1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
36 #include <linux/fs.h>
37 #include <linux/path.h>
38 #include <linux/timekeeping.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/tlb.h>
43 #include <asm/exec.h>
44 
45 #include <trace/events/task.h>
46 #include "internal.h"
47 
48 #include <trace/events/sched.h>
49 
50 int core_uses_pid;
51 unsigned int core_pipe_limit;
52 char core_pattern[CORENAME_MAX_SIZE] = "core";
53 static int core_name_size = CORENAME_MAX_SIZE;
54 
55 struct core_name {
56 	char *corename;
57 	int used, size;
58 };
59 
60 /* The maximal length of core_pattern is also specified in sysctl.c */
61 
expand_corename(struct core_name * cn,int size)62 static int expand_corename(struct core_name *cn, int size)
63 {
64 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
65 
66 	if (!corename)
67 		return -ENOMEM;
68 
69 	if (size > core_name_size) /* racy but harmless */
70 		core_name_size = size;
71 
72 	cn->size = ksize(corename);
73 	cn->corename = corename;
74 	return 0;
75 }
76 
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)77 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
78 {
79 	int free, need;
80 	va_list arg_copy;
81 
82 again:
83 	free = cn->size - cn->used;
84 
85 	va_copy(arg_copy, arg);
86 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
87 	va_end(arg_copy);
88 
89 	if (need < free) {
90 		cn->used += need;
91 		return 0;
92 	}
93 
94 	if (!expand_corename(cn, cn->size + need - free + 1))
95 		goto again;
96 
97 	return -ENOMEM;
98 }
99 
cn_printf(struct core_name * cn,const char * fmt,...)100 static int cn_printf(struct core_name *cn, const char *fmt, ...)
101 {
102 	va_list arg;
103 	int ret;
104 
105 	va_start(arg, fmt);
106 	ret = cn_vprintf(cn, fmt, arg);
107 	va_end(arg);
108 
109 	return ret;
110 }
111 
cn_esc_printf(struct core_name * cn,const char * fmt,...)112 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
113 {
114 	int cur = cn->used;
115 	va_list arg;
116 	int ret;
117 
118 	va_start(arg, fmt);
119 	ret = cn_vprintf(cn, fmt, arg);
120 	va_end(arg);
121 
122 	for (; cur < cn->used; ++cur) {
123 		if (cn->corename[cur] == '/')
124 			cn->corename[cur] = '!';
125 	}
126 	return ret;
127 }
128 
cn_print_exe_file(struct core_name * cn)129 static int cn_print_exe_file(struct core_name *cn)
130 {
131 	struct file *exe_file;
132 	char *pathbuf, *path;
133 	int ret;
134 
135 	exe_file = get_mm_exe_file(current->mm);
136 	if (!exe_file)
137 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
138 
139 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
140 	if (!pathbuf) {
141 		ret = -ENOMEM;
142 		goto put_exe_file;
143 	}
144 
145 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
146 	if (IS_ERR(path)) {
147 		ret = PTR_ERR(path);
148 		goto free_buf;
149 	}
150 
151 	ret = cn_esc_printf(cn, "%s", path);
152 
153 free_buf:
154 	kfree(pathbuf);
155 put_exe_file:
156 	fput(exe_file);
157 	return ret;
158 }
159 
160 /* format_corename will inspect the pattern parameter, and output a
161  * name into corename, which must have space for at least
162  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
163  */
format_corename(struct core_name * cn,struct coredump_params * cprm)164 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
165 {
166 	const struct cred *cred = current_cred();
167 	const char *pat_ptr = core_pattern;
168 	int ispipe = (*pat_ptr == '|');
169 	int pid_in_pattern = 0;
170 	int err = 0;
171 
172 	cn->used = 0;
173 	cn->corename = NULL;
174 	if (expand_corename(cn, core_name_size))
175 		return -ENOMEM;
176 	cn->corename[0] = '\0';
177 
178 	if (ispipe)
179 		++pat_ptr;
180 
181 	/* Repeat as long as we have more pattern to process and more output
182 	   space */
183 	while (*pat_ptr) {
184 		if (*pat_ptr != '%') {
185 			err = cn_printf(cn, "%c", *pat_ptr++);
186 		} else {
187 			switch (*++pat_ptr) {
188 			/* single % at the end, drop that */
189 			case 0:
190 				goto out;
191 			/* Double percent, output one percent */
192 			case '%':
193 				err = cn_printf(cn, "%c", '%');
194 				break;
195 			/* pid */
196 			case 'p':
197 				pid_in_pattern = 1;
198 				err = cn_printf(cn, "%d",
199 					      task_tgid_vnr(current));
200 				break;
201 			/* global pid */
202 			case 'P':
203 				err = cn_printf(cn, "%d",
204 					      task_tgid_nr(current));
205 				break;
206 			case 'i':
207 				err = cn_printf(cn, "%d",
208 					      task_pid_vnr(current));
209 				break;
210 			case 'I':
211 				err = cn_printf(cn, "%d",
212 					      task_pid_nr(current));
213 				break;
214 			/* uid */
215 			case 'u':
216 				err = cn_printf(cn, "%d", cred->uid);
217 				break;
218 			/* gid */
219 			case 'g':
220 				err = cn_printf(cn, "%d", cred->gid);
221 				break;
222 			case 'd':
223 				err = cn_printf(cn, "%d",
224 					__get_dumpable(cprm->mm_flags));
225 				break;
226 			/* signal that caused the coredump */
227 			case 's':
228 				err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
229 				break;
230 			/* UNIX time of coredump */
231 			case 't': {
232 				time64_t time;
233 
234 				time = ktime_get_real_seconds();
235 				err = cn_printf(cn, "%lld", time);
236 				break;
237 			}
238 			/* hostname */
239 			case 'h':
240 				down_read(&uts_sem);
241 				err = cn_esc_printf(cn, "%s",
242 					      utsname()->nodename);
243 				up_read(&uts_sem);
244 				break;
245 			/* executable */
246 			case 'e':
247 				err = cn_esc_printf(cn, "%s", current->comm);
248 				break;
249 			case 'E':
250 				err = cn_print_exe_file(cn);
251 				break;
252 			/* core limit size */
253 			case 'c':
254 				err = cn_printf(cn, "%lu",
255 					      rlimit(RLIMIT_CORE));
256 				break;
257 			default:
258 				break;
259 			}
260 			++pat_ptr;
261 		}
262 
263 		if (err)
264 			return err;
265 	}
266 
267 out:
268 	/* Backward compatibility with core_uses_pid:
269 	 *
270 	 * If core_pattern does not include a %p (as is the default)
271 	 * and core_uses_pid is set, then .%pid will be appended to
272 	 * the filename. Do not do this for piped commands. */
273 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
274 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
275 		if (err)
276 			return err;
277 	}
278 	return ispipe;
279 }
280 
zap_process(struct task_struct * start,int exit_code)281 static int zap_process(struct task_struct *start, int exit_code)
282 {
283 	struct task_struct *t;
284 	int nr = 0;
285 
286 	start->signal->group_exit_code = exit_code;
287 	start->signal->group_stop_count = 0;
288 
289 	t = start;
290 	do {
291 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
292 		if (t != current && t->mm) {
293 			sigaddset(&t->pending.signal, SIGKILL);
294 			signal_wake_up(t, 1);
295 			nr++;
296 		}
297 	} while_each_thread(start, t);
298 
299 	return nr;
300 }
301 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)302 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
303 			struct core_state *core_state, int exit_code)
304 {
305 	struct task_struct *g, *p;
306 	unsigned long flags;
307 	int nr = -EAGAIN;
308 
309 	spin_lock_irq(&tsk->sighand->siglock);
310 	if (!signal_group_exit(tsk->signal)) {
311 		mm->core_state = core_state;
312 		nr = zap_process(tsk, exit_code);
313 		tsk->signal->group_exit_task = tsk;
314 		/* ignore all signals except SIGKILL, see prepare_signal() */
315 		tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
316 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
317 	}
318 	spin_unlock_irq(&tsk->sighand->siglock);
319 	if (unlikely(nr < 0))
320 		return nr;
321 
322 	tsk->flags |= PF_DUMPCORE;
323 	if (atomic_read(&mm->mm_users) == nr + 1)
324 		goto done;
325 	/*
326 	 * We should find and kill all tasks which use this mm, and we should
327 	 * count them correctly into ->nr_threads. We don't take tasklist
328 	 * lock, but this is safe wrt:
329 	 *
330 	 * fork:
331 	 *	None of sub-threads can fork after zap_process(leader). All
332 	 *	processes which were created before this point should be
333 	 *	visible to zap_threads() because copy_process() adds the new
334 	 *	process to the tail of init_task.tasks list, and lock/unlock
335 	 *	of ->siglock provides a memory barrier.
336 	 *
337 	 * do_exit:
338 	 *	The caller holds mm->mmap_sem. This means that the task which
339 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
340 	 *	its ->mm.
341 	 *
342 	 * de_thread:
343 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
344 	 *	we must see either old or new leader, this does not matter.
345 	 *	However, it can change p->sighand, so lock_task_sighand(p)
346 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
347 	 *	it can't fail.
348 	 *
349 	 *	Note also that "g" can be the old leader with ->mm == NULL
350 	 *	and already unhashed and thus removed from ->thread_group.
351 	 *	This is OK, __unhash_process()->list_del_rcu() does not
352 	 *	clear the ->next pointer, we will find the new leader via
353 	 *	next_thread().
354 	 */
355 	rcu_read_lock();
356 	for_each_process(g) {
357 		if (g == tsk->group_leader)
358 			continue;
359 		if (g->flags & PF_KTHREAD)
360 			continue;
361 		p = g;
362 		do {
363 			if (p->mm) {
364 				if (unlikely(p->mm == mm)) {
365 					lock_task_sighand(p, &flags);
366 					nr += zap_process(p, exit_code);
367 					p->signal->flags = SIGNAL_GROUP_EXIT;
368 					unlock_task_sighand(p, &flags);
369 				}
370 				break;
371 			}
372 		} while_each_thread(g, p);
373 	}
374 	rcu_read_unlock();
375 done:
376 	atomic_set(&core_state->nr_threads, nr);
377 	return nr;
378 }
379 
coredump_wait(int exit_code,struct core_state * core_state)380 static int coredump_wait(int exit_code, struct core_state *core_state)
381 {
382 	struct task_struct *tsk = current;
383 	struct mm_struct *mm = tsk->mm;
384 	int core_waiters = -EBUSY;
385 
386 	init_completion(&core_state->startup);
387 	core_state->dumper.task = tsk;
388 	core_state->dumper.next = NULL;
389 
390 	down_write(&mm->mmap_sem);
391 	if (!mm->core_state)
392 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
393 	up_write(&mm->mmap_sem);
394 
395 	if (core_waiters > 0) {
396 		struct core_thread *ptr;
397 
398 		wait_for_completion(&core_state->startup);
399 		/*
400 		 * Wait for all the threads to become inactive, so that
401 		 * all the thread context (extended register state, like
402 		 * fpu etc) gets copied to the memory.
403 		 */
404 		ptr = core_state->dumper.next;
405 		while (ptr != NULL) {
406 			wait_task_inactive(ptr->task, 0);
407 			ptr = ptr->next;
408 		}
409 	}
410 
411 	return core_waiters;
412 }
413 
coredump_finish(struct mm_struct * mm,bool core_dumped)414 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
415 {
416 	struct core_thread *curr, *next;
417 	struct task_struct *task;
418 
419 	spin_lock_irq(&current->sighand->siglock);
420 	if (core_dumped && !__fatal_signal_pending(current))
421 		current->signal->group_exit_code |= 0x80;
422 	current->signal->group_exit_task = NULL;
423 	current->signal->flags = SIGNAL_GROUP_EXIT;
424 	spin_unlock_irq(&current->sighand->siglock);
425 
426 	next = mm->core_state->dumper.next;
427 	while ((curr = next) != NULL) {
428 		next = curr->next;
429 		task = curr->task;
430 		/*
431 		 * see exit_mm(), curr->task must not see
432 		 * ->task == NULL before we read ->next.
433 		 */
434 		smp_mb();
435 		curr->task = NULL;
436 		wake_up_process(task);
437 	}
438 
439 	mm->core_state = NULL;
440 }
441 
dump_interrupted(void)442 static bool dump_interrupted(void)
443 {
444 	/*
445 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
446 	 * can do try_to_freeze() and check __fatal_signal_pending(),
447 	 * but then we need to teach dump_write() to restart and clear
448 	 * TIF_SIGPENDING.
449 	 */
450 	return signal_pending(current);
451 }
452 
wait_for_dump_helpers(struct file * file)453 static void wait_for_dump_helpers(struct file *file)
454 {
455 	struct pipe_inode_info *pipe = file->private_data;
456 
457 	pipe_lock(pipe);
458 	pipe->readers++;
459 	pipe->writers--;
460 	wake_up_interruptible_sync(&pipe->wait);
461 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
462 	pipe_unlock(pipe);
463 
464 	/*
465 	 * We actually want wait_event_freezable() but then we need
466 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
467 	 */
468 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
469 
470 	pipe_lock(pipe);
471 	pipe->readers--;
472 	pipe->writers++;
473 	pipe_unlock(pipe);
474 }
475 
476 /*
477  * umh_pipe_setup
478  * helper function to customize the process used
479  * to collect the core in userspace.  Specifically
480  * it sets up a pipe and installs it as fd 0 (stdin)
481  * for the process.  Returns 0 on success, or
482  * PTR_ERR on failure.
483  * Note that it also sets the core limit to 1.  This
484  * is a special value that we use to trap recursive
485  * core dumps
486  */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)487 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
488 {
489 	struct file *files[2];
490 	struct coredump_params *cp = (struct coredump_params *)info->data;
491 	int err = create_pipe_files(files, 0);
492 	if (err)
493 		return err;
494 
495 	cp->file = files[1];
496 
497 	err = replace_fd(0, files[0], 0);
498 	fput(files[0]);
499 	/* and disallow core files too */
500 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
501 
502 	return err;
503 }
504 
do_coredump(const siginfo_t * siginfo)505 void do_coredump(const siginfo_t *siginfo)
506 {
507 	struct core_state core_state;
508 	struct core_name cn;
509 	struct mm_struct *mm = current->mm;
510 	struct linux_binfmt * binfmt;
511 	const struct cred *old_cred;
512 	struct cred *cred;
513 	int retval = 0;
514 	int ispipe;
515 	struct files_struct *displaced;
516 	/* require nonrelative corefile path and be extra careful */
517 	bool need_suid_safe = false;
518 	bool core_dumped = false;
519 	static atomic_t core_dump_count = ATOMIC_INIT(0);
520 	struct coredump_params cprm = {
521 		.siginfo = siginfo,
522 		.regs = signal_pt_regs(),
523 		.limit = rlimit(RLIMIT_CORE),
524 		/*
525 		 * We must use the same mm->flags while dumping core to avoid
526 		 * inconsistency of bit flags, since this flag is not protected
527 		 * by any locks.
528 		 */
529 		.mm_flags = mm->flags,
530 	};
531 
532 	audit_core_dumps(siginfo->si_signo);
533 
534 	binfmt = mm->binfmt;
535 	if (!binfmt || !binfmt->core_dump)
536 		goto fail;
537 	if (!__get_dumpable(cprm.mm_flags))
538 		goto fail;
539 
540 	cred = prepare_creds();
541 	if (!cred)
542 		goto fail;
543 	/*
544 	 * We cannot trust fsuid as being the "true" uid of the process
545 	 * nor do we know its entire history. We only know it was tainted
546 	 * so we dump it as root in mode 2, and only into a controlled
547 	 * environment (pipe handler or fully qualified path).
548 	 */
549 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
550 		/* Setuid core dump mode */
551 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
552 		need_suid_safe = true;
553 	}
554 
555 	retval = coredump_wait(siginfo->si_signo, &core_state);
556 	if (retval < 0)
557 		goto fail_creds;
558 
559 	old_cred = override_creds(cred);
560 
561 	ispipe = format_corename(&cn, &cprm);
562 
563 	if (ispipe) {
564 		int dump_count;
565 		char **helper_argv;
566 		struct subprocess_info *sub_info;
567 
568 		if (ispipe < 0) {
569 			printk(KERN_WARNING "format_corename failed\n");
570 			printk(KERN_WARNING "Aborting core\n");
571 			goto fail_unlock;
572 		}
573 
574 		if (cprm.limit == 1) {
575 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
576 			 *
577 			 * Normally core limits are irrelevant to pipes, since
578 			 * we're not writing to the file system, but we use
579 			 * cprm.limit of 1 here as a special value, this is a
580 			 * consistent way to catch recursive crashes.
581 			 * We can still crash if the core_pattern binary sets
582 			 * RLIM_CORE = !1, but it runs as root, and can do
583 			 * lots of stupid things.
584 			 *
585 			 * Note that we use task_tgid_vnr here to grab the pid
586 			 * of the process group leader.  That way we get the
587 			 * right pid if a thread in a multi-threaded
588 			 * core_pattern process dies.
589 			 */
590 			printk(KERN_WARNING
591 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
592 				task_tgid_vnr(current), current->comm);
593 			printk(KERN_WARNING "Aborting core\n");
594 			goto fail_unlock;
595 		}
596 		cprm.limit = RLIM_INFINITY;
597 
598 		dump_count = atomic_inc_return(&core_dump_count);
599 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
600 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
601 			       task_tgid_vnr(current), current->comm);
602 			printk(KERN_WARNING "Skipping core dump\n");
603 			goto fail_dropcount;
604 		}
605 
606 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
607 		if (!helper_argv) {
608 			printk(KERN_WARNING "%s failed to allocate memory\n",
609 			       __func__);
610 			goto fail_dropcount;
611 		}
612 
613 		retval = -ENOMEM;
614 		sub_info = call_usermodehelper_setup(helper_argv[0],
615 						helper_argv, NULL, GFP_KERNEL,
616 						umh_pipe_setup, NULL, &cprm);
617 		if (sub_info)
618 			retval = call_usermodehelper_exec(sub_info,
619 							  UMH_WAIT_EXEC);
620 
621 		argv_free(helper_argv);
622 		if (retval) {
623 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
624 			       cn.corename);
625 			goto close_fail;
626 		}
627 	} else {
628 		struct inode *inode;
629 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
630 				 O_LARGEFILE | O_EXCL;
631 
632 		if (cprm.limit < binfmt->min_coredump)
633 			goto fail_unlock;
634 
635 		if (need_suid_safe && cn.corename[0] != '/') {
636 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
637 				"to fully qualified path!\n",
638 				task_tgid_vnr(current), current->comm);
639 			printk(KERN_WARNING "Skipping core dump\n");
640 			goto fail_unlock;
641 		}
642 
643 		/*
644 		 * Unlink the file if it exists unless this is a SUID
645 		 * binary - in that case, we're running around with root
646 		 * privs and don't want to unlink another user's coredump.
647 		 */
648 		if (!need_suid_safe) {
649 			mm_segment_t old_fs;
650 
651 			old_fs = get_fs();
652 			set_fs(KERNEL_DS);
653 			/*
654 			 * If it doesn't exist, that's fine. If there's some
655 			 * other problem, we'll catch it at the filp_open().
656 			 */
657 			(void) sys_unlink((const char __user *)cn.corename);
658 			set_fs(old_fs);
659 		}
660 
661 		/*
662 		 * There is a race between unlinking and creating the
663 		 * file, but if that causes an EEXIST here, that's
664 		 * fine - another process raced with us while creating
665 		 * the corefile, and the other process won. To userspace,
666 		 * what matters is that at least one of the two processes
667 		 * writes its coredump successfully, not which one.
668 		 */
669 		if (need_suid_safe) {
670 			/*
671 			 * Using user namespaces, normal user tasks can change
672 			 * their current->fs->root to point to arbitrary
673 			 * directories. Since the intention of the "only dump
674 			 * with a fully qualified path" rule is to control where
675 			 * coredumps may be placed using root privileges,
676 			 * current->fs->root must not be used. Instead, use the
677 			 * root directory of init_task.
678 			 */
679 			struct path root;
680 
681 			task_lock(&init_task);
682 			get_fs_root(init_task.fs, &root);
683 			task_unlock(&init_task);
684 			cprm.file = file_open_root(root.dentry, root.mnt,
685 				cn.corename, open_flags, 0600);
686 			path_put(&root);
687 		} else {
688 			cprm.file = filp_open(cn.corename, open_flags, 0600);
689 		}
690 		if (IS_ERR(cprm.file))
691 			goto fail_unlock;
692 
693 		inode = file_inode(cprm.file);
694 		if (inode->i_nlink > 1)
695 			goto close_fail;
696 		if (d_unhashed(cprm.file->f_path.dentry))
697 			goto close_fail;
698 		/*
699 		 * AK: actually i see no reason to not allow this for named
700 		 * pipes etc, but keep the previous behaviour for now.
701 		 */
702 		if (!S_ISREG(inode->i_mode))
703 			goto close_fail;
704 		/*
705 		 * Don't dump core if the filesystem changed owner or mode
706 		 * of the file during file creation. This is an issue when
707 		 * a process dumps core while its cwd is e.g. on a vfat
708 		 * filesystem.
709 		 */
710 		if (!uid_eq(inode->i_uid, current_fsuid()))
711 			goto close_fail;
712 		if ((inode->i_mode & 0677) != 0600)
713 			goto close_fail;
714 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
715 			goto close_fail;
716 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
717 			goto close_fail;
718 	}
719 
720 	/* get us an unshared descriptor table; almost always a no-op */
721 	retval = unshare_files(&displaced);
722 	if (retval)
723 		goto close_fail;
724 	if (displaced)
725 		put_files_struct(displaced);
726 	if (!dump_interrupted()) {
727 		file_start_write(cprm.file);
728 		core_dumped = binfmt->core_dump(&cprm);
729 		file_end_write(cprm.file);
730 	}
731 	if (ispipe && core_pipe_limit)
732 		wait_for_dump_helpers(cprm.file);
733 close_fail:
734 	if (cprm.file)
735 		filp_close(cprm.file, NULL);
736 fail_dropcount:
737 	if (ispipe)
738 		atomic_dec(&core_dump_count);
739 fail_unlock:
740 	kfree(cn.corename);
741 	coredump_finish(mm, core_dumped);
742 	revert_creds(old_cred);
743 fail_creds:
744 	put_cred(cred);
745 fail:
746 	return;
747 }
748 
749 /*
750  * Core dumping helper functions.  These are the only things you should
751  * do on a core-file: use only these functions to write out all the
752  * necessary info.
753  */
dump_emit(struct coredump_params * cprm,const void * addr,int nr)754 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
755 {
756 	struct file *file = cprm->file;
757 	loff_t pos = file->f_pos;
758 	ssize_t n;
759 	if (cprm->written + nr > cprm->limit)
760 		return 0;
761 	while (nr) {
762 		if (dump_interrupted())
763 			return 0;
764 		n = __kernel_write(file, addr, nr, &pos);
765 		if (n <= 0)
766 			return 0;
767 		file->f_pos = pos;
768 		cprm->written += n;
769 		nr -= n;
770 	}
771 	return 1;
772 }
773 EXPORT_SYMBOL(dump_emit);
774 
dump_skip(struct coredump_params * cprm,size_t nr)775 int dump_skip(struct coredump_params *cprm, size_t nr)
776 {
777 	static char zeroes[PAGE_SIZE];
778 	struct file *file = cprm->file;
779 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
780 		if (cprm->written + nr > cprm->limit)
781 			return 0;
782 		if (dump_interrupted() ||
783 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
784 			return 0;
785 		cprm->written += nr;
786 		return 1;
787 	} else {
788 		while (nr > PAGE_SIZE) {
789 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
790 				return 0;
791 			nr -= PAGE_SIZE;
792 		}
793 		return dump_emit(cprm, zeroes, nr);
794 	}
795 }
796 EXPORT_SYMBOL(dump_skip);
797 
dump_align(struct coredump_params * cprm,int align)798 int dump_align(struct coredump_params *cprm, int align)
799 {
800 	unsigned mod = cprm->written & (align - 1);
801 	if (align & (align - 1))
802 		return 0;
803 	return mod ? dump_skip(cprm, align - mod) : 1;
804 }
805 EXPORT_SYMBOL(dump_align);
806