1 /*
2  * linux/fs/ext4/crypto_fname.c
3  *
4  * Copyright (C) 2015, Google, Inc.
5  *
6  * This contains functions for filename crypto management in ext4
7  *
8  * Written by Uday Savagaonkar, 2014.
9  *
10  * This has not yet undergone a rigorous security audit.
11  *
12  */
13 
14 #include <crypto/hash.h>
15 #include <crypto/sha.h>
16 #include <keys/encrypted-type.h>
17 #include <keys/user-type.h>
18 #include <linux/crypto.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel.h>
21 #include <linux/key.h>
22 #include <linux/key.h>
23 #include <linux/list.h>
24 #include <linux/mempool.h>
25 #include <linux/random.h>
26 #include <linux/scatterlist.h>
27 #include <linux/spinlock_types.h>
28 
29 #include "ext4.h"
30 #include "ext4_crypto.h"
31 #include "xattr.h"
32 
33 /**
34  * ext4_dir_crypt_complete() -
35  */
ext4_dir_crypt_complete(struct crypto_async_request * req,int res)36 static void ext4_dir_crypt_complete(struct crypto_async_request *req, int res)
37 {
38 	struct ext4_completion_result *ecr = req->data;
39 
40 	if (res == -EINPROGRESS)
41 		return;
42 	ecr->res = res;
43 	complete(&ecr->completion);
44 }
45 
ext4_valid_filenames_enc_mode(uint32_t mode)46 bool ext4_valid_filenames_enc_mode(uint32_t mode)
47 {
48 	return (mode == EXT4_ENCRYPTION_MODE_AES_256_CTS);
49 }
50 
51 /**
52  * ext4_fname_encrypt() -
53  *
54  * This function encrypts the input filename, and returns the length of the
55  * ciphertext. Errors are returned as negative numbers.  We trust the caller to
56  * allocate sufficient memory to oname string.
57  */
ext4_fname_encrypt(struct ext4_fname_crypto_ctx * ctx,const struct qstr * iname,struct ext4_str * oname)58 static int ext4_fname_encrypt(struct ext4_fname_crypto_ctx *ctx,
59 			      const struct qstr *iname,
60 			      struct ext4_str *oname)
61 {
62 	u32 ciphertext_len;
63 	struct ablkcipher_request *req = NULL;
64 	DECLARE_EXT4_COMPLETION_RESULT(ecr);
65 	struct crypto_ablkcipher *tfm = ctx->ctfm;
66 	int res = 0;
67 	char iv[EXT4_CRYPTO_BLOCK_SIZE];
68 	struct scatterlist sg[1];
69 	int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK);
70 	char *workbuf;
71 
72 	if (iname->len <= 0 || iname->len > ctx->lim)
73 		return -EIO;
74 
75 	ciphertext_len = (iname->len < EXT4_CRYPTO_BLOCK_SIZE) ?
76 		EXT4_CRYPTO_BLOCK_SIZE : iname->len;
77 	ciphertext_len = ext4_fname_crypto_round_up(ciphertext_len, padding);
78 	ciphertext_len = (ciphertext_len > ctx->lim)
79 			? ctx->lim : ciphertext_len;
80 
81 	/* Allocate request */
82 	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
83 	if (!req) {
84 		printk_ratelimited(
85 		    KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
86 		return -ENOMEM;
87 	}
88 	ablkcipher_request_set_callback(req,
89 		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
90 		ext4_dir_crypt_complete, &ecr);
91 
92 	/* Map the workpage */
93 	workbuf = kmap(ctx->workpage);
94 
95 	/* Copy the input */
96 	memcpy(workbuf, iname->name, iname->len);
97 	if (iname->len < ciphertext_len)
98 		memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
99 
100 	/* Initialize IV */
101 	memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
102 
103 	/* Create encryption request */
104 	sg_init_table(sg, 1);
105 	sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
106 	ablkcipher_request_set_crypt(req, sg, sg, ciphertext_len, iv);
107 	res = crypto_ablkcipher_encrypt(req);
108 	if (res == -EINPROGRESS || res == -EBUSY) {
109 		BUG_ON(req->base.data != &ecr);
110 		wait_for_completion(&ecr.completion);
111 		res = ecr.res;
112 	}
113 	if (res >= 0) {
114 		/* Copy the result to output */
115 		memcpy(oname->name, workbuf, ciphertext_len);
116 		res = ciphertext_len;
117 	}
118 	kunmap(ctx->workpage);
119 	ablkcipher_request_free(req);
120 	if (res < 0) {
121 		printk_ratelimited(
122 		    KERN_ERR "%s: Error (error code %d)\n", __func__, res);
123 	}
124 	oname->len = ciphertext_len;
125 	return res;
126 }
127 
128 /*
129  * ext4_fname_decrypt()
130  *	This function decrypts the input filename, and returns
131  *	the length of the plaintext.
132  *	Errors are returned as negative numbers.
133  *	We trust the caller to allocate sufficient memory to oname string.
134  */
ext4_fname_decrypt(struct ext4_fname_crypto_ctx * ctx,const struct ext4_str * iname,struct ext4_str * oname)135 static int ext4_fname_decrypt(struct ext4_fname_crypto_ctx *ctx,
136 			      const struct ext4_str *iname,
137 			      struct ext4_str *oname)
138 {
139 	struct ext4_str tmp_in[2], tmp_out[1];
140 	struct ablkcipher_request *req = NULL;
141 	DECLARE_EXT4_COMPLETION_RESULT(ecr);
142 	struct scatterlist sg[1];
143 	struct crypto_ablkcipher *tfm = ctx->ctfm;
144 	int res = 0;
145 	char iv[EXT4_CRYPTO_BLOCK_SIZE];
146 	char *workbuf;
147 
148 	if (iname->len <= 0 || iname->len > ctx->lim)
149 		return -EIO;
150 
151 	tmp_in[0].name = iname->name;
152 	tmp_in[0].len = iname->len;
153 	tmp_out[0].name = oname->name;
154 
155 	/* Allocate request */
156 	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
157 	if (!req) {
158 		printk_ratelimited(
159 		    KERN_ERR "%s: crypto_request_alloc() failed\n",  __func__);
160 		return -ENOMEM;
161 	}
162 	ablkcipher_request_set_callback(req,
163 		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
164 		ext4_dir_crypt_complete, &ecr);
165 
166 	/* Map the workpage */
167 	workbuf = kmap(ctx->workpage);
168 
169 	/* Copy the input */
170 	memcpy(workbuf, iname->name, iname->len);
171 
172 	/* Initialize IV */
173 	memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
174 
175 	/* Create encryption request */
176 	sg_init_table(sg, 1);
177 	sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
178 	ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv);
179 	res = crypto_ablkcipher_decrypt(req);
180 	if (res == -EINPROGRESS || res == -EBUSY) {
181 		BUG_ON(req->base.data != &ecr);
182 		wait_for_completion(&ecr.completion);
183 		res = ecr.res;
184 	}
185 	if (res >= 0) {
186 		/* Copy the result to output */
187 		memcpy(oname->name, workbuf, iname->len);
188 		res = iname->len;
189 	}
190 	kunmap(ctx->workpage);
191 	ablkcipher_request_free(req);
192 	if (res < 0) {
193 		printk_ratelimited(
194 		    KERN_ERR "%s: Error in ext4_fname_encrypt (error code %d)\n",
195 		    __func__, res);
196 		return res;
197 	}
198 
199 	oname->len = strnlen(oname->name, iname->len);
200 	return oname->len;
201 }
202 
203 static const char *lookup_table =
204 	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
205 
206 /**
207  * ext4_fname_encode_digest() -
208  *
209  * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
210  * The encoded string is roughly 4/3 times the size of the input string.
211  */
digest_encode(const char * src,int len,char * dst)212 static int digest_encode(const char *src, int len, char *dst)
213 {
214 	int i = 0, bits = 0, ac = 0;
215 	char *cp = dst;
216 
217 	while (i < len) {
218 		ac += (((unsigned char) src[i]) << bits);
219 		bits += 8;
220 		do {
221 			*cp++ = lookup_table[ac & 0x3f];
222 			ac >>= 6;
223 			bits -= 6;
224 		} while (bits >= 6);
225 		i++;
226 	}
227 	if (bits)
228 		*cp++ = lookup_table[ac & 0x3f];
229 	return cp - dst;
230 }
231 
digest_decode(const char * src,int len,char * dst)232 static int digest_decode(const char *src, int len, char *dst)
233 {
234 	int i = 0, bits = 0, ac = 0;
235 	const char *p;
236 	char *cp = dst;
237 
238 	while (i < len) {
239 		p = strchr(lookup_table, src[i]);
240 		if (p == NULL || src[i] == 0)
241 			return -2;
242 		ac += (p - lookup_table) << bits;
243 		bits += 6;
244 		if (bits >= 8) {
245 			*cp++ = ac & 0xff;
246 			ac >>= 8;
247 			bits -= 8;
248 		}
249 		i++;
250 	}
251 	if (ac)
252 		return -1;
253 	return cp - dst;
254 }
255 
256 /**
257  * ext4_free_fname_crypto_ctx() -
258  *
259  * Frees up a crypto context.
260  */
ext4_free_fname_crypto_ctx(struct ext4_fname_crypto_ctx * ctx)261 void ext4_free_fname_crypto_ctx(struct ext4_fname_crypto_ctx *ctx)
262 {
263 	if (ctx == NULL || IS_ERR(ctx))
264 		return;
265 
266 	if (ctx->ctfm && !IS_ERR(ctx->ctfm))
267 		crypto_free_ablkcipher(ctx->ctfm);
268 	if (ctx->htfm && !IS_ERR(ctx->htfm))
269 		crypto_free_hash(ctx->htfm);
270 	if (ctx->workpage && !IS_ERR(ctx->workpage))
271 		__free_page(ctx->workpage);
272 	kfree(ctx);
273 }
274 
275 /**
276  * ext4_put_fname_crypto_ctx() -
277  *
278  * Return: The crypto context onto free list. If the free list is above a
279  * threshold, completely frees up the context, and returns the memory.
280  *
281  * TODO: Currently we directly free the crypto context. Eventually we should
282  * add code it to return to free list. Such an approach will increase
283  * efficiency of directory lookup.
284  */
ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx ** ctx)285 void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx)
286 {
287 	if (*ctx == NULL || IS_ERR(*ctx))
288 		return;
289 	ext4_free_fname_crypto_ctx(*ctx);
290 	*ctx = NULL;
291 }
292 
293 /**
294  * ext4_search_fname_crypto_ctx() -
295  */
ext4_search_fname_crypto_ctx(const struct ext4_encryption_key * key)296 static struct ext4_fname_crypto_ctx *ext4_search_fname_crypto_ctx(
297 		const struct ext4_encryption_key *key)
298 {
299 	return NULL;
300 }
301 
302 /**
303  * ext4_alloc_fname_crypto_ctx() -
304  */
ext4_alloc_fname_crypto_ctx(const struct ext4_encryption_key * key)305 struct ext4_fname_crypto_ctx *ext4_alloc_fname_crypto_ctx(
306 	const struct ext4_encryption_key *key)
307 {
308 	struct ext4_fname_crypto_ctx *ctx;
309 
310 	ctx = kmalloc(sizeof(struct ext4_fname_crypto_ctx), GFP_NOFS);
311 	if (ctx == NULL)
312 		return ERR_PTR(-ENOMEM);
313 	if (key->mode == EXT4_ENCRYPTION_MODE_INVALID) {
314 		/* This will automatically set key mode to invalid
315 		 * As enum for ENCRYPTION_MODE_INVALID is zero */
316 		memset(&ctx->key, 0, sizeof(ctx->key));
317 	} else {
318 		memcpy(&ctx->key, key, sizeof(struct ext4_encryption_key));
319 	}
320 	ctx->has_valid_key = (EXT4_ENCRYPTION_MODE_INVALID == key->mode)
321 		? 0 : 1;
322 	ctx->ctfm_key_is_ready = 0;
323 	ctx->ctfm = NULL;
324 	ctx->htfm = NULL;
325 	ctx->workpage = NULL;
326 	return ctx;
327 }
328 
329 /**
330  * ext4_get_fname_crypto_ctx() -
331  *
332  * Allocates a free crypto context and initializes it to hold
333  * the crypto material for the inode.
334  *
335  * Return: NULL if not encrypted. Error value on error. Valid pointer otherwise.
336  */
ext4_get_fname_crypto_ctx(struct inode * inode,u32 max_ciphertext_len)337 struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx(
338 	struct inode *inode, u32 max_ciphertext_len)
339 {
340 	struct ext4_fname_crypto_ctx *ctx;
341 	struct ext4_inode_info *ei = EXT4_I(inode);
342 	int res;
343 
344 	/* Check if the crypto policy is set on the inode */
345 	res = ext4_encrypted_inode(inode);
346 	if (res == 0)
347 		return NULL;
348 
349 	if (!ext4_has_encryption_key(inode))
350 		ext4_generate_encryption_key(inode);
351 
352 	/* Get a crypto context based on the key.
353 	 * A new context is allocated if no context matches the requested key.
354 	 */
355 	ctx = ext4_search_fname_crypto_ctx(&(ei->i_encryption_key));
356 	if (ctx == NULL)
357 		ctx = ext4_alloc_fname_crypto_ctx(&(ei->i_encryption_key));
358 	if (IS_ERR(ctx))
359 		return ctx;
360 
361 	ctx->flags = ei->i_crypt_policy_flags;
362 	if (ctx->has_valid_key) {
363 		if (ctx->key.mode != EXT4_ENCRYPTION_MODE_AES_256_CTS) {
364 			printk_once(KERN_WARNING
365 				    "ext4: unsupported key mode %d\n",
366 				    ctx->key.mode);
367 			return ERR_PTR(-ENOKEY);
368 		}
369 
370 		/* As a first cut, we will allocate new tfm in every call.
371 		 * later, we will keep the tfm around, in case the key gets
372 		 * re-used */
373 		if (ctx->ctfm == NULL) {
374 			ctx->ctfm = crypto_alloc_ablkcipher("cts(cbc(aes))",
375 					0, 0);
376 		}
377 		if (IS_ERR(ctx->ctfm)) {
378 			res = PTR_ERR(ctx->ctfm);
379 			printk(
380 			    KERN_DEBUG "%s: error (%d) allocating crypto tfm\n",
381 			    __func__, res);
382 			ctx->ctfm = NULL;
383 			ext4_put_fname_crypto_ctx(&ctx);
384 			return ERR_PTR(res);
385 		}
386 		if (ctx->ctfm == NULL) {
387 			printk(
388 			    KERN_DEBUG "%s: could not allocate crypto tfm\n",
389 			    __func__);
390 			ext4_put_fname_crypto_ctx(&ctx);
391 			return ERR_PTR(-ENOMEM);
392 		}
393 		if (ctx->workpage == NULL)
394 			ctx->workpage = alloc_page(GFP_NOFS);
395 		if (IS_ERR(ctx->workpage)) {
396 			res = PTR_ERR(ctx->workpage);
397 			printk(
398 			    KERN_DEBUG "%s: error (%d) allocating work page\n",
399 			    __func__, res);
400 			ctx->workpage = NULL;
401 			ext4_put_fname_crypto_ctx(&ctx);
402 			return ERR_PTR(res);
403 		}
404 		if (ctx->workpage == NULL) {
405 			printk(
406 			    KERN_DEBUG "%s: could not allocate work page\n",
407 			    __func__);
408 			ext4_put_fname_crypto_ctx(&ctx);
409 			return ERR_PTR(-ENOMEM);
410 		}
411 		ctx->lim = max_ciphertext_len;
412 		crypto_ablkcipher_clear_flags(ctx->ctfm, ~0);
413 		crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctx->ctfm),
414 			CRYPTO_TFM_REQ_WEAK_KEY);
415 
416 		/* If we are lucky, we will get a context that is already
417 		 * set up with the right key. Else, we will have to
418 		 * set the key */
419 		if (!ctx->ctfm_key_is_ready) {
420 			/* Since our crypto objectives for filename encryption
421 			 * are pretty weak,
422 			 * we directly use the inode master key */
423 			res = crypto_ablkcipher_setkey(ctx->ctfm,
424 					ctx->key.raw, ctx->key.size);
425 			if (res) {
426 				ext4_put_fname_crypto_ctx(&ctx);
427 				return ERR_PTR(-EIO);
428 			}
429 			ctx->ctfm_key_is_ready = 1;
430 		} else {
431 			/* In the current implementation, key should never be
432 			 * marked "ready" for a context that has just been
433 			 * allocated. So we should never reach here */
434 			 BUG();
435 		}
436 	}
437 	if (ctx->htfm == NULL)
438 		ctx->htfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
439 	if (IS_ERR(ctx->htfm)) {
440 		res = PTR_ERR(ctx->htfm);
441 		printk(KERN_DEBUG "%s: error (%d) allocating hash tfm\n",
442 			__func__, res);
443 		ctx->htfm = NULL;
444 		ext4_put_fname_crypto_ctx(&ctx);
445 		return ERR_PTR(res);
446 	}
447 	if (ctx->htfm == NULL) {
448 		printk(KERN_DEBUG "%s: could not allocate hash tfm\n",
449 				__func__);
450 		ext4_put_fname_crypto_ctx(&ctx);
451 		return ERR_PTR(-ENOMEM);
452 	}
453 
454 	return ctx;
455 }
456 
457 /**
458  * ext4_fname_crypto_round_up() -
459  *
460  * Return: The next multiple of block size
461  */
ext4_fname_crypto_round_up(u32 size,u32 blksize)462 u32 ext4_fname_crypto_round_up(u32 size, u32 blksize)
463 {
464 	return ((size+blksize-1)/blksize)*blksize;
465 }
466 
467 /**
468  * ext4_fname_crypto_namelen_on_disk() -
469  */
ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx * ctx,u32 namelen)470 int ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx *ctx,
471 				      u32 namelen)
472 {
473 	u32 ciphertext_len;
474 	int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK);
475 
476 	if (ctx == NULL)
477 		return -EIO;
478 	if (!(ctx->has_valid_key))
479 		return -EACCES;
480 	ciphertext_len = (namelen < EXT4_CRYPTO_BLOCK_SIZE) ?
481 		EXT4_CRYPTO_BLOCK_SIZE : namelen;
482 	ciphertext_len = ext4_fname_crypto_round_up(ciphertext_len, padding);
483 	ciphertext_len = (ciphertext_len > ctx->lim)
484 			? ctx->lim : ciphertext_len;
485 	return (int) ciphertext_len;
486 }
487 
488 /**
489  * ext4_fname_crypto_alloc_obuff() -
490  *
491  * Allocates an output buffer that is sufficient for the crypto operation
492  * specified by the context and the direction.
493  */
ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx * ctx,u32 ilen,struct ext4_str * crypto_str)494 int ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx *ctx,
495 				   u32 ilen, struct ext4_str *crypto_str)
496 {
497 	unsigned int olen;
498 	int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK);
499 
500 	if (!ctx)
501 		return -EIO;
502 	if (padding < EXT4_CRYPTO_BLOCK_SIZE)
503 		padding = EXT4_CRYPTO_BLOCK_SIZE;
504 	olen = ext4_fname_crypto_round_up(ilen, padding);
505 	crypto_str->len = olen;
506 	if (olen < EXT4_FNAME_CRYPTO_DIGEST_SIZE*2)
507 		olen = EXT4_FNAME_CRYPTO_DIGEST_SIZE*2;
508 	/* Allocated buffer can hold one more character to null-terminate the
509 	 * string */
510 	crypto_str->name = kmalloc(olen+1, GFP_NOFS);
511 	if (!(crypto_str->name))
512 		return -ENOMEM;
513 	return 0;
514 }
515 
516 /**
517  * ext4_fname_crypto_free_buffer() -
518  *
519  * Frees the buffer allocated for crypto operation.
520  */
ext4_fname_crypto_free_buffer(struct ext4_str * crypto_str)521 void ext4_fname_crypto_free_buffer(struct ext4_str *crypto_str)
522 {
523 	if (!crypto_str)
524 		return;
525 	kfree(crypto_str->name);
526 	crypto_str->name = NULL;
527 }
528 
529 /**
530  * ext4_fname_disk_to_usr() - converts a filename from disk space to user space
531  */
_ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx * ctx,struct dx_hash_info * hinfo,const struct ext4_str * iname,struct ext4_str * oname)532 int _ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
533 			    struct dx_hash_info *hinfo,
534 			    const struct ext4_str *iname,
535 			    struct ext4_str *oname)
536 {
537 	char buf[24];
538 	int ret;
539 
540 	if (ctx == NULL)
541 		return -EIO;
542 	if (iname->len < 3) {
543 		/*Check for . and .. */
544 		if (iname->name[0] == '.' && iname->name[iname->len-1] == '.') {
545 			oname->name[0] = '.';
546 			oname->name[iname->len-1] = '.';
547 			oname->len = iname->len;
548 			return oname->len;
549 		}
550 	}
551 	if (ctx->has_valid_key)
552 		return ext4_fname_decrypt(ctx, iname, oname);
553 
554 	if (iname->len <= EXT4_FNAME_CRYPTO_DIGEST_SIZE) {
555 		ret = digest_encode(iname->name, iname->len, oname->name);
556 		oname->len = ret;
557 		return ret;
558 	}
559 	if (hinfo) {
560 		memcpy(buf, &hinfo->hash, 4);
561 		memcpy(buf+4, &hinfo->minor_hash, 4);
562 	} else
563 		memset(buf, 0, 8);
564 	memcpy(buf + 8, iname->name + iname->len - 16, 16);
565 	oname->name[0] = '_';
566 	ret = digest_encode(buf, 24, oname->name+1);
567 	oname->len = ret + 1;
568 	return ret + 1;
569 }
570 
ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx * ctx,struct dx_hash_info * hinfo,const struct ext4_dir_entry_2 * de,struct ext4_str * oname)571 int ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
572 			   struct dx_hash_info *hinfo,
573 			   const struct ext4_dir_entry_2 *de,
574 			   struct ext4_str *oname)
575 {
576 	struct ext4_str iname = {.name = (unsigned char *) de->name,
577 				 .len = de->name_len };
578 
579 	return _ext4_fname_disk_to_usr(ctx, hinfo, &iname, oname);
580 }
581 
582 
583 /**
584  * ext4_fname_usr_to_disk() - converts a filename from user space to disk space
585  */
ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx * ctx,const struct qstr * iname,struct ext4_str * oname)586 int ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx *ctx,
587 			   const struct qstr *iname,
588 			   struct ext4_str *oname)
589 {
590 	int res;
591 
592 	if (ctx == NULL)
593 		return -EIO;
594 	if (iname->len < 3) {
595 		/*Check for . and .. */
596 		if (iname->name[0] == '.' &&
597 				iname->name[iname->len-1] == '.') {
598 			oname->name[0] = '.';
599 			oname->name[iname->len-1] = '.';
600 			oname->len = iname->len;
601 			return oname->len;
602 		}
603 	}
604 	if (ctx->has_valid_key) {
605 		res = ext4_fname_encrypt(ctx, iname, oname);
606 		return res;
607 	}
608 	/* Without a proper key, a user is not allowed to modify the filenames
609 	 * in a directory. Consequently, a user space name cannot be mapped to
610 	 * a disk-space name */
611 	return -EACCES;
612 }
613 
614 /*
615  * Calculate the htree hash from a filename from user space
616  */
ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx * ctx,const struct qstr * iname,struct dx_hash_info * hinfo)617 int ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx *ctx,
618 			    const struct qstr *iname,
619 			    struct dx_hash_info *hinfo)
620 {
621 	struct ext4_str tmp;
622 	int ret = 0;
623 	char buf[EXT4_FNAME_CRYPTO_DIGEST_SIZE+1];
624 
625 	if (!ctx ||
626 	    ((iname->name[0] == '.') &&
627 	     ((iname->len == 1) ||
628 	      ((iname->name[1] == '.') && (iname->len == 2))))) {
629 		ext4fs_dirhash(iname->name, iname->len, hinfo);
630 		return 0;
631 	}
632 
633 	if (!ctx->has_valid_key && iname->name[0] == '_') {
634 		if (iname->len != 33)
635 			return -ENOENT;
636 		ret = digest_decode(iname->name+1, iname->len, buf);
637 		if (ret != 24)
638 			return -ENOENT;
639 		memcpy(&hinfo->hash, buf, 4);
640 		memcpy(&hinfo->minor_hash, buf + 4, 4);
641 		return 0;
642 	}
643 
644 	if (!ctx->has_valid_key && iname->name[0] != '_') {
645 		if (iname->len > 43)
646 			return -ENOENT;
647 		ret = digest_decode(iname->name, iname->len, buf);
648 		ext4fs_dirhash(buf, ret, hinfo);
649 		return 0;
650 	}
651 
652 	/* First encrypt the plaintext name */
653 	ret = ext4_fname_crypto_alloc_buffer(ctx, iname->len, &tmp);
654 	if (ret < 0)
655 		return ret;
656 
657 	ret = ext4_fname_encrypt(ctx, iname, &tmp);
658 	if (ret >= 0) {
659 		ext4fs_dirhash(tmp.name, tmp.len, hinfo);
660 		ret = 0;
661 	}
662 
663 	ext4_fname_crypto_free_buffer(&tmp);
664 	return ret;
665 }
666 
ext4_fname_match(struct ext4_fname_crypto_ctx * ctx,struct ext4_str * cstr,int len,const char * const name,struct ext4_dir_entry_2 * de)667 int ext4_fname_match(struct ext4_fname_crypto_ctx *ctx, struct ext4_str *cstr,
668 		     int len, const char * const name,
669 		     struct ext4_dir_entry_2 *de)
670 {
671 	int ret = -ENOENT;
672 	int bigname = (*name == '_');
673 
674 	if (ctx->has_valid_key) {
675 		if (cstr->name == NULL) {
676 			struct qstr istr;
677 
678 			ret = ext4_fname_crypto_alloc_buffer(ctx, len, cstr);
679 			if (ret < 0)
680 				goto errout;
681 			istr.name = name;
682 			istr.len = len;
683 			ret = ext4_fname_encrypt(ctx, &istr, cstr);
684 			if (ret < 0)
685 				goto errout;
686 		}
687 	} else {
688 		if (cstr->name == NULL) {
689 			cstr->name = kmalloc(32, GFP_KERNEL);
690 			if (cstr->name == NULL)
691 				return -ENOMEM;
692 			if ((bigname && (len != 33)) ||
693 			    (!bigname && (len > 43)))
694 				goto errout;
695 			ret = digest_decode(name+bigname, len-bigname,
696 					    cstr->name);
697 			if (ret < 0) {
698 				ret = -ENOENT;
699 				goto errout;
700 			}
701 			cstr->len = ret;
702 		}
703 		if (bigname) {
704 			if (de->name_len < 16)
705 				return 0;
706 			ret = memcmp(de->name + de->name_len - 16,
707 				     cstr->name + 8, 16);
708 			return (ret == 0) ? 1 : 0;
709 		}
710 	}
711 	if (de->name_len != cstr->len)
712 		return 0;
713 	ret = memcmp(de->name, cstr->name, cstr->len);
714 	return (ret == 0) ? 1 : 0;
715 errout:
716 	kfree(cstr->name);
717 	cstr->name = NULL;
718 	return ret;
719 }
720