		spin_unlock(&sbi->s_md_lock);
1661 	}
1662 }
1663 
1664 /*
1665  * regular allocator, for general purposes allocation
1666  */
1667 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1668 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1669 					struct ext4_buddy *e4b,
1670 					int finish_group)
1671 {
1672 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1673 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1674 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1675 	struct ext4_free_extent ex;
1676 	int max;
1677 
1678 	if (ac->ac_status == AC_STATUS_FOUND)
1679 		return;
1680 	/*
1681 	 * We don't want to scan for a whole year
1682 	 */
1683 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1684 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1685 		ac->ac_status = AC_STATUS_BREAK;
1686 		return;
1687 	}
1688 
1689 	/*
1690 	 * Haven't found good chunk so far, let's continue
1691 	 */
1692 	if (bex->fe_len < gex->fe_len)
1693 		return;
1694 
1695 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1696 			&& bex->fe_group == e4b->bd_group) {
1697 		/* recheck chunk's availability - we don't know
1698 		 * when it was found (within this lock-unlock
1699 		 * period or not) */
1700 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1701 		if (max >= gex->fe_len) {
1702 			ext4_mb_use_best_found(ac, e4b);
1703 			return;
1704 		}
1705 	}
1706 }
1707 
1708 /*
1709  * The routine checks whether found extent is good enough. If it is,
1710  * then the extent gets marked used and flag is set to the context
1711  * to stop scanning. Otherwise, the extent is compared with the
1712  * previous found extent and if new one is better, then it's stored
1713  * in the context. Later, the best found extent will be used, if
1714  * mballoc can't find good enough extent.
1715  *
1716  * FIXME: real allocation policy is to be designed yet!
1717  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1718 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1719 					struct ext4_free_extent *ex,
1720 					struct ext4_buddy *e4b)
1721 {
1722 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1723 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1724 
1725 	BUG_ON(ex->fe_len <= 0);
1726 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1727 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1728 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1729 
1730 	ac->ac_found++;
1731 
1732 	/*
1733 	 * The special case - take what you catch first
1734 	 */
1735 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1736 		*bex = *ex;
1737 		ext4_mb_use_best_found(ac, e4b);
1738 		return;
1739 	}
1740 
1741 	/*
1742 	 * Let's check whether the chuck is good enough
1743 	 */
1744 	if (ex->fe_len == gex->fe_len) {
1745 		*bex = *ex;
1746 		ext4_mb_use_best_found(ac, e4b);
1747 		return;
1748 	}
1749 
1750 	/*
1751 	 * If this is first found extent, just store it in the context
1752 	 */
1753 	if (bex->fe_len == 0) {
1754 		*bex = *ex;
1755 		return;
1756 	}
1757 
1758 	/*
1759 	 * If new found extent is better, store it in the context
1760 	 */
1761 	if (bex->fe_len < gex->fe_len) {
1762 		/* if the request isn't satisfied, any found extent
1763 		 * larger than previous best one is better */
1764 		if (ex->fe_len > bex->fe_len)
1765 			*bex = *ex;
1766 	} else if (ex->fe_len > gex->fe_len) {
1767 		/* if the request is satisfied, then we try to find
1768 		 * an extent that still satisfy the request, but is
1769 		 * smaller than previous one */
1770 		if (ex->fe_len < bex->fe_len)
1771 			*bex = *ex;
1772 	}
1773 
1774 	ext4_mb_check_limits(ac, e4b, 0);
1775 }
1776 
1777 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1778 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1779 					struct ext4_buddy *e4b)
1780 {
1781 	struct ext4_free_extent ex = ac->ac_b_ex;
1782 	ext4_group_t group = ex.fe_group;
1783 	int max;
1784 	int err;
1785 
1786 	BUG_ON(ex.fe_len <= 0);
1787 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1788 	if (err)
1789 		return err;
1790 
1791 	ext4_lock_group(ac->ac_sb, group);
1792 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1793 
1794 	if (max > 0) {
1795 		ac->ac_b_ex = ex;
1796 		ext4_mb_use_best_found(ac, e4b);
1797 	}
1798 
1799 	ext4_unlock_group(ac->ac_sb, group);
1800 	ext4_mb_unload_buddy(e4b);
1801 
1802 	return 0;
1803 }
1804 
1805 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1806 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1807 				struct ext4_buddy *e4b)
1808 {
1809 	ext4_group_t group = ac->ac_g_ex.fe_group;
1810 	int max;
1811 	int err;
1812 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1813 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1814 	struct ext4_free_extent ex;
1815 
1816 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1817 		return 0;
1818 	if (grp->bb_free == 0)
1819 		return 0;
1820 
1821 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1822 	if (err)
1823 		return err;
1824 
1825 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1826 		ext4_mb_unload_buddy(e4b);
1827 		return 0;
1828 	}
1829 
1830 	ext4_lock_group(ac->ac_sb, group);
1831 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1832 			     ac->ac_g_ex.fe_len, &ex);
1833 	ex.fe_logical = 0xDEADFA11; /* debug value */
1834 
1835 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1836 		ext4_fsblk_t start;
1837 
1838 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1839 			ex.fe_start;
1840 		/* use do_div to get remainder (would be 64-bit modulo) */
1841 		if (do_div(start, sbi->s_stripe) == 0) {
1842 			ac->ac_found++;
1843 			ac->ac_b_ex = ex;
1844 			ext4_mb_use_best_found(ac, e4b);
1845 		}
1846 	} else if (max >= ac->ac_g_ex.fe_len) {
1847 		BUG_ON(ex.fe_len <= 0);
1848 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1849 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1850 		ac->ac_found++;
1851 		ac->ac_b_ex = ex;
1852 		ext4_mb_use_best_found(ac, e4b);
1853 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1854 		/* Sometimes, caller may want to merge even small
1855 		 * number of blocks to an existing extent */
1856 		BUG_ON(ex.fe_len <= 0);
1857 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1858 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1859 		ac->ac_found++;
1860 		ac->ac_b_ex = ex;
1861 		ext4_mb_use_best_found(ac, e4b);
1862 	}
1863 	ext4_unlock_group(ac->ac_sb, group);
1864 	ext4_mb_unload_buddy(e4b);
1865 
1866 	return 0;
1867 }
1868 
1869 /*
1870  * The routine scans buddy structures (not bitmap!) from given order
1871  * to max order and tries to find big enough chunk to satisfy the req
1872  */
1873 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1874 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1875 					struct ext4_buddy *e4b)
1876 {
1877 	struct super_block *sb = ac->ac_sb;
1878 	struct ext4_group_info *grp = e4b->bd_info;
1879 	void *buddy;
1880 	int i;
1881 	int k;
1882 	int max;
1883 
1884 	BUG_ON(ac->ac_2order <= 0);
1885 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1886 		if (grp->bb_counters[i] == 0)
1887 			continue;
1888 
1889 		buddy = mb_find_buddy(e4b, i, &max);
1890 		BUG_ON(buddy == NULL);
1891 
1892 		k = mb_find_next_zero_bit(buddy, max, 0);
1893 		BUG_ON(k >= max);
1894 
1895 		ac->ac_found++;
1896 
1897 		ac->ac_b_ex.fe_len = 1 << i;
1898 		ac->ac_b_ex.fe_start = k << i;
1899 		ac->ac_b_ex.fe_group = e4b->bd_group;
1900 
1901 		ext4_mb_use_best_found(ac, e4b);
1902 
1903 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1904 
1905 		if (EXT4_SB(sb)->s_mb_stats)
1906 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1907 
1908 		break;
1909 	}
1910 }
1911 
1912 /*
1913  * The routine scans the group and measures all found extents.
1914  * In order to optimize scanning, caller must pass number of
1915  * free blocks in the group, so the routine can know upper limit.
1916  */
1917 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1918 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1919 					struct ext4_buddy *e4b)
1920 {
1921 	struct super_block *sb = ac->ac_sb;
1922 	void *bitmap = e4b->bd_bitmap;
1923 	struct ext4_free_extent ex;
1924 	int i;
1925 	int free;
1926 
1927 	free = e4b->bd_info->bb_free;
1928 	BUG_ON(free <= 0);
1929 
1930 	i = e4b->bd_info->bb_first_free;
1931 
1932 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1933 		i = mb_find_next_zero_bit(bitmap,
1934 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1935 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1936 			/*
1937 			 * IF we have corrupt bitmap, we won't find any
1938 			 * free blocks even though group info says we
1939 			 * we have free blocks
1940 			 */
1941 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1942 					"%d free clusters as per "
1943 					"group info. But bitmap says 0",
1944 					free);
1945 			break;
1946 		}
1947 
1948 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1949 		BUG_ON(ex.fe_len <= 0);
1950 		if (free < ex.fe_len) {
1951 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1952 					"%d free clusters as per "
1953 					"group info. But got %d blocks",
1954 					free, ex.fe_len);
1955 			/*
1956 			 * The number of free blocks differs. This mostly
1957 			 * indicate that the bitmap is corrupt. So exit
1958 			 * without claiming the space.
1959 			 */
1960 			break;
1961 		}
1962 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1963 		ext4_mb_measure_extent(ac, &ex, e4b);
1964 
1965 		i += ex.fe_len;
1966 		free -= ex.fe_len;
1967 	}
1968 
1969 	ext4_mb_check_limits(ac, e4b, 1);
1970 }
1971 
1972 /*
1973  * This is a special case for storages like raid5
1974  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1975  */
1976 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1977 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1978 				 struct ext4_buddy *e4b)
1979 {
1980 	struct super_block *sb = ac->ac_sb;
1981 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 	void *bitmap = e4b->bd_bitmap;
1983 	struct ext4_free_extent ex;
1984 	ext4_fsblk_t first_group_block;
1985 	ext4_fsblk_t a;
1986 	ext4_grpblk_t i;
1987 	int max;
1988 
1989 	BUG_ON(sbi->s_stripe == 0);
1990 
1991 	/* find first stripe-aligned block in group */
1992 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1993 
1994 	a = first_group_block + sbi->s_stripe - 1;
1995 	do_div(a, sbi->s_stripe);
1996 	i = (a * sbi->s_stripe) - first_group_block;
1997 
1998 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1999 		if (!mb_test_bit(i, bitmap)) {
2000 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2001 			if (max >= sbi->s_stripe) {
2002 				ac->ac_found++;
2003 				ex.fe_logical = 0xDEADF00D; /* debug value */
2004 				ac->ac_b_ex = ex;
2005 				ext4_mb_use_best_found(ac, e4b);
2006 				break;
2007 			}
2008 		}
2009 		i += sbi->s_stripe;
2010 	}
2011 }
2012 
2013 /* This is now called BEFORE we load the buddy bitmap. */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2014 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2015 				ext4_group_t group, int cr)
2016 {
2017 	unsigned free, fragments;
2018 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2019 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2020 
2021 	BUG_ON(cr < 0 || cr >= 4);
2022 
2023 	free = grp->bb_free;
2024 	if (free == 0)
2025 		return 0;
2026 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2027 		return 0;
2028 
2029 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2030 		return 0;
2031 
2032 	/* We only do this if the grp has never been initialized */
2033 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2034 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2035 		if (ret)
2036 			return 0;
2037 	}
2038 
2039 	fragments = grp->bb_fragments;
2040 	if (fragments == 0)
2041 		return 0;
2042 
2043 	switch (cr) {
2044 	case 0:
2045 		BUG_ON(ac->ac_2order == 0);
2046 
2047 		/* Avoid using the first bg of a flexgroup for data files */
2048 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2049 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2050 		    ((group % flex_size) == 0))
2051 			return 0;
2052 
2053 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2054 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2055 			return 1;
2056 
2057 		if (grp->bb_largest_free_order < ac->ac_2order)
2058 			return 0;
2059 
2060 		return 1;
2061 	case 1:
2062 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2063 			return 1;
2064 		break;
2065 	case 2:
2066 		if (free >= ac->ac_g_ex.fe_len)
2067 			return 1;
2068 		break;
2069 	case 3:
2070 		return 1;
2071 	default:
2072 		BUG();
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2079 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2080 {
2081 	ext4_group_t ngroups, group, i;
2082 	int cr;
2083 	int err = 0;
2084 	struct ext4_sb_info *sbi;
2085 	struct super_block *sb;
2086 	struct ext4_buddy e4b;
2087 
2088 	sb = ac->ac_sb;
2089 	sbi = EXT4_SB(sb);
2090 	ngroups = ext4_get_groups_count(sb);
2091 	/* non-extent files are limited to low blocks/groups */
2092 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2093 		ngroups = sbi->s_blockfile_groups;
2094 
2095 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2096 
2097 	/* first, try the goal */
2098 	err = ext4_mb_find_by_goal(ac, &e4b);
2099 	if (err || ac->ac_status == AC_STATUS_FOUND)
2100 		goto out;
2101 
2102 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2103 		goto out;
2104 
2105 	/*
2106 	 * ac->ac2_order is set only if the fe_len is a power of 2
2107 	 * if ac2_order is set we also set criteria to 0 so that we
2108 	 * try exact allocation using buddy.
2109 	 */
2110 	i = fls(ac->ac_g_ex.fe_len);
2111 	ac->ac_2order = 0;
2112 	/*
2113 	 * We search using buddy data only if the order of the request
2114 	 * is greater than equal to the sbi_s_mb_order2_reqs
2115 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2116 	 */
2117 	if (i >= sbi->s_mb_order2_reqs) {
2118 		/*
2119 		 * This should tell if fe_len is exactly power of 2
2120 		 */
2121 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2122 			ac->ac_2order = i - 1;
2123 	}
2124 
2125 	/* if stream allocation is enabled, use global goal */
2126 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2127 		/* TBD: may be hot point */
2128 		spin_lock(&sbi->s_md_lock);
2129 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2130 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2131 		spin_unlock(&sbi->s_md_lock);
2132 	}
2133 
2134 	/* Let's just scan groups to find more-less suitable blocks */
2135 	cr = ac->ac_2order ? 0 : 1;
2136 	/*
2137 	 * cr == 0 try to get exact allocation,
2138 	 * cr == 3  try to get anything
2139 	 */
2140 repeat:
2141 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2142 		ac->ac_criteria = cr;
2143 		/*
2144 		 * searching for the right group start
2145 		 * from the goal value specified
2146 		 */
2147 		group = ac->ac_g_ex.fe_group;
2148 
2149 		for (i = 0; i < ngroups; group++, i++) {
2150 			cond_resched();
2151 			/*
2152 			 * Artificially restricted ngroups for non-extent
2153 			 * files makes group > ngroups possible on first loop.
2154 			 */
2155 			if (group >= ngroups)
2156 				group = 0;
2157 
2158 			/* This now checks without needing the buddy page */
2159 			if (!ext4_mb_good_group(ac, group, cr))
2160 				continue;
2161 
2162 			err = ext4_mb_load_buddy(sb, group, &e4b);
2163 			if (err)
2164 				goto out;
2165 
2166 			ext4_lock_group(sb, group);
2167 
2168 			/*
2169 			 * We need to check again after locking the
2170 			 * block group
2171 			 */
2172 			if (!ext4_mb_good_group(ac, group, cr)) {
2173 				ext4_unlock_group(sb, group);
2174 				ext4_mb_unload_buddy(&e4b);
2175 				continue;
2176 			}
2177 
2178 			ac->ac_groups_scanned++;
2179 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2180 				ext4_mb_simple_scan_group(ac, &e4b);
2181 			else if (cr == 1 && sbi->s_stripe &&
2182 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2183 				ext4_mb_scan_aligned(ac, &e4b);
2184 			else
2185 				ext4_mb_complex_scan_group(ac, &e4b);
2186 
2187 			ext4_unlock_group(sb, group);
2188 			ext4_mb_unload_buddy(&e4b);
2189 
2190 			if (ac->ac_status != AC_STATUS_CONTINUE)
2191 				break;
2192 		}
2193 	}
2194 
2195 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2196 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2197 		/*
2198 		 * We've been searching too long. Let's try to allocate
2199 		 * the best chunk we've found so far
2200 		 */
2201 
2202 		ext4_mb_try_best_found(ac, &e4b);
2203 		if (ac->ac_status != AC_STATUS_FOUND) {
2204 			/*
2205 			 * Someone more lucky has already allocated it.
2206 			 * The only thing we can do is just take first
2207 			 * found block(s)
2208 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2209 			 */
2210 			ac->ac_b_ex.fe_group = 0;
2211 			ac->ac_b_ex.fe_start = 0;
2212 			ac->ac_b_ex.fe_len = 0;
2213 			ac->ac_status = AC_STATUS_CONTINUE;
2214 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2215 			cr = 3;
2216 			atomic_inc(&sbi->s_mb_lost_chunks);
2217 			goto repeat;
2218 		}
2219 	}
2220 out:
2221 	return err;
2222 }
2223 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2224 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2225 {
2226 	struct super_block *sb = seq->private;
2227 	ext4_group_t group;
2228 
2229 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2230 		return NULL;
2231 	group = *pos + 1;
2232 	return (void *) ((unsigned long) group);
2233 }
2234 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2235 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2236 {
2237 	struct super_block *sb = seq->private;
2238 	ext4_group_t group;
2239 
2240 	++*pos;
2241 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2242 		return NULL;
2243 	group = *pos + 1;
2244 	return (void *) ((unsigned long) group);
2245 }
2246 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2247 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2248 {
2249 	struct super_block *sb = seq->private;
2250 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2251 	int i;
2252 	int err, buddy_loaded = 0;
2253 	struct ext4_buddy e4b;
2254 	struct ext4_group_info *grinfo;
2255 	struct sg {
2256 		struct ext4_group_info info;
2257 		ext4_grpblk_t counters[16];
2258 	} sg;
2259 
2260 	group--;
2261 	if (group == 0)
2262 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2263 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2264 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2265 			   "group", "free", "frags", "first",
2266 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2267 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2268 
2269 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2270 		sizeof(struct ext4_group_info);
2271 	grinfo = ext4_get_group_info(sb, group);
2272 	/* Load the group info in memory only if not already loaded. */
2273 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2274 		err = ext4_mb_load_buddy(sb, group, &e4b);
2275 		if (err) {
2276 			seq_printf(seq, "#%-5u: I/O error\n", group);
2277 			return 0;
2278 		}
2279 		buddy_loaded = 1;
2280 	}
2281 
2282 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2283 
2284 	if (buddy_loaded)
2285 		ext4_mb_unload_buddy(&e4b);
2286 
2287 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2288 			sg.info.bb_fragments, sg.info.bb_first_free);
2289 	for (i = 0; i <= 13; i++)
2290 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2291 				sg.info.bb_counters[i] : 0);
2292 	seq_printf(seq, " ]\n");
2293 
2294 	return 0;
2295 }
2296 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2297 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2298 {
2299 }
2300 
2301 static const struct seq_operations ext4_mb_seq_groups_ops = {
2302 	.start  = ext4_mb_seq_groups_start,
2303 	.next   = ext4_mb_seq_groups_next,
2304 	.stop   = ext4_mb_seq_groups_stop,
2305 	.show   = ext4_mb_seq_groups_show,
2306 };
2307 
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2308 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2309 {
2310 	struct super_block *sb = PDE_DATA(inode);
2311 	int rc;
2312 
2313 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2314 	if (rc == 0) {
2315 		struct seq_file *m = file->private_data;
2316 		m->private = sb;
2317 	}
2318 	return rc;
2319 
2320 }
2321 
2322 static const struct file_operations ext4_mb_seq_groups_fops = {
2323 	.owner		= THIS_MODULE,
2324 	.open		= ext4_mb_seq_groups_open,
2325 	.read		= seq_read,
2326 	.llseek		= seq_lseek,
2327 	.release	= seq_release,
2328 };
2329 
get_groupinfo_cache(int blocksize_bits)2330 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2331 {
2332 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2333 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2334 
2335 	BUG_ON(!cachep);
2336 	return cachep;
2337 }
2338 
2339 /*
2340  * Allocate the top-level s_group_info array for the specified number
2341  * of groups
2342  */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2343 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2344 {
2345 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2346 	unsigned size;
2347 	struct ext4_group_info ***new_groupinfo;
2348 
2349 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2350 		EXT4_DESC_PER_BLOCK_BITS(sb);
2351 	if (size <= sbi->s_group_info_size)
2352 		return 0;
2353 
2354 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2355 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2356 	if (!new_groupinfo) {
2357 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2358 		return -ENOMEM;
2359 	}
2360 	if (sbi->s_group_info) {
2361 		memcpy(new_groupinfo, sbi->s_group_info,
2362 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2363 		kvfree(sbi->s_group_info);
2364 	}
2365 	sbi->s_group_info = new_groupinfo;
2366 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2367 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2368 		   sbi->s_group_info_size);
2369 	return 0;
2370 }
2371 
2372 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2373 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2374 			  struct ext4_group_desc *desc)
2375 {
2376 	int i;
2377 	int metalen = 0;
2378 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2379 	struct ext4_group_info **meta_group_info;
2380 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2381 
2382 	/*
2383 	 * First check if this group is the first of a reserved block.
2384 	 * If it's true, we have to allocate a new table of pointers
2385 	 * to ext4_group_info structures
2386 	 */
2387 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2388 		metalen = sizeof(*meta_group_info) <<
2389 			EXT4_DESC_PER_BLOCK_BITS(sb);
2390 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2391 		if (meta_group_info == NULL) {
2392 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2393 				 "for a buddy group");
2394 			goto exit_meta_group_info;
2395 		}
2396 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2397 			meta_group_info;
2398 	}
2399 
2400 	meta_group_info =
2401 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2402 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2403 
2404 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2405 	if (meta_group_info[i] == NULL) {
2406 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2407 		goto exit_group_info;
2408 	}
2409 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2410 		&(meta_group_info[i]->bb_state));
2411 
2412 	/*
2413 	 * initialize bb_free to be able to skip
2414 	 * empty groups without initialization
2415 	 */
2416 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2417 		meta_group_info[i]->bb_free =
2418 			ext4_free_clusters_after_init(sb, group, desc);
2419 	} else {
2420 		meta_group_info[i]->bb_free =
2421 			ext4_free_group_clusters(sb, desc);
2422 	}
2423 
2424 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2425 	init_rwsem(&meta_group_info[i]->alloc_sem);
2426 	meta_group_info[i]->bb_free_root = RB_ROOT;
2427 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2428 
2429 #ifdef DOUBLE_CHECK
2430 	{
2431 		struct buffer_head *bh;
2432 		meta_group_info[i]->bb_bitmap =
2433 			kmalloc(sb->s_blocksize, GFP_NOFS);
2434 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2435 		bh = ext4_read_block_bitmap(sb, group);
2436 		BUG_ON(bh == NULL);
2437 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2438 			sb->s_blocksize);
2439 		put_bh(bh);
2440 	}
2441 #endif
2442 
2443 	return 0;
2444 
2445 exit_group_info:
2446 	/* If a meta_group_info table has been allocated, release it now */
2447 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2448 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2449 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2450 	}
2451 exit_meta_group_info:
2452 	return -ENOMEM;
2453 } /* ext4_mb_add_groupinfo */
2454 
ext4_mb_init_backend(struct super_block * sb)2455 static int ext4_mb_init_backend(struct super_block *sb)
2456 {
2457 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2458 	ext4_group_t i;
2459 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2460 	int err;
2461 	struct ext4_group_desc *desc;
2462 	struct kmem_cache *cachep;
2463 
2464 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2465 	if (err)
2466 		return err;
2467 
2468 	sbi->s_buddy_cache = new_inode(sb);
2469 	if (sbi->s_buddy_cache == NULL) {
2470 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2471 		goto err_freesgi;
2472 	}
2473 	/* To avoid potentially colliding with an valid on-disk inode number,
2474 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2475 	 * not in the inode hash, so it should never be found by iget(), but
2476 	 * this will avoid confusion if it ever shows up during debugging. */
2477 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2478 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2479 	for (i = 0; i < ngroups; i++) {
2480 		desc = ext4_get_group_desc(sb, i, NULL);
2481 		if (desc == NULL) {
2482 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2483 			goto err_freebuddy;
2484 		}
2485 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2486 			goto err_freebuddy;
2487 	}
2488 
2489 	return 0;
2490 
2491 err_freebuddy:
2492 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2493 	while (i-- > 0)
2494 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2495 	i = sbi->s_group_info_size;
2496 	while (i-- > 0)
2497 		kfree(sbi->s_group_info[i]);
2498 	iput(sbi->s_buddy_cache);
2499 err_freesgi:
2500 	kvfree(sbi->s_group_info);
2501 	return -ENOMEM;
2502 }
2503 
ext4_groupinfo_destroy_slabs(void)2504 static void ext4_groupinfo_destroy_slabs(void)
2505 {
2506 	int i;
2507 
2508 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2509 		if (ext4_groupinfo_caches[i])
2510 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2511 		ext4_groupinfo_caches[i] = NULL;
2512 	}
2513 }
2514 
ext4_groupinfo_create_slab(size_t size)2515 static int ext4_groupinfo_create_slab(size_t size)
2516 {
2517 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2518 	int slab_size;
2519 	int blocksize_bits = order_base_2(size);
2520 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2521 	struct kmem_cache *cachep;
2522 
2523 	if (cache_index >= NR_GRPINFO_CACHES)
2524 		return -EINVAL;
2525 
2526 	if (unlikely(cache_index < 0))
2527 		cache_index = 0;
2528 
2529 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2530 	if (ext4_groupinfo_caches[cache_index]) {
2531 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2532 		return 0;	/* Already created */
2533 	}
2534 
2535 	slab_size = offsetof(struct ext4_group_info,
2536 				bb_counters[blocksize_bits + 2]);
2537 
2538 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2539 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2540 					NULL);
2541 
2542 	ext4_groupinfo_caches[cache_index] = cachep;
2543 
2544 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2545 	if (!cachep) {
2546 		printk(KERN_EMERG
2547 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2548 		return -ENOMEM;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
ext4_mb_init(struct super_block * sb)2554 int ext4_mb_init(struct super_block *sb)
2555 {
2556 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2557 	unsigned i, j;
2558 	unsigned offset, offset_incr;
2559 	unsigned max;
2560 	int ret;
2561 
2562 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2563 
2564 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2565 	if (sbi->s_mb_offsets == NULL) {
2566 		ret = -ENOMEM;
2567 		goto out;
2568 	}
2569 
2570 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2571 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2572 	if (sbi->s_mb_maxs == NULL) {
2573 		ret = -ENOMEM;
2574 		goto out;
2575 	}
2576 
2577 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2578 	if (ret < 0)
2579 		goto out;
2580 
2581 	/* order 0 is regular bitmap */
2582 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2583 	sbi->s_mb_offsets[0] = 0;
2584 
2585 	i = 1;
2586 	offset = 0;
2587 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2588 	max = sb->s_blocksize << 2;
2589 	do {
2590 		sbi->s_mb_offsets[i] = offset;
2591 		sbi->s_mb_maxs[i] = max;
2592 		offset += offset_incr;
2593 		offset_incr = offset_incr >> 1;
2594 		max = max >> 1;
2595 		i++;
2596 	} while (i <= sb->s_blocksize_bits + 1);
2597 
2598 	spin_lock_init(&sbi->s_md_lock);
2599 	spin_lock_init(&sbi->s_bal_lock);
2600 
2601 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2602 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2603 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2604 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2605 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2606 	/*
2607 	 * The default group preallocation is 512, which for 4k block
2608 	 * sizes translates to 2 megabytes.  However for bigalloc file
2609 	 * systems, this is probably too big (i.e, if the cluster size
2610 	 * is 1 megabyte, then group preallocation size becomes half a
2611 	 * gigabyte!).  As a default, we will keep a two megabyte
2612 	 * group pralloc size for cluster sizes up to 64k, and after
2613 	 * that, we will force a minimum group preallocation size of
2614 	 * 32 clusters.  This translates to 8 megs when the cluster
2615 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2616 	 * which seems reasonable as a default.
2617 	 */
2618 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2619 				       sbi->s_cluster_bits, 32);
2620 	/*
2621 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2622 	 * to the lowest multiple of s_stripe which is bigger than
2623 	 * the s_mb_group_prealloc as determined above. We want
2624 	 * the preallocation size to be an exact multiple of the
2625 	 * RAID stripe size so that preallocations don't fragment
2626 	 * the stripes.
2627 	 */
2628 	if (sbi->s_stripe > 1) {
2629 		sbi->s_mb_group_prealloc = roundup(
2630 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2631 	}
2632 
2633 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2634 	if (sbi->s_locality_groups == NULL) {
2635 		ret = -ENOMEM;
2636 		goto out;
2637 	}
2638 	for_each_possible_cpu(i) {
2639 		struct ext4_locality_group *lg;
2640 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2641 		mutex_init(&lg->lg_mutex);
2642 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2643 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2644 		spin_lock_init(&lg->lg_prealloc_lock);
2645 	}
2646 
2647 	/* init file for buddy data */
2648 	ret = ext4_mb_init_backend(sb);
2649 	if (ret != 0)
2650 		goto out_free_locality_groups;
2651 
2652 	if (sbi->s_proc)
2653 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2654 				 &ext4_mb_seq_groups_fops, sb);
2655 
2656 	return 0;
2657 
2658 out_free_locality_groups:
2659 	free_percpu(sbi->s_locality_groups);
2660 	sbi->s_locality_groups = NULL;
2661 out:
2662 	kfree(sbi->s_mb_offsets);
2663 	sbi->s_mb_offsets = NULL;
2664 	kfree(sbi->s_mb_maxs);
2665 	sbi->s_mb_maxs = NULL;
2666 	return ret;
2667 }
2668 
2669 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2670 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2671 {
2672 	struct ext4_prealloc_space *pa;
2673 	struct list_head *cur, *tmp;
2674 	int count = 0;
2675 
2676 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2677 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2678 		list_del(&pa->pa_group_list);
2679 		count++;
2680 		kmem_cache_free(ext4_pspace_cachep, pa);
2681 	}
2682 	if (count)
2683 		mb_debug(1, "mballoc: %u PAs left\n", count);
2684 
2685 }
2686 
ext4_mb_release(struct super_block * sb)2687 int ext4_mb_release(struct super_block *sb)
2688 {
2689 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2690 	ext4_group_t i;
2691 	int num_meta_group_infos;
2692 	struct ext4_group_info *grinfo;
2693 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2694 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2695 
2696 	if (sbi->s_proc)
2697 		remove_proc_entry("mb_groups", sbi->s_proc);
2698 
2699 	if (sbi->s_group_info) {
2700 		for (i = 0; i < ngroups; i++) {
2701 			grinfo = ext4_get_group_info(sb, i);
2702 #ifdef DOUBLE_CHECK
2703 			kfree(grinfo->bb_bitmap);
2704 #endif
2705 			ext4_lock_group(sb, i);
2706 			ext4_mb_cleanup_pa(grinfo);
2707 			ext4_unlock_group(sb, i);
2708 			kmem_cache_free(cachep, grinfo);
2709 		}
2710 		num_meta_group_infos = (ngroups +
2711 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2712 			EXT4_DESC_PER_BLOCK_BITS(sb);
2713 		for (i = 0; i < num_meta_group_infos; i++)
2714 			kfree(sbi->s_group_info[i]);
2715 		kvfree(sbi->s_group_info);
2716 	}
2717 	kfree(sbi->s_mb_offsets);
2718 	kfree(sbi->s_mb_maxs);
2719 	iput(sbi->s_buddy_cache);
2720 	if (sbi->s_mb_stats) {
2721 		ext4_msg(sb, KERN_INFO,
2722 		       "mballoc: %u blocks %u reqs (%u success)",
2723 				atomic_read(&sbi->s_bal_allocated),
2724 				atomic_read(&sbi->s_bal_reqs),
2725 				atomic_read(&sbi->s_bal_success));
2726 		ext4_msg(sb, KERN_INFO,
2727 		      "mballoc: %u extents scanned, %u goal hits, "
2728 				"%u 2^N hits, %u breaks, %u lost",
2729 				atomic_read(&sbi->s_bal_ex_scanned),
2730 				atomic_read(&sbi->s_bal_goals),
2731 				atomic_read(&sbi->s_bal_2orders),
2732 				atomic_read(&sbi->s_bal_breaks),
2733 				atomic_read(&sbi->s_mb_lost_chunks));
2734 		ext4_msg(sb, KERN_INFO,
2735 		       "mballoc: %lu generated and it took %Lu",
2736 				sbi->s_mb_buddies_generated,
2737 				sbi->s_mb_generation_time);
2738 		ext4_msg(sb, KERN_INFO,
2739 		       "mballoc: %u preallocated, %u discarded",
2740 				atomic_read(&sbi->s_mb_preallocated),
2741 				atomic_read(&sbi->s_mb_discarded));
2742 	}
2743 
2744 	free_percpu(sbi->s_locality_groups);
2745 
2746 	return 0;
2747 }
2748 
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count)2749 static inline int ext4_issue_discard(struct super_block *sb,
2750 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2751 {
2752 	ext4_fsblk_t discard_block;
2753 
2754 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2755 			 ext4_group_first_block_no(sb, block_group));
2756 	count = EXT4_C2B(EXT4_SB(sb), count);
2757 	trace_ext4_discard_blocks(sb,
2758 			(unsigned long long) discard_block, count);
2759 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2760 }
2761 
2762 /*
2763  * This function is called by the jbd2 layer once the commit has finished,
2764  * so we know we can free the blocks that were released with that commit.
2765  */
ext4_free_data_callback(struct super_block * sb,struct ext4_journal_cb_entry * jce,int rc)2766 static void ext4_free_data_callback(struct super_block *sb,
2767 				    struct ext4_journal_cb_entry *jce,
2768 				    int rc)
2769 {
2770 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2771 	struct ext4_buddy e4b;
2772 	struct ext4_group_info *db;
2773 	int err, count = 0, count2 = 0;
2774 
2775 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2776 		 entry->efd_count, entry->efd_group, entry);
2777 
2778 	if (test_opt(sb, DISCARD)) {
2779 		err = ext4_issue_discard(sb, entry->efd_group,
2780 					 entry->efd_start_cluster,
2781 					 entry->efd_count);
2782 		if (err && err != -EOPNOTSUPP)
2783 			ext4_msg(sb, KERN_WARNING, "discard request in"
2784 				 " group:%d block:%d count:%d failed"
2785 				 " with %d", entry->efd_group,
2786 				 entry->efd_start_cluster,
2787 				 entry->efd_count, err);
2788 	}
2789 
2790 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2791 	/* we expect to find existing buddy because it's pinned */
2792 	BUG_ON(err != 0);
2793 
2794 
2795 	db = e4b.bd_info;
2796 	/* there are blocks to put in buddy to make them really free */
2797 	count += entry->efd_count;
2798 	count2++;
2799 	ext4_lock_group(sb, entry->efd_group);
2800 	/* Take it out of per group rb tree */
2801 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2802 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2803 
2804 	/*
2805 	 * Clear the trimmed flag for the group so that the next
2806 	 * ext4_trim_fs can trim it.
2807 	 * If the volume is mounted with -o discard, online discard
2808 	 * is supported and the free blocks will be trimmed online.
2809 	 */
2810 	if (!test_opt(sb, DISCARD))
2811 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2812 
2813 	if (!db->bb_free_root.rb_node) {
2814 		/* No more items in the per group rb tree
2815 		 * balance refcounts from ext4_mb_free_metadata()
2816 		 */
2817 		page_cache_release(e4b.bd_buddy_page);
2818 		page_cache_release(e4b.bd_bitmap_page);
2819 	}
2820 	ext4_unlock_group(sb, entry->efd_group);
2821 	kmem_cache_free(ext4_free_data_cachep, entry);
2822 	ext4_mb_unload_buddy(&e4b);
2823 
2824 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2825 }
2826 
ext4_init_mballoc(void)2827 int __init ext4_init_mballoc(void)
2828 {
2829 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2830 					SLAB_RECLAIM_ACCOUNT);
2831 	if (ext4_pspace_cachep == NULL)
2832 		return -ENOMEM;
2833 
2834 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2835 				    SLAB_RECLAIM_ACCOUNT);
2836 	if (ext4_ac_cachep == NULL) {
2837 		kmem_cache_destroy(ext4_pspace_cachep);
2838 		return -ENOMEM;
2839 	}
2840 
2841 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2842 					   SLAB_RECLAIM_ACCOUNT);
2843 	if (ext4_free_data_cachep == NULL) {
2844 		kmem_cache_destroy(ext4_pspace_cachep);
2845 		kmem_cache_destroy(ext4_ac_cachep);
2846 		return -ENOMEM;
2847 	}
2848 	return 0;
2849 }
2850 
ext4_exit_mballoc(void)2851 void ext4_exit_mballoc(void)
2852 {
2853 	/*
2854 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2855 	 * before destroying the slab cache.
2856 	 */
2857 	rcu_barrier();
2858 	kmem_cache_destroy(ext4_pspace_cachep);
2859 	kmem_cache_destroy(ext4_ac_cachep);
2860 	kmem_cache_destroy(ext4_free_data_cachep);
2861 	ext4_groupinfo_destroy_slabs();
2862 }
2863 
2864 
2865 /*
2866  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2867  * Returns 0 if success or error code
2868  */
2869 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2870 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2871 				handle_t *handle, unsigned int reserv_clstrs)
2872 {
2873 	struct buffer_head *bitmap_bh = NULL;
2874 	struct ext4_group_desc *gdp;
2875 	struct buffer_head *gdp_bh;
2876 	struct ext4_sb_info *sbi;
2877 	struct super_block *sb;
2878 	ext4_fsblk_t block;
2879 	int err, len;
2880 
2881 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2882 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2883 
2884 	sb = ac->ac_sb;
2885 	sbi = EXT4_SB(sb);
2886 
2887 	err = -EIO;
2888 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2889 	if (!bitmap_bh)
2890 		goto out_err;
2891 
2892 	BUFFER_TRACE(bitmap_bh, "getting write access");
2893 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2894 	if (err)
2895 		goto out_err;
2896 
2897 	err = -EIO;
2898 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2899 	if (!gdp)
2900 		goto out_err;
2901 
2902 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2903 			ext4_free_group_clusters(sb, gdp));
2904 
2905 	BUFFER_TRACE(gdp_bh, "get_write_access");
2906 	err = ext4_journal_get_write_access(handle, gdp_bh);
2907 	if (err)
2908 		goto out_err;
2909 
2910 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2911 
2912 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2913 	if (!ext4_data_block_valid(sbi, block, len)) {
2914 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2915 			   "fs metadata", block, block+len);
2916 		/* File system mounted not to panic on error
2917 		 * Fix the bitmap and repeat the block allocation
2918 		 * We leak some of the blocks here.
2919 		 */
2920 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2921 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2922 			      ac->ac_b_ex.fe_len);
2923 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2924 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2925 		if (!err)
2926 			err = -EAGAIN;
2927 		goto out_err;
2928 	}
2929 
2930 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2931 #ifdef AGGRESSIVE_CHECK
2932 	{
2933 		int i;
2934 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2935 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2936 						bitmap_bh->b_data));
2937 		}
2938 	}
2939 #endif
2940 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2941 		      ac->ac_b_ex.fe_len);
2942 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2943 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2944 		ext4_free_group_clusters_set(sb, gdp,
2945 					     ext4_free_clusters_after_init(sb,
2946 						ac->ac_b_ex.fe_group, gdp));
2947 	}
2948 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2949 	ext4_free_group_clusters_set(sb, gdp, len);
2950 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2951 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2952 
2953 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2954 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2955 	/*
2956 	 * Now reduce the dirty block count also. Should not go negative
2957 	 */
2958 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2959 		/* release all the reserved blocks if non delalloc */
2960 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2961 				   reserv_clstrs);
2962 
2963 	if (sbi->s_log_groups_per_flex) {
2964 		ext4_group_t flex_group = ext4_flex_group(sbi,
2965 							  ac->ac_b_ex.fe_group);
2966 		atomic64_sub(ac->ac_b_ex.fe_len,
2967 			     &sbi->s_flex_groups[flex_group].free_clusters);
2968 	}
2969 
2970 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2971 	if (err)
2972 		goto out_err;
2973 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2974 
2975 out_err:
2976 	brelse(bitmap_bh);
2977 	return err;
2978 }
2979 
2980 /*
2981  * here we normalize request for locality group
2982  * Group request are normalized to s_mb_group_prealloc, which goes to
2983  * s_strip if we set the same via mount option.
2984  * s_mb_group_prealloc can be configured via
2985  * /sys/fs/ext4/<partition>/mb_group_prealloc
2986  *
2987  * XXX: should we try to preallocate more than the group has now?
2988  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)2989 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2990 {
2991 	struct super_block *sb = ac->ac_sb;
2992 	struct ext4_locality_group *lg = ac->ac_lg;
2993 
2994 	BUG_ON(lg == NULL);
2995 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2996 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2997 		current->pid, ac->ac_g_ex.fe_len);
2998 }
2999 
3000 /*
3001  * Normalization means making request better in terms of
3002  * size and alignment
3003  */
3004 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3005 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3006 				struct ext4_allocation_request *ar)
3007 {
3008 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3009 	int bsbits, max;
3010 	ext4_lblk_t end;
3011 	loff_t size, start_off;
3012 	loff_t orig_size __maybe_unused;
3013 	ext4_lblk_t start;
3014 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3015 	struct ext4_prealloc_space *pa;
3016 
3017 	/* do normalize only data requests, metadata requests
3018 	   do not need preallocation */
3019 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3020 		return;
3021 
3022 	/* sometime caller may want exact blocks */
3023 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3024 		return;
3025 
3026 	/* caller may indicate that preallocation isn't
3027 	 * required (it's a tail, for example) */
3028 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3029 		return;
3030 
3031 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3032 		ext4_mb_normalize_group_request(ac);
3033 		return ;
3034 	}
3035 
3036 	bsbits = ac->ac_sb->s_blocksize_bits;
3037 
3038 	/* first, let's learn actual file size
3039 	 * given current request is allocated */
3040 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3041 	size = size << bsbits;
3042 	if (size < i_size_read(ac->ac_inode))
3043 		size = i_size_read(ac->ac_inode);
3044 	orig_size = size;
3045 
3046 	/* max size of free chunks */
3047 	max = 2 << bsbits;
3048 
3049 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3050 		(req <= (size) || max <= (chunk_size))
3051 
3052 	/* first, try to predict filesize */
3053 	/* XXX: should this table be tunable? */
3054 	start_off = 0;
3055 	if (size <= 16 * 1024) {
3056 		size = 16 * 1024;
3057 	} else if (size <= 32 * 1024) {
3058 		size = 32 * 1024;
3059 	} else if (size <= 64 * 1024) {
3060 		size = 64 * 1024;
3061 	} else if (size <= 128 * 1024) {
3062 		size = 128 * 1024;
3063 	} else if (size <= 256 * 1024) {
3064 		size = 256 * 1024;
3065 	} else if (size <= 512 * 1024) {
3066 		size = 512 * 1024;
3067 	} else if (size <= 1024 * 1024) {
3068 		size = 1024 * 1024;
3069 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3070 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3071 						(21 - bsbits)) << 21;
3072 		size = 2 * 1024 * 1024;
3073 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3074 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3075 							(22 - bsbits)) << 22;
3076 		size = 4 * 1024 * 1024;
3077 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3078 					(8<<20)>>bsbits, max, 8 * 1024)) {
3079 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3080 							(23 - bsbits)) << 23;
3081 		size = 8 * 1024 * 1024;
3082 	} else {
3083 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3084 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3085 					      ac->ac_o_ex.fe_len) << bsbits;
3086 	}
3087 	size = size >> bsbits;
3088 	start = start_off >> bsbits;
3089 
3090 	/* don't cover already allocated blocks in selected range */
3091 	if (ar->pleft && start <= ar->lleft) {
3092 		size -= ar->lleft + 1 - start;
3093 		start = ar->lleft + 1;
3094 	}
3095 	if (ar->pright && start + size - 1 >= ar->lright)
3096 		size -= start + size - ar->lright;
3097 
3098 	end = start + size;
3099 
3100 	/* check we don't cross already preallocated blocks */
3101 	rcu_read_lock();
3102 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3103 		ext4_lblk_t pa_end;
3104 
3105 		if (pa->pa_deleted)
3106 			continue;
3107 		spin_lock(&pa->pa_lock);
3108 		if (pa->pa_deleted) {
3109 			spin_unlock(&pa->pa_lock);
3110 			continue;
3111 		}
3112 
3113 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3114 						  pa->pa_len);
3115 
3116 		/* PA must not overlap original request */
3117 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3118 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3119 
3120 		/* skip PAs this normalized request doesn't overlap with */
3121 		if (pa->pa_lstart >= end || pa_end <= start) {
3122 			spin_unlock(&pa->pa_lock);
3123 			continue;
3124 		}
3125 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3126 
3127 		/* adjust start or end to be adjacent to this pa */
3128 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3129 			BUG_ON(pa_end < start);
3130 			start = pa_end;
3131 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3132 			BUG_ON(pa->pa_lstart > end);
3133 			end = pa->pa_lstart;
3134 		}
3135 		spin_unlock(&pa->pa_lock);
3136 	}
3137 	rcu_read_unlock();
3138 	size = end - start;
3139 
3140 	/* XXX: extra loop to check we really don't overlap preallocations */
3141 	rcu_read_lock();
3142 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3143 		ext4_lblk_t pa_end;
3144 
3145 		spin_lock(&pa->pa_lock);
3146 		if (pa->pa_deleted == 0) {
3147 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3148 							  pa->pa_len);
3149 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3150 		}
3151 		spin_unlock(&pa->pa_lock);
3152 	}
3153 	rcu_read_unlock();
3154 
3155 	if (start + size <= ac->ac_o_ex.fe_logical &&
3156 			start > ac->ac_o_ex.fe_logical) {
3157 		ext4_msg(ac->ac_sb, KERN_ERR,
3158 			 "start %lu, size %lu, fe_logical %lu",
3159 			 (unsigned long) start, (unsigned long) size,
3160 			 (unsigned long) ac->ac_o_ex.fe_logical);
3161 		BUG();
3162 	}
3163 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3164 
3165 	/* now prepare goal request */
3166 
3167 	/* XXX: is it better to align blocks WRT to logical
3168 	 * placement or satisfy big request as is */
3169 	ac->ac_g_ex.fe_logical = start;
3170 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3171 
3172 	/* define goal start in order to merge */
3173 	if (ar->pright && (ar->lright == (start + size))) {
3174 		/* merge to the right */
3175 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3176 						&ac->ac_f_ex.fe_group,
3177 						&ac->ac_f_ex.fe_start);
3178 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3179 	}
3180 	if (ar->pleft && (ar->lleft + 1 == start)) {
3181 		/* merge to the left */
3182 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3183 						&ac->ac_f_ex.fe_group,
3184 						&ac->ac_f_ex.fe_start);
3185 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3186 	}
3187 
3188 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3189 		(unsigned) orig_size, (unsigned) start);
3190 }
3191 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3192 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3193 {
3194 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3195 
3196 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3197 		atomic_inc(&sbi->s_bal_reqs);
3198 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3199 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3200 			atomic_inc(&sbi->s_bal_success);
3201 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3202 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3203 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3204 			atomic_inc(&sbi->s_bal_goals);
3205 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3206 			atomic_inc(&sbi->s_bal_breaks);
3207 	}
3208 
3209 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3210 		trace_ext4_mballoc_alloc(ac);
3211 	else
3212 		trace_ext4_mballoc_prealloc(ac);
3213 }
3214 
3215 /*
3216  * Called on failure; free up any blocks from the inode PA for this
3217  * context.  We don't need this for MB_GROUP_PA because we only change
3218  * pa_free in ext4_mb_release_context(), but on failure, we've already
3219  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3220  */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3221 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3222 {
3223 	struct ext4_prealloc_space *pa = ac->ac_pa;
3224 	struct ext4_buddy e4b;
3225 	int err;
3226 
3227 	if (pa == NULL) {
3228 		if (ac->ac_f_ex.fe_len == 0)
3229 			return;
3230 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3231 		if (err) {
3232 			/*
3233 			 * This should never happen since we pin the
3234 			 * pages in the ext4_allocation_context so
3235 			 * ext4_mb_load_buddy() should never fail.
3236 			 */
3237 			WARN(1, "mb_load_buddy failed (%d)", err);
3238 			return;
3239 		}
3240 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3241 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3242 			       ac->ac_f_ex.fe_len);
3243 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3244 		ext4_mb_unload_buddy(&e4b);
3245 		return;
3246 	}
3247 	if (pa->pa_type == MB_INODE_PA)
3248 		pa->pa_free += ac->ac_b_ex.fe_len;
3249 }
3250 
3251 /*
3252  * use blocks preallocated to inode
3253  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3254 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3255 				struct ext4_prealloc_space *pa)
3256 {
3257 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3258 	ext4_fsblk_t start;
3259 	ext4_fsblk_t end;
3260 	int len;
3261 
3262 	/* found preallocated blocks, use them */
3263 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3264 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3265 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3266 	len = EXT4_NUM_B2C(sbi, end - start);
3267 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3268 					&ac->ac_b_ex.fe_start);
3269 	ac->ac_b_ex.fe_len = len;
3270 	ac->ac_status = AC_STATUS_FOUND;
3271 	ac->ac_pa = pa;
3272 
3273 	BUG_ON(start < pa->pa_pstart);
3274 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3275 	BUG_ON(pa->pa_free < len);
3276 	pa->pa_free -= len;
3277 
3278 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3279 }
3280 
3281 /*
3282  * use blocks preallocated to locality group
3283  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3284 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3285 				struct ext4_prealloc_space *pa)
3286 {
3287 	unsigned int len = ac->ac_o_ex.fe_len;
3288 
3289 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3290 					&ac->ac_b_ex.fe_group,
3291 					&ac->ac_b_ex.fe_start);
3292 	ac->ac_b_ex.fe_len = len;
3293 	ac->ac_status = AC_STATUS_FOUND;
3294 	ac->ac_pa = pa;
3295 
3296 	/* we don't correct pa_pstart or pa_plen here to avoid
3297 	 * possible race when the group is being loaded concurrently
3298 	 * instead we correct pa later, after blocks are marked
3299 	 * in on-disk bitmap -- see ext4_mb_release_context()
3300 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3301 	 */
3302 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3303 }
3304 
3305 /*
3306  * Return the prealloc space that have minimal distance
3307  * from the goal block. @cpa is the prealloc
3308  * space that is having currently known minimal distance
3309  * from the goal block.
3310  */
3311 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3312 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3313 			struct ext4_prealloc_space *pa,
3314 			struct ext4_prealloc_space *cpa)
3315 {
3316 	ext4_fsblk_t cur_distance, new_distance;
3317 
3318 	if (cpa == NULL) {
3319 		atomic_inc(&pa->pa_count);
3320 		return pa;
3321 	}
3322 	cur_distance = abs(goal_block - cpa->pa_pstart);
3323 	new_distance = abs(goal_block - pa->pa_pstart);
3324 
3325 	if (cur_distance <= new_distance)
3326 		return cpa;
3327 
3328 	/* drop the previous reference */
3329 	atomic_dec(&cpa->pa_count);
3330 	atomic_inc(&pa->pa_count);
3331 	return pa;
3332 }
3333 
3334 /*
3335  * search goal blocks in preallocated space
3336  */
3337 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3338 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3339 {
3340 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3341 	int order, i;
3342 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3343 	struct ext4_locality_group *lg;
3344 	struct ext4_prealloc_space *pa, *cpa = NULL;
3345 	ext4_fsblk_t goal_block;
3346 
3347 	/* only data can be preallocated */
3348 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3349 		return 0;
3350 
3351 	/* first, try per-file preallocation */
3352 	rcu_read_lock();
3353 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3354 
3355 		/* all fields in this condition don't change,
3356 		 * so we can skip locking for them */
3357 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3358 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3359 					       EXT4_C2B(sbi, pa->pa_len)))
3360 			continue;
3361 
3362 		/* non-extent files can't have physical blocks past 2^32 */
3363 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3364 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3365 		     EXT4_MAX_BLOCK_FILE_PHYS))
3366 			continue;
3367 
3368 		/* found preallocated blocks, use them */
3369 		spin_lock(&pa->pa_lock);
3370 		if (pa->pa_deleted == 0 && pa->pa_free) {
3371 			atomic_inc(&pa->pa_count);
3372 			ext4_mb_use_inode_pa(ac, pa);
3373 			spin_unlock(&pa->pa_lock);
3374 			ac->ac_criteria = 10;
3375 			rcu_read_unlock();
3376 			return 1;
3377 		}
3378 		spin_unlock(&pa->pa_lock);
3379 	}
3380 	rcu_read_unlock();
3381 
3382 	/* can we use group allocation? */
3383 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3384 		return 0;
3385 
3386 	/* inode may have no locality group for some reason */
3387 	lg = ac->ac_lg;
3388 	if (lg == NULL)
3389 		return 0;
3390 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3391 	if (order > PREALLOC_TB_SIZE - 1)
3392 		/* The max size of hash table is PREALLOC_TB_SIZE */
3393 		order = PREALLOC_TB_SIZE - 1;
3394 
3395 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3396 	/*
3397 	 * search for the prealloc space that is having
3398 	 * minimal distance from the goal block.
3399 	 */
3400 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3401 		rcu_read_lock();
3402 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3403 					pa_inode_list) {
3404 			spin_lock(&pa->pa_lock);
3405 			if (pa->pa_deleted == 0 &&
3406 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3407 
3408 				cpa = ext4_mb_check_group_pa(goal_block,
3409 								pa, cpa);
3410 			}
3411 			spin_unlock(&pa->pa_lock);
3412 		}
3413 		rcu_read_unlock();
3414 	}
3415 	if (cpa) {
3416 		ext4_mb_use_group_pa(ac, cpa);
3417 		ac->ac_criteria = 20;
3418 		return 1;
3419 	}
3420 	return 0;
3421 }
3422 
3423 /*
3424  * the function goes through all block freed in the group
3425  * but not yet committed and marks them used in in-core bitmap.
3426  * buddy must be generated from this bitmap
3427  * Need to be called with the ext4 group lock held
3428  */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3429 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3430 						ext4_group_t group)
3431 {
3432 	struct rb_node *n;
3433 	struct ext4_group_info *grp;
3434 	struct ext4_free_data *entry;
3435 
3436 	grp = ext4_get_group_info(sb, group);
3437 	n = rb_first(&(grp->bb_free_root));
3438 
3439 	while (n) {
3440 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3441 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3442 		n = rb_next(n);
3443 	}
3444 	return;
3445 }
3446 
3447 /*
3448  * the function goes through all preallocation in this group and marks them
3449  * used in in-core bitmap. buddy must be generated from this bitmap
3450  * Need to be called with ext4 group lock held
3451  */
3452 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3453 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3454 					ext4_group_t group)
3455 {
3456 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3457 	struct ext4_prealloc_space *pa;
3458 	struct list_head *cur;
3459 	ext4_group_t groupnr;
3460 	ext4_grpblk_t start;
3461 	int preallocated = 0;
3462 	int len;
3463 
3464 	/* all form of preallocation discards first load group,
3465 	 * so the only competing code is preallocation use.
3466 	 * we don't need any locking here
3467 	 * notice we do NOT ignore preallocations with pa_deleted
3468 	 * otherwise we could leave used blocks available for
3469 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3470 	 * is dropping preallocation
3471 	 */
3472 	list_for_each(cur, &grp->bb_prealloc_list) {
3473 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3474 		spin_lock(&pa->pa_lock);
3475 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3476 					     &groupnr, &start);
3477 		len = pa->pa_len;
3478 		spin_unlock(&pa->pa_lock);
3479 		if (unlikely(len == 0))
3480 			continue;
3481 		BUG_ON(groupnr != group);
3482 		ext4_set_bits(bitmap, start, len);
3483 		preallocated += len;
3484 	}
3485 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3486 }
3487 
ext4_mb_pa_callback(struct rcu_head * head)3488 static void ext4_mb_pa_callback(struct rcu_head *head)
3489 {
3490 	struct ext4_prealloc_space *pa;
3491 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3492 
3493 	BUG_ON(atomic_read(&pa->pa_count));
3494 	BUG_ON(pa->pa_deleted == 0);
3495 	kmem_cache_free(ext4_pspace_cachep, pa);
3496 }
3497 
3498 /*
3499  * drops a reference to preallocated space descriptor
3500  * if this was the last reference and the space is consumed
3501  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3502 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3503 			struct super_block *sb, struct ext4_prealloc_space *pa)
3504 {
3505 	ext4_group_t grp;
3506 	ext4_fsblk_t grp_blk;
3507 
3508 	/* in this short window concurrent discard can set pa_deleted */
3509 	spin_lock(&pa->pa_lock);
3510 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3511 		spin_unlock(&pa->pa_lock);
3512 		return;
3513 	}
3514 
3515 	if (pa->pa_deleted == 1) {
3516 		spin_unlock(&pa->pa_lock);
3517 		return;
3518 	}
3519 
3520 	pa->pa_deleted = 1;
3521 	spin_unlock(&pa->pa_lock);
3522 
3523 	grp_blk = pa->pa_pstart;
3524 	/*
3525 	 * If doing group-based preallocation, pa_pstart may be in the
3526 	 * next group when pa is used up
3527 	 */
3528 	if (pa->pa_type == MB_GROUP_PA)
3529 		grp_blk--;
3530 
3531 	grp = ext4_get_group_number(sb, grp_blk);
3532 
3533 	/*
3534 	 * possible race:
3535 	 *
3536 	 *  P1 (buddy init)			P2 (regular allocation)
3537 	 *					find block B in PA
3538 	 *  copy on-disk bitmap to buddy
3539 	 *  					mark B in on-disk bitmap
3540 	 *					drop PA from group
3541 	 *  mark all PAs in buddy
3542 	 *
3543 	 * thus, P1 initializes buddy with B available. to prevent this
3544 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3545 	 * against that pair
3546 	 */
3547 	ext4_lock_group(sb, grp);
3548 	list_del(&pa->pa_group_list);
3549 	ext4_unlock_group(sb, grp);
3550 
3551 	spin_lock(pa->pa_obj_lock);
3552 	list_del_rcu(&pa->pa_inode_list);
3553 	spin_unlock(pa->pa_obj_lock);
3554 
3555 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3556 }
3557 
3558 /*
3559  * creates new preallocated space for given inode
3560  */
3561 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3562 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3563 {
3564 	struct super_block *sb = ac->ac_sb;
3565 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3566 	struct ext4_prealloc_space *pa;
3567 	struct ext4_group_info *grp;
3568 	struct ext4_inode_info *ei;
3569 
3570 	/* preallocate only when found space is larger then requested */
3571 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3572 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3573 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3574 
3575 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3576 	if (pa == NULL)
3577 		return -ENOMEM;
3578 
3579 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3580 		int winl;
3581 		int wins;
3582 		int win;
3583 		int offs;
3584 
3585 		/* we can't allocate as much as normalizer wants.
3586 		 * so, found space must get proper lstart
3587 		 * to cover original request */
3588 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3589 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3590 
3591 		/* we're limited by original request in that
3592 		 * logical block must be covered any way
3593 		 * winl is window we can move our chunk within */
3594 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3595 
3596 		/* also, we should cover whole original request */
3597 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3598 
3599 		/* the smallest one defines real window */
3600 		win = min(winl, wins);
3601 
3602 		offs = ac->ac_o_ex.fe_logical %
3603 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3604 		if (offs && offs < win)
3605 			win = offs;
3606 
3607 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3608 			EXT4_NUM_B2C(sbi, win);
3609 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3610 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3611 	}
3612 
3613 	/* preallocation can change ac_b_ex, thus we store actually
3614 	 * allocated blocks for history */
3615 	ac->ac_f_ex = ac->ac_b_ex;
3616 
3617 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3618 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3619 	pa->pa_len = ac->ac_b_ex.fe_len;
3620 	pa->pa_free = pa->pa_len;
3621 	atomic_set(&pa->pa_count, 1);
3622 	spin_lock_init(&pa->pa_lock);
3623 	INIT_LIST_HEAD(&pa->pa_inode_list);
3624 	INIT_LIST_HEAD(&pa->pa_group_list);
3625 	pa->pa_deleted = 0;
3626 	pa->pa_type = MB_INODE_PA;
3627 
3628 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3629 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3630 	trace_ext4_mb_new_inode_pa(ac, pa);
3631 
3632 	ext4_mb_use_inode_pa(ac, pa);
3633 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3634 
3635 	ei = EXT4_I(ac->ac_inode);
3636 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3637 
3638 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3639 	pa->pa_inode = ac->ac_inode;
3640 
3641 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3642 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3643 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3644 
3645 	spin_lock(pa->pa_obj_lock);
3646 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3647 	spin_unlock(pa->pa_obj_lock);
3648 
3649 	return 0;
3650 }
3651 
3652 /*
3653  * creates new preallocated space for locality group inodes belongs to
3654  */
3655 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3656 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3657 {
3658 	struct super_block *sb = ac->ac_sb;
3659 	struct ext4_locality_group *lg;
3660 	struct ext4_prealloc_space *pa;
3661 	struct ext4_group_info *grp;
3662 
3663 	/* preallocate only when found space is larger then requested */
3664 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3665 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3666 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3667 
3668 	BUG_ON(ext4_pspace_cachep == NULL);
3669 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3670 	if (pa == NULL)
3671 		return -ENOMEM;
3672 
3673 	/* preallocation can change ac_b_ex, thus we store actually
3674 	 * allocated blocks for history */
3675 	ac->ac_f_ex = ac->ac_b_ex;
3676 
3677 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3678 	pa->pa_lstart = pa->pa_pstart;
3679 	pa->pa_len = ac->ac_b_ex.fe_len;
3680 	pa->pa_free = pa->pa_len;
3681 	atomic_set(&pa->pa_count, 1);
3682 	spin_lock_init(&pa->pa_lock);
3683 	INIT_LIST_HEAD(&pa->pa_inode_list);
3684 	INIT_LIST_HEAD(&pa->pa_group_list);
3685 	pa->pa_deleted = 0;
3686 	pa->pa_type = MB_GROUP_PA;
3687 
3688 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3689 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3690 	trace_ext4_mb_new_group_pa(ac, pa);
3691 
3692 	ext4_mb_use_group_pa(ac, pa);
3693 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3694 
3695 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3696 	lg = ac->ac_lg;
3697 	BUG_ON(lg == NULL);
3698 
3699 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3700 	pa->pa_inode = NULL;
3701 
3702 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3703 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3704 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3705 
3706 	/*
3707 	 * We will later add the new pa to the right bucket
3708 	 * after updating the pa_free in ext4_mb_release_context
3709 	 */
3710 	return 0;
3711 }
3712 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3713 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3714 {
3715 	int err;
3716 
3717 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3718 		err = ext4_mb_new_group_pa(ac);
3719 	else
3720 		err = ext4_mb_new_inode_pa(ac);
3721 	return err;
3722 }
3723 
3724 /*
3725  * finds all unused blocks in on-disk bitmap, frees them in
3726  * in-core bitmap and buddy.
3727  * @pa must be unlinked from inode and group lists, so that
3728  * nobody else can find/use it.
3729  * the caller MUST hold group/inode locks.
3730  * TODO: optimize the case when there are no in-core structures yet
3731  */
3732 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3733 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3734 			struct ext4_prealloc_space *pa)
3735 {
3736 	struct super_block *sb = e4b->bd_sb;
3737 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3738 	unsigned int end;
3739 	unsigned int next;
3740 	ext4_group_t group;
3741 	ext4_grpblk_t bit;
3742 	unsigned long long grp_blk_start;
3743 	int err = 0;
3744 	int free = 0;
3745 
3746 	BUG_ON(pa->pa_deleted == 0);
3747 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3748 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3749 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3750 	end = bit + pa->pa_len;
3751 
3752 	while (bit < end) {
3753 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3754 		if (bit >= end)
3755 			break;
3756 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3757 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3758 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3759 			 (unsigned) next - bit, (unsigned) group);
3760 		free += next - bit;
3761 
3762 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3763 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3764 						    EXT4_C2B(sbi, bit)),
3765 					       next - bit);
3766 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3767 		bit = next + 1;
3768 	}
3769 	if (free != pa->pa_free) {
3770 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3771 			 "pa %p: logic %lu, phys. %lu, len %lu",
3772 			 pa, (unsigned long) pa->pa_lstart,
3773 			 (unsigned long) pa->pa_pstart,
3774 			 (unsigned long) pa->pa_len);
3775 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3776 					free, pa->pa_free);
3777 		/*
3778 		 * pa is already deleted so we use the value obtained
3779 		 * from the bitmap and continue.
3780 		 */
3781 	}
3782 	atomic_add(free, &sbi->s_mb_discarded);
3783 
3784 	return err;
3785 }
3786 
3787 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3788 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3789 				struct ext4_prealloc_space *pa)
3790 {
3791 	struct super_block *sb = e4b->bd_sb;
3792 	ext4_group_t group;
3793 	ext4_grpblk_t bit;
3794 
3795 	trace_ext4_mb_release_group_pa(sb, pa);
3796 	BUG_ON(pa->pa_deleted == 0);
3797 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3798 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3799 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3800 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3801 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3802 
3803 	return 0;
3804 }
3805 
3806 /*
3807  * releases all preallocations in given group
3808  *
3809  * first, we need to decide discard policy:
3810  * - when do we discard
3811  *   1) ENOSPC
3812  * - how many do we discard
3813  *   1) how many requested
3814  */
3815 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3816 ext4_mb_discard_group_preallocations(struct super_block *sb,
3817 					ext4_group_t group, int needed)
3818 {
3819 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3820 	struct buffer_head *bitmap_bh = NULL;
3821 	struct ext4_prealloc_space *pa, *tmp;
3822 	struct list_head list;
3823 	struct ext4_buddy e4b;
3824 	int err;
3825 	int busy = 0;
3826 	int free = 0;
3827 
3828 	mb_debug(1, "discard preallocation for group %u\n", group);
3829 
3830 	if (list_empty(&grp->bb_prealloc_list))
3831 		return 0;
3832 
3833 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3834 	if (bitmap_bh == NULL) {
3835 		ext4_error(sb, "Error reading block bitmap for %u", group);
3836 		return 0;
3837 	}
3838 
3839 	err = ext4_mb_load_buddy(sb, group, &e4b);
3840 	if (err) {
3841 		ext4_error(sb, "Error loading buddy information for %u", group);
3842 		put_bh(bitmap_bh);
3843 		return 0;
3844 	}
3845 
3846 	if (needed == 0)
3847 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3848 
3849 	INIT_LIST_HEAD(&list);
3850 repeat:
3851 	ext4_lock_group(sb, group);
3852 	list_for_each_entry_safe(pa, tmp,
3853 				&grp->bb_prealloc_list, pa_group_list) {
3854 		spin_lock(&pa->pa_lock);
3855 		if (atomic_read(&pa->pa_count)) {
3856 			spin_unlock(&pa->pa_lock);
3857 			busy = 1;
3858 			continue;
3859 		}
3860 		if (pa->pa_deleted) {
3861 			spin_unlock(&pa->pa_lock);
3862 			continue;
3863 		}
3864 
3865 		/* seems this one can be freed ... */
3866 		pa->pa_deleted = 1;
3867 
3868 		/* we can trust pa_free ... */
3869 		free += pa->pa_free;
3870 
3871 		spin_unlock(&pa->pa_lock);
3872 
3873 		list_del(&pa->pa_group_list);
3874 		list_add(&pa->u.pa_tmp_list, &list);
3875 	}
3876 
3877 	/* if we still need more blocks and some PAs were used, try again */
3878 	if (free < needed && busy) {
3879 		busy = 0;
3880 		ext4_unlock_group(sb, group);
3881 		cond_resched();
3882 		goto repeat;
3883 	}
3884 
3885 	/* found anything to free? */
3886 	if (list_empty(&list)) {
3887 		BUG_ON(free != 0);
3888 		goto out;
3889 	}
3890 
3891 	/* now free all selected PAs */
3892 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3893 
3894 		/* remove from object (inode or locality group) */
3895 		spin_lock(pa->pa_obj_lock);
3896 		list_del_rcu(&pa->pa_inode_list);
3897 		spin_unlock(pa->pa_obj_lock);
3898 
3899 		if (pa->pa_type == MB_GROUP_PA)
3900 			ext4_mb_release_group_pa(&e4b, pa);
3901 		else
3902 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3903 
3904 		list_del(&pa->u.pa_tmp_list);
3905 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3906 	}
3907 
3908 out:
3909 	ext4_unlock_group(sb, group);
3910 	ext4_mb_unload_buddy(&e4b);
3911 	put_bh(bitmap_bh);
3912 	return free;
3913 }
3914 
3915 /*
3916  * releases all non-used preallocated blocks for given inode
3917  *
3918  * It's important to discard preallocations under i_data_sem
3919  * We don't want another block to be served from the prealloc
3920  * space when we are discarding the inode prealloc space.
3921  *
3922  * FIXME!! Make sure it is valid at all the call sites
3923  */
ext4_discard_preallocations(struct inode * inode)3924 void ext4_discard_preallocations(struct inode *inode)
3925 {
3926 	struct ext4_inode_info *ei = EXT4_I(inode);
3927 	struct super_block *sb = inode->i_sb;
3928 	struct buffer_head *bitmap_bh = NULL;
3929 	struct ext4_prealloc_space *pa, *tmp;
3930 	ext4_group_t group = 0;
3931 	struct list_head list;
3932 	struct ext4_buddy e4b;
3933 	int err;
3934 
3935 	if (!S_ISREG(inode->i_mode)) {
3936 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3937 		return;
3938 	}
3939 
3940 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3941 	trace_ext4_discard_preallocations(inode);
3942 
3943 	INIT_LIST_HEAD(&list);
3944 
3945 repeat:
3946 	/* first, collect all pa's in the inode */
3947 	spin_lock(&ei->i_prealloc_lock);
3948 	while (!list_empty(&ei->i_prealloc_list)) {
3949 		pa = list_entry(ei->i_prealloc_list.next,
3950 				struct ext4_prealloc_space, pa_inode_list);
3951 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3952 		spin_lock(&pa->pa_lock);
3953 		if (atomic_read(&pa->pa_count)) {
3954 			/* this shouldn't happen often - nobody should
3955 			 * use preallocation while we're discarding it */
3956 			spin_unlock(&pa->pa_lock);
3957 			spin_unlock(&ei->i_prealloc_lock);
3958 			ext4_msg(sb, KERN_ERR,
3959 				 "uh-oh! used pa while discarding");
3960 			WARN_ON(1);
3961 			schedule_timeout_uninterruptible(HZ);
3962 			goto repeat;
3963 
3964 		}
3965 		if (pa->pa_deleted == 0) {
3966 			pa->pa_deleted = 1;
3967 			spin_unlock(&pa->pa_lock);
3968 			list_del_rcu(&pa->pa_inode_list);
3969 			list_add(&pa->u.pa_tmp_list, &list);
3970 			continue;
3971 		}
3972 
3973 		/* someone is deleting pa right now */
3974 		spin_unlock(&pa->pa_lock);
3975 		spin_unlock(&ei->i_prealloc_lock);
3976 
3977 		/* we have to wait here because pa_deleted
3978 		 * doesn't mean pa is already unlinked from
3979 		 * the list. as we might be called from
3980 		 * ->clear_inode() the inode will get freed
3981 		 * and concurrent thread which is unlinking
3982 		 * pa from inode's list may access already
3983 		 * freed memory, bad-bad-bad */
3984 
3985 		/* XXX: if this happens too often, we can
3986 		 * add a flag to force wait only in case
3987 		 * of ->clear_inode(), but not in case of
3988 		 * regular truncate */
3989 		schedule_timeout_uninterruptible(HZ);
3990 		goto repeat;
3991 	}
3992 	spin_unlock(&ei->i_prealloc_lock);
3993 
3994 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3995 		BUG_ON(pa->pa_type != MB_INODE_PA);
3996 		group = ext4_get_group_number(sb, pa->pa_pstart);
3997 
3998 		err = ext4_mb_load_buddy(sb, group, &e4b);
3999 		if (err) {
4000 			ext4_error(sb, "Error loading buddy information for %u",
4001 					group);
4002 			continue;
4003 		}
4004 
4005 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4006 		if (bitmap_bh == NULL) {
4007 			ext4_error(sb, "Error reading block bitmap for %u",
4008 					group);
4009 			ext4_mb_unload_buddy(&e4b);
4010 			continue;
4011 		}
4012 
4013 		ext4_lock_group(sb, group);
4014 		list_del(&pa->pa_group_list);
4015 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4016 		ext4_unlock_group(sb, group);
4017 
4018 		ext4_mb_unload_buddy(&e4b);
4019 		put_bh(bitmap_bh);
4020 
4021 		list_del(&pa->u.pa_tmp_list);
4022 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4023 	}
4024 }
4025 
4026 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4027 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4028 {
4029 	struct super_block *sb = ac->ac_sb;
4030 	ext4_group_t ngroups, i;
4031 
4032 	if (!ext4_mballoc_debug ||
4033 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4034 		return;
4035 
4036 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4037 			" Allocation context details:");
4038 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4039 			ac->ac_status, ac->ac_flags);
4040 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4041 		 	"goal %lu/%lu/%lu@%lu, "
4042 			"best %lu/%lu/%lu@%lu cr %d",
4043 			(unsigned long)ac->ac_o_ex.fe_group,
4044 			(unsigned long)ac->ac_o_ex.fe_start,
4045 			(unsigned long)ac->ac_o_ex.fe_len,
4046 			(unsigned long)ac->ac_o_ex.fe_logical,
4047 			(unsigned long)ac->ac_g_ex.fe_group,
4048 			(unsigned long)ac->ac_g_ex.fe_start,
4049 			(unsigned long)ac->ac_g_ex.fe_len,
4050 			(unsigned long)ac->ac_g_ex.fe_logical,
4051 			(unsigned long)ac->ac_b_ex.fe_group,
4052 			(unsigned long)ac->ac_b_ex.fe_start,
4053 			(unsigned long)ac->ac_b_ex.fe_len,
4054 			(unsigned long)ac->ac_b_ex.fe_logical,
4055 			(int)ac->ac_criteria);
4056 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4057 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4058 	ngroups = ext4_get_groups_count(sb);
4059 	for (i = 0; i < ngroups; i++) {
4060 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4061 		struct ext4_prealloc_space *pa;
4062 		ext4_grpblk_t start;
4063 		struct list_head *cur;
4064 		ext4_lock_group(sb, i);
4065 		list_for_each(cur, &grp->bb_prealloc_list) {
4066 			pa = list_entry(cur, struct ext4_prealloc_space,
4067 					pa_group_list);
4068 			spin_lock(&pa->pa_lock);
4069 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4070 						     NULL, &start);
4071 			spin_unlock(&pa->pa_lock);
4072 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4073 			       start, pa->pa_len);
4074 		}
4075 		ext4_unlock_group(sb, i);
4076 
4077 		if (grp->bb_free == 0)
4078 			continue;
4079 		printk(KERN_ERR "%u: %d/%d \n",
4080 		       i, grp->bb_free, grp->bb_fragments);
4081 	}
4082 	printk(KERN_ERR "\n");
4083 }
4084 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4085 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4086 {
4087 	return;
4088 }
4089 #endif
4090 
4091 /*
4092  * We use locality group preallocation for small size file. The size of the
4093  * file is determined by the current size or the resulting size after
4094  * allocation which ever is larger
4095  *
4096  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4097  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4098 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4099 {
4100 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4101 	int bsbits = ac->ac_sb->s_blocksize_bits;
4102 	loff_t size, isize;
4103 
4104 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4105 		return;
4106 
4107 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4108 		return;
4109 
4110 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4111 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4112 		>> bsbits;
4113 
4114 	if ((size == isize) &&
4115 	    !ext4_fs_is_busy(sbi) &&
4116 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4117 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4118 		return;
4119 	}
4120 
4121 	if (sbi->s_mb_group_prealloc <= 0) {
4122 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4123 		return;
4124 	}
4125 
4126 	/* don't use group allocation for large files */
4127 	size = max(size, isize);
4128 	if (size > sbi->s_mb_stream_request) {
4129 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4130 		return;
4131 	}
4132 
4133 	BUG_ON(ac->ac_lg != NULL);
4134 	/*
4135 	 * locality group prealloc space are per cpu. The reason for having
4136 	 * per cpu locality group is to reduce the contention between block
4137 	 * request from multiple CPUs.
4138 	 */
4139 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4140 
4141 	/* we're going to use group allocation */
4142 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4143 
4144 	/* serialize all allocations in the group */
4145 	mutex_lock(&ac->ac_lg->lg_mutex);
4146 }
4147 
4148 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4149 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4150 				struct ext4_allocation_request *ar)
4151 {
4152 	struct super_block *sb = ar->inode->i_sb;
4153 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4154 	struct ext4_super_block *es = sbi->s_es;
4155 	ext4_group_t group;
4156 	unsigned int len;
4157 	ext4_fsblk_t goal;
4158 	ext4_grpblk_t block;
4159 
4160 	/* we can't allocate > group size */
4161 	len = ar->len;
4162 
4163 	/* just a dirty hack to filter too big requests  */
4164 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4165 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4166 
4167 	/* start searching from the goal */
4168 	goal = ar->goal;
4169 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4170 			goal >= ext4_blocks_count(es))
4171 		goal = le32_to_cpu(es->s_first_data_block);
4172 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4173 
4174 	/* set up allocation goals */
4175 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4176 	ac->ac_status = AC_STATUS_CONTINUE;
4177 	ac->ac_sb = sb;
4178 	ac->ac_inode = ar->inode;
4179 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4180 	ac->ac_o_ex.fe_group = group;
4181 	ac->ac_o_ex.fe_start = block;
4182 	ac->ac_o_ex.fe_len = len;
4183 	ac->ac_g_ex = ac->ac_o_ex;
4184 	ac->ac_flags = ar->flags;
4185 
4186 	/* we have to define context: we'll we work with a file or
4187 	 * locality group. this is a policy, actually */
4188 	ext4_mb_group_or_file(ac);
4189 
4190 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4191 			"left: %u/%u, right %u/%u to %swritable\n",
4192 			(unsigned) ar->len, (unsigned) ar->logical,
4193 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4194 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4195 			(unsigned) ar->lright, (unsigned) ar->pright,
4196 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4197 	return 0;
4198 
4199 }
4200 
4201 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4202 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4203 					struct ext4_locality_group *lg,
4204 					int order, int total_entries)
4205 {
4206 	ext4_group_t group = 0;
4207 	struct ext4_buddy e4b;
4208 	struct list_head discard_list;
4209 	struct ext4_prealloc_space *pa, *tmp;
4210 
4211 	mb_debug(1, "discard locality group preallocation\n");
4212 
4213 	INIT_LIST_HEAD(&discard_list);
4214 
4215 	spin_lock(&lg->lg_prealloc_lock);
4216 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4217 						pa_inode_list) {
4218 		spin_lock(&pa->pa_lock);
4219 		if (atomic_read(&pa->pa_count)) {
4220 			/*
4221 			 * This is the pa that we just used
4222 			 * for block allocation. So don't
4223 			 * free that
4224 			 */
4225 			spin_unlock(&pa->pa_lock);
4226 			continue;
4227 		}
4228 		if (pa->pa_deleted) {
4229 			spin_unlock(&pa->pa_lock);
4230 			continue;
4231 		}
4232 		/* only lg prealloc space */
4233 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4234 
4235 		/* seems this one can be freed ... */
4236 		pa->pa_deleted = 1;
4237 		spin_unlock(&pa->pa_lock);
4238 
4239 		list_del_rcu(&pa->pa_inode_list);
4240 		list_add(&pa->u.pa_tmp_list, &discard_list);
4241 
4242 		total_entries--;
4243 		if (total_entries <= 5) {
4244 			/*
4245 			 * we want to keep only 5 entries
4246 			 * allowing it to grow to 8. This
4247 			 * mak sure we don't call discard
4248 			 * soon for this list.
4249 			 */
4250 			break;
4251 		}
4252 	}
4253 	spin_unlock(&lg->lg_prealloc_lock);
4254 
4255 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4256 
4257 		group = ext4_get_group_number(sb, pa->pa_pstart);
4258 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4259 			ext4_error(sb, "Error loading buddy information for %u",
4260 					group);
4261 			continue;
4262 		}
4263 		ext4_lock_group(sb, group);
4264 		list_del(&pa->pa_group_list);
4265 		ext4_mb_release_group_pa(&e4b, pa);
4266 		ext4_unlock_group(sb, group);
4267 
4268 		ext4_mb_unload_buddy(&e4b);
4269 		list_del(&pa->u.pa_tmp_list);
4270 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4271 	}
4272 }
4273 
4274 /*
4275  * We have incremented pa_count. So it cannot be freed at this
4276  * point. Also we hold lg_mutex. So no parallel allocation is
4277  * possible from this lg. That means pa_free cannot be updated.
4278  *
4279  * A parallel ext4_mb_discard_group_preallocations is possible.
4280  * which can cause the lg_prealloc_list to be updated.
4281  */
4282 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4283 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4284 {
4285 	int order, added = 0, lg_prealloc_count = 1;
4286 	struct super_block *sb = ac->ac_sb;
4287 	struct ext4_locality_group *lg = ac->ac_lg;
4288 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4289 
4290 	order = fls(pa->pa_free) - 1;
4291 	if (order > PREALLOC_TB_SIZE - 1)
4292 		/* The max size of hash table is PREALLOC_TB_SIZE */
4293 		order = PREALLOC_TB_SIZE - 1;
4294 	/* Add the prealloc space to lg */
4295 	spin_lock(&lg->lg_prealloc_lock);
4296 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4297 						pa_inode_list) {
4298 		spin_lock(&tmp_pa->pa_lock);
4299 		if (tmp_pa->pa_deleted) {
4300 			spin_unlock(&tmp_pa->pa_lock);
4301 			continue;
4302 		}
4303 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4304 			/* Add to the tail of the previous entry */
4305 			list_add_tail_rcu(&pa->pa_inode_list,
4306 						&tmp_pa->pa_inode_list);
4307 			added = 1;
4308 			/*
4309 			 * we want to count the total
4310 			 * number of entries in the list
4311 			 */
4312 		}
4313 		spin_unlock(&tmp_pa->pa_lock);
4314 		lg_prealloc_count++;
4315 	}
4316 	if (!added)
4317 		list_add_tail_rcu(&pa->pa_inode_list,
4318 					&lg->lg_prealloc_list[order]);
4319 	spin_unlock(&lg->lg_prealloc_lock);
4320 
4321 	/* Now trim the list to be not more than 8 elements */
4322 	if (lg_prealloc_count > 8) {
4323 		ext4_mb_discard_lg_preallocations(sb, lg,
4324 						  order, lg_prealloc_count);
4325 		return;
4326 	}
4327 	return ;
4328 }
4329 
4330 /*
4331  * release all resource we used in allocation
4332  */
ext4_mb_release_context(struct ext4_allocation_context * ac)4333 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4334 {
4335 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4336 	struct ext4_prealloc_space *pa = ac->ac_pa;
4337 	if (pa) {
4338 		if (pa->pa_type == MB_GROUP_PA) {
4339 			/* see comment in ext4_mb_use_group_pa() */
4340 			spin_lock(&pa->pa_lock);
4341 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4342 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4343 			pa->pa_free -= ac->ac_b_ex.fe_len;
4344 			pa->pa_len -= ac->ac_b_ex.fe_len;
4345 			spin_unlock(&pa->pa_lock);
4346 		}
4347 	}
4348 	if (pa) {
4349 		/*
4350 		 * We want to add the pa to the right bucket.
4351 		 * Remove it from the list and while adding
4352 		 * make sure the list to which we are adding
4353 		 * doesn't grow big.
4354 		 */
4355 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4356 			spin_lock(pa->pa_obj_lock);
4357 			list_del_rcu(&pa->pa_inode_list);
4358 			spin_unlock(pa->pa_obj_lock);
4359 			ext4_mb_add_n_trim(ac);
4360 		}
4361 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4362 	}
4363 	if (ac->ac_bitmap_page)
4364 		page_cache_release(ac->ac_bitmap_page);
4365 	if (ac->ac_buddy_page)
4366 		page_cache_release(ac->ac_buddy_page);
4367 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4368 		mutex_unlock(&ac->ac_lg->lg_mutex);
4369 	ext4_mb_collect_stats(ac);
4370 	return 0;
4371 }
4372 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4373 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4374 {
4375 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4376 	int ret;
4377 	int freed = 0;
4378 
4379 	trace_ext4_mb_discard_preallocations(sb, needed);
4380 	for (i = 0; i < ngroups && needed > 0; i++) {
4381 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4382 		freed += ret;
4383 		needed -= ret;
4384 	}
4385 
4386 	return freed;
4387 }
4388 
4389 /*
4390  * Main entry point into mballoc to allocate blocks
4391  * it tries to use preallocation first, then falls back
4392  * to usual allocation
4393  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4394 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4395 				struct ext4_allocation_request *ar, int *errp)
4396 {
4397 	int freed;
4398 	struct ext4_allocation_context *ac = NULL;
4399 	struct ext4_sb_info *sbi;
4400 	struct super_block *sb;
4401 	ext4_fsblk_t block = 0;
4402 	unsigned int inquota = 0;
4403 	unsigned int reserv_clstrs = 0;
4404 
4405 	might_sleep();
4406 	sb = ar->inode->i_sb;
4407 	sbi = EXT4_SB(sb);
4408 
4409 	trace_ext4_request_blocks(ar);
4410 
4411 	/* Allow to use superuser reservation for quota file */
4412 	if (IS_NOQUOTA(ar->inode))
4413 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4414 
4415 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4416 		/* Without delayed allocation we need to verify
4417 		 * there is enough free blocks to do block allocation
4418 		 * and verify allocation doesn't exceed the quota limits.
4419 		 */
4420 		while (ar->len &&
4421 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4422 
4423 			/* let others to free the space */
4424 			cond_resched();
4425 			ar->len = ar->len >> 1;
4426 		}
4427 		if (!ar->len) {
4428 			*errp = -ENOSPC;
4429 			return 0;
4430 		}
4431 		reserv_clstrs = ar->len;
4432 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4433 			dquot_alloc_block_nofail(ar->inode,
4434 						 EXT4_C2B(sbi, ar->len));
4435 		} else {
4436 			while (ar->len &&
4437 				dquot_alloc_block(ar->inode,
4438 						  EXT4_C2B(sbi, ar->len))) {
4439 
4440 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4441 				ar->len--;
4442 			}
4443 		}
4444 		inquota = ar->len;
4445 		if (ar->len == 0) {
4446 			*errp = -EDQUOT;
4447 			goto out;
4448 		}
4449 	}
4450 
4451 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4452 	if (!ac) {
4453 		ar->len = 0;
4454 		*errp = -ENOMEM;
4455 		goto out;
4456 	}
4457 
4458 	*errp = ext4_mb_initialize_context(ac, ar);
4459 	if (*errp) {
4460 		ar->len = 0;
4461 		goto out;
4462 	}
4463 
4464 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4465 	if (!ext4_mb_use_preallocated(ac)) {
4466 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4467 		ext4_mb_normalize_request(ac, ar);
4468 repeat:
4469 		/* allocate space in core */
4470 		*errp = ext4_mb_regular_allocator(ac);
4471 		if (*errp)
4472 			goto discard_and_exit;
4473 
4474 		/* as we've just preallocated more space than
4475 		 * user requested originally, we store allocated
4476 		 * space in a special descriptor */
4477 		if (ac->ac_status == AC_STATUS_FOUND &&
4478 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4479 			*errp = ext4_mb_new_preallocation(ac);
4480 		if (*errp) {
4481 		discard_and_exit:
4482 			ext4_discard_allocated_blocks(ac);
4483 			goto errout;
4484 		}
4485 	}
4486 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4487 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4488 		if (*errp == -EAGAIN) {
4489 			/*
4490 			 * drop the reference that we took
4491 			 * in ext4_mb_use_best_found
4492 			 */
4493 			ext4_mb_release_context(ac);
4494 			ac->ac_b_ex.fe_group = 0;
4495 			ac->ac_b_ex.fe_start = 0;
4496 			ac->ac_b_ex.fe_len = 0;
4497 			ac->ac_status = AC_STATUS_CONTINUE;
4498 			goto repeat;
4499 		} else if (*errp) {
4500 			ext4_discard_allocated_blocks(ac);
4501 			goto errout;
4502 		} else {
4503 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4504 			ar->len = ac->ac_b_ex.fe_len;
4505 		}
4506 	} else {
4507 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4508 		if (freed)
4509 			goto repeat;
4510 		*errp = -ENOSPC;
4511 	}
4512 
4513 errout:
4514 	if (*errp) {
4515 		ac->ac_b_ex.fe_len = 0;
4516 		ar->len = 0;
4517 		ext4_mb_show_ac(ac);
4518 	}
4519 	ext4_mb_release_context(ac);
4520 out:
4521 	if (ac)
4522 		kmem_cache_free(ext4_ac_cachep, ac);
4523 	if (inquota && ar->len < inquota)
4524 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4525 	if (!ar->len) {
4526 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4527 			/* release all the reserved blocks if non delalloc */
4528 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4529 						reserv_clstrs);
4530 	}
4531 
4532 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4533 
4534 	return block;
4535 }
4536 
4537 /*
4538  * We can merge two free data extents only if the physical blocks
4539  * are contiguous, AND the extents were freed by the same transaction,
4540  * AND the blocks are associated with the same group.
4541  */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4542 static int can_merge(struct ext4_free_data *entry1,
4543 			struct ext4_free_data *entry2)
4544 {
4545 	if ((entry1->efd_tid == entry2->efd_tid) &&
4546 	    (entry1->efd_group == entry2->efd_group) &&
4547 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4548 		return 1;
4549 	return 0;
4550 }
4551 
4552 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4553 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4554 		      struct ext4_free_data *new_entry)
4555 {
4556 	ext4_group_t group = e4b->bd_group;
4557 	ext4_grpblk_t cluster;
4558 	struct ext4_free_data *entry;
4559 	struct ext4_group_info *db = e4b->bd_info;
4560 	struct super_block *sb = e4b->bd_sb;
4561 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4562 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4563 	struct rb_node *parent = NULL, *new_node;
4564 
4565 	BUG_ON(!ext4_handle_valid(handle));
4566 	BUG_ON(e4b->bd_bitmap_page == NULL);
4567 	BUG_ON(e4b->bd_buddy_page == NULL);
4568 
4569 	new_node = &new_entry->efd_node;
4570 	cluster = new_entry->efd_start_cluster;
4571 
4572 	if (!*n) {
4573 		/* first free block exent. We need to
4574 		   protect buddy cache from being freed,
4575 		 * otherwise we'll refresh it from
4576 		 * on-disk bitmap and lose not-yet-available
4577 		 * blocks */
4578 		page_cache_get(e4b->bd_buddy_page);
4579 		page_cache_get(e4b->bd_bitmap_page);
4580 	}
4581 	while (*n) {
4582 		parent = *n;
4583 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4584 		if (cluster < entry->efd_start_cluster)
4585 			n = &(*n)->rb_left;
4586 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4587 			n = &(*n)->rb_right;
4588 		else {
4589 			ext4_grp_locked_error(sb, group, 0,
4590 				ext4_group_first_block_no(sb, group) +
4591 				EXT4_C2B(sbi, cluster),
4592 				"Block already on to-be-freed list");
4593 			return 0;
4594 		}
4595 	}
4596 
4597 	rb_link_node(new_node, parent, n);
4598 	rb_insert_color(new_node, &db->bb_free_root);
4599 
4600 	/* Now try to see the extent can be merged to left and right */
4601 	node = rb_prev(new_node);
4602 	if (node) {
4603 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4604 		if (can_merge(entry, new_entry) &&
4605 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4606 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4607 			new_entry->efd_count += entry->efd_count;
4608 			rb_erase(node, &(db->bb_free_root));
4609 			kmem_cache_free(ext4_free_data_cachep, entry);
4610 		}
4611 	}
4612 
4613 	node = rb_next(new_node);
4614 	if (node) {
4615 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4616 		if (can_merge(new_entry, entry) &&
4617 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4618 			new_entry->efd_count += entry->efd_count;
4619 			rb_erase(node, &(db->bb_free_root));
4620 			kmem_cache_free(ext4_free_data_cachep, entry);
4621 		}
4622 	}
4623 	/* Add the extent to transaction's private list */
4624 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4625 				  &new_entry->efd_jce);
4626 	return 0;
4627 }
4628 
4629 /**
4630  * ext4_free_blocks() -- Free given blocks and update quota
4631  * @handle:		handle for this transaction
4632  * @inode:		inode
4633  * @block:		start physical block to free
4634  * @count:		number of blocks to count
4635  * @flags:		flags used by ext4_free_blocks
4636  */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4637 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4638 		      struct buffer_head *bh, ext4_fsblk_t block,
4639 		      unsigned long count, int flags)
4640 {
4641 	struct buffer_head *bitmap_bh = NULL;
4642 	struct super_block *sb = inode->i_sb;
4643 	struct ext4_group_desc *gdp;
4644 	unsigned int overflow;
4645 	ext4_grpblk_t bit;
4646 	struct buffer_head *gd_bh;
4647 	ext4_group_t block_group;
4648 	struct ext4_sb_info *sbi;
4649 	struct ext4_buddy e4b;
4650 	unsigned int count_clusters;
4651 	int err = 0;
4652 	int ret;
4653 
4654 	might_sleep();
4655 	if (bh) {
4656 		if (block)
4657 			BUG_ON(block != bh->b_blocknr);
4658 		else
4659 			block = bh->b_blocknr;
4660 	}
4661 
4662 	sbi = EXT4_SB(sb);
4663 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4664 	    !ext4_data_block_valid(sbi, block, count)) {
4665 		ext4_error(sb, "Freeing blocks not in datazone - "
4666 			   "block = %llu, count = %lu", block, count);
4667 		goto error_return;
4668 	}
4669 
4670 	ext4_debug("freeing block %llu\n", block);
4671 	trace_ext4_free_blocks(inode, block, count, flags);
4672 
4673 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4674 		struct buffer_head *tbh = bh;
4675 		int i;
4676 
4677 		BUG_ON(bh && (count > 1));
4678 
4679 		for (i = 0; i < count; i++) {
4680 			cond_resched();
4681 			if (!bh)
4682 				tbh = sb_find_get_block(inode->i_sb,
4683 							block + i);
4684 			if (!tbh)
4685 				continue;
4686 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4687 				    inode, tbh, block + i);
4688 		}
4689 	}
4690 
4691 	/*
4692 	 * We need to make sure we don't reuse the freed block until
4693 	 * after the transaction is committed, which we can do by
4694 	 * treating the block as metadata, below.  We make an
4695 	 * exception if the inode is to be written in writeback mode
4696 	 * since writeback mode has weak data consistency guarantees.
4697 	 */
4698 	if (!ext4_should_writeback_data(inode))
4699 		flags |= EXT4_FREE_BLOCKS_METADATA;
4700 
4701 	/*
4702 	 * If the extent to be freed does not begin on a cluster
4703 	 * boundary, we need to deal with partial clusters at the
4704 	 * beginning and end of the extent.  Normally we will free
4705 	 * blocks at the beginning or the end unless we are explicitly
4706 	 * requested to avoid doing so.
4707 	 */
4708 	overflow = EXT4_PBLK_COFF(sbi, block);
4709 	if (overflow) {
4710 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4711 			overflow = sbi->s_cluster_ratio - overflow;
4712 			block += overflow;
4713 			if (count > overflow)
4714 				count -= overflow;
4715 			else
4716 				return;
4717 		} else {
4718 			block -= overflow;
4719 			count += overflow;
4720 		}
4721 	}
4722 	overflow = EXT4_LBLK_COFF(sbi, count);
4723 	if (overflow) {
4724 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4725 			if (count > overflow)
4726 				count -= overflow;
4727 			else
4728 				return;
4729 		} else
4730 			count += sbi->s_cluster_ratio - overflow;
4731 	}
4732 
4733 do_more:
4734 	overflow = 0;
4735 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4736 
4737 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4738 			ext4_get_group_info(sb, block_group))))
4739 		return;
4740 
4741 	/*
4742 	 * Check to see if we are freeing blocks across a group
4743 	 * boundary.
4744 	 */
4745 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4746 		overflow = EXT4_C2B(sbi, bit) + count -
4747 			EXT4_BLOCKS_PER_GROUP(sb);
4748 		count -= overflow;
4749 	}
4750 	count_clusters = EXT4_NUM_B2C(sbi, count);
4751 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4752 	if (!bitmap_bh) {
4753 		err = -EIO;
4754 		goto error_return;
4755 	}
4756 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4757 	if (!gdp) {
4758 		err = -EIO;
4759 		goto error_return;
4760 	}
4761 
4762 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4763 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4764 	    in_range(block, ext4_inode_table(sb, gdp),
4765 		     EXT4_SB(sb)->s_itb_per_group) ||
4766 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4767 		     EXT4_SB(sb)->s_itb_per_group)) {
4768 
4769 		ext4_error(sb, "Freeing blocks in system zone - "
4770 			   "Block = %llu, count = %lu", block, count);
4771 		/* err = 0. ext4_std_error should be a no op */
4772 		goto error_return;
4773 	}
4774 
4775 	BUFFER_TRACE(bitmap_bh, "getting write access");
4776 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4777 	if (err)
4778 		goto error_return;
4779 
4780 	/*
4781 	 * We are about to modify some metadata.  Call the journal APIs
4782 	 * to unshare ->b_data if a currently-committing transaction is
4783 	 * using it
4784 	 */
4785 	BUFFER_TRACE(gd_bh, "get_write_access");
4786 	err = ext4_journal_get_write_access(handle, gd_bh);
4787 	if (err)
4788 		goto error_return;
4789 #ifdef AGGRESSIVE_CHECK
4790 	{
4791 		int i;
4792 		for (i = 0; i < count_clusters; i++)
4793 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4794 	}
4795 #endif
4796 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4797 
4798 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4799 	if (err)
4800 		goto error_return;
4801 
4802 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4803 		struct ext4_free_data *new_entry;
4804 		/*
4805 		 * blocks being freed are metadata. these blocks shouldn't
4806 		 * be used until this transaction is committed
4807 		 *
4808 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4809 		 * to fail.
4810 		 */
4811 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4812 				GFP_NOFS|__GFP_NOFAIL);
4813 		new_entry->efd_start_cluster = bit;
4814 		new_entry->efd_group = block_group;
4815 		new_entry->efd_count = count_clusters;
4816 		new_entry->efd_tid = handle->h_transaction->t_tid;
4817 
4818 		ext4_lock_group(sb, block_group);
4819 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4820 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4821 	} else {
4822 		/* need to update group_info->bb_free and bitmap
4823 		 * with group lock held. generate_buddy look at
4824 		 * them with group lock_held
4825 		 */
4826 		if (test_opt(sb, DISCARD)) {
4827 			err = ext4_issue_discard(sb, block_group, bit, count);
4828 			if (err && err != -EOPNOTSUPP)
4829 				ext4_msg(sb, KERN_WARNING, "discard request in"
4830 					 " group:%d block:%d count:%lu failed"
4831 					 " with %d", block_group, bit, count,
4832 					 err);
4833 		} else
4834 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4835 
4836 		ext4_lock_group(sb, block_group);
4837 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4838 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4839 	}
4840 
4841 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4842 	ext4_free_group_clusters_set(sb, gdp, ret);
4843 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4844 	ext4_group_desc_csum_set(sb, block_group, gdp);
4845 	ext4_unlock_group(sb, block_group);
4846 
4847 	if (sbi->s_log_groups_per_flex) {
4848 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4849 		atomic64_add(count_clusters,
4850 			     &sbi->s_flex_groups[flex_group].free_clusters);
4851 	}
4852 
4853 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4854 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4855 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4856 
4857 	ext4_mb_unload_buddy(&e4b);
4858 
4859 	/* We dirtied the bitmap block */
4860 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4861 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4862 
4863 	/* And the group descriptor block */
4864 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4865 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4866 	if (!err)
4867 		err = ret;
4868 
4869 	if (overflow && !err) {
4870 		block += count;
4871 		count = overflow;
4872 		put_bh(bitmap_bh);
4873 		goto do_more;
4874 	}
4875 error_return:
4876 	brelse(bitmap_bh);
4877 	ext4_std_error(sb, err);
4878 	return;
4879 }
4880 
4881 /**
4882  * ext4_group_add_blocks() -- Add given blocks to an existing group
4883  * @handle:			handle to this transaction
4884  * @sb:				super block
4885  * @block:			start physical block to add to the block group
4886  * @count:			number of blocks to free
4887  *
4888  * This marks the blocks as free in the bitmap and buddy.
4889  */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4890 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4891 			 ext4_fsblk_t block, unsigned long count)
4892 {
4893 	struct buffer_head *bitmap_bh = NULL;
4894 	struct buffer_head *gd_bh;
4895 	ext4_group_t block_group;
4896 	ext4_grpblk_t bit;
4897 	unsigned int i;
4898 	struct ext4_group_desc *desc;
4899 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4900 	struct ext4_buddy e4b;
4901 	int err = 0, ret, blk_free_count;
4902 	ext4_grpblk_t blocks_freed;
4903 
4904 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4905 
4906 	if (count == 0)
4907 		return 0;
4908 
4909 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4910 	/*
4911 	 * Check to see if we are freeing blocks across a group
4912 	 * boundary.
4913 	 */
4914 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4915 		ext4_warning(sb, "too much blocks added to group %u\n",
4916 			     block_group);
4917 		err = -EINVAL;
4918 		goto error_return;
4919 	}
4920 
4921 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4922 	if (!bitmap_bh) {
4923 		err = -EIO;
4924 		goto error_return;
4925 	}
4926 
4927 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4928 	if (!desc) {
4929 		err = -EIO;
4930 		goto error_return;
4931 	}
4932 
4933 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4934 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4935 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4936 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4937 		     sbi->s_itb_per_group)) {
4938 		ext4_error(sb, "Adding blocks in system zones - "
4939 			   "Block = %llu, count = %lu",
4940 			   block, count);
4941 		err = -EINVAL;
4942 		goto error_return;
4943 	}
4944 
4945 	BUFFER_TRACE(bitmap_bh, "getting write access");
4946 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4947 	if (err)
4948 		goto error_return;
4949 
4950 	/*
4951 	 * We are about to modify some metadata.  Call the journal APIs
4952 	 * to unshare ->b_data if a currently-committing transaction is
4953 	 * using it
4954 	 */
4955 	BUFFER_TRACE(gd_bh, "get_write_access");
4956 	err = ext4_journal_get_write_access(handle, gd_bh);
4957 	if (err)
4958 		goto error_return;
4959 
4960 	for (i = 0, blocks_freed = 0; i < count; i++) {
4961 		BUFFER_TRACE(bitmap_bh, "clear bit");
4962 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4963 			ext4_error(sb, "bit already cleared for block %llu",
4964 				   (ext4_fsblk_t)(block + i));
4965 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4966 		} else {
4967 			blocks_freed++;
4968 		}
4969 	}
4970 
4971 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4972 	if (err)
4973 		goto error_return;
4974 
4975 	/*
4976 	 * need to update group_info->bb_free and bitmap
4977 	 * with group lock held. generate_buddy look at
4978 	 * them with group lock_held
4979 	 */
4980 	ext4_lock_group(sb, block_group);
4981 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4982 	mb_free_blocks(NULL, &e4b, bit, count);
4983 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4984 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4985 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4986 	ext4_group_desc_csum_set(sb, block_group, desc);
4987 	ext4_unlock_group(sb, block_group);
4988 	percpu_counter_add(&sbi->s_freeclusters_counter,
4989 			   EXT4_NUM_B2C(sbi, blocks_freed));
4990 
4991 	if (sbi->s_log_groups_per_flex) {
4992 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4993 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4994 			     &sbi->s_flex_groups[flex_group].free_clusters);
4995 	}
4996 
4997 	ext4_mb_unload_buddy(&e4b);
4998 
4999 	/* We dirtied the bitmap block */
5000 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5001 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5002 
5003 	/* And the group descriptor block */
5004 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5005 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5006 	if (!err)
5007 		err = ret;
5008 
5009 error_return:
5010 	brelse(bitmap_bh);
5011 	ext4_std_error(sb, err);
5012 	return err;
5013 }
5014 
5015 /**
5016  * ext4_trim_extent -- function to TRIM one single free extent in the group
5017  * @sb:		super block for the file system
5018  * @start:	starting block of the free extent in the alloc. group
5019  * @count:	number of blocks to TRIM
5020  * @group:	alloc. group we are working with
5021  * @e4b:	ext4 buddy for the group
5022  *
5023  * Trim "count" blocks starting at "start" in the "group". To assure that no
5024  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5025  * be called with under the group lock.
5026  */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b)5027 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5028 			     ext4_group_t group, struct ext4_buddy *e4b)
5029 __releases(bitlock)
5030 __acquires(bitlock)
5031 {
5032 	struct ext4_free_extent ex;
5033 	int ret = 0;
5034 
5035 	trace_ext4_trim_extent(sb, group, start, count);
5036 
5037 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5038 
5039 	ex.fe_start = start;
5040 	ex.fe_group = group;
5041 	ex.fe_len = count;
5042 
5043 	/*
5044 	 * Mark blocks used, so no one can reuse them while
5045 	 * being trimmed.
5046 	 */
5047 	mb_mark_used(e4b, &ex);
5048 	ext4_unlock_group(sb, group);
5049 	ret = ext4_issue_discard(sb, group, start, count);
5050 	ext4_lock_group(sb, group);
5051 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5052 	return ret;
5053 }
5054 
5055 /**
5056  * ext4_trim_all_free -- function to trim all free space in alloc. group
5057  * @sb:			super block for file system
5058  * @group:		group to be trimmed
5059  * @start:		first group block to examine
5060  * @max:		last group block to examine
5061  * @minblocks:		minimum extent block count
5062  *
5063  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5064  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5065  * the extent.
5066  *
5067  *
5068  * ext4_trim_all_free walks through group's block bitmap searching for free
5069  * extents. When the free extent is found, mark it as used in group buddy
5070  * bitmap. Then issue a TRIM command on this extent and free the extent in
5071  * the group buddy bitmap. This is done until whole group is scanned.
5072  */
5073 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5074 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5075 		   ext4_grpblk_t start, ext4_grpblk_t max,
5076 		   ext4_grpblk_t minblocks)
5077 {
5078 	void *bitmap;
5079 	ext4_grpblk_t next, count = 0, free_count = 0;
5080 	struct ext4_buddy e4b;
5081 	int ret = 0;
5082 
5083 	trace_ext4_trim_all_free(sb, group, start, max);
5084 
5085 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5086 	if (ret) {
5087 		ext4_error(sb, "Error in loading buddy "
5088 				"information for %u", group);
5089 		return ret;
5090 	}
5091 	bitmap = e4b.bd_bitmap;
5092 
5093 	ext4_lock_group(sb, group);
5094 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5095 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5096 		goto out;
5097 
5098 	start = (e4b.bd_info->bb_first_free > start) ?
5099 		e4b.bd_info->bb_first_free : start;
5100 
5101 	while (start <= max) {
5102 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5103 		if (start > max)
5104 			break;
5105 		next = mb_find_next_bit(bitmap, max + 1, start);
5106 
5107 		if ((next - start) >= minblocks) {
5108 			ret = ext4_trim_extent(sb, start,
5109 					       next - start, group, &e4b);
5110 			if (ret && ret != -EOPNOTSUPP)
5111 				break;
5112 			ret = 0;
5113 			count += next - start;
5114 		}
5115 		free_count += next - start;
5116 		start = next + 1;
5117 
5118 		if (fatal_signal_pending(current)) {
5119 			count = -ERESTARTSYS;
5120 			break;
5121 		}
5122 
5123 		if (need_resched()) {
5124 			ext4_unlock_group(sb, group);
5125 			cond_resched();
5126 			ext4_lock_group(sb, group);
5127 		}
5128 
5129 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5130 			break;
5131 	}
5132 
5133 	if (!ret) {
5134 		ret = count;
5135 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5136 	}
5137 out:
5138 	ext4_unlock_group(sb, group);
5139 	ext4_mb_unload_buddy(&e4b);
5140 
5141 	ext4_debug("trimmed %d blocks in the group %d\n",
5142 		count, group);
5143 
5144 	return ret;
5145 }
5146 
5147 /**
5148  * ext4_trim_fs() -- trim ioctl handle function
5149  * @sb:			superblock for filesystem
5150  * @range:		fstrim_range structure
5151  *
5152  * start:	First Byte to trim
5153  * len:		number of Bytes to trim from start
5154  * minlen:	minimum extent length in Bytes
5155  * ext4_trim_fs goes through all allocation groups containing Bytes from
5156  * start to start+len. For each such a group ext4_trim_all_free function
5157  * is invoked to trim all free space.
5158  */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5159 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5160 {
5161 	struct ext4_group_info *grp;
5162 	ext4_group_t group, first_group, last_group;
5163 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5164 	uint64_t start, end, minlen, trimmed = 0;
5165 	ext4_fsblk_t first_data_blk =
5166 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5167 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5168 	int ret = 0;
5169 
5170 	start = range->start >> sb->s_blocksize_bits;
5171 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5172 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5173 			      range->minlen >> sb->s_blocksize_bits);
5174 
5175 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5176 	    start >= max_blks ||
5177 	    range->len < sb->s_blocksize)
5178 		return -EINVAL;
5179 	if (end >= max_blks)
5180 		end = max_blks - 1;
5181 	if (end <= first_data_blk)
5182 		goto out;
5183 	if (start < first_data_blk)
5184 		start = first_data_blk;
5185 
5186 	/* Determine first and last group to examine based on start and end */
5187 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5188 				     &first_group, &first_cluster);
5189 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5190 				     &last_group, &last_cluster);
5191 
5192 	/* end now represents the last cluster to discard in this group */
5193 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5194 
5195 	for (group = first_group; group <= last_group; group++) {
5196 		grp = ext4_get_group_info(sb, group);
5197 		/* We only do this if the grp has never been initialized */
5198 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5199 			ret = ext4_mb_init_group(sb, group);
5200 			if (ret)
5201 				break;
5202 		}
5203 
5204 		/*
5205 		 * For all the groups except the last one, last cluster will
5206 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5207 		 * change it for the last group, note that last_cluster is
5208 		 * already computed earlier by ext4_get_group_no_and_offset()
5209 		 */
5210 		if (group == last_group)
5211 			end = last_cluster;
5212 
5213 		if (grp->bb_free >= minlen) {
5214 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5215 						end, minlen);
5216 			if (cnt < 0) {
5217 				ret = cnt;
5218 				break;
5219 			}
5220 			trimmed += cnt;
5221 		}
5222 
5223 		/*
5224 		 * For every group except the first one, we are sure
5225 		 * that the first cluster to discard will be cluster #0.
5226 		 */
5227 		first_cluster = 0;
5228 	}
5229 
5230 	if (!ret)
5231 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5232 
5233 out:
5234 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5235 	return ret;
5236 }
5237